1
|
Schahl A, Lagardère L, Walker B, Ren P, Wioland H, Ballet M, Jégou A, Chavent M, Piquemal JP. Histidine 73 methylation coordinates β-actin plasticity in response to key environmental factors. Nat Commun 2025; 16:2304. [PMID: 40055316 PMCID: PMC11889246 DOI: 10.1038/s41467-025-57458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
The functional importance of the methylation of histidine 73 (H73) in actin remains unclear. Focusing on cytoplasmic β-actin, present in all mammalian cells, we use molecular dynamics simulations with a polarizable force field and adaptive sampling to examine the effects of H73 methylation. Our results show that methylation enhances nucleotide binding cleft opening, alters allosteric pathways connecting subdomains 2 and 4 (SD2 and SD4) in G-actin, and affects backdoor openings and inorganic phosphate release in F-actin, as validated by biochemical assays. These effects depend on the nucleotide and ions interacting with the actin. Together, our findings reveal how H73 methylation regulates β-actin plasticity and integrates environmental cues.
Collapse
Affiliation(s)
- Adrien Schahl
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Toulouse, France
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, Paris, France
| | - Louis Lagardère
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, Paris, France
| | - Brandon Walker
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hugo Wioland
- Institut Jacques Monod, Université Paris Cité, CNRS, Paris, France
| | - Maya Ballet
- Institut Jacques Monod, Université Paris Cité, CNRS, Paris, France
| | - Antoine Jégou
- Institut Jacques Monod, Université Paris Cité, CNRS, Paris, France
| | - Matthieu Chavent
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Toulouse, France.
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France.
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, Paris, France.
| |
Collapse
|
2
|
Uyeda TQP, Yamazaki Y, Kijima ST, Noguchi TQP, Ngo KX. Multiple Mechanisms to Regulate Actin Functions: "Fundamental" Versus Lineage-Specific Mechanisms and Hierarchical Relationships. Biomolecules 2025; 15:279. [PMID: 40001582 PMCID: PMC11853071 DOI: 10.3390/biom15020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Eukaryotic actin filaments play a central role in numerous cellular functions, with each function relying on the interaction of actin filaments with specific actin-binding proteins. Understanding the mechanisms that regulate these interactions is key to uncovering how actin filaments perform diverse roles at different cellular locations. Several distinct classes of actin regulatory mechanisms have been proposed and experimentally supported. However, these mechanisms vary in their nature and hierarchy. For instance, some operate under the control of others, highlighting hierarchical relationships. Additionally, while certain mechanisms are fundamental and ubiquitous across eukaryotes, others are lineage-specific. Here, we emphasize the fundamental importance and functional significance of the following actin regulatory mechanisms: the biochemical regulation of actin nucleators, the ATP hydrolysis-dependent aging of actin filaments, thermal fluctuation- and mechanical strain-dependent conformational changes of actin filaments, and cooperative conformational changes induced by actin-binding proteins.
Collapse
Affiliation(s)
- Taro Q. P. Uyeda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Shinjuku, Japan
| | - Yosuke Yamazaki
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Kanagawa, Japan;
| | - Saku T. Kijima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Ibaraki, Japan;
| | - Taro Q. P. Noguchi
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, Miyakonojo 885-0006, Miyazaki, Japan;
| | - Kien Xuan Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan;
| |
Collapse
|
3
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
4
|
Garg A, Jansen S, Greenberg L, Zhang R, Lavine KJ, Greenberg MJ. Dilated cardiomyopathy-associated skeletal muscle actin (ACTA1) mutation R256H disrupts actin structure and function and causes cardiomyocyte hypocontractility. Proc Natl Acad Sci U S A 2024; 121:e2405020121. [PMID: 39503885 PMCID: PMC11572969 DOI: 10.1073/pnas.2405020121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/17/2024] [Indexed: 11/13/2024] Open
Abstract
Skeletal muscle actin (ACTA1) mutations are a prevalent cause of skeletal myopathies consistent with ACTA1's high expression in skeletal muscle. Rare de novo mutations in ACTA1 associated with combined cardiac and skeletal myopathies have been reported, but ACTA1 represents only ~20% of the total actin pool in cardiomyocytes, making its role in cardiomyopathy controversial. Here we demonstrate how a mutation in an actin isoform expressed at low levels in cardiomyocytes can cause cardiomyopathy by focusing on a unique ACTA1 variant, R256H. We previously identified this variant in a family with dilated cardiomyopathy, who had reduced systolic function without clinical skeletal myopathy. Using a battery of multiscale biophysical tools, we show that R256H has potent effects on ACTA1 function at the molecular scale and in human cardiomyocytes. Importantly, we demonstrate that R256H acts in a dominant manner, where the incorporation of small amounts of mutant protein into thin filaments is sufficient to disrupt molecular contractility, and that this effect is dependent on the presence of troponin and tropomyosin. To understand the structural basis of this change in regulation, we resolved a structure of R256H filaments using cryoelectron microscopy, and we see alterations in actin's structure that have the potential to disrupt interactions with tropomyosin. Finally, we show that ACTA1R256H/+ human-induced pluripotent stem cell cardiomyocytes demonstrate reduced contractility and sarcomeric organization. Taken together, we demonstrate that R256H has multiple effects on ACTA1 function that are sufficient to cause reduced contractility and establish a likely causative relationship between ACTA1 R256H and clinical cardiomyopathy.
Collapse
Affiliation(s)
- Ankit Garg
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO63110
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
5
|
Jin T, Zeng K, Zhang X, Dou WT, Hu L, Zhang D, Zhu W, Qian X, Yang HB, Xu L. Efficient Self-Sorting Behaviours of Metallacages with Subtle Structural Differences. Angew Chem Int Ed Engl 2024; 63:e202409878. [PMID: 39051526 DOI: 10.1002/anie.202409878] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/06/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
Investigating the self-sorting behaviour of assemblies with subtle structural differences is a captivating yet challenging endeavour. Herein, we elucidate the unusual self-sorting behaviour of metallacages with subtle structural differences in batch reactors and microdroplets. Narcissistic self-sorting of metallacages has been observed for two ligands with identical sizes, shapes, and symmetries, with only minor differences in the substituted groups. In particular, the self-sorting process in microdroplets occurs within 1 min at room temperature, in stark contrast to batch reactors, which require equilibration for 30 min. To reveal the mechanism of self-sorting and the role of microdroplets, we conducted a series of experiments and theoretical calculations, including competitive self-assembly, cage-to-cage transformation, control experiments involving model metallacages with larger cavities, noncovalent interaction analysis, and root mean square deviation (RMSD) analysis. This research demonstrates an unusual case of self-sorting of very similar assemblies and provides a new strategy for facilitating the self-sorting efficiency of supramolecular systems.
Collapse
Affiliation(s)
- Tongxia Jin
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Kai Zeng
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xin Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei-Tao Dou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lianrui Hu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Dawei Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Weiping Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuhong Qian
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
6
|
Kidder KM, Noid WG. Analysis of mapping atomic models to coarse-grained resolution. J Chem Phys 2024; 161:134113. [PMID: 39365018 DOI: 10.1063/5.0220989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
Low-resolution coarse-grained (CG) models provide significant computational and conceptual advantages for simulating soft materials. However, the properties of CG models depend quite sensitively upon the mapping, M, that maps each atomic configuration, r, to a CG configuration, R. In particular, M determines how the configurational information of the atomic model is partitioned between the mapped ensemble of CG configurations and the lost ensemble of atomic configurations that map to each R. In this work, we investigate how the mapping partitions the atomic configuration space into CG and intra-site components. We demonstrate that the corresponding coordinate transformation introduces a nontrivial Jacobian factor. This Jacobian factor defines a labeling entropy that corresponds to the uncertainty in the atoms that are associated with each CG site. Consequently, the labeling entropy effectively transfers configurational information from the lost ensemble into the mapped ensemble. Moreover, our analysis highlights the possibility of resonant mappings that separate the atomic potential into CG and intra-site contributions. We numerically illustrate these considerations with a Gaussian network model for the equilibrium fluctuations of actin. We demonstrate that the spectral quality, Q, provides a simple metric for identifying high quality representations for actin. Conversely, we find that neither maximizing nor minimizing the information content of the mapped ensemble results in high quality representations. However, if one accounts for the labeling uncertainty, Q(M) correlates quite well with the adjusted configurational information loss, Îmap(M), that results from the mapping.
Collapse
Affiliation(s)
- Katherine M Kidder
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
7
|
Yu CJ, Park YH, An MY, Ryu B, Jung HS. Insights into Actin Isoform-Specific Interactions with Myosin via Computational Analysis. Molecules 2024; 29:2992. [PMID: 38998944 PMCID: PMC11242942 DOI: 10.3390/molecules29132992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Actin, which plays a crucial role in cellular structure and function, interacts with various binding proteins, notably myosin. In mammals, actin is composed of six isoforms that exhibit high levels of sequence conservation and structural similarity overall. As a result, the selection of actin isoforms was considered unimportant in structural studies of their binding with myosin. However, recent high-resolution structural research discovered subtle structural differences in the N-terminus of actin isoforms, suggesting the possibility that each actin isoform may engage in specific interactions with myosin isoforms. In this study, we aimed to explore this possibility, particularly by understanding the influence of different actin isoforms on the interaction with myosin 7A. First, we compared the reported actomyosin structures utilizing the same type of actin isoforms as the high-resolution filamentous skeletal α-actin (3.5 Å) structure elucidated using cryo-EM. Through this comparison, we confirmed that the diversity of myosin isoforms leads to differences in interaction with the actin N-terminus, and that loop 2 of the myosin actin-binding sites directly interacts with the actin N-terminus. Subsequently, with the aid of multiple sequence alignment, we observed significant variations in the length of loop 2 across different myosin isoforms. We predicted that these length differences in loop 2 would likely result in structural variations that would affect the interaction with the actin N-terminus. For myosin 7A, loop 2 was found to be very short, and protein complex predictions using skeletal α-actin confirmed an interaction between loop 2 and the actin N-terminus. The prediction indicated that the positively charged residues present in loop 2 electrostatically interact with the acidic patch residues D24 and D25 of actin subdomain 1, whereas interaction with the actin N-terminus beyond this was not observed. Additionally, analyses of the actomyosin-7A prediction models generated using various actin isoforms consistently yielded the same results regardless of the type of actin isoform employed. The results of this study suggest that the subtle structural differences in the N-terminus of actin isoforms are unlikely to influence the binding structure with short loop 2 myosin 7A. Our findings are expected to provide a deeper understanding for future high-resolution structural binding studies of actin and myosin.
