1
|
Sanath-Kumar R, Rahman A, Ren Z, Reynolds IP, Augusta L, Fuqua C, Weisberg AJ, Wang X. Linear dicentric chromosomes in bacterial natural isolates reveal common constraints for replicon fusion. mBio 2025:e0104625. [PMID: 40391973 DOI: 10.1128/mbio.01046-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 05/22/2025] Open
Abstract
Multipartite bacterial genome organization can confer advantages, including coordinated gene regulation and faster genome replication, but is challenging to maintain. Agrobacterium tumefaciens lineages often contain a circular chromosome (Ch1), a linear chromosome (Ch2), and multiple plasmids. We previously observed that in some stocks of the C58 lab model, Ch1 and Ch2 were fused into a linear dicentric chromosome. Here we analyzed Agrobacterium natural isolates from the French Collection for Plant-Associated Bacteria and identified two strains distinct from C58 with fused chromosomes. Chromosome conformation capture identified integration junctions that were different from the C58 fusion strain. Genome-wide DNA replication profiling showed that both replication origins remained active. Transposon sequencing revealed that partitioning systems of both chromosome centromeres were essential. Importantly, the site-specific recombinase XerCD is required for the survival of the strains containing the fusion chromosome. Our findings show that replicon fusion occurs in natural environments and that balanced replication arm sizes and proper resolution systems enable the survival of such strains. IMPORTANCE Most bacterial genomes are monopartite with a single, circular chromosome. However, some species, like Agrobacterium tumefaciens, carry multiple chromosomes. Emergence of multipartite genomes is often related to adaptation to specific niches, including pathogenesis or symbiosis. Multipartite genomes confer certain advantages; however, maintaining this complex structure can present significant challenges. We previously reported a laboratory-propagated lineage of A. tumefaciens strain C58 in which the circular and linear chromosomes fused to form a single dicentric chromosome. Here we discovered two geographically separated environmental isolates of A. tumefaciens containing fused chromosomes with integration junctions different from the C58 fusion chromosome, revealing the constraints and diversification of this process. We found that balanced replication arm sizes and the repurposing of multimer resolution systems enable the survival and stable maintenance of dicentric chromosomes. These findings reveal how multipartite genomes function across different bacterial species and the role of genomic plasticity in bacterial genetic diversification.
Collapse
Affiliation(s)
- Ram Sanath-Kumar
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Arafat Rahman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Zhongqing Ren
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Ian P Reynolds
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Lauren Augusta
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
2
|
Soltysiak MPM, Ory ALH, Lee AD, Christophersen CE, Jalihal AP, Springer M. XanthoMoClo─A Robust Modular Cloning Genetic Toolkit for the Genera Xanthobacter and Roseixanthobacter. ACS Synth Biol 2025; 14:1173-1190. [PMID: 40080684 PMCID: PMC12012871 DOI: 10.1021/acssynbio.4c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/27/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
Interest in Xanthobacter species is increasing due to their unique metabolic capabilities. They can grow in both heterotrophic and fully autotrophic environments, including carbon dioxide, dinitrogen gas, and hydrogen as the sole carbon, nitrogen, and energy sources, respectively. Academic and industrial groups looking to leverage these metabolic properties are already using Xanthobacter strains for the sustainable production of food and commodities. However, only a handful of genetic parts and protocols exist in scattered genetic backgrounds, and there is an unmet need for reliable genetic engineering tools to manipulate Xanthobacter species. Here, we developed XanthoMoClo, a robust modular cloning genetic toolkit for Xanthobacter and Roseixanthobacter species and strains, providing extensive tools to transform them, manipulate their metabolism, and express genes of interest. The toolkit contains plasmid parts, such as replication origins, antibiotic selection markers, fluorescent proteins, constitutive and inducible promoters, a standardized framework to incorporate novel components into the toolkit, and a conjugation donor to transform Xanthobacter and Roseixanthobacter strains easily with no or minimal optimization. We validated these plasmid components in depth in three of the most commonly studied Xanthobacter strains: X. versatilis Py2, X. autotrophicus GZ29, and X. flavus GJ10, as well as in R. finlandensis VTT E-85241. Finally, we demonstrate robust toolkit functionality across 21 different species of Xanthobacter and Roseixanthobacter, comprising 23 strains in total. The XanthoMoClo genetic toolkit is available to the research community (through AddGene) and will help accelerate the genetic engineering of Xanthobacter to further their applications in sustainability and bioremediation efforts.
Collapse
Affiliation(s)
| | - Audrey L. H. Ory
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Andrew D. Lee
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - Amogh P. Jalihal
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michael Springer
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Broad
Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Sanath-Kumar R, Rahman A, Ren Z, Reynolds IP, Augusta L, Fuqua C, Weisberg AJ, Wang X. Linear dicentric chromosomes in bacterial natural isolates reveal common constraints for replicon fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639760. [PMID: 40060587 PMCID: PMC11888308 DOI: 10.1101/2025.02.23.639760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Multipartite bacterial genome organization can confer advantages including coordinated gene regulation and faster genome replication but is challenging to maintain. Agrobacterium tumefaciens lineages often contain a circular chromosome (Ch1), a linear chromosome (Ch2), and multiple plasmids. We previously observed that in some stocks of the lab model strain C58, Ch1 and Ch2 were fused into a linear dicentric chromosome. Here we analyzed Agrobacterium natural isolates from the French Collection for Plant-Associated Bacteria (CFBP) and identified two strains with fused chromosomes. Chromosome conformation capture identified integration junctions that were different from the C58 fusion strain. Genome-wide DNA replication profiling showed both replication origins remain active. Transposon sequencing revealed that partitioning systems of both chromosome centromeres are essential. Importantly, the site-specific recombinases XerCD are required for the survival of the strains containing the fusion chromosome. Our findings show that replicon fusion occurs in natural environments and that balanced replication arm sizes and proper resolution systems enable the survival of such strains. Importance Most bacterial genomes are monopartite with a single, circular chromosome. But some species, like Agrobacterium tumefaciens, carry multiple chromosomes. Emergence of multipartite genomes is often related to adaptation to specific niches including pathogenesis or symbiosis. Multipartite genomes confer certain advantages, however, maintaining this complex structure can present significant challenges. We previously reported a laboratory-propagated lineage of A. tumefaciens strain C58 in which the circular and linear chromosomes fused to form a single dicentric chromosome. Here we discovered two environmental isolates of A. tumefaciens containing fused chromosomes derived from a different route, revealing the constraints and diversification of this process. We found that balanced replication arm sizes and the repurposing of multimer resolution systems enable the survival and stable maintenance of dicentric chromosomes. These findings help us better understand how multipartite genomes function across different bacterial species and the role of genomic plasticity in bacterial genetic diversification.
Collapse
|
4
|
Kohlmeier MG, O'Hara GW, Ramsay JP, Terpolilli JJ. Closed genomes of commercial inoculant rhizobia provide a blueprint for management of legume inoculation. Appl Environ Microbiol 2025; 91:e0221324. [PMID: 39791879 PMCID: PMC11837538 DOI: 10.1128/aem.02213-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
Rhizobia are soil bacteria capable of establishing symbiosis within legume root nodules, where they reduce atmospheric N2 into ammonia and supply it to the plant for growth. Australian soils often lack rhizobia compatible with introduced agricultural legumes, so inoculation with exotic strains has become a common practice for over 50 years. While extensive research has assessed the N2-fixing capabilities of these inoculants, their genomics, taxonomy, and core and accessory gene phylogeny are poorly characterized. Furthermore, in some cases, inoculant strains have been developed from isolations made in Australia. It is unknown whether these strains represent naturalized exotic organisms, native rhizobia with a capacity to nodulate introduced legumes, or recombinant strains arising from horizontal transfer between introduced and native bacteria. Here, we describe the complete, closed genome sequences of 42 Australian commercial rhizobia. These strains span the genera, Bradyrhizobium, Mesorhizobium, Methylobacterium, Rhizobium, and Sinorhizobium, and only 23 strains were identified to species level. Within inoculant strain genomes, replicon structure and location of symbiosis genes were consistent with those of model strains for each genus, except for Rhizobium sp. SRDI969, where the symbiosis genes are chromosomally encoded. Genomic analysis of the strains isolated from Australia showed they were related to exotic strains, suggesting that they may have colonized Australian soils following undocumented introductions. These genome sequences provide the basis for accurate strain identification to manage inoculation and identify the prevalence and impact of horizontal gene transfer (HGT) on legume productivity. IMPORTANCE Inoculation of cultivated legumes with exotic rhizobia is integral to Australian agriculture in soils lacking compatible rhizobia. The Australian inoculant program supplies phenotypically characterized high-performing strains for farmers but in most cases, little is known about the genomes of these rhizobia. Horizontal gene transfer (HGT) of symbiosis genes from inoculant strains to native non-symbiotic rhizobia frequently occurs in Australian soils and can impact the long-term stability and efficacy of legume inoculation. Here, we present the analysis of reference-quality genomes for 42 Australian commercial rhizobial inoculants. We verify and classify the genetics, genome architecture, and taxonomy of these organisms. Importantly, these genome sequences will facilitate the accurate strain identification and monitoring of inoculants in soils and plant nodules, as well as enable detection of horizontal gene transfer to native rhizobia, thus ensuring the efficacy and integrity of Australia's legume inoculation program.
Collapse
Affiliation(s)
- MacLean G. Kohlmeier
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Graham W. O'Hara
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Joshua P. Ramsay
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Jason J. Terpolilli
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
5
|
Newberger DR, Deel HL, Manter DK, Vivanco JM. Effect of intra- and inter-specific plant interactions on the rhizosphere microbiome of a single target plant at different densities. PLoS One 2025; 20:e0316676. [PMID: 39869650 PMCID: PMC11771940 DOI: 10.1371/journal.pone.0316676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/14/2024] [Indexed: 01/29/2025] Open
Abstract
Root and rhizosphere studies often focus on analyzing single-plant microbiomes, with the literature containing minimum empirical information about the shared rhizosphere microbiome of multiple plants. Here, the rhizosphere of individual plants was analyzed in a microcosm study containing different combinations and densities (1-3 plants, 24 plants, and 48 plants) of cover crops: Medicago sativa, Brassica sp., and Fescue sp. Rhizobacterial beta diversity was reduced by increasing plant density for all plant mixtures. Interestingly, plant density had a significant influence over beta diversity while plant diversity was found to be a less important factor since it did not have a significant change. Regardless of plant neighbor identity or density, a low number of rhizobacteria were strongly associated with each target species. Nonetheless, a few bacterial taxa were shown to have conditional associations such as being enriched within only high plant densities, which may alleviate plant competition between these species. Also, we found evidence of bacterial sharing of nitrogen fixers from alfalfa to fescue. Although rhizosphere bacterial networks had overlapping bacterial modules, the modules showing the largest percentage of the network changed depending on plant neighbor. In summary, this study found that for the most part plants maintained their rhizosphere microbiome despite escalating plant-plant competition.
Collapse
Affiliation(s)
- Derek R. Newberger
- Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Heather L. Deel
- Soil Management and Sugar Beet Research Unit, United States Department of Agriculture Agricultural Research Services, Fort Collins, Colorado, United States of America
| | - Daniel K. Manter
- Soil Management and Sugar Beet Research Unit, United States Department of Agriculture Agricultural Research Services, Fort Collins, Colorado, United States of America
| | - Jorge M. Vivanco
- Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
6
|
Passeri I, Cangioli L, Fondi M, Mengoni A, Fagorzi C. The Complex Epigenetic Panorama in the Multipartite Genome of the Nitrogen-Fixing Bacterium Sinorhizobium meliloti. Genome Biol Evol 2025; 17:evae245. [PMID: 39780610 PMCID: PMC11711589 DOI: 10.1093/gbe/evae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 01/11/2025] Open
Abstract
In prokaryotes, DNA methylation plays roles in DNA repair, gene expression, cell cycle progression, and immune recognition of foreign DNA. Genome-wide methylation patterns can vary between strains, influencing phenotype, and gene transfer. However, broader evolutionary studies on bacterial epigenomic variation remain limited. In this study, we conducted an epigenomic analysis using single-molecule real-time sequencing on 21 strains of Sinorhizobium meliloti, a facultative plant nitrogen-fixing alphaproteobacterium. This species is notable for its multipartite genome structure, consisting of a chromosome, chromid, and megaplasmid, leading to significant genomic and phenotypic diversity. We identified 16 palindromic and nonpalindromic methylated DNA motifs, including N4-methylcytosine and N6-methyladenine modifications, and analyzed their associated methyltransferases. Some motifs were methylated across all strains, forming a core set of epigenomic signatures, while others exhibited variable methylation frequencies, indicating a dispensable (shell) epigenome. Additionally, we observed differences in methylation frequency between replicons and within coding sequences versus regulatory regions, suggesting that methylation patterns may reflect multipartite genome evolution and influence gene regulation. Overall, our findings reveal extensive epigenomic diversity in S. meliloti, with complex epigenomic signatures varying across replicons and genomic regions. These results enhance our understanding of multipartite genome evolution and highlight the potential role of epigenomic diversity in phenotypic variation.
