1
|
Guevara-Andino JE, Dávalos LM, Zapata F, Endara MJ, Cotoras DD, Chaves J, Claramunt S, López-Delgado J, Mendoza-Henao AM, Salazar-Valenzuela D, Rivas-Torres G, Yeager J. Neotropics as a Cradle for Adaptive Radiations. Cold Spring Harb Perspect Biol 2025; 17:a041452. [PMID: 38692837 PMCID: PMC11875094 DOI: 10.1101/cshperspect.a041452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Neotropical ecosystems are renowned for numerous examples of adaptive radiation in both plants and animals resulting in high levels of biodiversity and endemism. However, we still lack a comprehensive review of the abiotic and biotic factors that contribute to these adaptive radiations. To fill this gap, we delve into the geological history of the region, including the role of tectonic events such as the Andean uplift, the formation of the Isthmus of Panama, and the emergence of the Guiana and Brazilian Shields. We also explore the role of ecological opportunities created by the emergence of new habitats, as well as the role of key innovations, such as novel feeding strategies or reproductive mechanisms. We discuss different examples of adaptive radiation, including classic ones like Darwin's finches and Anolis lizards, and more recent ones like bromeliads and lupines. Finally, we propose new examples of adaptive radiations mediated by ecological interactions in their geological context. By doing so, we provide insights into the complex interplay of factors that contributed to the remarkable diversity of life in the Neotropics and highlight the importance of this region in understanding the origins of biodiversity.
Collapse
Affiliation(s)
- Juan E Guevara-Andino
- Grupo de Investigación en Ecología y Evolución en los Trópicos-EETrop, Universidad de las Américas, Quito 170124, Ecuador
| | - Liliana M Dávalos
- Department of Ecology and Evolution and Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, New York 11794, USA
| | - Felipe Zapata
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90024, USA
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90024, USA
| | - María José Endara
- Grupo de Investigación en Ecología y Evolución en los Trópicos-EETrop, Universidad de las Américas, Quito 170124, Ecuador
| | - Darko D Cotoras
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum, 60325 Frankfurt am Main, Germany
- Department of Entomology, California Academy of Sciences, San Francisco, California 94118, USA
| | - Jaime Chaves
- Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC), Chapel Hill, North Carolina 27516, USA
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
- Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Santiago Claramunt
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto M5S 1A1, Ontario, Canada
| | - Julia López-Delgado
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Angela M Mendoza-Henao
- Colecciones Biológicas, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Claustro de San Agustín, Villa de Leyva 12-65 Piso 7, Colombia
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias del Medio Ambiente, Universidad Indoamérica, Quito 170301, Ecuador
| | - Gonzalo Rivas-Torres
- Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC), Chapel Hill, North Carolina 27516, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Justin Yeager
- Grupo de Investigación en Biodiversidad, Ambiente y Salud-BIOMAS-Universidad de las Américas, Quito 170124, Ecuador
| |
Collapse
|
2
|
Herrera-Alsina L, Parvanova R, Guirguis J, Bocedi G, Trethowan L, Lancaster LT, Travis JMJ. Disentangling evolutionary, geometric and ecological components of the elevational gradient of diversity. Evol Lett 2025; 9:51-64. [PMID: 39906581 PMCID: PMC11790213 DOI: 10.1093/evlett/qrae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 09/02/2024] [Indexed: 02/06/2025] Open
Abstract
Despite the high importance and risk of mountain ecosystems in global biodiversity conservation, the mechanisms giving rise to and maintaining elevational biodiversity gradients are poorly understood, limiting predictions of future responses. Species richness peaks at lowlands for many taxa, which might be a consequence of mountain shape, reducing available area in highlands. For other taxa, diversity can be highest at mid elevations, suggesting the presence of mechanisms that counteract the influence of geometry. Here, we mechanistically investigate the role of mountain geometry (smaller at the peak) interaction with ecological niche width, diversification, and altitudinal dispersal to investigate the relative roles of these processes in shaping elevational biodiversity gradients. We simulated landscapes and lineages until species richness stop increasing and showed that the disproportionately large area of lowlands provides opportunity for higher species accumulation than any other elevation, even when available niche width and per-capita diversification rate are uniform across altitudes. Regardless of the underlying Elevational Diversity Gradient, altitudinal dispersal always plays a stronger role in maintaining highland than lowland diversity, due to unequal areas involved. To empirically test these predictions resulting from our model, we fit dynamic models of diversification and altitudinal dispersal to three mountainous endemic radiations whose species richness peaks in mid and high-elevation. We find that highland diversity is explained by increased diversification rates with elevation in Fijian bees, whereas niche availability is more likely to explain high altitude diversity in frailejon bushes and earless frogs, suggesting these clades are still growing. Our model and findings provide a new framework for distinguishing drivers of diversity dynamics on mountainsides and allow to detect the presence of clade-specific mechanisms underlying the geometry-diversity relationship. Understanding of these ecological and evolutionary forces can allow increased predictability of how ongoing land use and climate changes will impact future highland biodiversity.
Collapse
Affiliation(s)
| | - Rossina Parvanova
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jacinta Guirguis
- MacroBiodiversity Lab, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Greta Bocedi
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Justin M J Travis
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
3
|
Nicholls JA, Ringelberg JJ, Dexter KG, Loiseau O, Stone GN, Coley PD, Hughes CE, Kursar TA, Koenen EJM, Garcia F, Lemes MR, Neves DRM, Endara MJ, de Lima HC, Kidner CA, Pennington RT. Continuous colonization of the Atlantic coastal rain forests of South America from Amazônia. Proc Biol Sci 2025; 292:20241559. [PMID: 39837505 PMCID: PMC11750371 DOI: 10.1098/rspb.2024.1559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
The two main extensions of rain forest in South America are the Amazon (Amazônia) and the Atlantic rain forest (Mata Atlântica), which are separated by a wide 'dry diagonal' of seasonal vegetation. We used the species-rich tree genus Inga to test if Amazônia-Mata Atlântica dispersals have been clustered during specific time periods corresponding to past, humid climates. We performed hybrid capture DNA sequencing of 810 nuclear loci for 453 accessions representing 164 species that included 62% of Mata Atlântica species and estimated a dated phylogeny for all accessions using maximum likelihood, and a species-level tree using coalescent methods. There have been 16-20 dispersal events to the Mata Atlântica from Amazônia with only one or two dispersals in the reverse direction. These events have occurred over the evolutionary history of Inga, with no evidence for temporal clustering, and model comparisons of alternative biogeographic histories and null simulations showing the timing of dispersal events matches a random expectation. Time-specific biogeographic corridors are not required to explain dispersal between Amazônia and the Mata Atlântica for rain forest trees such as Inga, which are likely to have used a dendritic net of gallery forests to cross the dry diagonal.