Collapse
Affiliation(s)
- Chan Jong Yu
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| | - Yoon Ho Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| | - Mi Young An
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| | - Bumhan Ryu
- Research Solution Center, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| |
Collapse
|
8
|
Watterson JG. The cluster model of energy transduction in biological systems. Biosystems 2024; 240:105213. [PMID: 38616011 DOI: 10.1016/j.biosystems.2024.105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The central problem in transduction is to explain how the energy caught from sunlight by chloroplasts becomes biological work. Or to express it in different terms: how does the energy remain trapped in the biological network and not get lost through thermalization into the environment? The pathway consists of an immensely large number of steps crossing hierarchical levels - some upwards, to larger assemblies, others downwards into energy rich molecules - before fuelling an action potential or a contracting cell. Accepting the assumption that steps are executed by protein domains, we expect that transduction mechanisms are the result of conformational changes, which in turn involve rearrangements of the bonds responsible for the protein fold. But why are these essential changes so difficult to detect? In this presentation, the metabolic pathway is viewed as equivalent to an energy conduit composed of equally sized units - the protein domains - rather than a row of catalysts. The flow of energy through them occurs by the same mechanism as through the cytoplasmic medium (water). This mechanism is based on the cluster-wave model of water structure, which successfully explains the transfer of energy through the liquid medium responsible for the build up of osmotic pressure. The analogy to the line of balls called "Newton's cradle" provides a useful comparison, since there the transfer is also invisible to us because the intermediate balls are motionless. It is further proposed that the spatial arrangements of the H-bonds of the α and β secondary structures support wave motion, with the linear and lateral forms of the groups of bonds belonging to the helices and sheets executing the longitudinal and transverse modes, respectively.
Collapse
|
9
|
Sasmal S, Pal T, Hocky GM, McCullagh M. Quantifying Unbiased Conformational Ensembles from Biased Simulations Using ShapeGMM. J Chem Theory Comput 2024; 20:3492-3502. [PMID: 38662196 PMCID: PMC11104435 DOI: 10.1021/acs.jctc.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Quantifying the conformational ensembles of biomolecules is fundamental to describing mechanisms of processes such as protein folding, interconversion between folded states, ligand binding, and allosteric regulation. Accurate quantification of these ensembles remains a challenge for conventional molecular simulations of all but the simplest molecules due to insufficient sampling. Enhanced sampling approaches, such as metadynamics, were designed to overcome this challenge; however, the nonuniform frame weights that result from many of these approaches present an additional challenge to ensemble quantification techniques such as Markov State Modeling or structural clustering. Here, we present rigorous inclusion of nonuniform frame weights into a structural clustering method entitled shapeGMM. The result of frame-weighted shapeGMM is a high dimensional probability density and generative model for the unbiased system from which we can compute important thermodynamic properties such as relative free energies and configurational entropy. The accuracy of this approach is demonstrated by the quantitative agreement between GMMs computed by Hamiltonian reweighting and direct simulation of a coarse-grained helix model system. Furthermore, the relative free energy computed from a shapeGMM probability density of alanine dipeptide reweighted from a metadynamics simulation quantitatively reproduces the underlying free energy in the basins. Finally, the method identifies hidden structures along the actin globular to filamentous-like structural transition from a metadynamics simulation on a linear discriminant analysis coordinate trained on GMM states, illustrating how structural clustering of biased data can lead to biophysical insight. Combined, these results demonstrate that frame-weighted shapeGMM is a powerful approach to quantifying biomolecular ensembles from biased simulations.
Collapse
Affiliation(s)
- Subarna Sasmal
- Department of Chemistry, New York
University, New York, New York 10003, United
States
| | - Triasha Pal
- Department of Chemistry, New York
University, New York, New York 10003, United
States
| | - Glen M. Hocky
- Department of Chemistry, New York
University, New York, New York 10003, United
States
- Simons Center for Computational Physical Chemistry,
New York University, New York, New York 10003,
United States
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State
University, Stillwater, Oklahoma 74078, United
States
| |
Collapse
|
10
|
Garg A, Jansen S, Zhang R, Lavine KJ, Greenberg MJ. Dilated cardiomyopathy-associated skeletal muscle actin (ACTA1) mutation R256H disrupts actin structure and function and causes cardiomyocyte hypocontractility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.583979. [PMID: 38559046 PMCID: PMC10979883 DOI: 10.1101/2024.03.10.583979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Skeletal muscle actin (ACTA1) mutations are a prevalent cause of skeletal myopathies consistent with ACTA1's high expression in skeletal muscle. Rare de novo mutations in ACTA1 associated with combined cardiac and skeletal myopathies have been reported, but ACTA1 represents only ~20% of the total actin pool in cardiomyocytes, making its role in cardiomyopathy controversial. Here we demonstrate how a mutation in an actin isoform expressed at low levels in cardiomyocytes can cause cardiomyopathy by focusing on a unique ACTA1 mutation, R256H. We previously identified this mutation in multiple family members with dilated cardiomyopathy (DCM), who had reduced systolic function without clinical skeletal myopathy. Using a battery of multiscale biophysical tools, we show that R256H has potent functional effects on ACTA1 function at the molecular scale and in human cardiomyocytes. Importantly, we demonstrate that R256H acts in a dominant manner, where the incorporation of small amounts of mutant protein into thin filaments is sufficient to disrupt molecular contractility, and that this effect is dependent on the presence of troponin and tropomyosin. To understand the structural basis of this change in regulation, we resolved a structure of R256H filaments using Cryo-EM, and we see alterations in actin's structure that have the potential to disrupt interactions with tropomyosin. Finally, we show that ACTA1R256H/+ human induced pluripotent stem cell cardiomyocytes demonstrate reduced contractility and sarcomeric disorganization. Taken together, we demonstrate that R256H has multiple effects on ACTA1 function that are sufficient to cause reduced contractility and establish a likely causative relationship between ACTA1 R256H and clinical cardiomyopathy.
Collapse
Affiliation(s)
- Ankit Garg
- Division of Cardiology, Department of Medicine Johns Hopkins University Baltimore MD USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
11
|
van Zwam MC, Dhar A, Bosman W, van Straaten W, Weijers S, Seta E, Joosten B, van Haren J, Palani S, van den Dries K. IntAct: A nondisruptive internal tagging strategy to study the organization and function of actin isoforms. PLoS Biol 2024; 22:e3002551. [PMID: 38466773 PMCID: PMC10957077 DOI: 10.1371/journal.pbio.3002551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/21/2024] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
Mammals have 6 highly conserved actin isoforms with nonredundant biological functions. The molecular basis of isoform specificity, however, remains elusive due to a lack of tools. Here, we describe the development of IntAct, an internal tagging strategy to study actin isoforms in fixed and living cells. We identified a residue pair in β-actin that permits tag integration and used knock-in cell lines to demonstrate that IntAct β-actin expression and filament incorporation is indistinguishable from wild type. Furthermore, IntAct β-actin remains associated with common actin-binding proteins (ABPs) and can be targeted in living cells. We demonstrate the usability of IntAct for actin isoform investigations by showing that actin isoform-specific distribution is maintained in human cells. Lastly, we observed a variant-dependent incorporation of tagged actin variants into yeast actin patches, cables, and cytokinetic rings demonstrating cross species applicability. Together, our data indicate that IntAct is a versatile tool to study actin isoform localization, dynamics, and molecular interactions.
Collapse
Affiliation(s)
- Maxime C. van Zwam
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anubhav Dhar
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Willem Bosman
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wendy van Straaten
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Suzanne Weijers
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Emiel Seta
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ben Joosten
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Saravanan Palani
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Koen van den Dries
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
12
|
Wu X, Li D, Chen Y, Wang L, Xu LY, Li EM, Dong G. Fascin - F-actin interaction studied by molecular dynamics simulation and protein network analysis. J Biomol Struct Dyn 2024; 42:435-444. [PMID: 37029713 DOI: 10.1080/07391102.2023.2199083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023]
Abstract
Actin bundles are an important component of cellular cytoskeleton and participate in the movement of cells. The formation of actin bundles requires the participation of many actin binding proteins (ABPs). Fascin is a member of ABPs, which plays a key role in bundling filamentous actin (F-actin) to bundles. However, the detailed interactions between fascin and F-actin are unclear. In this study, we construct an atomic-level structure of fascin - F-actin complex based on a rather poor cryo-EM data with resolution of 20 nm. We first optimized the geometries of the complex by molecular dynamics (MD) simulation and analyzed the binding site and pose of fascin which bundles two F-actin chains. Next, binding free energy of fascin was calculated by MM/GBSA method. Finally, protein structure network analysis (PSNs) was performed to analyze the key residues for fascin binding. Our results show that residues of K22, E27, E29, K41, K43, R110, R149, K358, R408 and K471 on fascin are important for its bundling, which are in good agreement with the experimental data. On the other hand, the consistent results indicate that the atomic-level model of fascin - F-actin complex is reliable. In short, this model can be used to understand the detailed interactions between fascin and F-actin, and to develop novel potential drugs targeting fascin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Dajia Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Yang Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Department of Pathology, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Liangdong Wang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, PR China
- Cancer Research Center, Shantou University Medical College, Shantou, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, PR China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, PR China
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, PR China
- Medical Informatics Research Center, Shantou University Medical College, Shantou, PR China
| |
Collapse
|
13
|
Barrie KR, Carman PJ, Dominguez R. Conformation of actin subunits at the barbed and pointed ends of F-actin with and without capping proteins. Cytoskeleton (Hoboken) 2023; 80:309-312. [PMID: 37632366 PMCID: PMC10592188 DOI: 10.1002/cm.21770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/28/2023]
Abstract
Advances in cryo-electron microscopy have made possible the determination of structures of the barbed and pointed ends of F-actin, both in the absence and the presence of capping proteins that block subunit exchange. The conformation of the two exposed protomers at the barbed end resembles the "flat" conformation of protomers in the middle of F-actin. The barbed end changes little upon binding of CapZ, which in turn undergoes a major conformational change. At the pointed end, however, protomers have the "twisted" conformation characteristic of G-actin, whereas tropomodulin binding forces a flat conformation upon the second subunit. The structures provide a mechanistic understanding for the asymmetric addition/dissociation of actin subunits at the ends of F-actin and open the way to future studies of other regulators of filament end dynamics.