Collapse
Affiliation(s)
- Iacopo Passeri
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Lisa Cangioli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Mao YH, Li F, Luo LZ, Yin Y, Ma JC, Zhang WB, Wang HH, Zhang C, Hu Z. The low enoyl-acyl carrier protein reductase activity of FabI2 is responsible for the high unsaturated fatty acid composition in Sinorhizobium meliloti. BMC Microbiol 2024; 24:517. [PMID: 39627703 PMCID: PMC11616126 DOI: 10.1186/s12866-024-03645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Sinorhizobium meliloti is noted for its exceptional capacity to produce unsaturated fatty acids (UFAs). Earlier studies have indicated that S. meliloti primarily employs the FabA-FabB pathway for UFA synthesis, however, the mechanisms remain elusive. This study was conducted to elucidate these mechanisms responsible for the significant UFA production in S. meliloti. METHODS The genes encoding enoyl-acyl carrier protein (ACP) reductase (ENR) were disrupted using the suicide plasmid pK18mobsacB, followed by the creation of single-crossover and double-crossover mutants. The ENR proteins were expressed in Escherichia coli BL21(DE3) strains and subsequently purified. Their enzymatic activities were assessed through gel electrophoresis and NADH oxidation assays. Additionally, the fatty acid composition was determined using gas chromatography-mass spectrometry (GC-MS) and thin-layer chromatography. RESULTS Our findings demonstrate that the heterologous expression of fabI2 in a temperature-sensitive E. coli fabI mutant results in a significant enhancement of UFA production. Genetic analyses confirmed that fabI2 is an indispensable gene in the S. meliloti genome, as it cannot be disrupted. Interestingly, we observed that fabI2 could only be functionally replaced by the Enterococcus faecalis fabI gene and not by the homologous fabI1 from S. meliloti, E. coli fabI, or Pseudomonas aeruginosa fabV. Furthermore, we validated that the deletion of fabI1 in S. meliloti triggered an increase in UFA production compared to the wild-type strain Rm1021. CONCLUSIONS In this study, we identified the ENR, encoded by the S. meliloti SMc00326 gene (fabI2), as playing a pivotal role in the biosynthesis of UFAs. Additionally, the FabI1 enzyme, encoded by SMc00005, was found to modulate the fatty acid composition within S. meliloti. Together, these discoveries establish a foundation for the development of a model that explains the significant contribution of FabI2 to the robust synthesis of UFAs in S. meliloti.
Collapse
Affiliation(s)
- Ya-Hui Mao
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei, 432000, China
| | - Feng Li
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei, 432000, China
| | - Li-Zhen Luo
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yu Yin
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jin-Cheng Ma
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Wen-Bin Zhang
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hai-Hong Wang
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Changyi Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Zhe Hu
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
8
|
Liu X, Dong H, Wang H, Ren X, Yang X, Li T, Fu G, Xia M, Fang H, Du G, Jin Z, Zhang D. Recent Advances in Genetic Engineering Strategies of Sinorhizobium meliloti. ACS Synth Biol 2024; 13:3497-3506. [PMID: 39481116 PMCID: PMC11574922 DOI: 10.1021/acssynbio.4c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Sinorhizobium meliloti is a free-living soil Gram-negative bacterium that participates in nitrogen-fixation symbiosis with several legumes. S. meliloti has the potential to be utilized for the production of high-value nutritional compounds, such as vitamin B12. Advances in gene editing tools play a vital role in the development of S. meliloti strains with enhanced characteristics for biotechnological applications. Several novel genetic engineering strategies have emerged in recent years to investigate genetic modifications in S. meliloti. This review provides a comprehensive overview of the mechanism and application of the extensively used Tn5-mediated genetic engineering strategies. Strategies based on homologous recombination and site-specific recombination were also discussed. Subsequently, the development and application of the genetic engineering strategies utilizing various CRISPR/Cas systems in S. meliloti are summarized. This review may stimulate research interest among scientists, foster studies in the application areas of S. meliloti, and serve as a reference for the utilization of genome editing tools for other Rhizobium species.
Collapse
Affiliation(s)
- Xuan Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huina Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huiying Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xinyi Ren
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xia Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tingting Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Gang Fu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Miaomiao Xia
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Guangqing Du
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
9
|
Wagner M, Döhlemann J, Geisel D, Sobetzko P, Serrania J, Lenz P, Becker A. Engineering a Sinorhizobium meliloti Chassis with Monopartite, Single Replicon Genome Configuration. ACS Synth Biol 2024; 13:2515-2532. [PMID: 39109796 DOI: 10.1021/acssynbio.4c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Multipartite bacterial genomes pose challenges for genome engineering and the establishment of additional replicons. We simplified the tripartite genome structure (3.65 Mbp chromosome, 1.35 Mbp megaplasmid pSymA, 1.68 Mbp chromid pSymB) of the nitrogen-fixing plant symbiont Sinorhizobium meliloti. Strains with bi- and monopartite genome configurations were generated by targeted replicon fusions. Our design preserved key genomic features such as replichore ratios, GC skew, KOPS, and coding sequence distribution. Under standard culture conditions, the growth rates of these strains and the wild type were nearly comparable, and the ability for symbiotic nitrogen fixation was maintained. Spatiotemporal replicon organization and segregation were maintained in the triple replicon fusion strain. Deletion of the replication initiator-encoding genes, including the oriVs of pSymA and pSymB from this strain, resulted in a monopartite genome with oriC as the sole origin of replication, a strongly unbalanced replichore ratio, slow growth, aberrant cellular localization of oriC, and deficiency in symbiosis. Suppressor mutation R436H in the cell cycle histidine kinase CckA and a 3.2 Mbp inversion, both individually, largely restored growth, but only the genomic rearrangement recovered the symbiotic capacity. These strains will facilitate the integration of secondary replicons in S. meliloti and thus be useful for genome engineering applications, such as generating hybrid genomes.
Collapse
Affiliation(s)
- Marcel Wagner
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Johannes Döhlemann
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - David Geisel
- Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Patrick Sobetzko
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Javier Serrania
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Peter Lenz
- Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
10
|
Hanke DM, Wang Y, Dagan T. Pseudogenes in plasmid genomes reveal past transitions in plasmid mobility. Nucleic Acids Res 2024; 52:7049-7062. [PMID: 38808675 PMCID: PMC11229322 DOI: 10.1093/nar/gkae430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
Evidence for gene non-functionalization due to mutational processes is found in genomes in the form of pseudogenes. Pseudogenes are known to be rare in prokaryote chromosomes, with the exception of lineages that underwent an extreme genome reduction (e.g. obligatory symbionts). Much less is known about the frequency of pseudogenes in prokaryotic plasmids; those are genetic elements that can transfer between cells and may encode beneficial traits for their host. Non-functionalization of plasmid-encoded genes may alter the plasmid characteristics, e.g. mobility, or their effect on the host. Analyzing 10 832 prokaryotic genomes, we find that plasmid genomes are characterized by threefold-higher pseudogene density compared to chromosomes. The majority of plasmid pseudogenes correspond to deteriorated transposable elements. A detailed analysis of enterobacterial plasmids furthermore reveals frequent gene non-functionalization events associated with the loss of plasmid self-transmissibility. Reconstructing the evolution of closely related plasmids reveals that non-functionalization of the conjugation machinery led to the emergence of non-mobilizable plasmid types. Examples are virulence plasmids in Escherichia and Salmonella. Our study highlights non-functionalization of core plasmid mobility functions as one route for the evolution of domesticated plasmids. Pseudogenes in plasmids supply insights into past transitions in plasmid mobility that are akin to transitions in bacterial lifestyle.
Collapse
Affiliation(s)
- Dustin M Hanke
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Yiqing Wang
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
11
|
Körner D, Schäfer NM, Lagares Jr. A, Birmes L, Oehlmann NN, Addison H, Pöhl S, Thanbichler M, Rebelein JG, Petersen J, Becker A. Modular Low-Copy-Number Plasmid Vectors for Rhodobacterales with Extended Host Range in Alphaproteobacteria. ACS Synth Biol 2024; 13:1537-1548. [PMID: 38718218 PMCID: PMC11107812 DOI: 10.1021/acssynbio.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
Members of the alphaproteobacterial order Rhodobacterales are metabolically diverse and highly abundant in the ocean. They are becoming increasingly interesting for marine biotechnology, due to their ecological adaptability, wealth of versatile low-copy-number plasmids, and their ability to produce secondary metabolites. However, molecular tools for engineering strains of this bacterial lineage are limited. Here, we expand the genetic toolbox by establishing standardized, modular repABC-based plasmid vectors of four well-characterized compatibility groups from the Roseobacter group applicable in the Rhodobacterales, and likely in further alphaproteobacterial orders (Hyphomicrobiales, Rhodospirillales, Caulobacterales). We confirmed replication of these newly constructed pABC vectors in two members of Rhodobacterales, namely, Dinoroseobacter shibae DFL 12 and Rhodobacter capsulatus B10S, as well as in two members of the alphaproteobacterial order Hyphomicrobiales (synonym: Rhizobiales; Ensifer meliloti 2011 and "Agrobacterium fabrum" C58). Maintenance of the pABC vectors in the biotechnologically valuable orders Rhodobacterales and Hyphomicrobiales facilitates the shuttling of genetic constructs between alphaproteobacterial genera and orders. Additionally, plasmid replication was verified in one member of Rhodospirillales (Rhodospirillum rubrum S1) as well as in one member of Caulobacterales (Caulobacter vibrioides CB15N). The modular construction of pABC vectors and the usage of four compatible replication systems, which allows their coexistence in a host cell, are advantageous features for future implementations of newly designed synthetic pathways. The vector applicability was demonstrated by functional complementation of a nitrogenase mutant phenotype by two complementary pABC-based plasmids in R. capsulatus.
Collapse
Affiliation(s)
- Désirée Körner
- Center
for Synthetic Microbiology (SYNMIKRO) and Department of Biology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Niklas M. Schäfer
- Center
for Synthetic Microbiology (SYNMIKRO) and Department of Biology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Antonio Lagares Jr.