Collapse
Affiliation(s)
- James A. Nicholls
- Institute of Evolutionary Biology, University of Edinburgh, EdinburghEH9 3FL, UK
- Royal Botanic Garden Edinburgh, EdinburghEH3 5LR, UK
- Australian National Insect Collection, CSIRO, CanberraACT 2601, Australia
| | - Jens J. Ringelberg
- School of Geosciences, University of Edinburgh, EdinburghEH9 3FF, UK
- Department of Systematic and Evolutionary Botany, University of Zurich, ZurichCH-8008, Switzerland
| | - Kyle G. Dexter
- Royal Botanic Garden Edinburgh, EdinburghEH3 5LR, UK
- School of Geosciences, University of Edinburgh, EdinburghEH9 3FF, UK
- Department of Life Sciences and Systems Biology, University of Turin, Torino10124, Italy
| | - Oriane Loiseau
- School of Geosciences, University of Edinburgh, EdinburghEH9 3FF, UK
| | - Graham N. Stone
- Institute of Evolutionary Biology, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Phyllis D. Coley
- Department of Biology, University of Utah, Salt Lake City,UT 84112-0840, USA
| | - Colin E. Hughes
- Department of Systematic and Evolutionary Botany, University of Zurich, ZurichCH-8008, Switzerland
| | - Thomas A. Kursar
- Department of Biology, University of Utah, Salt Lake City,UT 84112-0840, USA
| | - Erik J. M. Koenen
- Department of Systematic and Evolutionary Botany, University of Zurich, ZurichCH-8008, Switzerland
| | - Flávia Garcia
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG36570-900, Brazil
| | - Maristerra R. Lemes
- Laboratório de Genética e Biologia Reprodutiva de Plantas,Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazonia, Manaus, AM69067-375, Brazil
| | - Danilo R. M. Neves
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte31270-901, Brazil
| | - María José Endara
- Grupo de Investigación en Ecología y Evolución en los Trópicos- EETROP, Universidad de las Américas, Quito170513, Ecuador
| | | | - Catherine A. Kidner
- Royal Botanic Garden Edinburgh, EdinburghEH3 5LR, UK
- Institute of Molecular Plant Sciences, University of Edinburgh, EdinburghEH9 3BF, UK
| | - R. Toby Pennington
- Royal Botanic Garden Edinburgh, EdinburghEH3 5LR, UK
- Department of Geography, University of Exeter, ExeterEX4 4QE, UK
| |
Collapse
|
4
|
Ling YY, Peng HW, Lian L, Erst AS, Xiang KL, Wang W. Out of and in East Asia: phylogeny, biogeography and diversification of Thalictroideae (Ranunculaceae) in the Northern Hemisphere. ANNALS OF BOTANY 2024; 134:1251-1262. [PMID: 39196797 PMCID: PMC11688531 DOI: 10.1093/aob/mcae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/26/2024] [Indexed: 08/30/2024]
Abstract
BACKGROUND AND AIMS Understanding the biogeographical patterns and processes underlying the distribution of diversity within the Northern Hemisphere has fascinated botanists and biogeographers for over a century. However, as a well-known centre of species diversity in the Northern Hemisphere, whether East Asia acted as a source and/or a sink of plant diversity of the Northern Hemisphere remains unclear. Here, we used Thalictroideae, a subfamily widely distributed in the Northern Hemisphere with the majority of species in East Asia, to investigate the role of East Asia in shaping the biogeographical patterns of the Northern Hemisphere and to test whether East Asia acted as a museum or a cradle for herbaceous taxa. METHODS Based on six plastid and one nuclear DNA regions, we generated the most comprehensive phylogeny for Thalictroideae, including 217 taxa (~66 % species) from all ten of the currently recognized genera. Within this phylogenetic framework, we then estimated divergence times, ancestral ranges and diversification rates. KEY RESULTS The monophyletic Thalictroideae contains three major clades. All genera with more than one species are strongly supported as monophyletic except for Isopyrum, which is nested in Enemion. The most recent common ancestor of Thalictroideae occurred in East Asia in the late Eocene (~36 Mya). From the Miocene onwards, ≥46 dispersal events were inferred to be responsible for the current distribution of this subfamily. East Asian Thalictroideae lineages experienced a rapid accumulation at ~10 Mya. CONCLUSIONS The biogeographical patterns of Thalictroideae support the 'out of and in East Asia' hypothesis, i.e. East Asia is both a source and a sink of biodiversity of the Northern Hemisphere. The global cooling after the middle Miocene Climatic Optimum, combined with the exposed land bridges owing to sea-level decline, might jointly have caused the bidirectional plant exchanges between East Asia and other Northern Hemisphere regions. East Asia serves as evolutionary museums and cradles for the diversity of Thalictroideae and probably for other herbaceous lineages.