Collapse
Affiliation(s)
- Kyle R. Barrie
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
| | - Peter J. Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Carman PJ, Barrie KR, Rebowski G, Dominguez R. Structures of the free and capped ends of the actin filament. Science 2023; 380:1287-1292. [PMID: 37228182 PMCID: PMC10880383 DOI: 10.1126/science.adg6812] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
The barbed and pointed ends of the actin filament (F-actin) are the sites of growth and shrinkage and the targets of capping proteins that block subunit exchange, including CapZ at the barbed end and tropomodulin at the pointed end. We describe cryo-electron microscopy structures of the free and capped ends of F-actin. Terminal subunits at the free barbed end adopt a "flat" F-actin conformation. CapZ binds with minor changes to the barbed end but with major changes to itself. By contrast, subunits at the free pointed end adopt a "twisted" monomeric actin (G-actin) conformation. Tropomodulin binding forces the second subunit into an F-actin conformation. The structures reveal how the ends differ from the middle in F-actin and how these differences control subunit addition, dissociation, capping, and interactions with end-binding proteins.
Collapse
Affiliation(s)
- Peter J. Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
| | - Kyle R. Barrie
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
| | - Grzegorz Rebowski
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Urata S, Yoshikawa R, Yasuda J. Calcium Influx Regulates the Replication of Several Negative-Strand RNA Viruses Including Severe Fever with Thrombocytopenia Syndrome Virus. J Virol 2023; 97:e0001523. [PMID: 36794941 PMCID: PMC10062178 DOI: 10.1128/jvi.00015-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/22/2023] [Indexed: 02/17/2023] Open
Abstract
Negative-strand RNA viruses (NSVs) represent one of the most threatening groups of emerging viruses globally. Severe fever with thrombocytopenia syndrome virus (SFTSV) is a highly pathogenic emerging virus that was initially reported in 2011 from China. Currently, no licensed vaccines or therapeutic agents have been approved for use against SFTSV. Here, L-type calcium channel blockers obtained from a U.S. Food and Drug Administration (FDA)-approved compound library were identified as effective anti-SFTSV compounds. Manidipine, a representative L-type calcium channel blocker, restricted SFTSV genome replication and exhibited inhibitory effects against other NSVs. The result from the immunofluorescent assay suggested that manidipine inhibited SFTSV N-induced inclusion body formation, which is believed to be important for the virus genome replication. We have shown that calcium possesses at least two different roles in regulating SFTSV genome replication. Inhibition of calcineurin, the activation of which is triggered by calcium influx, using FK506 or cyclosporine was shown to reduce SFTSV production, suggesting the important role of calcium signaling on SFTSV genome replication. In addition, we showed that globular actin, the conversion of which is facilitated by calcium from filamentous actin (actin depolymerization), supports SFTSV genome replication. We also observed an increased survival rate and a reduction of viral load in the spleen in a lethal mouse model of SFTSV infections after manidipine treatment. Overall, these results provide information regarding the importance of calcium for NSV replication and may thereby contribute to the development of broad-scale protective therapies against pathogenic NSVs. IMPORTANCE SFTS is an emerging infectious disease and has a high mortality rate of up to 30%. There are no licensed vaccines or antivirals against SFTS. In this article, L-type calcium channel blockers were identified as anti-SFTSV compounds through an FDA-approved compound library screen. Our results showed the involvement of L-type calcium channel as a common host factor for several different families of NSVs. The formation of an inclusion body, which is induced by SFTSV N, was inhibited by manidipine. Further experiments showed that SFTSV replication required the activation of calcineurin, a downstream effecter of the calcium channel. In addition, we identified that globular actin, the conversion of which is facilitated by calcium from filamentous actin, supports SFTSV genome replication. We also observed an increased survival rate in a lethal mouse model of SFTSV infection after manidipine treatment. These results facilitate both our understanding of the NSV replication mechanism and the development of novel anti-NSV treatment.
Collapse
Affiliation(s)
- Shuzo Urata
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Rokusuke Yoshikawa
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
16
|
Tang Q, Pollard LW, Homa KE, Kovar DR, Trybus KM. Acetylation of fission yeast tropomyosin does not promote differential association with cognate formins. Cytoskeleton (Hoboken) 2023; 80:77-92. [PMID: 36692369 PMCID: PMC10121778 DOI: 10.1002/cm.21745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
It was proposed from cellular studies that S. pombe tropomyosin Cdc8 (Tpm) segregates into two populations due to the presence or absence of an amino-terminal acetylation that specifies which formin-mediated F-actin networks it binds, but with no supporting biochemistry. To address this mechanism in vitro, we developed methods for S. pombe actin expression in Sf9 cells. We then employed 3-color TIRF microscopy using all recombinant S. pombe proteins to probe in vitro multicomponent mechanisms involving actin, acetylated and unacetylated Tpm, formins, and myosins. Acetyl-Tpm exhibits tight binding to actin in contrast to weaker binding by unacetylated Tpm. In disagreement with the differential recruitment model, Tpm showed no preferential binding to filaments assembled by the FH1-FH2-domains of two S. pombe formins, nor did Tpm binding have any bias towards the growing formin-bound actin filament barbed end. Although our in vitro findings do not support a direct formin-tropomyosin interaction, it is possible that formins bias differential tropomyosin isoform recruitment through undiscovered mechanisms. Importantly, despite a 12% sequence divergence between skeletal and S. pombe actin, S. pombe myosins Myo2 and Myo51 exhibited similar motile behavior with these two actins, validating key prior findings with these myosins that used skeletal actin.
Collapse
Affiliation(s)
- Qing Tang
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington VT
| | - Luther W. Pollard
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington VT
| | - Kaitlin E. Homa
- Molecular Genetics and Cell Biology, Biochemistry and Molecular Biology, the University of Chicago, Chicago, IL
| | - David R. Kovar
- Molecular Genetics and Cell Biology, Biochemistry and Molecular Biology, the University of Chicago, Chicago, IL
| | - Kathleen M. Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington VT
| |
Collapse
|
17
|
Pathak S, Gupta R, Parkar H, Joshi N, Nagotu S, Kale A. The role of Colchicine on actin polymerization dynamics: as a potent anti-angiogenic factor. J Biomol Struct Dyn 2022; 40:11729-11743. [PMID: 34424806 DOI: 10.1080/07391102.2021.1965911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the years, cancer research has focused on different strategies to discover drugs and therapies to treat the metastatic stage of cancer. This stage depends upon the type, and the cause of cancer. One of the central facts about any cancer invasion is the formation of new blood vessels that provide nutrients to these uncontrollably dividing cells. This phenomenon is called angiogenesis and is responsible for tumor progression and metastasis. Tumor angiogenesis is a sequential process wherein various angiogenic factors produced by tumor cells bind to receptors of endothelial cells. This stimulates the cytoskeletal protein, especially actin to reorganize themselves and undergo the process of canalization. The driving force for such membrane transformation is spatially and temporally-regulated by polymerization of submembrane actin filaments. So far, Colchicine has been studied for its effectiveness in controlling microtubule reorganization during cell division, but its role is far from understood on actin polymerization. In our current study, we report the effect of Colchicine on actin polymerization dynamics using biophysical analysis like Right light scattering (RLS), Dynamic light scattering (DLS), Circular dichroism (CD) analysis, Scanning electron microscopy (SEM) study. Isothermal titration calorimetry (ITC) and kinetic measurements. Isothermal titration calorimetry (ITC) indicates multiple site binding for colchicine with actin aggregates. We have checked the in vivo effect of colchicine using end3 cells of Saccharomyces cerevisiae. We also report the anti-angiogenesis activity of colchicine via ex-ovo chicken chorioallantoic membrane (CAM) assay. We predict the target site of binding for the drug by docking studies. Based on our findings, we suggest the 'drug-repurposed' function for colchicine as a potential anti-angiogenic candidate.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samridhi Pathak
- School of Chemical Sciences, UM-DAE Center for excellence in basic sciences, University of Mumbai, Mumbai, Maharashtra, India
| | - Rahul Gupta
- School of Chemical Sciences, UM-DAE Center for excellence in basic sciences, University of Mumbai, Mumbai, Maharashtra, India
| | - Haifa Parkar
- School of Chemical Sciences, UM-DAE Center for excellence in basic sciences, University of Mumbai, Mumbai, Maharashtra, India
| | - Neha Joshi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Shirisha Nagotu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Avinash Kale
- School of Chemical Sciences, UM-DAE Center for excellence in basic sciences, University of Mumbai, Mumbai, Maharashtra, India
| |
Collapse
|
18
|
Li T, Du J, Ren M. Structural Significance of His73 in F-Actin Dynamics: Insights from Ab Initio Study. Int J Mol Sci 2022; 23:ijms231810447. [PMID: 36142357 PMCID: PMC9499316 DOI: 10.3390/ijms231810447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
F-actin dynamics (polymerization and depolymerization) are associated with nucleotide exchange, providing the driving forces for dynamic cellular activities. As an important residue in the nucleotide state-sensing region in actin, His73 is often found to be methylated in natural actin and directly participates in F-actin dynamics by regulating nucleotide exchange. The interaction between His73 and its neighboring residue, Gly158, has significance for F-actin dynamics. However, this weak chemical interaction is difficult to characterize using classic molecular modeling methods. In this study, ab initio modeling was employed to explore the binding energy between His73 and Gly158. The results confirm that the methyl group on the His73 side chain contributes to the structural stability of atomistic networks in the nucleotide state-sensing region of actin monomers and confines the material exchange (Pi release) pathway within F-actin dynamics. Further binding energy analyses of actin structures under different nucleotide states showed that the potential model of His73/Gly158 hydrogen bond breaking in the material exchange mechanism is not obligatory within F-actin dynamics.