- Center
for Synthetic Microbiology (SYNMIKRO) and Department of Biology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Lukas Birmes
- Leibniz-Institut
DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig 38124, Germany
| | - Niels N. Oehlmann
- Max
Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Holly Addison
- Max
Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Sebastian Pöhl
- Center
for Synthetic Microbiology (SYNMIKRO) and Department of Biology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Martin Thanbichler
- Center
for Synthetic Microbiology (SYNMIKRO) and Department of Biology, Philipps-Universität Marburg, Marburg 35043, Germany
- Max
Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Johannes G. Rebelein
- Center
for Synthetic Microbiology (SYNMIKRO) and Department of Biology, Philipps-Universität Marburg, Marburg 35043, Germany
- Max
Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Jörn Petersen
- Leibniz-Institut
DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig 38124, Germany
| | - Anke Becker
- Center
for Synthetic Microbiology (SYNMIKRO) and Department of Biology, Philipps-Universität Marburg, Marburg 35043, Germany
| |
Collapse
|
12
|
Kearsley JVS, Sather LM, Finan TM. Sinorhizobium (Ensifer) meliloti. Trends Microbiol 2024; 32:516-518. [PMID: 38575429 DOI: 10.1016/j.tim.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Affiliation(s)
| | - Leah M Sather
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Turlough M Finan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
13
|
Sobe RC, Scharf BE. The swimming defect caused by the absence of the transcriptional regulator LdtR in Sinorhizobium meliloti is restored by mutations in the motility genes motA and motS. Mol Microbiol 2024; 121:954-970. [PMID: 38458990 DOI: 10.1111/mmi.15247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/10/2024]
Abstract
The flagellar motor is a powerful macromolecular machine used to propel bacteria through various environments. We determined that flagellar motility of the alpha-proteobacterium Sinorhizobium meliloti is nearly abolished in the absence of the transcriptional regulator LdtR, known to influence peptidoglycan remodeling and stress response. LdtR does not regulate motility gene transcription. Remarkably, the motility defects of the ΔldtR mutant can be restored by secondary mutations in the motility gene motA or a previously uncharacterized gene in the flagellar regulon, which we named motS. MotS is not essential for S. meliloti motility and may serve an accessory role in flagellar motor function. Structural modeling predicts that MotS comprised an N-terminal transmembrane segment, a long-disordered region, and a conserved β-sandwich domain. The C terminus of MotS is localized in the periplasm. Genetics based substitution of MotA with MotAG12S also restored the ΔldtR motility defect. The MotAG12S variant protein features a local polarity shift at the periphery of the MotAB stator units. We propose that MotS may be required for optimal alignment of stators in wild-type flagellar motors but becomes detrimental in cells with altered peptidoglycan. Similarly, the polarity shift in stator units composed of MotB/MotAG12S might stabilize its interaction with altered peptidoglycan.
Collapse
Affiliation(s)
- Richard C Sobe
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, Virginia, USA
| | - Birgit E Scharf
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
14
|
Gao H, Ji Y, Chen W. Selenite resistance and biotransformation to SeNPs in Sinorhizobium meliloti 1021 and the synthetic promotion on alfalfa growth. Microbiol Res 2024; 280:127568. [PMID: 38118306 DOI: 10.1016/j.micres.2023.127568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Toxic selenite, commonly found in soil and water, can be transformed by microorganisms into selenium nanoparticles (SeNPs) as part of a detoxification process. In this study, a comprehensive investigation was conducted on the resistance and biotransformation of selenite in Sinorhizobium meliloti 1021 and the synergistic impact of SeNPs and the strain on alfalfa growth promotion was explored. Strain 1021 reduced 46% of 5 mM selenite into SeNPs within 72 h. The SeNPs, composed of proteins, lipids and polysaccharides, were primarily located outside rhizobial cells and had a tendency to aggregate. Under selenite stress, many genes participated in multidrug efflux, sulfur metabolism and redox processes were significantly upregulated. Of them, four genes, namely gmc, yedE, dsh3 and mfs, were firstly identified in strain 1021 that played crucial roles in selenite biotransformation and resistance. Biotoxic evaluations showed that selenite had toxic effects on roots and seedlings of alfalfa, while SeNPs exhibited antioxidant properties, promoted growth, and enhanced plant's tolerance to salt stress. Overall, our research provides novel insights into selenite biotransformation and resistance mechanisms in rhizobium and highlights the potential of SeNPs-rhizobium complex as biofertilizer to promote legume growth and salt tolerance.
Collapse
Affiliation(s)
- Huali Gao
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Yingrui Ji
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Wenfeng Chen
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
Meier D, Rauch C, Wagner M, Klemm P, Blumenkamp P, Müller R, Ellenberger E, Karia KM, Vecchione S, Serrania J, Lechner M, Fritz G, Goesmann A, Becker A. A MoClo-Compatible Toolbox of ECF Sigma Factor-Based Regulatory Switches for Proteobacterial Chassis. BIODESIGN RESEARCH 2024; 6:0025. [PMID: 38384496 PMCID: PMC10880074 DOI: 10.34133/bdr.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/04/2023] [Indexed: 02/23/2024] Open
Abstract
The construction of complex synthetic gene circuits with predetermined and reliable output depends on orthogonal regulatory parts that do not inadvertently interfere with the host machinery or with other circuit components. Previously, extracytoplasmic function sigma factors (ECFs), a diverse group of alternative sigma factors with distinct promoter specificities, were shown to have great potential as context-independent regulators, but so far, they have only been used in a few model species. Here, we show that the alphaproteobacterium Sinorhizobium meliloti, which has been proposed as a plant-associated bacterial chassis for synthetic biology, has a similar phylogenetic ECF acceptance range as the gammaproteobacterium Escherichia coli. A common set of orthogonal ECF-based regulators that can be used in both bacterial hosts was identified and used to create 2-step delay circuits. The genetic circuits were implemented in single copy in E. coli by chromosomal integration using an established method that utilizes bacteriophage integrases. In S. meliloti, we demonstrated the usability of single-copy pABC plasmids as equivalent carriers of the synthetic circuits. The circuits were either implemented on a single pABC or modularly distributed on 3 such plasmids. In addition, we provide a toolbox containing pABC plasmids compatible with the Golden Gate (MoClo) cloning standard and a library of basic parts that enable the construction of ECF-based circuits in S. meliloti and in E. coli. This work contributes to building a context-independent and species-overarching ECF-based toolbox for synthetic biology applications.
Collapse
Affiliation(s)
- Doreen Meier
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Christian Rauch
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Marcel Wagner
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Paul Klemm
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Patrick Blumenkamp
- Bioinformatics and Systems Biology,
Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Raphael Müller
- Bioinformatics and Systems Biology,
Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Eric Ellenberger
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Kinnari M. Karia
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Stefano Vecchione
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Javier Serrania
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Georg Fritz
- The University of Western Australia, School of Molecular Sciences, Perth, Australia
| | - Alexander Goesmann
- Bioinformatics and Systems Biology,
Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
16
|
Ilyas M, Purkait D, Atmakuri K. Genomic islands and their role in fitness traits of two key sepsis-causing bacterial pathogens. Brief Funct Genomics 2024; 23:55-68. [PMID: 36528816 DOI: 10.1093/bfgp/elac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 01/21/2024] Open
Abstract
To survive and establish a niche for themselves, bacteria constantly evolve. Toward that, they not only insert point mutations and promote illegitimate recombinations within their genomes but also insert pieces of 'foreign' deoxyribonucleic acid, which are commonly referred to as 'genomic islands' (GEIs). The GEIs come in several forms, structures and types, often providing a fitness advantage to the harboring bacterium. In pathogenic bacteria, some GEIs may enhance virulence, thus altering disease burden, morbidity and mortality. Hence, delineating (i) the GEIs framework, (ii) their encoded functions, (iii) the triggers that help them move, (iv) the mechanisms they exploit to move among bacteria and (v) identification of their natural reservoirs will aid in superior tackling of several bacterial diseases, including sepsis. Given the vast array of comparative genomics data, in this short review, we provide an overview of the GEIs, their types and the compositions therein, especially highlighting GEIs harbored by two important pathogens, viz. Acinetobacter baumannii and Klebsiella pneumoniae, which prominently trigger sepsis in low- and middle-income countries. Our efforts help shed some light on the challenges these pathogens pose when equipped with GEIs. We hope that this review will provoke intense research into understanding GEIs, the cues that drive their mobility across bacteria and the ways and means to prevent their transfer, especially across pathogenic bacteria.
Collapse
Affiliation(s)
- Mohd Ilyas
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Dyuti Purkait
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Krishnamohan Atmakuri
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| |
Collapse
|
17
|
Kita K, Yoshida S, Masuo S, Nakamura A, Ishikawa S, Yoshida KI. Genes encoding a novel thermostable bacteriocin in the thermophilic bacterium Aeribacillus pallidus PI8. J Appl Microbiol 2023; 134:lxad293. [PMID: 38040658 DOI: 10.1093/jambio/lxad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
AIM Aeribacillus pallidus PI8 is a Gram-positive thermophilic bacterium that produces thermostable antimicrobial substances against several bacterial species, including Geobacillus kaustophilus HTA426. In the present study, we sought to identify genes of PI8 with antibacterial activity. METHODS AND RESULTS We isolated, cloned, and characterized a thermostable bacteriocin from A. pallidus PI8 and named it pallidocyclin. Mass spectrometric analyses of pallidocyclin revealed that it had a circular peptide structure, and its precursor was encoded by pcynA in the PI8 genome. pcynA is the second gene within the pcynBACDEF operon. Expression of the full-length pcynBACDEF operon in Bacillus subtilis produced intact pallidocyclin, whereas expression of pcynF in G. kaustophilus HTA426 conferred resistance to pallidocyclin. CONCLUSION Aeribacillus pallidus PI8 possesses the pcynBACDEF operon to produce pallidocyclin. pcynA encodes the pallidocyclin precursor, and pcynF acts as an antagonist of pallidocyclin.
Collapse
Affiliation(s)
- Kyosuke Kita
- Department of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Sanako Yoshida
- Department of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Shunsuke Masuo
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572 Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572 Ibaraki, Japan
| | - Akira Nakamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572 Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572 Ibaraki, Japan
| | - Shu Ishikawa
- Department of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ken-Ichi Yoshida
- Department of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
18
|
Wójcik M, Koper P, Żebracki K, Marczak M, Mazur A. Genomic and Metabolic Characterization of Plant Growth-Promoting Rhizobacteria Isolated from Nodules of Clovers Grown in Non-Farmed Soil. Int J Mol Sci 2023; 24:16679. [PMID: 38069003 PMCID: PMC10706249 DOI: 10.3390/ijms242316679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The rhizosphere microbiota, which includes plant growth-promoting rhizobacteria (PGPR), is essential for nutrient acquisition, protection against pathogens, and abiotic stress tolerance in plants. However, agricultural practices affect the composition and functions of microbiota, reducing their beneficial effects on plant growth and health. Among PGPR, rhizobia form mutually beneficial symbiosis with legumes. In this study, we characterized 16 clover nodule isolates from non-farmed soil to explore their plant growth-promoting (PGP) potential, hypothesizing that these bacteria may possess unique, unaltered PGP traits, compared to those affected by common agricultural practices. Biolog profiling revealed their versatile metabolic capabilities, enabling them to utilize a wide range of carbon and energy sources. All isolates were effective phosphate solubilizers, and individual strains exhibited 1-aminocyclopropane-1-carboxylate deaminase and metal ion chelation activities. Metabolically active strains showed improved performance in symbiotic interactions with plants. Comparative genomics revealed that the genomes of five nodule isolates contained a significantly enriched fraction of unique genes associated with quorum sensing and aromatic compound degradation. As the potential of PGPR in agriculture grows, we emphasize the importance of the molecular and metabolic characterization of PGP traits as a fundamental step towards their subsequent application in the field as an alternative to chemical fertilizers and supplements.
Collapse
Affiliation(s)
| | | | | | | | - Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (P.K.); (K.Ż.); (M.M.)
| |
Collapse
|
19
|
Bustamante JA, Ceron JS, Gao IT, Ramirez HA, Aviles MV, Bet Adam D, Brice JR, Cuellar RA, Dockery E, Jabagat MK, Karp DG, Lau JKO, Li S, Lopez-Magaña R, Moore RR, Morin BKR, Nzongo J, Rezaeihaghighi Y, Sapienza-Martinez J, Tran TTK, Huang Z, Duthoy AJ, Barnett MJ, Long SR, Chen JC. A protease and a lipoprotein jointly modulate the conserved ExoR-ExoS-ChvI signaling pathway critical in Sinorhizobium meliloti for symbiosis with legume hosts. PLoS Genet 2023; 19:e1010776. [PMID: 37871041 PMCID: PMC10659215 DOI: 10.1371/journal.pgen.1010776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Sinorhizobium meliloti is a model alpha-proteobacterium for investigating microbe-host interactions, in particular nitrogen-fixing rhizobium-legume symbioses. Successful infection requires complex coordination between compatible host and endosymbiont, including bacterial production of succinoglycan, also known as exopolysaccharide-I (EPS-I). In S. meliloti EPS-I production is controlled by the conserved ExoS-ChvI two-component system. Periplasmic ExoR associates with the ExoS histidine kinase and negatively regulates ChvI-dependent expression of exo genes, necessary for EPS-I synthesis. We show that two extracytoplasmic proteins, LppA (a lipoprotein) and JspA (a lipoprotein and a metalloprotease), jointly influence EPS-I synthesis by modulating the ExoR-ExoS-ChvI pathway and expression of genes in the ChvI regulon. Deletions of jspA and lppA led to lower EPS-I production and competitive disadvantage during host colonization, for both S. meliloti with Medicago sativa and S. medicae with M. truncatula. Overexpression of jspA reduced steady-state levels of ExoR, suggesting that the JspA protease participates in ExoR degradation. This reduction in ExoR levels is dependent on LppA and can be replicated with ExoR, JspA, and LppA expressed exogenously in Caulobacter crescentus and Escherichia coli. Akin to signaling pathways that sense extracytoplasmic stress in other bacteria, JspA and LppA may monitor periplasmic conditions during interaction with the plant host to adjust accordingly expression of genes that contribute to efficient symbiosis. The molecular mechanisms underlying host colonization in our model system may have parallels in related alpha-proteobacteria.