Collapse
Affiliation(s)
- Yuan-Yuan Ling
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan-Wen Peng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lian Lian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Andrey S Erst
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Zolotodolinskaya str. 101, Novosibirsk 630090, Russia
| | - Kun-Li Xiang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Wei Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Sun Z, Yang L, Kong H, Kang M, Wang J. Phylogeographical patterns match the floristic subdivisions: the diversification history of a widespread herb in subtropical China. ANNALS OF BOTANY 2024; 134:1263-1276. [PMID: 39230182 PMCID: PMC11688537 DOI: 10.1093/aob/mcae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND AND AIMS Subtropical China is dominated by evergreen broad-leaved forests (EBLFs) and is acknowledged as a critical region for its high floristic richness and endemism. Our understanding of the evolutionary mechanisms of such global biodiversity hotspots comes almost exclusively from long-lived tree species. Herbaceous plants represent critical biodiversity components in forests, but the diversification history of understorey herbs in subtropical EBLFs remain poorly understood. Here, we investigated the phylogeographical patterns and demographic history of Oreocharis auricula, a widespread perennial herb endemic to the EBLFs of subtropical China. METHODS Both chloroplast DNA sequences and single-copy nuclear genes were used to investigate the genetic variation among 657 individuals from 68 populations. Evidence from molecular dating, demographic history construction and species distribution modelling was also combined to infer the phylogeography and evolutionary history of O. auricula. KEY RESULTS Strong phylogeographical signals have been congruently observed using nuclear and plastid DNA markers, with the diversification patterns generally consistent with the recognized floristic subdivisions of subtropical China. Notably, we revealed an important phylogeographical barrier along the Nanling mountain range, which is also around a climatic transition at 24-26°N latitude in subtropical China, separating the south monsoon subtropical EBLFs from the mid-subtropical EBLFs. Demographic expansion and significant niche divergence were detected among the extant lineages, which may have diverged during the early Pleistocene. CONCLUSIONS The inherent characteristics of understorey herbs with limited dispersal and short generation time intensify the genetic divergence response of O. auricula to abiotic forces, contributing to the profound phylogeographical imprints of mountains and climate in such herbaceous flora. To further substantiate the generality of the identified patterns, it is paramount to extend phylogeographical investigations to other understorey herbaceous taxa in subtropical China. These results have expanded our understanding of the diversification processes of subtropical forests in China.
Collapse
Affiliation(s)
- Zhixia Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Architecture and Civil Engineering, Sanming University, Sanming 365004, Fujian, China
- Fujian Provincial Key Laboratory of the Development and Utilization of Bamboo Resources, Sanming University, Sanming 365004, Fujian, China
| | - Lihua Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| | - Hanghui Kong
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| | - Ming Kang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| | - Jing Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| |
Collapse
|
6
|
Hagelstam-Renshaw C, Ringelberg JJ, Sinou C, Cardinal-McTeague W, Bruneau A. Biome evolution in subfamily Cercidoideae (Leguminosae): a tropical arborescent clade with a relictual depauperate temperate lineage. REVISTA BRASILEIRA DE BOTANICA : BRAZILIAN JOURNAL OF BOTANY 2024; 48:11. [PMID: 39703368 PMCID: PMC11652589 DOI: 10.1007/s40415-024-01058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 12/21/2024]
Abstract
Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate (Cercis) and succulent (Adenolobus) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time. Supplementary Information The online version contains supplementary material available at 10.1007/s40415-024-01058-z.
Collapse
Affiliation(s)
- Charlotte Hagelstam-Renshaw
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2 Canada
| | - Jens J. Ringelberg
- School of Geosciences, Old College, University of Edinburgh, South Bridge, Edinburgh, EH8 9YL UK
| | - Carole Sinou
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2 Canada
| | - Warren Cardinal-McTeague
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada
| | - Anne Bruneau
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2 Canada
| |
Collapse
|
7
|
Schley RJ, Pennington RT, Twyford AD, Dexter KG, Kidner C, Michael TP, Royal Botanic Garden Edinburgh Genome Acquisition Lab, Plant Genome Sizing collective, Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory team, Wellcome Sanger Institute Scientific Operations: Sequencing Operations, Wellcome Sanger Institute Tree of Life Core Informatics team, Tree of Life Core Informatics collective. The genome sequence of Inga oerstediana Benth. Wellcome Open Res 2024; 9:607. [PMID: 39606618 PMCID: PMC11599804 DOI: 10.12688/wellcomeopenres.23146.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/29/2024] Open
Abstract
We present a genome assembly from an individual of Inga oerstediana (Streptophyta; Magnoliopsida; Fabales; Fabaceae). The genome sequence has a total length of 970.60 megabases. Most of the assembly is scaffolded into 13 chromosomal pseudomolecules. The mitochondrial and plastid genome assemblies have lengths of 1,166.81 and 175.18 kilobases, respectively. Gene annotation of this assembly on Ensembl identified 33,334 protein-coding genes.
Collapse
Affiliation(s)
| | - R. Toby Pennington
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
| | - Alex D. Twyford
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- University of Edinburgh, Edinburgh, Scotland, UK
| | - Kyle G. Dexter
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
| | - Catherine Kidner
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- University of Edinburgh, Edinburgh, Scotland, UK
| | - Todd P. Michael
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Royal Botanic Garden Edinburgh Genome Acquisition Lab
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Plant Genome Sizing collective
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | | | - Wellcome Sanger Institute Scientific Operations: Sequencing Operations
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Wellcome Sanger Institute Tree of Life Core Informatics team
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Tree of Life Core Informatics collective
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| |
Collapse
|
8
|
Schley RJ, Pennington RT, Twyford AD, Dexter KG, Kidner C, Michael TP, Royal Botanic Garden Edinburgh Genome Acquisition Lab, Plant Genome Sizing collective, Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory team, Wellcome Sanger Institute Scientific Operations: Sequencing Operations, Wellcome Sanger Institute Tree of Life Core Informatics team, Tree of Life Core Informatics collective. The genome sequence of Inga leiocalycina Benth. Wellcome Open Res 2024; 9:606. [PMID: 39494196 PMCID: PMC11531642 DOI: 10.12688/wellcomeopenres.23131.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 11/05/2024] Open
Abstract
We present a genome assembly from an individual of Inga leiocalycina (Streptophyta; Magnoliopsida; Fabales; Fabaceae). The genome sequence has a total length of 948.00 megabases. Most of the assembly is scaffolded into 13 chromosomal pseudomolecules. The assembled mitochondrial genome sequences have lengths of 1,019.42 and 98.74 kilobases, and the plastid genome assembly is 175.51 kb long. Gene annotation of the nuclear genome assembly on Ensembl identified 33,457 protein-coding genes.