Collapse
Affiliation(s)
- Tong Li
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Juan Du
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Mingfa Ren
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
- Correspondence: ; Tel.: +86-411-8479161
| |
Collapse
|
19
|
Structural and biochemical evidence for the emergence of a calcium-regulated actin cytoskeleton prior to eukaryogenesis. Commun Biol 2022; 5:890. [PMID: 36045281 PMCID: PMC9433394 DOI: 10.1038/s42003-022-03783-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Charting the emergence of eukaryotic traits is important for understanding the characteristics of organisms that contributed to eukaryogenesis. Asgard archaea and eukaryotes are the only organisms known to possess regulated actin cytoskeletons. Here, we determined that gelsolins (2DGels) from Lokiarchaeota (Loki) and Heimdallarchaeota (Heim) are capable of regulating eukaryotic actin dynamics in vitro and when expressed in eukaryotic cells. The actin filament severing and capping, and actin monomer sequestering, functionalities of 2DGels are strictly calcium controlled. We determined the X-ray structures of Heim and Loki 2DGels bound actin monomers. Each structure possesses common and distinct calcium-binding sites. Loki2DGel has an unusual WH2-like motif (LVDV) between its two gelsolin domains, in which the aspartic acid coordinates a calcium ion at the interface with actin. We conclude that the calcium-regulated actin cytoskeleton predates eukaryogenesis and emerged in the predecessors of the last common ancestor of Loki, Heim and Thorarchaeota. Calcium-regulated actin filament assembly predates eukaryogenesis and was present in the last common ancestor of Asgard archaea Loki, Heim, and Thorarchaeota.
Collapse
|
20
|
Gong R, Jiang F, Moreland ZG, Reynolds MJ, de los Reyes SE, Gurel P, Shams A, Heidings JB, Bowl MR, Bird JE, Alushin GM. Structural basis for tunable control of actin dynamics by myosin-15 in mechanosensory stereocilia. SCIENCE ADVANCES 2022; 8:eabl4733. [PMID: 35857845 PMCID: PMC9299544 DOI: 10.1126/sciadv.abl4733] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/03/2022] [Indexed: 05/12/2023]
Abstract
The motor protein myosin-15 is necessary for the development and maintenance of mechanosensory stereocilia, and mutations in myosin-15 cause hereditary deafness. In addition to transporting actin regulatory machinery to stereocilia tips, myosin-15 directly nucleates actin filament ("F-actin") assembly, which is disrupted by a progressive hearing loss mutation (p.D1647G, "jordan"). Here, we present cryo-electron microscopy structures of myosin-15 bound to F-actin, providing a framework for interpreting the impacts of deafness mutations on motor activity and actin nucleation. Rigor myosin-15 evokes conformational changes in F-actin yet maintains flexibility in actin's D-loop, which mediates inter-subunit contacts, while the jordan mutant locks the D-loop in a single conformation. Adenosine diphosphate-bound myosin-15 also locks the D-loop, which correspondingly blunts actin-polymerization stimulation. We propose myosin-15 enhances polymerization by bridging actin protomers, regulating nucleation efficiency by modulating actin's structural plasticity in a myosin nucleotide state-dependent manner. This tunable regulation of actin polymerization could be harnessed to precisely control stereocilium height.
Collapse
Affiliation(s)
- Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Fangfang Jiang
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Zane G. Moreland
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Matthew J. Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | | | - Pinar Gurel
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Arik Shams
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - James B. Heidings
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, UK
- UCL Ear Institute, University College London, London, UK
| | - Jonathan E. Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
21
|
Kraus J, Russell RW, Kudryashova E, Xu C, Katyal N, Perilla JR, Kudryashov DS, Polenova T. Magic angle spinning NMR structure of human cofilin-2 assembled on actin filaments reveals isoform-specific conformation and binding mode. Nat Commun 2022; 13:2114. [PMID: 35440100 PMCID: PMC9018683 DOI: 10.1038/s41467-022-29595-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/24/2022] [Indexed: 12/16/2022] Open
Abstract
Actin polymerization dynamics regulated by actin-binding proteins are essential for various cellular functions. The cofilin family of proteins are potent regulators of actin severing and filament disassembly. The structural basis for cofilin-isoform-specific severing activity is poorly understood as their high-resolution structures in complex with filamentous actin (F-actin) are lacking. Here, we present the atomic-resolution structure of the muscle-tissue-specific isoform, cofilin-2 (CFL2), assembled on ADP-F-actin, determined by magic-angle-spinning (MAS) NMR spectroscopy and data-guided molecular dynamics (MD) simulations. We observe an isoform-specific conformation for CFL2. This conformation is the result of a unique network of hydrogen bonding interactions within the α2 helix containing the non-conserved residue, Q26. Our results indicate F-site interactions that are specific between CFL2 and ADP-F-actin, revealing mechanistic insights into isoform-dependent F-actin disassembly.
Collapse
Affiliation(s)
- Jodi Kraus
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544-1014, United States
| | - Ryan W Russell
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Chaoyi Xu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Nidhi Katyal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States.
| |
Collapse
|
22
|
Ali R, Zahm JA, Rosen MK. Bound nucleotide can control the dynamic architecture of monomeric actin. Nat Struct Mol Biol 2022; 29:320-328. [PMID: 35332323 PMCID: PMC9010300 DOI: 10.1038/s41594-022-00743-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/11/2022] [Indexed: 11/12/2022]
Abstract
Polymerization of actin into cytoskeletal filaments is coupled to its bound adenine nucleotides. The mechanism by which nucleotide modulates actin functions has not been evident from analyses of ATP- and ADP-bound crystal structures of the actin monomer. We report that NMR chemical shift differences between the two forms are globally distributed. Furthermore, microsecond–millisecond motions are spread throughout the molecule in the ATP form, but largely confined to subdomains 1 and 2, and the nucleotide binding site in the ADP form. Through these motions, the ATP- and ADP-bound forms sample different high-energy conformations. A deafness-causing, fast-nucleating actin mutant populates the high-energy conformer of ATP-actin more than the wild-type protein, suggesting that this conformer may be on the pathway to nucleation. Together, the data suggest a model in which differential sampling of a nucleation-compatible form of the actin monomer may contribute to control of actin filament dynamics by nucleotide. NMR shows that ATP- and ADP-actin differ globally, including ground and excited state structures and dynamic architecture. Analyses of an actin mutant suggest the high-energy conformer of ATP-actin may be on the pathway to filament nucleation.
Collapse
Affiliation(s)
- Rustam Ali
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Jacob A Zahm
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Michael K Rosen
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
23
|
Abbaszadegan MR, Mojarrad M, Rahimi HR, Moghbeli M. Genetic and molecular biology of gastric cancer among Iranian patients: an update. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00232-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
There is a declining trend of gastric cancer (GC) incidence in the world during recent years that is related to the development of novel diagnostic methods. However, there is still a high ratio of GC mortality among the Iranian population that can be associated with late diagnosis. Despite various reports about the novel diagnostic markers, there is not any general and standard diagnostic panel marker for Iranian GC patients. Therefore, it is required to determine an efficient and general panel of molecular markers for early detection.
Main body of the abstract
In the present review, we summarized all of the reported markers until now among Iranian GC patients to pave the way for the determination of a population-based diagnostic panel of markers. In this regard, we categorized these markers in different groups based on their involved processes to know which molecular process is more frequent during the GC progression among Iranians.
Conclusion
We observed that the non-coding RNAs are the main factors involved in GC tumorigenesis in this population.
Collapse
|
24
|
Hoyer M, Crevenna AH, Correia JRC, Quezada AG, Lamb DC. Zero-mode waveguides visualize the first steps during gelsolin-mediated actin filament formation. Biophys J 2022; 121:327-335. [PMID: 34896371 PMCID: PMC8790234 DOI: 10.1016/j.bpj.2021.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/29/2021] [Accepted: 12/07/2021] [Indexed: 01/21/2023] Open
Abstract
Actin filament dynamics underlie key cellular processes. Although the elongation of actin filaments has been extensively studied, the mechanism of nucleation remains unclear. The micromolar concentrations needed for filament formation have prevented direct observation of nucleation dynamics on the single molecule level. To overcome this limitation, we have used the attoliter excitation volume of zero-mode waveguides to directly monitor the early steps of filament assembly. Immobilizing single gelsolin molecules as a nucleator at the bottom of the zero-mode waveguide, we could visualize the actin filament nucleation process. The process is surprisingly dynamic, and two distinct populations during gelsolin-mediated nucleation are observed. The two populations are defined by the stability of the actin dimers and determine whether elongation occurs. Furthermore, by using an inhibitor to block flattening, a conformational change in actin associated with filament formation, elongation was prevented. These observations indicate that a conformational transition and pathway competition determine the nucleation of gelsolin-mediated actin filament formation.
Collapse
Affiliation(s)
- Maria Hoyer
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians University Munich, Munich, Germany
| | - Alvaro H. Crevenna
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians University Munich, Munich, Germany,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal,Corresponding author
| | - Jose Rafael Cabral Correia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Andrea G. Quezada
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Don C. Lamb
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians University Munich, Munich, Germany,Corresponding author
| |
Collapse
|
25
|
Machida K, Miyawaki S, Kanzawa K, Hakushi T, Nakai T, Imataka H. An in Vitro Reconstitution System Defines the Defective Step in the Biogenesis of Mutated β-Actin Proteins. ACS Synth Biol 2021; 10:3158-3166. [PMID: 34752068 DOI: 10.1021/acssynbio.1c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vitro reconstitution of whole cellular events is one of the important goals in synthetic biology. Using a cell-free protein synthesis (CFPS) system reconstituted with human translation factors and chaperones, we reproduced the biogenesis of β-actin, synthesis, folding, and polymerization in a test tube. This system enabled us to define which step of the β-actin biogenesis was defective in genetic mutations related to diseases. Hence, the CFPS system reconstituted with human factors may be a useful tool for analyzing proteostasis in eukaryotes.