Collapse
Affiliation(s)
- Julian A. Bustamante
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Josue S. Ceron
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Ivan Thomas Gao
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Hector A. Ramirez
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Milo V. Aviles
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Demsin Bet Adam
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Jason R. Brice
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Rodrigo A. Cuellar
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Eva Dockery
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Miguel Karlo Jabagat
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Donna Grace Karp
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Joseph Kin-On Lau
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Suling Li
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Raymondo Lopez-Magaña
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Rebecca R. Moore
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Bethany Kristi R. Morin
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Juliana Nzongo
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Yasha Rezaeihaghighi
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Joseph Sapienza-Martinez
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Tuyet Thi Kim Tran
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Zhenzhong Huang
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Aaron J. Duthoy
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Melanie J. Barnett
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Sharon R. Long
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Joseph C. Chen
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| |
Collapse
|
20
|
Waldburger L, Thompson MG, Weisberg AJ, Lee N, Chang JH, Keasling JD, Shih PM. Transcriptome architecture of the three main lineages of agrobacteria. mSystems 2023; 8:e0033323. [PMID: 37477440 PMCID: PMC10469942 DOI: 10.1128/msystems.00333-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Agrobacteria are a diverse, polyphyletic group of prokaryotes with multipartite genomes capable of transferring DNA into the genomes of host plants, making them an essential tool in plant biotechnology. Despite their utility in plant transformation, genome-wide transcriptional regulation is not well understood across the three main lineages of agrobacteria. Transcription start sites (TSSs) are a necessary component of gene expression and regulation. In this study, we used differential RNA-seq and a TSS identification algorithm optimized on manually annotated TSS, then validated with existing TSS to identify thousands of TSS with nucleotide resolution for representatives of each lineage. We extend upon the 356 TSSs previously reported in Agrobacterium fabrum C58 by identifying 1,916 TSSs. In addition, we completed genomes and phenotyping of Rhizobium rhizogenes C16/80 and Allorhizobium vitis T60/94, identifying 2,650 and 2,432 TSSs, respectively. Parameter optimization was crucial for an accurate, high-resolution view of genome and transcriptional dynamics, highlighting the importance of algorithm optimization in genome-wide TSS identification and genomics at large. The optimized algorithm reduced the number of TSSs identified internal and antisense to the coding sequence on average by 90.5% and 91.9%, respectively. Comparison of TSS conservation between orthologs of the three lineages revealed differences in cell cycle regulation of ctrA as well as divergence of transcriptional regulation of chemotaxis-related genes when grown in conditions that simulate the plant environment. These results provide a framework to elucidate the mechanistic basis and evolution of pathology across the three main lineages of agrobacteria. IMPORTANCE Transcription start sites (TSSs) are fundamental for understanding gene expression and regulation. Agrobacteria, a group of prokaryotes with the ability to transfer DNA into the genomes of host plants, are widely used in plant biotechnology. However, the genome-wide transcriptional regulation of agrobacteria is not well understood, especially in less-studied lineages. Differential RNA-seq and an optimized algorithm enabled identification of thousands of TSSs with nucleotide resolution for representatives of each lineage. The results of this study provide a framework for elucidating the mechanistic basis and evolution of pathology across the three main lineages of agrobacteria. The optimized algorithm also highlights the importance of parameter optimization in genome-wide TSS identification and genomics at large.
Collapse
Affiliation(s)
- Lucas Waldburger
- Department of Bioengineering, University of California, Berkeley, California, USA
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Mitchell G. Thompson
- Joint BioEnergy Institute, Emeryville, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Namil Lee
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Jay D. Keasling
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
- Institute for Quantitative Biosciences, University of California, Berkeley, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Patrick M. Shih
- Joint BioEnergy Institute, Emeryville, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
21
|
Ajeethan N, Yurgel SN, Abbey L. Role of Bacteria-Derived Flavins in Plant Growth Promotion and Phytochemical Accumulation in Leafy Vegetables. Int J Mol Sci 2023; 24:13311. [PMID: 37686117 PMCID: PMC10488295 DOI: 10.3390/ijms241713311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Sinorhizobium meliloti 1021 bacteria secretes a considerable amount of flavins (FLs) and can form a nitrogen-fixing symbiosis with legumes. This strain is also associated with non-legume plants. However, its role in plant growth promotion (PGP) of non-legumes is not well understood. The present study evaluated the growth and development of lettuce (Lactuca sativa) and kale (Brassica oleracea var. acephala) plants inoculated with S. meliloti 1021 (FL+) and its mutant 1021ΔribBA, with a limited ability to secrete FLs (FL-). The results from this study indicated that inoculation with 1021 significantly (p < 0.05) increased the lengths and surface areas of the roots and hypocotyls of the seedlings compared to 1021ΔribBA. The kale and lettuce seedlings recorded 19% and 14% increases in total root length, respectively, following inoculation with 1021 compared to 1021ΔribBA. A greenhouse study showed that plant growth, photosynthetic rate, and yield were improved by 1021 inoculation. Moreover, chlorophylls a and b, and total carotenoids were more significantly (p < 0.05) increased in kale plants associated with 1021 than non-inoculated plants. In kale, total phenolics and flavonoids were significantly (p < 0.05) increased by 6% and 23%, respectively, and in lettuce, the increments were 102% and 57%, respectively, following 1021 inoculation. Overall, bacterial-derived FLs enhanced kale and lettuce plant growth, physiological indices, and yield. Future investigation will use proteomic approaches combined with plant physiological responses to better understand host-plant responses to bacteria-derived FLs.
Collapse
Affiliation(s)
- Nivethika Ajeethan
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Halifax, NS B2N 5E3, Canada
| | - Svetlana N. Yurgel
- USDA, ARS, Grain Legume Genetics and Physiology Research Unit, Prosser, WA 99350, USA;
| | - Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Halifax, NS B2N 5E3, Canada
| |
Collapse
|
22
|
Kohlmeier MG, Oresnik IJ. The transport of mannitol in Sinorhizobium meliloti is carried out by a broad-substrate polyol transporter SmoEFGK and is affected by the ability to transport and metabolize fructose. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001371. [PMID: 37505890 PMCID: PMC10433430 DOI: 10.1099/mic.0.001371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The smo locus (sorbitol mannitol oxidation) is found on the chromosome of S. meliloti's tripartite genome. Mutations at the smo locus reduce or abolish the ability of the bacterium to grow on several carbon sources, including sorbitol, mannitol, galactitol, d-arabitol and maltitol. The contribution of the smo locus to the metabolism of these compounds has not been previously investigated. Genetic complementation of mutant strains revealed that smoS is responsible for growth on sorbitol and galactitol, while mtlK restores growth on mannitol and d-arabitol. Dehydrogenase assays demonstrate that SmoS and MtlK are NAD+-dependent dehydrogenases catalysing the oxidation of their specific substrates. Transport experiments using a radiolabeled substrate indicate that sorbitol, mannitol and d-arabitol are primarily transported into the cell by the ABC transporter encoded by smoEFGK. Additionally, it was found that a mutation in either frcK, which is found in an operon that encodes the fructose ABC transporter, or a mutation in frk, which encodes fructose kinase, leads to the induction of mannitol transport.
Collapse
Affiliation(s)
| | - Ivan J. Oresnik
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
23
|
Soto MJ, Pérez J, Muñoz-Dorado J, Contreras-Moreno FJ, Moraleda-Muñoz A. Transcriptomic response of Sinorhizobium meliloti to the predatory attack of Myxococcus xanthus. Front Microbiol 2023; 14:1213659. [PMID: 37405170 PMCID: PMC10315480 DOI: 10.3389/fmicb.2023.1213659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Bacterial predation impacts microbial community structures, which can have both positive and negative effects on plant and animal health and on environmental sustainability. Myxococcus xanthus is an epibiotic soil predator with a broad range of prey, including Sinorhizobium meliloti, which establishes nitrogen-fixing symbiosis with legumes. During the M. xanthus-S. meliloti interaction, the predator must adapt its transcriptome to kill and lyse the target (predatosome), and the prey must orchestrate a transcriptional response (defensome) to protect itself against the biotic stress caused by the predatory attack. Here, we describe the transcriptional changes taking place in S. meliloti in response to myxobacterial predation. The results indicate that the predator induces massive changes in the prey transcriptome with up-regulation of protein synthesis and secretion, energy generation, and fatty acid (FA) synthesis, while down-regulating genes required for FA degradation and carbohydrate transport and metabolism. The reconstruction of up-regulated pathways suggests that S. meliloti modifies the cell envelop by increasing the production of different surface polysaccharides (SPSs) and membrane lipids. Besides the barrier role of SPSs, additional mechanisms involving the activity of efflux pumps and the peptide uptake transporter BacA, together with the production of H2O2 and formaldehyde have been unveiled. Also, the induction of the iron-uptake machinery in both predator and prey reflects a strong competition for this metal. With this research we complete the characterization of the complex transcriptional changes that occur during the M. xanthus-S. meliloti interaction, which can impact the establishment of beneficial symbiosis with legumes.
Collapse
Affiliation(s)
- María José Soto
- Departamento de Biotecnología y Protección Ambiental, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
24
|
Han K, Li Y, Zhang Z, Sun L, Wang ET, Li Y. Comparative genome analysis of Sesbania cannabina-nodulating Rhizobium spp. revealing the symbiotic and transferrable characteristics of symbiosis plasmids. Microb Genom 2023; 9. [PMID: 37133904 DOI: 10.1099/mgen.0.001004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Symbiotic nitrogen fixation between legumes and rhizobia makes a great contribution to the terrestrial ecosystem. The successful symbiosis between the partners mainly depends on the nod and nif genes in rhizobia, while the specific symbiosis is mainly determined by the structure of Nod factors and the corresponding secretion systems (type III secretion system; T3SS), etc. These symbiosis genes are usually located on symbiotic plasmids or a chromosomal symbiotic island, both could be transferred interspecies. In our previous studies, Sesbania cannabina-nodulating rhizobia across the world were classified into 16 species of four genera and all the strains, especially those of Rhizobium spp., harboured extraordinarily highly conserved symbiosis genes, suggesting that horizontal transfer of symbiosis genes might have happened among them. In order to learn the genomic basis of diversification of rhizobia under the selection of host specificity, we performed this study to compare the complete genome sequences of four Rhizobium strains associated with S. cannabina, YTUBH007, YTUZZ027, YTUHZ044 and YTUHZ045. Their complete genomes were sequenced and assembled at the replicon level. Each strain represents a different species according to the average nucleotide identity (ANI) values calculated using the whole-genome sequences; furthermore, except for YTUBH007, which was classified as Rhizobium binae, the remaining three strains were identified as new candidate species. A single symbiotic plasmid sized 345-402 kb containing complete nod, nif, fix, T3SS and conjugal transfer genes was detected in each strain. The high ANI and amino acid identity (AAI) values, as well as the close phylogenetic relationships among the entire symbiotic plasmid sequences, indicate that they have the same origin and the entire plasmid has been transferred among different Rhizobium species. These results indicate that S. cannabina stringently selects a certain symbiosis gene background of the rhizobia for nodulation, which might have forced the symbiosis genes to transfer from some introduced rhizobia to the related native or local-condition-adapted bacteria. The existence of almost complete conjugal transfer related elements, but not the gene virD, indicated that the self-transfer of the symbiotic plasmid in these rhizobial strains may be realized via a virD-independent pathway or through another unidentified gene. This study provides insight for the better understanding of high-frequency symbiotic plasmid transfer, host-specific nodulation and the host shift for rhizobia.