Collapse
Affiliation(s)
| | - R. Toby Pennington
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
| | - Alex D. Twyford
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
| | - Kyle G. Dexter
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
| | - Catherine Kidner
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
| | - Todd P. Michael
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Royal Botanic Garden Edinburgh Genome Acquisition Lab
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Plant Genome Sizing collective
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | | | - Wellcome Sanger Institute Scientific Operations: Sequencing Operations
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Wellcome Sanger Institute Tree of Life Core Informatics team
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Tree of Life Core Informatics collective
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| |
Collapse
|
9
|
Schley RJ, Pennington RT, Twyford AD, Dexter KG, Kidner C, Michael TP, Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory team, Wellcome Sanger Institute Scientific Operations: Sequencing Operations, Wellcome Sanger Institute Tree of Life Core Informatics team, Tree of Life Core Informatics collective. The genome sequence of Inga laurina (Sw.) Willd. Wellcome Open Res 2024; 9:567. [PMID: 39540104 PMCID: PMC11558168 DOI: 10.12688/wellcomeopenres.23057.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 11/16/2024] Open
Abstract
We present a genome assembly from an individual of Inga laurina (Streptophyta; Magnoliopsida; Fabales; Fabaceae). The genome sequence has a total length of 899.60 megabases. Most of the assembly is scaffolded into 13 chromosomal pseudomolecules, supporting the individual being an autotetraploid with 2 n=4 x=52. The mitochondrial and plastid genome assemblies have lengths of 1,261.88 kilobases and 176.27 kilobases, respectively. Gene annotation of this assembly on Ensembl identified 33,101 protein-coding genes.
Collapse
Affiliation(s)
| | - R. Toby Pennington
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
| | - Alex D. Twyford
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
| | - Kyle G. Dexter
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
| | - Catherine Kidner
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
| | - Todd P. Michael
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | | | - Wellcome Sanger Institute Scientific Operations: Sequencing Operations
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Wellcome Sanger Institute Tree of Life Core Informatics team
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Tree of Life Core Informatics collective
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| |
Collapse
|
10
|
Fan X, Yan X, Qian C, Awuku I, Zhao P, Liao Y, Li Z, Li X, Ma X. Phylogeographic analysis reveals multiple origins of the desert shrub Reaumuria songarica in northern Xinjiang, involving homoploid and tetraploid hybrids. Ecol Evol 2024; 14:e70199. [PMID: 39219573 PMCID: PMC11362504 DOI: 10.1002/ece3.70199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Hybrid speciation plays an important role in species diversification. The establishment of reproductive isolation is crucial for hybrid speciation, and the identification of diverse types of hybrids, particularly homoploid hybrid species, contributes to a comprehensive understanding of this process. Reaumuria songarica is a constructive shrub widespread in arid Central Asia. Previous studies have inferred that the R. songarica populations in the Gurbantunggut Desert (GuD) originated from homoploid hybridizations between its eastern and western lineages and may have evolved into an incipient species. To further elucidate the genetic composition of different hybrid populations and to determine the species boundary of this hybrid lineage, we investigated the overall phylogeographic structure of R. songarica based on variation patterns of five cpDNA and one nrITS sequences across 32 populations. Phylogenetic analyses demonstrated that within the GuD lineage, the Wuerhe population evolved directly from ancestral lineages, whereas the others originated from hybridizations between the eastern and western lineages. PCoA and genetic barrier analysis supported the subdivision of the GuD lineage into the southern (GuD-S) and northern (GuD-N) groups. Populations in the GuD-S group had a consistent genetic composition and the same ancestral female parent, indicating that they belonged to a homoploid hybrid lineage. However, the GuD-N group experienced genetic admixture of the eastern and western lineages on nrITS and cpDNA, with some populations inferred to be allopolyploid based on ploidy data. Based on cpDNA haplotypes, BEAST analyses showed that the GuD-S and GuD-N groups originated after 0.5 Ma. Our results suggest that multiple expansions and contractions of GuD, driven by Quaternary climatic oscillations and the Kunlun-Yellow River tectonic movement, are important causes of the complex origins of R. songarica populations in northern Xinjiang. This study highlights the complex origins of the Junggar Basin flora and the underappreciated role of hybridization in increasing its species diversity.
Collapse
Affiliation(s)
- Xingke Fan
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
| | - Xia Yan
- Key Laboratory of Eco‐Hydrology of Inland River Basin, Northwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
| | - Chaoju Qian
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
| | - Ibrahim Awuku
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Pengshu Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuqiu Liao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhijun Li
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim BasinXinjiang Production and Construction CorpsAlarChina
| | - Xinrong Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Shapotou Desert Research and Experiment StationNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
| | - Xiao‐Fei Ma
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
| |
Collapse
|
11
|
Wu N, Van Chung H, Shi S, Shi X, Liu F, Jiang J, Chen Y. Additive partitioning of multispecies distributional aggregation of local assemblages. J Anim Ecol 2024; 93:932-942. [PMID: 38860293 DOI: 10.1111/1365-2656.14114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/22/2024] [Indexed: 06/12/2024]
Abstract
The distribution of species is not random in space. At the finest-resolution spatial scale, that is, field sampling locations, distributional aggregation level of different species would be determined by various factors, for example spatial autocorrelation or environmental filtering. However, few studies have quantitatively measured the importance of these factors. In this study, inspired by the statistical properties of a Markov transition model, we propose a novel additive framework to partition local multispecies distributional aggregation levels for sequential sampling-derived field biodiversity data. The framework partitions the spatial distributional aggregation of different species into two independent components: regional abundance variability and the local spatial inertia effect. Empirical studies from field amphibian surveys through line-transect sampling in southwestern China (Minya Konka) and central-southern Vietnam showed that local spatial inertia was always the dominant mechanism structuring the local occurrence and distributional aggregation of amphibians in the two regions with a latitudinal gradient from 1200 to nearly 4000 m. However, regional abundance variability is still nonnegligible in highly diverse tropical regions (i.e. Vietnam) where the altitude is not higher than 2000 m. In summary, we propose a novel framework that shows that the multispecies distributional aggregation level can be structured by two additive components. The two partitioned components could be theoretically independent. These findings are expected to deepen our understanding of the local community structure from the perspective of both spatial distribution and regional diversity patterns. The partitioning framework might have potential applications in field ecology and macroecology research.