Collapse
Affiliation(s)
- Kodai Machida
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Shoma Miyawaki
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Kuru Kanzawa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Taiki Hakushi
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Tomonori Nakai
- Graduate School of Life Science, University of Hyogo, Himeji 671-2201, Japan
| | - Hiroaki Imataka
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| |
Collapse
|
26
|
Wang Y, Shin I, Li J, Liu A. Crystal structure of human cysteamine dioxygenase provides a structural rationale for its function as an oxygen sensor. J Biol Chem 2021; 297:101176. [PMID: 34508780 PMCID: PMC8503633 DOI: 10.1016/j.jbc.2021.101176] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 01/03/2023] Open
Abstract
Cysteamine dioxygenase (ADO) plays a vital role in regulating thiol metabolism and preserving oxygen homeostasis in humans by oxidizing the sulfur of cysteamine and N-terminal cysteine-containing proteins to their corresponding sulfinic acids using O2 as a cosubstrate. However, as the only thiol dioxygenase that processes both small-molecule and protein substrates, how ADO handles diverse substrates of disparate sizes to achieve various reactions is not understood. The knowledge gap is mainly due to the three-dimensional structure not being solved, as ADO cannot be directly compared with other known thiol dioxygenases. Herein, we report the first crystal structure of human ADO at a resolution of 1.78 Å with a nickel-bound metal center. Crystallization was achieved through both metal substitution and C18S/C239S double mutations. The metal center resides in a tunnel close to an entry site flanked by loops. While ADO appears to use extensive flexibility to handle substrates of different sizes, it also employs proline and proline pairs to maintain the core protein structure and to retain the residues critical for catalysis in place. This feature distinguishes ADO from thiol dioxygenases that only oxidize small-molecule substrates, possibly explaining its divergent substrate specificity. Our findings also elucidate the structural basis for ADO functioning as an oxygen sensor by modifying N-degron substrates to transduce responses to hypoxia. Thus, this work fills a gap in structure–function relationships of the thiol dioxygenase family and provides a platform for further mechanistic investigation and therapeutic intervention targeting impaired oxygen sensing.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, The University of Texas at San Antonio, Texas, USA
| | - Inchul Shin
- Department of Chemistry, The University of Texas at San Antonio, Texas, USA
| | - Jiasong Li
- Department of Chemistry, The University of Texas at San Antonio, Texas, USA
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, Texas, USA.
| |
Collapse
|
27
|
Heimdallarchaea encodes profilin with eukaryotic-like actin regulation and polyproline binding. Commun Biol 2021; 4:1024. [PMID: 34471213 PMCID: PMC8410842 DOI: 10.1038/s42003-021-02543-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
It is now widely accepted that the first eukaryotic cell emerged from a merger of an archaeal host cell and an alphaproteobacterium. However, the exact sequence of events and the nature of the cellular biology of both partner cells is still contentious. Recently the structures of profilins from some members of the newly discovered Asgard superphylum were determined. In addition, it was found that these profilins inhibit eukaryotic rabbit actin polymerization and that this reaction is regulated by phospholipids. However, the interaction with polyproline repeats which are known to be crucial for the regulation of profilin:actin polymerization was found to be absent for these profilins and was thus suggested to have evolved later in the eukaryotic lineage. Here, we show that Heimdallarchaeota LC3, a candidate phylum within the Asgard superphylum, encodes a putative profilin (heimProfilin) that interacts with PIP2 and its binding is regulated by polyproline motifs, suggesting an origin predating the rise of the eukaryotes. More precisely, we determined the 3D-structure of Heimdallarchaeota LC3 profilin and show that this profilin is able to: i) inhibit eukaryotic actin polymerization in vitro; ii) bind to phospholipids; iii) bind to polyproline repeats from enabled/vasodilator‐stimulated phosphoprotein; iv) inhibit actin from Heimdallarchaeota from polymerizing into filaments. Our results therefore provide hints of the existence of a complex cytoskeleton already in last eukaryotic common ancestor. Chi and coworkers characterise proteins of Heimdallarchaeeota LC3, a member of the Asgard super phylum, and specifically investigate heim-Profilin and heim-Actin, and their interactions with polyproline and phospholipids. They also determine the 3D-structure of Heimdallarchaeota LC3 profilin. Their results suggest that a complex cytoskeleton existed in the last eukaryotic common ancestor indicating an origin predating the rise of the eukaryotes.
Collapse
|
28
|
Waizumi T, Sakuta H, Hayashi M, Tsumoto K, Takiguchi K, Yoshikawa K. Polymerization/depolymerization of actin cooperates with the morphology and stability of cell-sized droplets generated in a polymer solution under a depletion effect. J Chem Phys 2021; 155:075101. [PMID: 34418942 DOI: 10.1063/5.0055460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intercellular fluids in living organisms contain high concentrations of macromolecules such as nucleic acid and protein. Over the past few decades, several studies have examined membraneless organelles in terms of liquid-liquid phase separation. These studies have investigated aggregation/attraction among a rich variety of biomolecules. Here, we studied the association between the polymerization/depolymerization of actin, interconversion between monomeric (G-actin) and filamentous states (F-actin), and water/water phase separation in a binary polymer solution using polyethylene glycol (PEG) and dextran (DEX). We found that actin, which is a representative cytoskeleton, changes its distribution in a PEG/DEX binary solution depending on its polymerization state: monomeric G-actin is distributed homogeneously throughout the solution, whereas polymerized F-actin is localized only within the DEX-rich phase. We extended our study by using fragmin, which is a representative actin-severing and -depolymerizing factor. It took hours to restore a homogeneous actin distribution from localization within the DEX-rich phase, even with the addition of fragmin in an amount that causes complete depolymerization. In contrast, when actin that had been depolymerized by fragmin in advance was added to a solution with microphase-separation, F-actin was found in DEX-rich phase droplets. The micro-droplets tended to deform into a non-spherical morphology under conditions where they contained F-actin. These findings suggest that microphase-separation is associated with the dynamics of polymerization and localization of the actin cytoskeleton. We discuss our observations by taking into consideration the polymer depletion effect.
Collapse
Affiliation(s)
- Tatsuyuki Waizumi
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hiroki Sakuta
- Faculty of Life and Medical Sciences, Doshisha University, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Masahito Hayashi
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Kanta Tsumoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, Kurimamachiya-cho 1577, Tsu, Mie 514-8507, Japan
| | - Kingo Takiguchi
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| |
Collapse
|
29
|
Das S, Stortz JF, Meissner M, Periz J. The multiple functions of actin in apicomplexan parasites. Cell Microbiol 2021; 23:e13345. [PMID: 33885206 DOI: 10.1111/cmi.13345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
The cytoskeletal protein actin is highly abundant and conserved in eukaryotic cells. It occurs in two different states- the globular (G-actin) form, which can polymerise into the filamentous (F-actin) form, fulfilling various critical functions including cytokinesis, cargo trafficking and cellular motility. In higher eukaryotes, there are several actin isoforms with nearly identical amino acid sequences. Despite the high level of amino acid identity, they display regulated expression patterns and unique non-redundant roles. The number of actin isoforms together with conserved sequences may reflect the selective pressure exerted by scores of actin binding proteins (ABPs) in higher eukaryotes. In contrast, in many protozoans such as apicomplexan parasites which possess only a few ABPs, the regulatory control of actin and its multiple functions are still obscure. Here, we provide a summary of the regulation and biological functions of actin in higher eukaryotes and compare it with the current knowledge in apicomplexans. We discuss future experiments that will help us understand the multiple, critical roles of this fascinating system in apicomplexans.
Collapse
Affiliation(s)
- Sujaan Das
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| | - Johannes Felix Stortz
- Department Metabolism of Infection, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Markus Meissner
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| | - Javier Periz
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
30
|
Bunch TA, Lepak VC, Bortz KM, Colson BA. A high-throughput fluorescence lifetime-based assay to detect binding of myosin-binding protein C to F-actin. J Gen Physiol 2021; 153:e202012707. [PMID: 33600558 PMCID: PMC7898471 DOI: 10.1085/jgp.202012707] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Binding properties of actin-binding proteins are typically evaluated by cosedimentation assays. However, this method is time-consuming, involves multiple steps, and has a limited throughput. These shortcomings preclude its use in screening for drugs that modulate actin-binding proteins relevant to human disease. To develop a simple, quantitative, and scalable F-actin-binding assay, we attached fluorescent probes to actin's Cys-374 and assessed changes in fluorescence lifetime upon binding to the N-terminal region (domains C0-C2) of human cardiac myosin-binding protein C (cMyBP-C). The lifetime of all five probes tested decreased upon incubation with cMyBP-C C0-C2, as measured by time-resolved fluorescence (TR-F), with IAEDANS being the most sensitive probe that yielded the smallest errors. The TR-F assay was compared with cosedimentation to evaluate in vitro changes in binding to actin and actin-tropomyosin arising from cMyBP-C mutations associated with hypertrophic cardiomyopathy (HCM) and tropomyosin binding. Lifetime changes of labeled actin with added C0-C2 were consistent with cosedimentation results. The HCM mutation L352P was confirmed to enhance actin binding, whereas PKA phosphorylation reduced binding. The HCM mutation R282W, predicted to disrupt a PKA recognition sequence, led to deficits in C0-C2 phosphorylation and altered binding. Lastly, C0-C2 binding was found to be enhanced by tropomyosin and binding capacity to be altered by mutations in a tropomyosin-binding region. These findings suggest that the TR-F assay is suitable for rapidly and accurately determining quantitative binding and for screening physiological conditions and compounds that affect cMyBP-C binding to F-actin for therapeutic discovery.