Collapse
Affiliation(s)
- Kunming Han
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Yan Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Zhenpeng Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, PR China
| | - Liqin Sun
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Yan Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| |
Collapse
|
25
|
Riley AB, Grillo MA, Epstein B, Tiffin P, Heath KD. Discordant population structure among rhizobium divided genomes and their legume hosts. Mol Ecol 2023; 32:2646-2659. [PMID: 36161739 DOI: 10.1111/mec.16704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022]
Abstract
Symbiosis often occurs between partners with distinct life history characteristics and dispersal mechanisms. Many bacterial symbionts have genomes comprising multiple replicons with distinct rates of evolution and horizontal transmission. Such differences might drive differences in population structure between hosts and symbionts and among the elements of the divided genomes of bacterial symbionts. These differences might, in turn, shape the evolution of symbiotic interactions and bacterial evolution. Here we use whole genome resequencing of a hierarchically structured sample of 191 strains of Sinorhizobium meliloti collected from 21 locations in southern Europe to characterize population structures of this bacterial symbiont, which forms a root nodule symbiosis with the host plant Medicago truncatula. S. meliloti genomes showed high local (within-site) variation and little isolation by distance. This was particularly true for the two symbiosis elements, pSymA and pSymB, which have population structures that are similar to each other, but distinct from both the bacterial chromosome and the host plant. Given limited recombination on the chromosome, compared to the symbiosis elements, distinct population structures may result from differences in effective gene flow. Alternatively, positive or purifying selection, with little recombination, may explain distinct geographical patterns at the chromosome. Discordant population structure between hosts and symbionts indicates that geographically and genetically distinct host populations in different parts of the range might interact with genetically similar symbionts, potentially minimizing local specialization.
Collapse
Affiliation(s)
- Alex B Riley
- Department of Plant Biology, University of Illinois, Urbana, Illinois, USA
| | - Michael A Grillo
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Katy D Heath
- Department of Plant Biology, University of Illinois, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
26
|
Hadjeras L, Heiniger B, Maaß S, Scheuer R, Gelhausen R, Azarderakhsh S, Barth-Weber S, Backofen R, Becher D, Ahrens CH, Sharma CM, Evguenieva-Hackenberg E. Unraveling the small proteome of the plant symbiont Sinorhizobium meliloti by ribosome profiling and proteogenomics. MICROLIFE 2023; 4:uqad012. [PMID: 37223733 PMCID: PMC10117765 DOI: 10.1093/femsml/uqad012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 03/07/2023] [Indexed: 05/25/2023]
Abstract
The soil-dwelling plant symbiont Sinorhizobium meliloti is a major model organism of Alphaproteobacteria. Despite numerous detailed OMICS studies, information about small open reading frame (sORF)-encoded proteins (SEPs) is largely missing, because sORFs are poorly annotated and SEPs are hard to detect experimentally. However, given that SEPs can fulfill important functions, identification of translated sORFs is critical for analyzing their roles in bacterial physiology. Ribosome profiling (Ribo-seq) can detect translated sORFs with high sensitivity, but is not yet routinely applied to bacteria because it must be adapted for each species. Here, we established a Ribo-seq procedure for S. meliloti 2011 based on RNase I digestion and detected translation for 60% of the annotated coding sequences during growth in minimal medium. Using ORF prediction tools based on Ribo-seq data, subsequent filtering, and manual curation, the translation of 37 non-annotated sORFs with ≤ 70 amino acids was predicted with confidence. The Ribo-seq data were supplemented by mass spectrometry (MS) analyses from three sample preparation approaches and two integrated proteogenomic search database (iPtgxDB) types. Searches against standard and 20-fold smaller Ribo-seq data-informed custom iPtgxDBs confirmed 47 annotated SEPs and identified 11 additional novel SEPs. Epitope tagging and Western blot analysis confirmed the translation of 15 out of 20 SEPs selected from the translatome map. Overall, by combining MS and Ribo-seq approaches, the small proteome of S. meliloti was substantially expanded by 48 novel SEPs. Several of them are part of predicted operons and/or are conserved from Rhizobiaceae to Bacteria, suggesting important physiological functions.
Collapse
Affiliation(s)
- Lydia Hadjeras
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Benjamin Heiniger
- Molecular Ecology,
Agroscope and SIB Swiss Institute of Bioinformatics, 8046 Zurich, Switzerland
| | - Sandra Maaß
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Robina Scheuer
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Saina Azarderakhsh
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Susanne Barth-Weber
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Christian H Ahrens
- Molecular Ecology, Agroscope and SIB Swiss Institute of Bioinformatics, 8046 Zurich, Switzerland
| | - Cynthia M Sharma
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | | |
Collapse
|
27
|
Dávalos A, García-de los Santos A. Five copper homeostasis gene clusters encode the Cu-efflux resistome of the highly copper-tolerant Methylorubrum extorquens AM1. PeerJ 2023; 11:e14925. [PMID: 36846457 PMCID: PMC9948745 DOI: 10.7717/peerj.14925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Background In the last decade, the use of copper has reemerged as a potential strategy to limit healthcare-associated infections and to control the spread of multidrug-resistant pathogens. Numerous environmental studies have proposed that most opportunistic pathogens have acquired antimicrobial resistance in their nonclinical primary habitat. Thus, it can be presumed that copper-resistant bacteria inhabiting a primary commensal niche might potentially colonize clinical environments and negatively affect the bactericidal efficacy of Cu-based treatments. The use of copper in agricultural fields is one of the most important sources of Cu pollution that may exert selection pressure for the increase of copper resistance in soil and plant-associated bacteria. To assess the emergence of copper-resistant bacteria in natural habitats, we surveyed a laboratory collection of bacterial strains belonging to the order Rhizobiales. This study proposes that Methylorubrum extorquens AM1 is an environmental isolate well adapted to thrive in copper-rich environments that could act as a reservoir of copper resistance genes. Methods The minimal inhibitory concentrations (MICs) of CuCl2 were used to estimate the copper tolerance of eight plant-associated facultative diazotrophs (PAFD) and five pink-pigmented facultative methylotrophs (PPFM) belonging to the order Rhizobiales presumed to come from nonclinical and nonmetal-polluted natural habitats based on their reported source of isolation. Their sequenced genomes were used to infer the occurrence and diversity of Cu-ATPases and the copper efflux resistome of Mr. extorquens AM1. Results These bacteria exhibited minimal inhibitory concentrations (MICs) of CuCl2 ranging between 0.020 and 1.9 mM. The presence of multiple and quite divergent Cu-ATPases per genome was a prevalent characteristic. The highest copper tolerance exhibited by Mr. extorquens AM1 (highest MIC of 1.9 mM) was similar to that found in the multimetal-resistant model bacterium Cupriavidus metallidurans CH34 and in clinical isolates of Acinetobacter baumannii. The genome-predicted copper efflux resistome of Mr. extorquens AM1 consists of five large (6.7 to 25.7 kb) Cu homeostasis gene clusters, three clusters share genes encoding Cu-ATPases, CusAB transporters, numerous CopZ chaperones, and enzymes involved in DNA transfer and persistence. The high copper tolerance and the presence of a complex Cu efflux resistome suggest the presence of relatively high copper tolerance in environmental isolates of Mr. extorquens.
Collapse
|
28
|
Jardinaud MF, Carrere S, Gourion B, Gamas P. Symbiotic Nodule Development and Efficiency in the Medicago truncatula Mtefd-1 Mutant Is Highly Dependent on Sinorhizobium Strains. PLANT & CELL PHYSIOLOGY 2023; 64:27-42. [PMID: 36151948 DOI: 10.1093/pcp/pcac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Symbiotic nitrogen fixation (SNF) can play a key role in agroecosystems to reduce the negative impact of nitrogen fertilizers. Its efficiency is strongly affected by the combination of bacterial and plant genotypes, but the mechanisms responsible for the differences in the efficiency of rhizobium strains are not well documented. In Medicago truncatula, SNF has been mostly studied using model systems, such as M. truncatula A17 in interaction with Sinorhizobium meliloti Sm2011. Here we analyzed both the wild-type (wt) A17 and the Mtefd-1 mutant in interaction with five S. meliloti and two Sinorhizobium medicae strains. ETHYLENE RESPONSE FACTOR REQUIRED FOR NODULE DIFFERENTIATION (MtEFD) encodes a transcription factor, which contributes to the control of nodule number and differentiation in M. truncatula. We found that, in contrast to Sm2011, four strains induce functional (Fix+) nodules in Mtefd-1, although less efficient for SNF than in wt A17. In contrast, the Mtefd-1 hypernodulation phenotype is not strain-dependent. We compared the plant nodule transcriptomes in response to SmBL225C, a highly efficient strain with A17, versus Sm2011, in wt and Mtefd-1 backgrounds. This revealed faster nodule development with SmBL225C and early nodule senescence with Sm2011. These RNA sequencing analyses allowed us to identify candidate plant factors that could drive the differential nodule phenotype. In conclusion, this work shows the value of having a set of rhizobium strains to fully evaluate the biological importance of a plant symbiotic gene.
Collapse
Affiliation(s)
- Marie-Françoise Jardinaud
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| | - Sebastien Carrere
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| | - Benjamin Gourion
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| | - Pascal Gamas
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| |
Collapse
|
29
|
Adaptive Evolution of Rhizobial Symbiosis beyond Horizontal Gene Transfer: From Genome Innovation to Regulation Reconstruction. Genes (Basel) 2023; 14:genes14020274. [PMID: 36833201 PMCID: PMC9957244 DOI: 10.3390/genes14020274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
There are ubiquitous variations in symbiotic performance of different rhizobial strains associated with the same legume host in agricultural practices. This is due to polymorphisms of symbiosis genes and/or largely unexplored variations in integration efficiency of symbiotic function. Here, we reviewed cumulative evidence on integration mechanisms of symbiosis genes. Experimental evolution, in concert with reverse genetic studies based on pangenomics, suggests that gain of the same circuit of key symbiosis genes through horizontal gene transfer is necessary but sometimes insufficient for bacteria to establish an effective symbiosis with legumes. An intact genomic background of the recipient may not support the proper expression or functioning of newly acquired key symbiosis genes. Further adaptive evolution, through genome innovation and reconstruction of regulation networks, may confer the recipient of nascent nodulation and nitrogen fixation ability. Other accessory genes, either co-transferred with key symbiosis genes or stochastically transferred, may provide the recipient with additional adaptability in ever-fluctuating host and soil niches. Successful integrations of these accessory genes with the rewired core network, regarding both symbiotic and edaphic fitness, can optimize symbiotic efficiency in various natural and agricultural ecosystems. This progress also sheds light on the development of elite rhizobial inoculants using synthetic biology procedures.
Collapse
|
30
|
Yang J, Zhang Q, Zhang G, Shang G. Recombineering-Mediated Sinorhizobium meliloti Rm1021 Gene Deletion. Curr Microbiol 2023; 80:76. [PMID: 36650293 DOI: 10.1007/s00284-023-03188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
Sinorhizobium meliloti Rm1021 (S. meliloti Rm1021) is a Gram-negative, soil-dwelling α-proteobacterium which serves as a model microorganism for the studies of symbiotic nitrogen fixation. The S. meliloti Rm1021 genome consists of one chromosome and two megaplasmids, pSymA and pSymB. Gene deletion is an essential tool for the elucidation of gene function and generation of mutants with improved properties. However, only two gene deletion methods, counterselectable marker sacB-based and FLP/FRT, Cre/loxP site-specific recombination, have been reported for S. meliloti Rm1021 gene deletion. Both methods require time-consuming and tedious gene cloning and conjugation steps. Herein, a λ Red recombineering-mediated gene deletion strategy is reported. The mutant was obtained via electroporating overlap-extension PCR-generated linear targeting DNA into Red-proficient cells. One gene each from the S. meliloti Rm1021 chromosome, megaplasmid SymA and pSymB was deleted, with deletion efficiency up to 100%. The straightforward and highly efficient recombineering procedure holds the promise to be a general gene manipulation method for S. meliloti Rm1021.