Collapse
Affiliation(s)
- Na Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hoang Van Chung
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Shengchao Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaoqin Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Fangyao Liu
- Key Laboratory of Electronic and Information Engineering, State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Youhua Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
12
|
Dong Q, Zhang Y, Zhong S, Zhang Q, Yang H, Yang H, Yi X, Tan F, Chen C, Luo P. Conserved DNA sequence analysis reveals the phylogeography and evolutionary events of Akebia trifoliata in the region across the eastern edge of the Tibetan Plateau and subtropical China. BMC Ecol Evol 2024; 24:52. [PMID: 38654171 DOI: 10.1186/s12862-024-02243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The eastern edge of the Qinghai‒Tibet Plateau (QTP) and subtropical China have various regions where plant species originate and thrive, but these regions have been the focus of very few integrative studies. Here, we elucidated the phylogeographic structure of a continuous and widespread Akebia trifoliata population across these two regions. RESULTS Sixty-one populations consisting of 391 genotypes were examined to assess population diversity and structure via network distribution analysis, maximum likelihood phylogenetic tree reconstruction, divergence time estimation, demographic history inference, and ancestral area reconstruction of both conserved internal transcribed spacer (ITS) and chloroplast (rps16) DNA sequences. The results showed that the ITS region was more variable than the rps16 region and could be suitable for studying intraspecific phylogeography. The A. trifoliata population displayed high genetic diversity, genetic differentiation and obvious phylogeographical structure, possibly originating on the eastern QTP, expanding during the last glacial-interglacial cycle, diverging in the early Pleistocene and middle Pleistocene, and extensively migrating thereafter. The migration route from west to east along rivers could be largely responsible for the long-distance dispersal of this species, while three main refuges (Qinba Mountains, Nanling Mountains and Yunnan-Guizhou Plateau) with multiple ice shelters facilitated its wide distribution. CONCLUSIONS Our results suggested that the from west to east long migration accompanying with the minor short reciprocal migration in the south-north direction, and the three main refuges (the Qinba Mountains, Nanling Mountains and Yunnan-Guizhou Plateau) contributed to the extant geographical distribution of A. trifoliata. In addition, this finding also strongly reduced the discrepancy between glacial contraction and postglacial expansion and the in situ survival hypothesis by simultaneously considering the existence of many similar climate-related ecological niches and migration influences.
Collapse
Affiliation(s)
- Qing Dong
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yongle Zhang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shengfu Zhong
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiuyi Zhang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hao Yang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Huai Yang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxiao Yi
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Feiquan Tan
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chen Chen
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Peigao Luo
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
13
|
Bolívar‐Leguizamón SD, Bocalini F, Silveira LF, Bravo GA. The role of biogeographical barriers on the historical dynamics of passerine birds with a circum-Amazonian distribution. Ecol Evol 2024; 14:e10860. [PMID: 38450322 PMCID: PMC10915597 DOI: 10.1002/ece3.10860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 03/08/2024] Open
Abstract
Common distributional patterns have provided the foundations of our knowledge of Neotropical biogeography. A distinctive pattern is the "circum-Amazonian distribution", which surrounds Amazonia across the forested lowlands south and east of the basin, the Andean foothills, the Venezuelan Coastal Range, and the Tepuis. The underlying evolutionary and biogeographical mechanisms responsible for this widespread pattern of avian distribution have yet to be elucidated. Here, we test the effects of biogeographical barriers in four species in the passerine family Thamnophilidae by performing comparative demographic analyses of genome-scale data. Specifically, we used flanking regions of ultraconserved regions to estimate population historical parameters and genealogical trees and tested demographic models reflecting contrasting biogeographical scenarios explaining the circum-Amazonian distribution. We found that taxa with circum-Amazonian distribution have at least two main phylogeographical clusters: (1) Andes, often extending into Central America and the Tepuis; and (2) the remaining of their distribution. These clusters are connected through corridors along the Chaco-Cerrado and southeastern Amazonia, allowing gene flow between Andean and eastern South American populations. Demographic histories are consistent with Pleistocene climatic fluctuations having a strong influence on the diversification history of circum-Amazonian taxa, Refugia played a crucial role, enabling both phenotypic and genetic differentiation, yet maintaining substantial interconnectedness to keep considerable levels of gene flow during different dry/cool and warm/humid periods. Additionally, steep environmental gradients appear to play a critical role in maintaining both genetic and phenotypic structure.