Collapse
Affiliation(s)
| | | | | | - Brett A. Colson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
31
|
Gruszczynska-Biegala J, Stefan A, Kasprzak AA, Dobryszycki P, Khaitlina S, Strzelecka-Gołaszewska H. Myopathy-Sensitive G-Actin Segment 227-235 Is Involved in Salt-Induced Stabilization of Contacts within the Actin Filament. Int J Mol Sci 2021; 22:ijms22052327. [PMID: 33652657 PMCID: PMC7956362 DOI: 10.3390/ijms22052327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 01/09/2023] Open
Abstract
Formation of stable actin filaments, critically important for actin functions, is determined by the ionic strength of the solution. However, not much is known about the elements of the actin fold involved in ionic-strength-dependent filament stabilization. In this work, F-actin was destabilized by Cu2+ binding to Cys374, and the effects of solvent conditions on the dynamic properties of F-actin were correlated with the involvement of Segment 227-235 in filament stabilization. The results of our work show that the presence of Mg2+ at the high-affinity cation binding site of Cu-modified actin polymerized with MgCl2 strongly enhances the rate of filament subunit exchange and promotes the filament instability. In the presence of 0.1 M KCl, the filament subunit exchange was 2-3-fold lower than that in the MgCl2-polymerized F-actin. This effect correlates with the reduced accessibility of the D-loop and Segment 227-235 on opposite filament strands, consistent with an ionic-strength-dependent conformational change that modulates involvement of Segment 227-235 in stabilization of the intermonomer interface. KCl may restrict the mobility of the α-helix encompassing part of Segment 227-235 and/or be bound to Asp236 at the boundary of Segment 227-235. These results provide experimental evidence for the involvement of Segment 227-235 in salt-induced stabilization of contacts within the actin filament and suggest that they can be weakened by mutations characteristic of actin-associated myopathies.
Collapse
Affiliation(s)
- Joanna Gruszczynska-Biegala
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.G.-B.); (A.S.); (A.A.K.); (H.S.-G.)
- Molecular Biology Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Andrzej Stefan
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.G.-B.); (A.S.); (A.A.K.); (H.S.-G.)
| | - Andrzej A. Kasprzak
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.G.-B.); (A.S.); (A.A.K.); (H.S.-G.)
| | - Piotr Dobryszycki
- Faculty of Chemistry, Wrocław University of Technology, 50-370 Wroclaw, Poland;
| | - Sofia Khaitlina
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
- Correspondence:
| | - Hanna Strzelecka-Gołaszewska
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.G.-B.); (A.S.); (A.A.K.); (H.S.-G.)
| |
Collapse
|
32
|
Silva AMM, Heeley DH. Existence in the actin world of a specialized slow skeletal muscle isoform. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110568. [PMID: 33545366 DOI: 10.1016/j.cbpb.2021.110568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/24/2022]
Affiliation(s)
- A Madhushika M Silva
- Department of Biochemistry, Memorial University, St. John's, Newfoundland A1B 3X9, Canada
| | - David H Heeley
- Department of Biochemistry, Memorial University, St. John's, Newfoundland A1B 3X9, Canada.
| |
Collapse
|
33
|
Jaswandkar SV, Faisal HMN, Katti KS, Katti DR. Dissociation Mechanisms of G-actin Subunits Govern Deformation Response of Actin Filament. Biomacromolecules 2021; 22:907-917. [PMID: 33481563 DOI: 10.1021/acs.biomac.0c01602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Actin molecules are essential structural components of the cellular cytoskeleton. Here, we report a comprehensive analysis of F-actin's deformation behavior and highlight underlying mechanisms using steered molecular dynamics simulations (SMD). The investigation of F-actin was done under tension, compression, bending, and torsion. We report that the dissociation pattern of conformational locks at intrastrand and interstrand G-actin interfaces regulates the deformation response of F-actin. The conformational locks at the G-actin interfaces are portrayed by a spheroidal joint, interlocking serrated plates' analogy. Further, the SMD simulation approach was utilized to evaluate Young's modulus, flexural rigidity, persistent length, and torsional rigidity of F-actin, and the values obtained were found to be consistent with available experimental data. The evaluation of the mechanical properties of actin and the insight into the fundamental mechanisms contributing to its resilience described here are necessary for developing accurate models of eukaryotic cells and for assessing cellular viability and mobility.
Collapse
Affiliation(s)
- Sharad V Jaswandkar
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58105, United States
| | - H M Nasrullah Faisal
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Kalpana S Katti
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Dinesh R Katti
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
34
|
Gu J, Zhang S, He X, Chen S, Wang Y. High expression of PIG11 correlates with poor prognosis in gastric cancer. Exp Ther Med 2021; 21:249. [PMID: 33603857 PMCID: PMC7851609 DOI: 10.3892/etm.2021.9680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/01/2020] [Indexed: 11/06/2022] Open
Abstract
P53-induced gene 11 (PIG11) is an early transcription-related target of p53 that is involved in cell apoptosis and tumor development. However, its biological function in gastric cancer (GC) tissues and relationship with the prognosis of patients with GC have remained elusive. In the present retrospective study, 60 fresh and 790 paraffin-embedded samples of GC were obtained from the Affiliated Hospital of Nantong University (Nantong, China) with complete clinical data from all patients. Reverse transcription-quantitative PCR and tissue microarray-immunohistochemical analysis were used to determine the expression of PIG11 in the respective GC tissues. A receiver operating characteristic (ROC) curve was plotted to determine the diagnostic utility of PIG11 expression in GC. Furthermore, three online databases, including Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine and Kaplan-Meier plotter, were used for bioinformatics analysis of PIG11. PIG11 expression in GC tissues was high, which was positively correlated with invasive depth (P<0.001), lymph node metastasis (P<0.001), distant metastasis (P=0.019), TNM staging (P<0.001) and carcinoembryonic antigen in serum (P<0.001), and negatively associated with the overall survival of patients with GC. The ROC curve analysis suggested that based on PIG11 expression, it was possible to distinguish GC tissues from adjacent normal tissues (P<0.0001) with a sensitivity and specificity of 81.67 and 76.67%, respectively. In addition, Cox logistic regression analysis demonstrated that high PIG11 expression is a novel biomarker for unfavorable prognosis of patients with GC. Furthermore, the results obtained from the GEPIA database indicated that PIG11 expression is correlated with TNF, carcinoembryonic antigen related cell adhesion molecule 5, phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha, VEGFA and kinase insert domain receptor. Therefore, PIG11 expression may be associated with the malignancy of GC and may serve as a potential diagnostic and prognostic biomarker for GC.
Collapse
Affiliation(s)
- Juan Gu
- Department of Public Health, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224005, P.R. China
| | - Shu Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xin He
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Sufang Chen
- Department of Medical Imaging and Laboratory, Xiangnan University, Chenzhou, Hunan 423000, P.R. China
| | - Yan Wang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
35
|
Ahn LY, Coatti GC, Liu J, Gumus E, Schaffer AE, Miranda HC. An epilepsy-associated ACTL6B variant captures neuronal hyperexcitability in a human induced pluripotent stem cell model. J Neurosci Res 2021; 99:110-123. [PMID: 33141462 PMCID: PMC7756336 DOI: 10.1002/jnr.24747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 01/01/2023]
Abstract
ACTL6B is a component of the neuronal BRG1/brm-associated factor (nBAF) complex, which is required for chromatin remodeling in postmitotic neurons. We recently reported biallelic pathogenic variants in ACTL6B in patients diagnosed with early infantile epileptic encephalopathy, subtype 76 (EIEE-76), presenting with severe, global developmental delay, epileptic encephalopathy, cerebral atrophy, and abnormal central nervous system myelination. However, the pathophysiological mechanisms underlying their phenotype is unknown. Here, we investigate the molecular pathogenesis of ACTL6B p.(Val421_Cys425del) using in silico 3D protein modeling predictions and patient-specific induced pluripotent stem cell-derived neurons. We found neurons derived from EIEE-76 patients showed impaired accumulation of ACTL6B compared to unaffected relatives, caused by reduced protein stability. Furthermore, EIEE-76 patient-derived neurons had dysregulated nBAF target gene expression, including genes important for neuronal development and disease. Multielectrode array system analysis unveiled elevated electrophysiological activity of EIEE-76 patients-derived neurons, consistent with the patient phenotype. Taken together, our findings validate a new model for EIEE-76 and reveal how reduced ACTL6B expression affects neuronal function.
Collapse
Affiliation(s)
- Lucie Y. Ahn
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA,Medical Scientist Training ProgramCase Western Reserve UniversityClevelandOHUSA
| | - Giuliana C. Coatti
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
| | - Jingyi Liu
- Department of PathologyCase Western Reserve UniversityClevelandOHUSA
| | - Evren Gumus
- Department of Medical GeneticsFaculty of MedicineMugla Sitki Kocman UniversityMuglaTurkey,Department of Medical GeneticsFaculty of MedicineUniversity of HarranSanliurfaTurkey
| | - Ashleigh E. Schaffer
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA,Center for RNA Science and TherapeuticsCase Western Reserve UniversityClevelandOHUSA
| | - Helen C. Miranda
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA,Department of NeurosciencesCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
36
|
Pathak S, Parkar H, Tripathi S, Kale A. Ofloxacin as a Disruptor of Actin Aggresome "Hirano Bodies": A Potential Repurposed Drug for the Treatment of Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:591579. [PMID: 33132905 PMCID: PMC7573105 DOI: 10.3389/fnagi.2020.591579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/09/2020] [Indexed: 01/27/2023] Open
Abstract
There is a growing number of aging populations that are more prone to the prevalence of neuropathological disorders. Two major diseases that show a late onset of the symptoms include Alzheimer’s disorder (AD) and Parkinson’s disorder (PD), which are causing an unexpected social and economic impact on the families. A large number of researches in the last decade have focused upon the role of amyloid precursor protein, Aβ-plaque, and intraneuronal neurofibrillary tangles (tau-proteins). However, there is very few understanding of actin-associated paracrystalline structures formed in the hippocampus region of the brain and are called Hirano bodies. These actin-rich inclusion bodies are known to modulate the synaptic plasticity and employ conspicuous effects on long-term potentiation and paired-pulse paradigms. Since the currently known drugs have very little effect in controlling the progression of these diseases, there is a need to develop therapeutic agents, which can have improved efficacy and bioavailability, and can transport across the blood–brain barrier. Moreover, finding novel targets involving compound screening is both laborious and is an expensive process in itself followed by equally tedious Food and Drug Administration (FDA) approval exercise. Finding alternative functions to the already existing FDA-approved molecules for reversing the progression of age-related proteinopathies is of utmost importance. In the current study, we decipher the role of a broad-spectrum general antibiotic (Ofloxacin) on actin polymerization dynamics using various biophysical techniques like right-angle light scattering, dynamic light scattering, circular dichroism spectrometry, isothermal titration calorimetry, scanning electron microscopy, etc. We have also performed in silico docking studies to deduce a plausible mechanism of the drug binding to the actin. We report that actin gets disrupted upon binding to Ofloxacin in a concentration-dependent manner. We have inferred that Ofloxacin, when attached to a drug delivery system, can act as a good candidate for the treatment of neuropathological diseases.