Collapse
Affiliation(s)
- Jun Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Qiong Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Guoyi Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Guangdong Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu, People's Republic of China.
| |
Collapse
|
31
|
Calvopina-Chavez DG, Howarth RE, Memmott AK, Pech Gonzalez OH, Hafen CB, Jensen KT, Benedict AB, Altman JD, Burnside BS, Childs JS, Dallon SW, DeMarco AC, Flindt KC, Grover SA, Heninger E, Iverson CS, Johnson AK, Lopez JB, Meinzer MA, Moulder BA, Moulton RI, Russell HS, Scott TM, Shiobara Y, Taylor MD, Tippets KE, Vainerere KM, Von Wallwitz IC, Wagley M, Wiley MS, Young NJ, Griffitts JS. A large-scale genetic screen identifies genes essential for motility in Agrobacterium fabrum. PLoS One 2023; 18:e0279936. [PMID: 36598925 PMCID: PMC9812332 DOI: 10.1371/journal.pone.0279936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/17/2022] [Indexed: 01/05/2023] Open
Abstract
The genetic and molecular basis of flagellar motility has been investigated for several decades, with innovative research strategies propelling advances at a steady pace. Furthermore, as the phenomenon is examined in diverse bacteria, new taxon-specific regulatory and structural features are being elucidated. Motility is also a straightforward bacterial phenotype that can allow undergraduate researchers to explore the palette of molecular genetic tools available to microbiologists. This study, driven primarily by undergraduate researchers, evaluated hundreds of flagellar motility mutants in the Gram-negative plant-associated bacterium Agrobacterium fabrum. The nearly saturating screen implicates a total of 37 genes in flagellar biosynthesis, including genes of previously unknown function.
Collapse
Affiliation(s)
- Diana G. Calvopina-Chavez
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Robyn E. Howarth
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Audrey K. Memmott
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Oscar H. Pech Gonzalez
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Caleb B. Hafen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Kyson T. Jensen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Alex B. Benedict
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Jessica D. Altman
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Brittany S. Burnside
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Justin S. Childs
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Samuel W. Dallon
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Alexa C. DeMarco
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Kirsten C. Flindt
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Sarah A. Grover
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Elizabeth Heninger
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Christina S. Iverson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Abigail K. Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Jack B. Lopez
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - McKay A. Meinzer
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Brook A. Moulder
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Rebecca I. Moulton
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Hyrum S. Russell
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Tiana M. Scott
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Yuka Shiobara
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Mason D. Taylor
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Kathryn E. Tippets
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Kayla M. Vainerere
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Isabella C. Von Wallwitz
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Madison Wagley
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Megumi S. Wiley
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Naomi J. Young
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
- * E-mail:
| |
Collapse
|
32
|
Farooq B, Nazir A, Anjum S, Farooq M, Farooq MU. Diversity of various symbiotic associations between microbes and host plants. RHIZOBIOME 2023:1-18. [DOI: 10.1016/b978-0-443-16030-1.00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Analysis of multipartite bacterial genomes using alignment free and alignment-based pipelines. Arch Microbiol 2022; 205:25. [PMID: 36515719 DOI: 10.1007/s00203-022-03354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
Since the discovery of second chromosome in Rhodobacter sphaeroides 2.4.1 in 1989, multipartite genomes have been reported in over three hundred bacterial species under nine different phyla. This has shattered the unipartite (single chromosome) genome dogma in bacteria. Since then, many questions on various aspects of multipartite genomes in bacteria have been addressed. However, our understanding of how multipartite genomes emerge and evolve is still lacking. Importantly, the knowledge of genetic factors underlying the differences in multipartite and single-chromosome genomes is lacking. In this work, we have performed comparative evolutionary and functional genomics analyses to identify molecular factors that discriminate multipartite from unipartite bacteria, with the goal to decipher taxon-specific factors, and those that are prevalent across the taxa, underlying these traits. We assessed the roles of evolutionary mechanisms, specifically gene gain, in driving the divergence of bacteria with single and multiple chromosomes. In addition, we performed functional genomic analysis to garner support for our findings from comparative evolutionary analysis. We found genes such as those encoding conserved hypothetical proteins in Deinococcus radiodurans R1, and putative phage phi-C31 gp36 major capsid like and hypothetical proteins in Rhodobacter sphaeroides 2.4.1, which are located on accessory chromosomes in these bacteria but were not found in the inferred ancestral sequences, and on the primary chromosomes, as well as were not found in their closest relatives with single chromosome within the same clade. Our study shines a new light on the potential roles of the secondary chromosomes in helping bacteria with multipartite genomes to adapt to specialized environments or growth conditions.
Collapse
|
34
|
Bensig EO, Valadez-Cano C, Kuang Z, Freire IR, Reyes-Prieto A, MacLellan SR. The two-component regulatory system CenK–CenR regulates expression of a previously uncharacterized protein required for salinity and oxidative stress tolerance in Sinorhizobium meliloti. Front Microbiol 2022; 13:1020932. [PMID: 36246272 PMCID: PMC9561847 DOI: 10.3389/fmicb.2022.1020932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Genes of unknown function constitute a considerable fraction of most bacterial genomes. In a Tn5-based search for stress response genes in the nitrogen-fixing facultative endosymbiont Sinorhizobium (Ensifer) meliloti, we identified a previously uncharacterized gene required for growth on solid media with increased NaCl concentrations. The encoded protein carries a predicted thioredoxin fold and deletion of the gene also results in increased sensitivity to hydrogen peroxide and cumene hydroperoxide. We have designated the gene srlA (stress resistance locus A) based on these phenotypes. A deletion mutant yields phenotypic revertants on high salt medium and genome sequencing revealed that all revertants carry a mutation in genes homologous to either cenK or cenR. srlA promoter activity is abolished in these revertant host backgrounds and in a strain carrying a deletion in cenK. We also observed that the srlA promoter is autoregulated, displaying low activity in a wildtype (wt) host background and high activity in the srl deletion mutant background. The srlA promoter includes a conserved inverted repeat directly upstream of the predicted −35 subsequence. A mutational analysis demonstrated that the site is required for the high promoter activity in the srlA deletion background. Electromobility shift assays using purified wildtype CenR response regulator and a D55E phosphomimetic derivative suggest this protein acts as a likely Class II activator by binding promoter DNA. These results document the first identified CenK–CenR regulon member in S. meliloti and demonstrate this two-component regulatory system and gene srlA influences cellular growth and persistence under certain stress-inducing conditions.
Collapse
Affiliation(s)
- Eukene O. Bensig
- Department of Biology and Environmental Science, University of the Philippines Cebu, Cebu City, Philippines
| | | | - ZiYu Kuang
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Isabela R. Freire
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | | | - Shawn R. MacLellan
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
- *Correspondence: Shawn R. MacLellan,
| |
Collapse
|
35
|
Heath KD, Batstone RT, Cerón Romero M, McMullen JG. MGEs as the MVPs of Partner Quality Variation in Legume-Rhizobium Symbiosis. mBio 2022; 13:e0088822. [PMID: 35758609 PMCID: PMC9426554 DOI: 10.1128/mbio.00888-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite decades of research, we are only just beginning to understand the forces maintaining variation in the nitrogen-fixing symbiosis between rhizobial bacteria and leguminous plants. In their recent work, Alexandra Weisberg and colleagues use genomics to document the breadth of mobile element diversity that carries the symbiosis genes of Bradyrhizobium in natural populations. Studying rhizobia from the perspective of their mobile genetic elements, which have their own transmission modes and fitness interests, reveals novel mechanisms for the generation and maintenance of diversity in natural populations of these ecologically and economically important mutualisms.
Collapse
Affiliation(s)
- Katy D. Heath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois
| | - Rebecca T. Batstone
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois
| | - Mario Cerón Romero
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois
| | | |
Collapse
|
36
|
Rajkumari J, Katiyar P, Dheeman S, Pandey P, Maheshwari DK. The changing paradigm of rhizobial taxonomy and its systematic growth upto postgenomic technologies. World J Microbiol Biotechnol 2022; 38:206. [PMID: 36008736 DOI: 10.1007/s11274-022-03370-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Rhizobia are a diazotrophic group of bacteria that are usually isolated form the nodules in roots, stem of leguminous plants and are able to form nodules in the host plant owing to the presence of symbiotic genes. The rhizobial community is highly diverse, and therefore, the taxonomy and genera-wise classification of rhizobia has been constantly changing since the last three decades. This is mainly due to technical advancements, and shifts in definitions, resulting in a changing paradigm of rhizobia taxonomy. Initially, the taxonomic definitions at the species and sub species level were based on phylogenetic analysis of 16S rRNA sequence, followed by polyphasic approach to have phenotypic, biochemical, and genetic analysis including multilocus sequence analysis. Rhizobia mainly belonging to α- and β-proteobacteria, and recently new additions from γ-proteobacteria had been classified. Nowadays rhizobial taxonomy has been replaced by genome-based taxonomy that allows gaining more insights of genomic characteristics. These omics-technologies provide genome specific information that considers nodulation and symbiotic genes, along with molecular markers as taxonomic traits. Taxonomy based on complete genome sequence (genotaxonomy), average nucleotide identity, is now being considered as primary approach, resulting in an ongoing paradigm shift in rhizobial taxonomy. Also, pairwise whole-genome comparisons, phylogenomic analyses offer correlations between DNA and DNA re-association values that have delineated biologically important species. This review elaborates the present classification and taxonomy of rhizobia, vis-a-vis development of technical advancements, parameters and controversies associated with it, and describe the updated information on evolutionary lineages of rhizobia.
Collapse
Affiliation(s)
- Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Prashant Katiyar
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India
| | - Shrivardhan Dheeman
- Department of Microbiology, Sardar Bhagwan Singh University, Dehra Dun, Uttarakhand, 248161, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India.
| |
Collapse
|
37
|
Yurgel SN, Johnson SA, Rice J, Sa N, Bailes C, Baumgartner J, Pitzer JE, Roop RM, Roje S. A novel formamidase is required for riboflavin biosynthesis in invasive bacteria. J Biol Chem 2022; 298:102377. [PMID: 35970388 PMCID: PMC9478397 DOI: 10.1016/j.jbc.2022.102377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/03/2022] Open
Abstract
Biosynthesis of riboflavin, the precursor of the redox cofactors FMN and FAD, was thought to be well understood in bacteria, with all the pathway enzymes presumed to be known and essential. Our previous research has challenged this view by showing that, in the bacterium Sinorhizobium meliloti, deletion of the ribBA gene encoding the enzyme that catalyzes the initial steps on the riboflavin biosynthesis pathway only causes a reduction in flavin secretion rather than riboflavin auxotrophy. This finding led us to hypothesize that RibBA participates in the biosynthesis of flavins destined for secretion, while S. meliloti has another enzyme that performs this function for internal cellular metabolism. Here, we identify and biochemically characterize a novel formamidase (SMc02977) involved in the production of riboflavin for intracellular functions in S. meliloti. This catalyst, which we named Sm-BrbF, releases formate from the early riboflavin precursor 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate (AFRPP) to yield 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate (DARoPP). We show that homologs of this enzyme are present in many bacteria, are highly abundant in the Rhizobiales order, and that sequence homologs from Brucella abortus and Liberobacter solanacearum complement the riboflavin auxotrophy of the Sm1021ΔSMc02977 mutant. Furthermore, we show that the B. abortus enzyme (Bab2_0247, Ba-BrbF) is also an AFRPP formamidase, and that the bab2_0247 mutant is a riboflavin auxotroph exhibiting a lower level of intracellular infection than the wild-type strain. Finally, we show that Sm-BrbF and Ba-BrbF directly interact with other riboflavin biosynthesis pathway enzymes. Together, our results provide novel insight into the intricacies of riboflavin biosynthesis in bacteria.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Grain Legume Genetics and Physiology Research Unit, USDA, ARS, Prosser, WA, USA.
| | - Skylar A Johnson
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Jennifer Rice
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Na Sa
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Clayton Bailes
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - John Baumgartner
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Josh E Pitzer
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Sanja Roje
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| |
Collapse
|
38
|
Batstone RT, Burghardt LT, Heath KD. Phenotypic and genomic signatures of interspecies cooperation and conflict in naturally occurring isolates of a model plant symbiont. Proc Biol Sci 2022; 289:20220477. [PMID: 35858063 PMCID: PMC9277234 DOI: 10.1098/rspb.2022.0477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Given the need to predict the outcomes of (co)evolution in host-associated microbiomes, whether microbial and host fitnesses tend to trade-off, generating conflict, remains a pressing question. Examining the relationships between host and microbe fitness proxies at both the phenotypic and genomic levels can illuminate the mechanisms underlying interspecies cooperation and conflict. We examined naturally occurring genetic variation in 191 strains of the model microbial symbiont Sinorhizobium meliloti, paired with each of two host Medicago truncatula genotypes in single- or multi-strain experiments to determine how multiple proxies of microbial and host fitness were related to one another and test key predictions about mutualism evolution at the genomic scale, while also addressing the challenge of measuring microbial fitness. We found little evidence for interspecies fitness conflict; loci tended to have concordant effects on both microbe and host fitnesses, even in environments with multiple co-occurring strains. Our results emphasize the importance of quantifying microbial relative fitness for understanding microbiome evolution and thus harnessing microbiomes to improve host fitness. Additionally, we find that mutualistic coevolution between hosts and microbes acts to maintain, rather than erode, genetic diversity, potentially explaining why variation in mutualism traits persists in nature.