Collapse
Affiliation(s)
- Sergio D. Bolívar‐Leguizamón
- Seção de AvesMuseu de Zoologia da Universidade de São PauloSão PauloBrazil
- Laboratório de Zoologia de Vertebrados, Departamento de Ciências Biológicas, Escola Superior de Agricultura “Luiz de Queiroz” –ESALQ–Universidade de São PauloPiracicabaBrazil
| | - Fernanda Bocalini
- Seção de AvesMuseu de Zoologia da Universidade de São PauloSão PauloBrazil
| | - Luís F. Silveira
- Seção de AvesMuseu de Zoologia da Universidade de São PauloSão PauloBrazil
| | - Gustavo A. Bravo
- Seção de AvesMuseu de Zoologia da Universidade de São PauloSão PauloBrazil
- Sección de Ornitología, Colecciones Biológicas, Instituto de Investigación de Recursos Biológicos Alexander von HumboldtClaustro de San AgustínVilla de Leyva, BoyacáColombia
- Museum of Comparative Zoology and Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
14
|
Dibán MJ, Hinojosa LF. Testing the Tropical Niche Conservatism Hypothesis: Climatic Niche Evolution of Escallonia Mutis ex L. F. (Escalloniaceae). PLANTS (BASEL, SWITZERLAND) 2024; 13:133. [PMID: 38202441 PMCID: PMC10781032 DOI: 10.3390/plants13010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
We assess the Tropical Niche Conservatism Hypothesis in the genus Escallonia in South America using phylogeny, paleoclimate estimation and current niche modelling. We tested four predictions: (1) the climatic condition where the ancestor of Escallonia grew is megathermal; (2) the temperate niche is a derived condition from tropical clades; (3) the most closely related species have a similar current climate niche (conservation of the phylogenetic niche); and (4) there is a range expansion from the northern Andes to high latitudes during warm times. Our phylogenetic hypothesis shows that Escallonia originated 52.17 ± 0.85 My, in the early Eocene, with an annual mean temperature of 13.8 °C and annual precipitation of 1081 mm, corresponding to a microthermal to mesothermal climate; the species of the northern and central tropical Andes would be the ancestral ones, and the temperate species evolved between 32 and 20 My in a microthermal climate. The predominant evolutionary models were Brownian and Ornstein-Uhlenbeck. There was phylogenetic signal in 7 of the 9 variables, indicating conservation of the climatic niche. Escallonia would have originated in the central and southern Andes and reached the other environments by dispersion.
Collapse
Affiliation(s)
- María José Dibán
- Laboratory of Paleoecology, Department of Ecological Science, Faculty of Science, University of Chile, Santiago 7800003, Chile
| | - Luis Felipe Hinojosa
- Laboratory of Paleoecology, Department of Ecological Science, Faculty of Science, University of Chile, Santiago 7800003, Chile
| |
Collapse
|
15
|
Pezzini FF, Ferrari G, Forrest LL, Hart ML, Nishii K, Kidner CA. Target capture and genome skimming for plant diversity studies. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11537. [PMID: 37601316 PMCID: PMC10439825 DOI: 10.1002/aps3.11537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023]
Abstract
Recent technological advances in long-read high-throughput sequencing and assembly methods have facilitated the generation of annotated chromosome-scale whole-genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high-molecular-weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast-freeze newly collected living samples to conserve high-quality DNA can be complicated when plants are only found in remote areas. Therefore, short-read reduced-genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non-model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best-informed choice regarding reduced genome representation for evolutionary studies of non-model plants in cases where whole-genome sequencing remains impractical.
Collapse
Affiliation(s)
| | - Giada Ferrari
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
| | | | | | - Kanae Nishii
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Catherine A. Kidner
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
- School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
16
|
Vitales D, Guerrero C, Garnatje T, Romeiras MM, Santos A, Fernandes F, Vallès J. Parallel anagenetic patterns in endemic Artemisia species from three Macaronesian archipelagos. AOB PLANTS 2023; 15:plad057. [PMID: 37649982 PMCID: PMC10465267 DOI: 10.1093/aobpla/plad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Anagenetic speciation is an important mode of evolution in oceanic islands, yet relatively understudied compared to adaptive radiation. In the Macaronesian region, three closely related species of Artemisia (i.e. A. argentea, A. thuscula and A. gorgonum) are each endemic from a single archipelago (i.e. Madeira, Canary Islands and Cape Verde, respectively), representing a perfect opportunity to study three similar but independent anagenetic speciation processes. By analysing plastid and nuclear DNA sequences, as well as nuclear DNA amount data, generated from a comprehensive sampling in all the islands and archipelagos where these species are currently distributed, we intend to find common evolutionary patterns that help us explain the limited taxonomic diversification experienced by endemic Macaronesian Artemisia. Our time-calibrated phylogenetic reconstruction suggested that divergence among the three lineages occurred in a coincidental short period of time during the Pleistocene. Haplotype and genetic differentiation analyses showed similar diversity values among A. argentea, A. thuscula and A. gorgonum. Clear phylogeographic patterns-showing comparable genetic structuring among groups of islands-were also found within the three archipelagos. Even from the cytogenetic point of view, the three species presented similarly lower genome size values compared to the mainland closely related species A. arborescens. We hypothesize that the limited speciation experienced by the endemic Artemisia in Madeira, Canary Islands and Cape Verde archipelagos could be related to their recent parallel evolutionary histories as independent lineages, combined with certain shared characteristics of seed dispersal, pollen transport and type of habitat.
Collapse
Affiliation(s)
- Daniel Vitales
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona, Passeig del Migdia s/n, 08038 Barcelona, Catalonia, Spain
- Laboratori de Botànica (UB), Unitat Associada al CSIC, Facultat de Farmàcia i Ciències de l’Alimentació-Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Carmen Guerrero
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona, Passeig del Migdia s/n, 08038 Barcelona, Catalonia, Spain
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona, Passeig del Migdia s/n, 08038 Barcelona, Catalonia, Spain
| | - Maria M Romeiras
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center & Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1340-017 Lisboa, Portugal
| | - Arnoldo Santos
- Calle Guaidil 16, 38280 Tegueste, Tenerife, Islas Canarias, Spain
| | - Francisco Fernandes
- Jardim Botânico da Madeira Eng. Rui Vieira, Caminho do Meio Bom Sucesso, Madeira, Portugal
| | - Joan Vallès
- Laboratori de Botànica (UB), Unitat Associada al CSIC, Facultat de Farmàcia i Ciències de l’Alimentació-Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
17
|
Xu T, Wang R, La Q, Yonezawa T, Huang X, Sun K, Song Z, Wang Y, Bartish IV, Zhang W, Cheng S. Climate heterogeneity shapes phylogeographic pattern of Hippophae gyantsensis (Elaeagnaceae) in the east Himalaya-Hengduan Mountains. Ecol Evol 2023; 13:e10182. [PMID: 37304372 PMCID: PMC10251425 DOI: 10.1002/ece3.10182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023] Open
Abstract
The interaction of recent orographic uplift and climate heterogeneity acted as a key role in the East Himalaya-Hengduan Mountains (EHHM) has been reported in many studies. However, how exactly the interaction promotes clade diversification remains poorly understood. In this study, we both used the chloroplast trnT-trnF region and 11 nuclear microsatellite loci to investigate the phylogeographic structure and population dynamics of Hippophae gyantsensis and estimate what role geological barriers or ecological factors play in the spatial genetic structure. The results showed that this species had a strong east-west phylogeographic structure, with several mixed populations identified from microsatellite data in central location. The intraspecies divergence time was estimated to be about 3.59 Ma, corresponding well with the recent uplift of the Tibetan Plateau. Between the two lineages, there was significant climatic differentiation without geographic barriers. High consistency between lineage divergence, climatic heterogeneity, and Qingzang Movement demonstrated that climatic heterogeneity but not geographic isolation drives the divergence of H. gyantsensis, and the recent regional uplift of the QTP, as the Himalayas, creates heterogeneous climates by affecting the flow of the Indian monsoon. The east group of H. gyantsensis experienced population expansion c. 0.12 Ma, closely associated with the last interglacial interval. Subsequently, a genetic admixture event between east and west groups happened at 26.90 ka, a period corresponding to the warm inter-glaciation again. These findings highlight the importance of the Quaternary climatic fluctuations in the recent evolutionary history of H. gyantsensis. Our study will improve the understanding of the history and mechanisms of biodiversity accumulation in the EHHM region.