Collapse
Affiliation(s)
- Samridhi Pathak
- School of Chemical Sciences, University of Mumbai - Department of Atomic Energy Center for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai, India
| | - Haifa Parkar
- School of Chemical Sciences, University of Mumbai - Department of Atomic Energy Center for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai, India
| | - Sarita Tripathi
- School of Chemical Sciences, University of Mumbai - Department of Atomic Energy Center for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai, India
| | - Avinash Kale
- School of Chemical Sciences, University of Mumbai - Department of Atomic Energy Center for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai, India
| |
Collapse
|
37
|
Jepsen L, Sept D. Effects of Nucleotide and End-Dependent Actin Conformations on Polymerization. Biophys J 2020; 119:1800-1810. [PMID: 33080221 DOI: 10.1016/j.bpj.2020.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
The regulation of actin is key for controlled cellular function. Filaments are regulated by actin-binding proteins, but the nucleotide state of actin is also an important factor. From extended molecular dynamics simulations, we find that both nucleotide states of the actin monomer have significantly less twist than their crystal structures and that the ATP monomer is flatter than the ADP form. We also find that the filament's pointed end is flatter than the remainder of the filament and has a conformation distinct from G-actin, meaning that incoming monomers would need to undergo isomerization that would weaken the affinity and slow polymerization. Conversely, the barbed end of the filament takes on a conformation nearly identical to the ATP monomer, enhancing ATP G-actin's ability to polymerize as compared with ADP G-actin. The thermodynamic penalty imposed by differences in isomerization for the ATP and ADP growth at the barbed end exactly matches experimental results.
Collapse
Affiliation(s)
- Lauren Jepsen
- Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - David Sept
- Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
38
|
Niu Y, Zhang B, Galluzzi M. An amphiphilic aggregate-induced emission polyurethane probe for in situ actin observation in living cells. J Colloid Interface Sci 2020; 582:1191-1202. [PMID: 32950835 DOI: 10.1016/j.jcis.2020.08.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 01/03/2023]
Abstract
The specific binding of fluorescent probes or biomolecules to the actin cytoskeleton network is increasingly important for monitoring various complex cellular activities such as cell adhesion, proliferation, locomotion, endocytosis, and cell division. However, improving cell uptake and subcellular resolution is still the main obstacle for successful and wide application of cellular fluorescent probes. Here, we designed and synthesized an amphiphilic block polyurethane with peculiar photophysical properties of aggregation induced emission (AIE), which can be used in living cell imaging to promote selective visualization of cell structures. The AIE effect polyurethane (abbreviated as AIE-PU) was prepared by two-step polymerization of diisocyanate terminated polyethylene glycol and polycaprolactone with hydroxyl terminated AIE dye. A series of characterization techniques proved the successful synthesis of AIE-PU. Due to the amphiphilic chain segment of its linear block molecule, AIE-PU block copolymers can self-assemble into spherical nanoparticles in aqueous solution, showing relatively stable photophysical properties and good water dispersion. Cellular experiments demonstrated that AIE-PUs have low toxicity and high actin network affinity. Moreover, the uptake mechanism was studied by low temperature and metabolic inhibition experiments, showing that AIE-PU nanoparticles could be easily internalized into different living cells through energy-dependent endocytosis, and can be transported from the cellular periphery to the actin network via clathrin- and caveolae-dependent transport pathway. Upon binding with the actin network, the inter-chain AIE mechanism of the probe was significantly enhanced, which is pivotal for the long-term stable fluorescence imaging of actin microfilament network in living cells. Finally, compared with commercial actin dyes, this probe showed higher photostability, even after a longer retention time, without significant fluorescence quenching.
Collapse
Affiliation(s)
- Yuqing Niu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| | - Bokai Zhang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Massimiliano Galluzzi
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| |
Collapse
|
39
|
Shaaban M, Chowdhury S, Nolen BJ. Cryo-EM reveals the transition of Arp2/3 complex from inactive to nucleation-competent state. Nat Struct Mol Biol 2020; 27:1009-1016. [PMID: 32839613 DOI: 10.1038/s41594-020-0481-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/10/2020] [Indexed: 12/29/2022]
Abstract
Arp2/3 complex, a crucial actin filament nucleator, undergoes structural rearrangements during activation by nucleation-promoting factors (NPFs). However, the conformational pathway leading to the nucleation-competent state is unclear due to lack of high-resolution structures of the activated state. Here we report a ~3.9 Å resolution cryo-EM structure of activated Schizosaccharomyces pombe Arp2/3 complex bound to the S. pombe NPF Dip1 and attached to the end of the nucleated actin filament. The structure reveals global and local conformational changes that allow the two actin-related proteins in Arp2/3 complex to mimic a filamentous actin dimer and template nucleation. Activation occurs through a clamp-twisting mechanism, in which Dip1 forces two core subunits in Arp2/3 complex to pivot around one another, shifting half of the complex into a new activated position. By showing how Dip1 stimulates activation, the structure reveals how NPFs can activate Arp2/3 complex in diverse cellular processes.
Collapse
Affiliation(s)
- Mohammed Shaaban
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Saikat Chowdhury
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
| | - Brad J Nolen
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
40
|
Pathak S, Deori N, Sharma A, Nagotu S, Kale A. In vitro, in vivo and in silico rationale for the muscle loss due to therapeutic drugs used in the treatment of Mycobacterium tuberculosis infection. J Biomol Struct Dyn 2020; 40:44-60. [PMID: 32795137 DOI: 10.1080/07391102.2020.1806928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Tuberculosis globally affects millions of people every year and is responsible for high rates of mortality and morbidity in tropical countries like India. The treatment of tuberculosis involves using the first line of drugs especially Isoniazid, Pyrazinamide, Streptomycin, Ethambutol and Rifampicin for treatment under the DOTS (Directly Observed Treatment Shots) regime which can last up to minimum of six months. These drugs although widely used against Mycobacterium tuberculosis has given rise to multi drug resistant (MDR) tuberculosis strain. It has been observed widely that prolonged drug treatment for tuberculosis patient has rendered several side effects that include increasing muscle wasting and malnutrition. In our study, we have investigated the role of these major tuberculosis drugs namely Rifampicin, Streptomycin, Isoniazid, Pyrazinamide, and Ethambutol on actin polymerization which are famously known to be a central player in the sarcomere region of the muscle in human body. For in vitro studies, we have used biophysical approaches such as 90° scattering assay (RLS), size exclusion chromatography (SEC), Dynamic light scattering (DLS), Circular dichroism spectroscopy (CD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), kinetic analysis to understand the time taken to break down effect of above mentioned drugs on actin disruption. In vivo analysis was carried out on yeast Δend3 mutants which are rich in F-actin filaments in order to understand the effect of the aforementioned drugs in rendering the muscle wasting phenomenon in tuberculosis. Furthermore, we also carried out in silico analysis to understand the probable modes of binding of these drugs on actin filaments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samridhi Pathak
- School of Chemical Sciences, UM-DAE Center for excellence in basic sciences, University of Mumbai, Mumbai, India
| | - Nayan Deori
- Organelle Biology and Cellular Ageing Lab (OBCAL), Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Aditi Sharma
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, Navi Mumbai, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab (OBCAL), Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Avinash Kale
- School of Chemical Sciences, UM-DAE Center for excellence in basic sciences, University of Mumbai, Mumbai, India
| |
Collapse
|
41
|
Sokolik CG, Qassem N, Chill JH. The Disordered Cellular Multi-Tasker WIP and Its Protein-Protein Interactions: A Structural View. Biomolecules 2020; 10:biom10071084. [PMID: 32708183 PMCID: PMC7407642 DOI: 10.3390/biom10071084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 01/21/2023] Open
Abstract
WASp-interacting protein (WIP), a regulator of actin cytoskeleton assembly and remodeling, is a cellular multi-tasker and a key member of a network of protein-protein interactions, with significant impact on health and disease. Here, we attempt to complement the well-established understanding of WIP function from cell biology studies, summarized in several reviews, with a structural description of WIP interactions, highlighting works that present a molecular view of WIP's protein-protein interactions. This provides a deeper understanding of the mechanisms by which WIP mediates its biological functions. The fully disordered WIP also serves as an intriguing example of how intrinsically disordered proteins (IDPs) exert their function. WIP consists of consecutive small functional domains and motifs that interact with a host of cellular partners, with a striking preponderance of proline-rich motif capable of interactions with several well-recognized binding partners; indeed, over 30% of the WIP primary structure are proline residues. We focus on the binding motifs and binding interfaces of three important WIP segments, the actin-binding N-terminal domain, the central domain that binds SH3 domains of various interaction partners, and the WASp-binding C-terminal domain. Beyond the obvious importance of a more fundamental understanding of the biology of this central cellular player, this approach carries an immediate and highly beneficial effect on drug-design efforts targeting WIP and its binding partners. These factors make the value of such structural studies, challenging as they are, readily apparent.
Collapse
|
42
|
Zhang Z, Cheng L, Zhao J, Wang L, Liu K, Yu W, Yan X. Synergistic Covalent and Supramolecular Polymers for Mechanically Robust but Dynamic Materials. Angew Chem Int Ed Engl 2020; 59:12139-12146. [PMID: 32293777 DOI: 10.1002/anie.202004152] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Indexed: 11/06/2022]
Abstract
Nature has engineered delicate synergistic covalent and supramolecular polymers (CSPs) to achieve advanced life functions, such as the thin filaments that assist in muscle contraction. Constructing artificial synergistic CSP materials with bioinspired mechanically adaptive features, however, represents a challenging goal. Here, we report an artificial CSP system to illustrate the integration of a covalent polymer (CP) and a supramolecular polymer (SP) in a synergistic fashion, along with the emergence of notable mechanical and dynamic properties which are unattainable when the two polymers are formed individually. The synergistic effect relies on the peculiar network structures of the SP and CPs, which endow the resultant CSPs with overall improved mechanical performance in terms of the stiffness, strength, stretchability, toughness, and elastic recovery. Moreover, the dynamic properties of the SP, including self-healing, stimuli-responsiveness, and reprocessing, are also retained in the CSPs, thus leading to their application as programmable and tunable materials.