Collapse
Affiliation(s)
- Rebecca T. Batstone
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Liana T. Burghardt
- Department of Plant Science, The Pennsylvania State University, 103 Tyson Building, University Park, PA, 16802 USA
| | - Katy D. Heath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 286 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
39
|
Ferraz Helene LC, Klepa MS, Hungria M. New Insights into the Taxonomy of Bacteria in the Genomic Era and a Case Study with Rhizobia. Int J Microbiol 2022; 2022:4623713. [PMID: 35637770 PMCID: PMC9148247 DOI: 10.1155/2022/4623713] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Since early studies, the history of prokaryotes taxonomy has dealt with many changes driven by the development of new and more robust technologies. As a result, the number of new taxa descriptions is exponentially increasing, while an increasing number of others has been subject of reclassification, demanding from the taxonomists more effort to maintain an organized hierarchical system. However, expectations are that the taxonomy of prokaryotes will acquire a more stable status with the genomic era. Other analyses may continue to be necessary to determine microbial features, but the use of genomic data might be sufficient to provide reliable taxa delineation, helping taxonomy to reach the goal of correct classification and identification. Here we describe the evolution of prokaryotes' taxonomy until the genomic era, emphasizing bacteria and taking as an example the history of rhizobia taxonomy. This example was chosen because of the importance of the symbiotic nitrogen fixation of legumes with rhizobia to the nitrogen input to both natural ecosystems and agricultural crops. This case study reports the technological advances and the methodologies used to classify and identify bacterial species and indicates the actual rules required for an accurate description of new taxa.
Collapse
Affiliation(s)
- Luisa Caroline Ferraz Helene
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, DF, Brazil
| | - Milena Serenato Klepa
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, CP 10011, 86057-970 Londrina, PR, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70040-020 Brasília, DF, Brazil
| | - Mariangela Hungria
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, DF, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, CP 10011, 86057-970 Londrina, PR, Brazil
| |
Collapse
|
40
|
Yurgel SN, Ajeethan N, Smertenko A. Response of Plant-Associated Microbiome to Plant Root Colonization by Exogenous Bacterial Endophyte in Perennial Crops. Front Microbiol 2022; 13:863946. [PMID: 35479645 PMCID: PMC9037143 DOI: 10.3389/fmicb.2022.863946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
The application of bacterial inoculums for improving plant growth and production is an important component of sustainable agriculture. However, the efficiency of perennial crop inoculums depends on the ability of the introduced endophytes to exert an impact on the host-plant over an extended period of time. This impact might be evaluated by the response of plant-associated microbiome to the inoculation. In this study, we monitored the effect of a single bacterial strain inoculation on the diversity, structure, and cooperation in plant-associated microbiome over 1-year period. An endophyte (RF67) isolated from Vaccinium angustifolium (wild blueberry) roots and annotated as Rhizobium was used for the inoculation of 1-year-old Lonicera caerulea (Haskap) plants. A significant level of bacterial community perturbation was detected in plant roots after 3 months post-inoculation. About 23% of root-associated community variation was correlated with an application of the inoculant, which was accompanied by increased cooperation between taxa belonging to Proteobacteria and Actinobacteriota phyla and decreased cooperation between Firmicutes in plant roots. Additionally, a decrease in bacterial Shannon diversity and an increase in the relative abundances of Rhizobiaceae and Enterobacteriaceae were detected in the roots of inoculated plants relative to the non-inoculated control. A strong effect of the inoculation on the bacterial cooperation was also detected after 1 year of plant field growth, whereas no differences in bacterial community composition and also alpha and beta diversities were detected between bacterial communities from inoculated and non-inoculated roots. These findings suggest that while exogenous endophytes might have a short-term effect on the root microbiome structure and composition, they can boost cooperation between plant-growth-promoting endophytes, which can exist for the extended period of time providing the host-plant with long-lasting beneficial effects.
Collapse
Affiliation(s)
- Svetlana N. Yurgel
- Grain Legume Genetics and Physiology Research Unit, U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Prosser, WA, United States
| | - Nivethika Ajeethan
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
- Department of Biosystems Technology, Faculty of Technology, University of Jaffna, Kilinochchi, Sri Lanka
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|
41
|
Cangioli L, Vaccaro F, Fini M, Mengoni A, Fagorzi C. Scent of a Symbiont: The Personalized Genetic Relationships of Rhizobium-Plant Interaction. Int J Mol Sci 2022; 23:3358. [PMID: 35328782 PMCID: PMC8954435 DOI: 10.3390/ijms23063358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/24/2023] Open
Abstract
Many molecular signals are exchanged between rhizobia and host legume plants, some of which are crucial for symbiosis to take place, while others are modifiers of the interaction, which have great importance in the competition with the soil microbiota and in the genotype-specific perception of host plants. Here, we review recent findings on strain-specific and host genotype-specific interactions between rhizobia and legumes, discussing the molecular actors (genes, gene products and metabolites) which play a role in the establishment of symbiosis, and highlighting the need for research including the other components of the soil (micro)biota, which could be crucial in developing rational-based strategies for bioinoculants and synthetic communities' assemblage.
Collapse
Affiliation(s)
- Lisa Cangioli
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Francesca Vaccaro
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Margherita Fini
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
42
|
Molina-Sánchez MD, García-Rodríguez FM, Andrés-León E, Toro N. Identification of Group II Intron RmInt1 Binding Sites in a Bacterial Genome. Front Mol Biosci 2022; 9:834020. [PMID: 35281263 PMCID: PMC8914252 DOI: 10.3389/fmolb.2022.834020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
RmInt1 is a group II intron encoding a reverse transcriptase protein (IEP) lacking the C-terminal endonuclease domain. RmInt1 is an efficient mobile retroelement that predominantly reverse splices into the transient single-stranded DNA at the template for lagging strand DNA synthesis during host replication, a process facilitated by the interaction of the RmInt1 IEP with DnaN at the replication fork. It has been suggested that group II intron ribonucleoprotein particles bind DNA nonspecifically, and then scan for their correct target site. In this study, we investigated RmInt1 binding sites throughout the Sinorhizobium meliloti genome, by chromatin-immunoprecipitation coupled with next-generation sequencing. We found that RmInt1 binding sites cluster around the bidirectional replication origin of each of the three replicons comprising the S. meliloti genome. Our results provide new evidence linking group II intron mobility to host DNA replication.
Collapse
Affiliation(s)
- María Dolores Molina-Sánchez
- Structure, Dynamics and Function of Rhizobacterial Genomes, Estación Experimental del Zaidín, Department of Soil Microbiology and Symbiotic Systems, Spanish National Research Council (CSIC), Granada, Spain
| | - Fernando Manuel García-Rodríguez
- Structure, Dynamics and Function of Rhizobacterial Genomes, Estación Experimental del Zaidín, Department of Soil Microbiology and Symbiotic Systems, Spanish National Research Council (CSIC), Granada, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Nicolás Toro
- Structure, Dynamics and Function of Rhizobacterial Genomes, Estación Experimental del Zaidín, Department of Soil Microbiology and Symbiotic Systems, Spanish National Research Council (CSIC), Granada, Spain
- *Correspondence: Nicolás Toro,
| |
Collapse
|
43
|
Hagberg KL, Price JP, Yurgel SN, Kahn ML. The Sinorhizobium meliloti Nitrogen Stress Response Changes Radically in the Face of Concurrent Phosphate Stress. Front Microbiol 2022; 13:800146. [PMID: 35154051 PMCID: PMC8829014 DOI: 10.3389/fmicb.2022.800146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Expression of hundreds of S. meliloti genes changed more than two-fold in response to either nitrogen or phosphate limitation. When these two stresses were applied together, stress responsive gene expression shifted dramatically. In particular, the nitrogen stress response in the presence of phosphate stress had only 30 of about 350 genes in common with the 280 genes that responded to nitrogen stress with adequate phosphate. Expression of sRNAs was also altered in response to these stresses. 82% of genes that responded to nitrogen stress also responded to phosphate stress, including 20 sRNAs. A subset of these sRNAs is known to be chaperoned by the RNA binding protein, Hfq. Hfq had previously been shown to influence about a third of the genes that responded to both nitrogen and phosphate stresses. Phosphate limitation influenced changes in gene expression more than nitrogen limitation and, when both stresses were present, phosphate stress sometimes reversed the direction of some of the changes induced by nitrogen stress. These nutrient stress responses are therefore context dependent.
Collapse
Affiliation(s)
- Kelly L. Hagberg
- School of Molecular Biosciences, Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Jason P. Price
- School of Molecular Biosciences, Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Svetlana N. Yurgel
- School of Molecular Biosciences, Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Michael L. Kahn
- School of Molecular Biosciences, Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- *Correspondence: Michael L. Kahn,
| |
Collapse
|
44
|
Abstract
Biological nitrogen fixation in rhizobium-legume symbioses is of major importance for sustainable agricultural practices. To establish a mutualistic relationship with their plant host, rhizobia transition from free-living bacteria in soil to growth down infection threads inside plant roots and finally differentiate into nitrogen-fixing bacteroids. We reconstructed a genome-scale metabolic model for Rhizobium leguminosarum and integrated the model with transcriptome, proteome, metabolome, and gene essentiality data to investigate nutrient uptake and metabolic fluxes characteristic of these different lifestyles. Synthesis of leucine, polyphosphate, and AICAR is predicted to be important in the rhizosphere, while myo-inositol catabolism is active in undifferentiated nodule bacteria in agreement with experimental evidence. The model indicates that bacteroids utilize xylose and glycolate in addition to dicarboxylates, which could explain previously described gene expression patterns. Histidine is predicted to be actively synthesized in bacteroids, consistent with transcriptome and proteome data for several rhizobial species. These results provide the basis for targeted experimental investigation of metabolic processes specific to the different stages of the rhizobium-legume symbioses. IMPORTANCE Rhizobia are soil bacteria that induce nodule formation on plant roots and differentiate into nitrogen-fixing bacteroids. A detailed understanding of this complex symbiosis is essential for advancing ongoing efforts to engineer novel symbioses with cereal crops for sustainable agriculture. Here, we reconstruct and validate a genome-scale metabolic model for Rhizobium leguminosarum bv. viciae 3841. By integrating the model with various experimental data sets specific to different stages of symbiosis formation, we elucidate the metabolic characteristics of rhizosphere bacteria, undifferentiated bacteria inside root nodules, and nitrogen-fixing bacteroids. Our model predicts metabolic flux patterns for these three distinct lifestyles, thus providing a framework for the interpretation of genome-scale experimental data sets and identifying targets for future experimental studies.