Collapse
Affiliation(s)
- Ting Xu
- Institute of Biodiversity Science, School of Life SciencesFudan UniversityShanghaiChina
| | - Ruixue Wang
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Qiong La
- Department of BiologyTibet UniversityLhasaChina
| | - Takahiro Yonezawa
- Institute of Biodiversity Science, School of Life SciencesFudan UniversityShanghaiChina
| | - Xinyi Huang
- Institute of Biodiversity Science, School of Life SciencesFudan UniversityShanghaiChina
| | - Kun Sun
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Zhiping Song
- Institute of Biodiversity Science, School of Life SciencesFudan UniversityShanghaiChina
| | - Yuguo Wang
- Institute of Biodiversity Science, School of Life SciencesFudan UniversityShanghaiChina
| | - Igor V. Bartish
- Institute of Botany of the Czech Academy of SciencesPruhoniceCzech Republic
| | - Wenju Zhang
- Institute of Biodiversity Science, School of Life SciencesFudan UniversityShanghaiChina
| | - Shanmei Cheng
- Laboratory of Subtropical BiodiversityJiangxi Agricultural UniversityNanchangChina
| |
Collapse
|
18
|
Cox AJF, Hartley IP, Meir P, Sitch S, Dusenge ME, Restrepo Z, González-Caro S, Villegas JC, Uddling J, Mercado LM. Acclimation of photosynthetic capacity and foliar respiration in Andean tree species to temperature change. THE NEW PHYTOLOGIST 2023; 238:2329-2344. [PMID: 36987979 DOI: 10.1111/nph.18900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/13/2023] [Indexed: 05/19/2023]
Abstract
Climate warming is causing compositional changes in Andean tropical montane forests (TMFs). These shifts are hypothesised to result from differential responses to warming of cold- and warm-affiliated species, with the former experiencing mortality and the latter migrating upslope. The thermal acclimation potential of Andean TMFs remains unknown. Along a 2000 m Andean altitudinal gradient, we planted individuals of cold- and warm-affiliated species (under common soil and irrigation), exposing them to the hot and cold extremes of their thermal niches, respectively. We measured the response of net photosynthesis (Anet ), photosynthetic capacity and leaf dark respiration (Rdark ) to warming/cooling, 5 months after planting. In all species, Anet and photosynthetic capacity at 25°C were highest when growing at growth temperatures (Tg ) closest to their thermal means, declining with warming and cooling in cold-affiliated and warm-affiliated species, respectively. When expressed at Tg , photosynthetic capacity and Rdark remained unchanged in cold-affiliated species, but the latter decreased in warm-affiliated counterparts. Rdark at 25°C increased with temperature in all species, but remained unchanged when expressed at Tg . Both species groups acclimated to temperature, but only warm-affiliated species decreased Rdark to photosynthetic capacity ratio at Tg as temperature increased. This could confer them a competitive advantage under future warming.
Collapse
Affiliation(s)
- Andrew J F Cox
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RKJ, UK
| | - Iain P Hartley
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RKJ, UK
| | - Patrick Meir
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3JN, UK
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Stephen Sitch
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RKJ, UK
| | - Mirindi Eric Dusenge
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RKJ, UK
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
- Department of Biology, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Zorayda Restrepo
- Grupo de Investigación en Ecología Aplicada, Universidad de Antioquia, Medellín, Colombia
- UK Centre for Ecology and Hydrology, Crowmarsh-Gifford, Wallingford, OX10 8BB, UK
| | - Sebastian González-Caro
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RKJ, UK
- UK Centre for Ecology and Hydrology, Crowmarsh-Gifford, Wallingford, OX10 8BB, UK
| | - Juan Camilo Villegas
- Grupo de Investigación en Ecología Aplicada, Universidad de Antioquia, Medellín, Colombia
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
| | - Lina M Mercado
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RKJ, UK
- UK Centre for Ecology and Hydrology, Crowmarsh-Gifford, Wallingford, OX10 8BB, UK
| |
Collapse
|
19
|
Liu G, Xue G, Zhao T, Li Y, Yue L, Song H, Liu Q. Population structure and phylogeography of three closely related tree peonies. Ecol Evol 2023; 13:e10073. [PMID: 37274151 PMCID: PMC10234759 DOI: 10.1002/ece3.10073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 06/06/2023] Open
Abstract
Paeonia decomposita, Paeonia rotundiloba, and Paeonia rockii are three closely related species of Sect. Moutan is distributed in the montane area of the Eastern Hengduan Mountain region. Understanding the population history of these three tree peony species could contribute to unraveling the evolutionary patterns of undergrowth species in this hotspot area. We used one nuclear DNA marker (internal transcribed spacer region, ITS) and two chloroplast DNA markers (matK, ycf1) to reconstruct the phylogeographic pattern of the populations. In total, 228 individuals from 17 populations of the three species were analyzed in this study. Three nuclear clades (Clade I - Clade III) and four maternal clades (Clade A - Clade D) were reconstructed. Molecular dating suggested that young lineages diverged during the late Pliocene and early Pleistocene, younger than the uplift of the Hengduan Mountains but older than the last glacial maximum (LGM). Significant population and phylogeographic structures were detected at both markers. Furthermore, the populations of these tree peonies were overall at equilibrium during the climatic oscillations of the Pleistocene. The simulated palaeoranges of the three species during the LGM period mostly overlapped, which could have led to cross-breeding events. We propose an evolutionary scenario in which mountain orogenesis around the Hengduan Mountain area triggered parapatric isolation between maternal lineages of tree peonies. Subsequent climatic fluctuations drove migration and range recontact of these populations along the valleys. This detailed evolutionary history provides new insights into the phylogeographic pattern of species from mountain-valley systems.