Collapse
Affiliation(s)
- Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
43
|
Horan BG, Hall AR, Vavylonis D. Insights into Actin Polymerization and Nucleation Using a Coarse-Grained Model. Biophys J 2020; 119:553-566. [PMID: 32668234 DOI: 10.1016/j.bpj.2020.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
We studied actin filament polymerization and nucleation with molecular dynamics simulations and a previously established coarse-grained model having each residue represented by a single interaction site located at the Cα atom. We approximate each actin protein as a fully or partially rigid unit to identify the equilibrium structural ensemble of interprotein complexes. Monomers in the F-actin configuration bound to both barbed and pointed ends of a short F-actin filament at the anticipated locations for polymerization. Binding at both ends occurred with similar affinity. Contacts between residues of the incoming subunit and the short filament were consistent with expectation from models based on crystallography, x-ray diffraction, and cryo-electron microscopy. Binding at the barbed and pointed end also occurred at an angle with respect to the polymerizable bound structure, and the angle range depended on the flexibility of the D-loop. Additional barbed end bound states were seen when the incoming subunit was in the G-actin form. Consistent with an activation barrier for pointed end polymerization, G-actin did not bind at an F-actin pointed end. In all cases, binding at the barbed end also occurred in a configuration similar to the antiparallel (lower) dimer. Individual monomers bound each other in a short-pitch helix complex in addition to other configurations, with several of them apparently nonproductive for polymerization. Simulations with multiple monomers in the F-actin form show assembly into filaments as well as transient aggregates at the barbed end. We discuss the implications of these observations on the kinetic pathway of actin filament nucleation and polymerization and possibilities for future improvements of the coarse-grained model.
Collapse
Affiliation(s)
- Brandon G Horan
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Aaron R Hall
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | | |
Collapse
|
44
|
Zhang Z, Cheng L, Zhao J, Wang L, Liu K, Yu W, Yan X. Synergistic Covalent and Supramolecular Polymers for Mechanically Robust but Dynamic Materials. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zhaoming Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Kai Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
45
|
D-Loop Mutation G42A/G46A Decreases Actin Dynamics. Biomolecules 2020; 10:biom10050736. [PMID: 32397190 PMCID: PMC7277580 DOI: 10.3390/biom10050736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 11/30/2022] Open
Abstract
Depolymerization and polymerization of the actin filament are indispensable in eukaryotes. The DNase I binding loop (D-loop), which forms part of the interface between the subunits in the actin filament, is an intrinsically disordered loop with a large degree of conformational freedom. Introduction of the double mutation G42A/G46A to the D-loop of the beta cytoskeletal mammalian actin restricted D-loop conformational freedom, whereas changes to the critical concentration were not large, and no major structural changes were observed. Polymerization and depolymerization rates at both ends of the filament were reduced, and cofilin binding was inhibited by the double mutation. These results indicate that the two glycines at the tip of the D-loop are important for actin dynamics, most likely by contributing to the large degree of conformational freedom.
Collapse
|
46
|
Das S, Ge P, Oztug Durer ZA, Grintsevich EE, Zhou ZH, Reisler E. D-loop Dynamics and Near-Atomic-Resolution Cryo-EM Structure of Phalloidin-Bound F-Actin. Structure 2020; 28:586-593.e3. [PMID: 32348747 DOI: 10.1016/j.str.2020.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/28/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
Detailed molecular information on G-actin assembly into filaments (F-actin), and their structure, dynamics, and interactions, is essential for understanding their cellular functions. Previous studies indicate that a flexible DNase I binding loop (D-loop, residues 40-50) plays a major role in actin's conformational dynamics. Phalloidin, a "gold standard" for actin filament staining, stabilizes them and affects the D-loop. Using disulfide crosslinking in yeast actin D-loop mutant Q41C/V45C, light-scattering measurements, and cryoelectron microscopy reconstructions, we probed the constraints of D-loop dynamics and its contribution to F-actin formation/stability. Our data support a model of residues 41-45 distances that facilitate G- to F-actin transition. We report also a 3.3-Å resolution structure of phalloidin-bound F-actin in the ADP-Pi-like (ADP-BeFx) state. This shows the phalloidin-binding site on F-actin and how the relative movement between its two protofilaments is restricted by it. Together, our results provide molecular details of F-actin structure and D-loop dynamics.
Collapse
Affiliation(s)
- Sanchaita Das
- Department of Chemistry and Biochemistry, University of California, UCLA, Los Angeles, CA 90095, USA
| | - Peng Ge
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, CA 90095, USA
| | - Zeynep A Oztug Durer
- Department of Chemistry and Biochemistry, University of California, UCLA, Los Angeles, CA 90095, USA
| | - Elena E Grintsevich
- Department of Chemistry and Biochemistry, University of California, UCLA, Los Angeles, CA 90095, USA
| | - Z Hong Zhou
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
47
|
Pospich S, Merino F, Raunser S. Structural Effects and Functional Implications of Phalloidin and Jasplakinolide Binding to Actin Filaments. Structure 2020; 28:437-449.e5. [PMID: 32084355 DOI: 10.1016/j.str.2020.01.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/07/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
Actin undergoes structural transitions during polymerization, ATP hydrolysis, and subsequent release of inorganic phosphate. Several actin-binding proteins sense specific states during this transition and can thus target different regions of the actin filament. Here, we show in atomic detail that phalloidin, a mushroom toxin that is routinely used to stabilize and label actin filaments, suspends the structural changes in actin, likely influencing its interaction with actin-binding proteins. Furthermore, high-resolution cryoelectron microscopy structures reveal structural rearrangements in F-actin upon inorganic phosphate release in phalloidin-stabilized filaments. We find that the effect of the sponge toxin jasplakinolide differs from the one of phalloidin, despite their overlapping binding site and similar interactions with the actin filament. Analysis of structural conformations of F-actin suggests that stabilizing agents trap states within the natural conformational space of actin.
Collapse
Affiliation(s)
- Sabrina Pospich
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany
| | - Felipe Merino
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany.
| |
Collapse
|
48
|
Zheng Y, Zhang X, Li H. Molecular basis for histidine N3-specific methylation of actin H73 by SETD3. Cell Discov 2020; 6:3. [PMID: 31993215 PMCID: PMC6971037 DOI: 10.1038/s41421-019-0135-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/14/2019] [Indexed: 11/28/2022] Open
Affiliation(s)
- Yihui Zheng
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Xingrun Zhang
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
49
|
Sabadashka M, Nagalievska M, Sybirna N. Tyrosine nitration as a key event of signal transduction that regulates functional state of the cell. Cell Biol Int 2020; 45:481-497. [PMID: 31908104 DOI: 10.1002/cbin.11301] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/04/2020] [Indexed: 12/21/2022]
Abstract
This review is dedicated to the role of nitration of proteins by tyrosine residues in physiological and pathological conditions. First of all, we analyze the biochemical evidence of peroxynitrite formation and reactions that lead to its formation, types of posttranslational modifications (PTMs) induced by reactive nitrogen species, as well as three biological pathways of tyrosine nitration. Then, we describe two possible mechanisms of protein nitration that are involved in intracellular signal transduction, as well as its interconnection with phosphorylation/dephosphorylation of tyrosine. Next part of the review is dedicated to the role of proteins nitration in different pathological conditions. In this section, special attention is devoted to the role of nitration in changes of functional properties of actin-protein that undergoes PTMs both in normal and pathological conditions. Overall, this review is devoted to the main features of protein nitration by tyrosine residue and the role of this process in intracellular signal transduction in basal and pathological conditions.
Collapse
Affiliation(s)
- Mariya Sabadashka
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| | - Mariia Nagalievska
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| | - Nataliia Sybirna
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| |
Collapse
|
50
|
Song K, Han HJ, Kim S, Kwon J. Thymosin beta 4 attenuates PrP(106-126)-induced human brain endothelial cells dysfunction. Eur J Pharmacol 2019; 869:172891. [PMID: 31877278 DOI: 10.1016/j.ejphar.2019.172891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022]
Abstract
The blood-brain barrier (BBB) is a highly selective permeability barrier that separates the circulating blood from the brain and extracellular fluid in the central nervous system (CNS). The BBB is formed by cerebral endothelial cells connected by tight junctions. Prion diseases are neurodegenerative pathologies characterized by the accumulation of altered forms of the prion protein (PrP), named PrPSc. Thymosin beta 4 (Tβ4) is an actin-sequestering peptide known to bind monomeric actin and inhibit its polymerization, and it is known to have a neuroprotective effect. However, the effect of Tβ4 on prion disease has not yet been investigated. Therefore, in this study, we investigated the effect of Tβ4 on prion-induced BBB dysfunction in hCMEC/D3 human cerebral endothelial cells. We found that Tβ4 increased the expression of tight junction protein, but reduced the ratio of F-actin to G-actin. Moreover, we showed that Tβ4 significantly improved PrP (106-126)-induced vascular permeability dysfunction in hCMEC/D3 cells. Through human BBB in vitro model, we found that PrP (106-126) could disrupt tight junctions and cytoskeleton arrangement. These results suggest that Tβ4 may play a critical role in barrier stabilization. Furthermore, Tβ4 may prevent neurodegenerative diseases caused by prion-induced BBB dysfunction.
Collapse
Affiliation(s)
- Kibbeum Song
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk Natioanl University, 79 Gobongro, Iksan, 54596, Republic of Korea
| | - Hye-Ju Han
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk Natioanl University, 79 Gobongro, Iksan, 54596, Republic of Korea
| | - Sokho Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk Natioanl University, 79 Gobongro, Iksan, 54596, Republic of Korea
| | - Jungkee Kwon
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk Natioanl University, 79 Gobongro, Iksan, 54596, Republic of Korea.
| |
Collapse
|