Collapse
|
45
|
Armstrong CM, Zhou L, Luo W, Batuman O, Alabi OJ, Duan Y. Identification of a Chromosomal Deletion Mutation and the Dynamics of Two Major Populations of ' Candidatus Liberibacter asiaticus' in Its Hosts. PHYTOPATHOLOGY 2022; 112:81-88. [PMID: 34645320 DOI: 10.1094/phyto-08-21-0325-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
'Candidatus Liberibacter asiaticus' (Las) is the prominent species of Liberibacter associated with huanglongbing, a devastating disease of citrus worldwide. In this study, we report the identification of an ∼8.3-kb DNA region of the Las genome containing eight putative open reading frames flanked by two inverted repeats, which was not present in the Las str. psy62 genome. Comparisons with other genome sequences established this region as a unique genetic element associated with genome plasticity/instability. Primers specific for both the presence (Las wild type) and absence (Las mutant) of this region were designed to study the population dynamics and host adaptation of the two strains. Las populations with and/or without the wild-type strain were detected and differentiated in >2,300 samples that included psyllids, periwinkle, and several species of citrus. In psyllids, although a mixed population of the wild type and mutant was observed in most samples (88%), the wild-type Las was detected alone at a rate of 11%. In contrast, none of the infected citrus plants were positive for the wild type alone, which harbored either the mutant strain alone (8%) or a mixed population of the mutant and wild type (92%). Furthermore, the dynamics of these two major Las populations varied with different citrus hosts, whereas an in-depth study on grapefruit that did not rapidly succumb to disease revealed that the population of mutant alone increased with time, indicating that the absence of this genetic element is associated with the fitness of Las in planta under the selection pressure of its host.
Collapse
Affiliation(s)
- Cheryl M Armstrong
- Eastern Regional Research Center, U.S. Department of Agriculture-Agricultural Research Service, Wyndmoor, PA
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL
| | - Lijuan Zhou
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL
| | - Weiqi Luo
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL
| | - Ozgur Batuman
- Southwest Florida Research and Education Center, University of Florida, Immokalee, FL 34142
| | - Olufemi J Alabi
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX 78596
| | - Yongping Duan
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL
| |
Collapse
|
46
|
Abstract
Approximately 10% of bacterial strains contain more than one chromosome; however, in contrast to the primary chromosomes, the mechanisms underlying the formation of the second chromosomes and the significance of their existence remain unclear. Species of the genus Flammeovirga are typical polysaccharide-degrading bacteria, and herein, we report complete genome maps of this genus. These genomes all had multireplicons and second chromosomes. The second chromosome, much larger than plasmids and even megaplasmids, had rRNA and a disparity of 1% relative to the main chromosome in guanine-cytosine (GC) content. The largest chromosomes carried core genes for cellular processes, while the second chromosomes were enriched with genes involved in the transport and metabolism of inorganic ions and carbohydrates, particularly genes encoding glycoside hydrolases and polysaccharide lyases, which constituted the genetic basis for the strains’ excellent capabilities to utilize polysaccharides. The second chromosomal evolution had a higher mutation rate than the primary chromosomes. Furthermore, the second chromosomes were also enriched in horizontal transfer genes and duplicated genes. The primary chromosomes were more evolutionarily conserved, while the second chromosomes were more plastic, which might be related to their different roles in the bacterial survival process. This study can be used as an example to explain possible formation mechanisms and functions of the second chromosomes, providing a reference for peer research on the second chromosomes. In particular, the second chromosomes were enriched in polysaccharide-degrading enzymes, which will provide theoretical support for using genomic data to mine tool-type carbohydrase resources. IMPORTANCE For decades, the typical bacterial genome has been thought to contain a single chromosome and a few small plasmids carrying nonessential genes. However, an increasing number of secondary chromosomes have been identified in various bacteria (e.g., plant symbiotic bacteria and human pathogens). This study reported three complete genomes of the polysaccharide-degrading marine bacterial genus Flammeovirga, revealed that they harbor two chromosomes, and further identified that the presence of a multireplicon system is a characteristic of complete Flammeovirga genomes. These sequences will add to our knowledge on secondary chromosomes, especially within Bacteroidetes. This study indicated that the second chromosomes of the genus Flammeovirga initially originated from an ancestral plasmid and subsequently expanded by gene duplication or by obtaining heterologous genes with functions, thus promoting host strains to adapt to complex living environments (e.g., to degrade more diverse polysaccharides from marine environments). These findings will promote the understanding of the evolution and function of bacteria with multireplicon systems.
Collapse
|
47
|
Yurgel SN, Qu Y, Rice JT, Ajeethan N, Zink EM, Brown JM, Purvine S, Lipton MS, Kahn ML. Specialization in a Nitrogen-Fixing Symbiosis: Proteome Differences Between Sinorhizobium medicae Bacteria and Bacteroids. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1409-1422. [PMID: 34402628 DOI: 10.1094/mpmi-07-21-0180-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Using tandem mass spectrometry (MS/MS), we analyzed the proteome of Sinorhizobium medicae WSM419 growing as free-living cells and in symbiosis with Medicago truncatula. In all, 3,215 proteins were identified, over half of the open reading frames predicted from the genomic sequence. The abundance of 1,361 proteins displayed strong lifestyle bias. In total, 1,131 proteins had similar levels in bacteroids and free-living cells, and the low levels of 723 proteins prevented statistically significant assignments. Nitrogenase subunits comprised approximately 12% of quantified bacteroid proteins. Other major bacteroid proteins included symbiosis-specific cytochromes and FixABCX, which transfer electrons to nitrogenase. Bacteroids had normal levels of proteins involved in amino acid biosynthesis, glycolysis or gluconeogenesis, and the pentose phosphate pathway; however, several amino acid degradation pathways were repressed. This suggests that bacteroids maintain a relatively independent anabolic metabolism. Tricarboxylic acid cycle proteins were highly expressed in bacteroids and no other catabolic pathway emerged as an obvious candidate to supply energy and reductant to nitrogen fixation. Bacterial stress response proteins were induced in bacteroids. Many WSM419 proteins that are not encoded in S. meliloti Rm1021 were detected, and understanding the functions of these proteins might clarify why S. medicae WSM419 forms a more effective symbiosis with M. truncatula than S. meliloti Rm1021.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, Nova Scotia, B2N 5E3, Canada
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, U.S.A
| | - Yi Qu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Jennifer T Rice
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, U.S.A
| | - Nivethika Ajeethan
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, Nova Scotia, B2N 5E3, Canada
- Faculty of Technology, University of Jaffna, Sri Lanka
| | - Erika M Zink
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Joseph M Brown
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Sam Purvine
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Mary S Lipton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Michael L Kahn
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, U.S.A
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-6340, U.S.A
| |
Collapse
|
48
|
Comparative Genomics across Three Ensifer Species Using a New Complete Genome Sequence of the Medicago Symbiont Sinorhizobium ( Ensifer) meliloti WSM1022. Microorganisms 2021; 9:microorganisms9122428. [PMID: 34946030 PMCID: PMC8706082 DOI: 10.3390/microorganisms9122428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Here, we report an improved and complete genome sequence of Sinorhizobium (Ensifer) meliloti strain WSM1022, a microsymbiont of Medicago species, revealing its tripartite structure. This improved genome sequence was generated combining Illumina and Oxford nanopore sequencing technologies to better understand the symbiotic properties of the bacterium. The 6.75 Mb WSM1022 genome consists of three scaffolds, corresponding to a chromosome (3.70 Mb) and the pSymA (1.38 Mb) and pSymB (1.66 Mb) megaplasmids. The assembly has an average GC content of 62.2% and a mean coverage of 77X. Genome annotation of WSM1022 predicted 6058 protein coding sequences (CDSs), 202 pseudogenes, 9 rRNAs (3 each of 5S, 16S, and 23S), 55 tRNAs, and 4 ncRNAs. We compared the genome of WSM1022 to two other rhizobial strains, closely related Sinorhizobium (Ensifer) meliloti Sm1021 and Sinorhizobium (Ensifer) medicae WSM419. Both WSM1022 and WSM419 species are high-efficiency rhizobial strains when in symbiosis with Medicago truncatula, whereas Sm1021 is ineffective. Our findings report significant genomic differences across the three strains with some similarities between the meliloti strains and some others between the high efficiency strains WSM1022 and WSM419. The addition of this high-quality rhizobial genome sequence in conjunction with comparative analyses will help to unravel the features that make a rhizobial symbiont highly efficient for nitrogen fixation.
Collapse
|
49
|
Takahama R, Kato H, Tajima K, Tagawa S, Kondo T. Biofabrication of a Hyaluronan/Bacterial Cellulose Composite Nanofibril by Secretion from Engineered Gluconacetobacter. Biomacromolecules 2021; 22:4709-4719. [PMID: 34705422 DOI: 10.1021/acs.biomac.1c00987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Naturally occurring polysaccharides, such as cellulose, hemicellulose, and chitin, have roles in plant skeletons and/or related properties in living organisms. Their hierarchically regulated production systems show potential for designing nanocomposite fabrication using engineered microorganisms. This study has demonstrated that genetically engineered Gluconacetobacter hansenii (G. hansenii) individual cells can fabricate naturally composited nanofibrils by simultaneous production of hyaluronan (HA) and bacterial cellulose (BC). The cells were manipulated to contain hyaluronan synthase and UDP-glucose dehydrogenase genes, which are essential for HA biosynthesis. Fluorescence microscopic observations indicated the production of composited nanofibrils and suggested that HA secretion was associated with the cellulose secretory pathway in G. hansenii. The gel-like nanocomposite materials produced by the engineered G. hansenii exhibited superior properties compared with conventional in situ nanocomposites. This genetic engineering approach facilitates the use of G. hansenii for designing integrated cellulose-based nanomaterials.
Collapse
Affiliation(s)
- Ryo Takahama
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, West 5th, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Honami Kato
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, West 5th, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenji Tajima
- Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | - Satomi Tagawa
- Faculty of Agriculture, Kyushu University, West 5th, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tetsuo Kondo
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, West 5th, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Faculty of Agriculture, Kyushu University, West 5th, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
50
|
Alakavuklar MA, Heckel BC, Stoner AM, Stembel JA, Fuqua C. Motility control through an anti-activation mechanism in Agrobacterium tumefaciens. Mol Microbiol 2021; 116:1281-1297. [PMID: 34581467 DOI: 10.1111/mmi.14823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022]
Abstract
Many bacteria can migrate from a free-living, planktonic state to an attached, biofilm existence. One factor regulating this transition in the facultative plant pathogen Agrobacterium tumefaciens is the ExoR-ChvG-ChvI system. Periplasmic ExoR regulates the activity of the ChvG-ChvI two-component system in response to environmental stress, most notably low pH. ChvI impacts hundreds of genes, including those required for type VI secretion, virulence, biofilm formation, and flagellar motility. Previous studies revealed that activated ChvG-ChvI represses expression of most of class II and class III flagellar biogenesis genes, but not the master motility regulator genes visN, visR, and rem. In this study, we characterized the integration of the ExoR-ChvG-ChvI and VisNR-Rem pathways. We isolated motile suppressors of the non-motile ΔexoR mutant and thereby identified the previously unannotated mirA gene encoding a 76 amino acid protein. We report that the MirA protein interacts directly with the Rem DNA-binding domain, sequestering Rem and preventing motility gene activation. The ChvG-ChvI pathway activates mirA expression and elevated mirA is sufficient to block motility. This study reveals how the ExoR-ChvG-ChvI pathway prevents flagellar motility in A. tumefaciens. MirA is also conserved among other members of the Rhizobiales suggesting similar mechanisms of motility regulation.
Collapse
Affiliation(s)
| | - Brynn C Heckel
- Indiana University, Bloomington, Indiana, USA.,California State University, Dominguez Hills, Carson, California, USA
| | - Ari M Stoner
- Indiana University, Bloomington, Indiana, USA.,Indiana University Medical School, Indianapolis, Indiana, USA
| | - Joseph A Stembel
- Indiana University, Bloomington, Indiana, USA.,University of Washington, Seattle, Washington, USA
| | - Clay Fuqua
- Indiana University, Bloomington, Indiana, USA
| |
Collapse
|