Collapse
Affiliation(s)
- Guangli Liu
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Ge Xue
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Tingting Zhao
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Yang Li
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Liangliang Yue
- National Plateau Wetlands Research Center, College of WetlandsSouthwest Forestry UniversityKunmingChina
| | - Huixing Song
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Qinglin Liu
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| |
Collapse
|
20
|
Arévalo-Granda V, Hickey-Darquea A, Prado-Vivar B, Zapata S, Duchicela J, van ‘t Hof P. Exploring the mycobiome and arbuscular mycorrhizal fungi associated with the rizosphere of the genus Inga in the pristine Ecuadorian Amazon. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1086194. [PMID: 37746118 PMCID: PMC10512398 DOI: 10.3389/ffunb.2023.1086194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/20/2023] [Indexed: 09/26/2023]
Abstract
This study explored the composition of the mycobiome in the rhizosphere of Inga seedlings in two different but neighboring forest ecosystems in the undisturbed tropical Amazon rainforest at the Tiputini Biodiversity Station in Ecuador. In terra firme plots, which were situated higher up and therefore typically outside of the influence of river floods, and in várzea plots, the lower part of the forest located near the riverbanks and therefore seasonally flooded, tree seedlings of the genus Inga were randomly collected and measured, and the rhizosphere soils surrounding the root systems was collected. Members of the Fabaceae family and the genus Inga were highly abundant in both forest ecosystems. Inga sp. seedlings collected in terra firme showed a lower shoot to root ratio compared to seedlings that were collected in várzea, suggesting that Inga seedlings which germinated in várzea soils could invest more resources in vegetative growth with shorter roots. Results of the physical-chemical properties of soil samples indicated higher proportions of N, Mo, and V in terra firme soils, whereas várzea soils present higher concentrations of all other macro- and micronutrients, which confirmed the nutrient deposition effect of seasonal flooding by the nearby river. ITS metabarcoding was used to explore the mycobiome associated with roots of the genus Inga. Bioinformatic analysis was performed using Qiime 2 to calculate the alpha and beta diversity, species taxonomy and the differential abundance of fungi and arbuscular mycorrhizal fungi. The fungal community represented 75% of the total ITS ASVs, and although present in all samples, the subphylum Glomeromycotina represented 1.42% of all ITS ASVs with annotations to 13 distinct families, including Glomeraceae (72,23%), Gigasporaceae (0,57%), Acaulosporaceae (0,49%). AMF spores of these three AMF families were morphologically identified by microscopy. Results of this study indicate that AMF surround the rhizosphere of Inga seedlings in relatively low proportions compared to other fungal groups but present in both terra firme and várzea Neotropical ecosystems.
Collapse
Affiliation(s)
- Valentina Arévalo-Granda
- Department of Biological and Environmental Sciences - COCIBA, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
- Institute of Microbiology, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
| | - Aileen Hickey-Darquea
- Department of Biological and Environmental Sciences - COCIBA, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
| | - Belén Prado-Vivar
- Institute of Microbiology, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
| | - Sonia Zapata
- Department of Biological and Environmental Sciences - COCIBA, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
- Institute of Microbiology, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
- Tiputini Biodiversity Station, Department of Biological and Environmental Sciences - COCIBA, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
| | - Jéssica Duchicela
- Department of Life Sciences and Agriculture, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Pieter van ‘t Hof
- Department of Biological and Environmental Sciences - COCIBA, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
- Institute of Microbiology, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
- Tiputini Biodiversity Station, Department of Biological and Environmental Sciences - COCIBA, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
| |
Collapse
|
21
|
Chandra K, Spicer RA, Shukla A, Spicer T, Mehrotra RC, Singh AK. Paleogene Ficus leaves from India and their implications for fig evolution and diversification. AMERICAN JOURNAL OF BOTANY 2023; 110:1-21. [PMID: 36821420 DOI: 10.1002/ajb2.16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Ficus is a scientifically and economically important genus with abundant fossil records from the Paleocene to Pleistocene, but with an intriguing early evolutionary history that remains unresolved. Here, the foliage of three well-preserved figs is described from the early Paleogene succession of the Gurha mine, Rajasthan, India. These fossils provide new morphological data that strengthens our understanding of the past occurrences of Ficus and, alongside all validly published records of fossil figs, helps to trace the evolutionary history of figs. METHODS Fossils were identified and described by comparison with their closest modern analogs using the Nearest Living Relative (NLR) technique. Validated fig records are listed and categorized into six geological time frames. Modern precipitation data for the current distributions of NLRs were downloaded from the Climatic Research Unit Timeseries. RESULTS Fossil leaves assigned to three new species Ficus paleodicranostyla, F. paleovariegata, and F. paleoauriculata closely resemble their modern analogs based on leaf morphology. Reliable fossil records were used to hypothesize historical fig distributions and paleodispersal pathways. Precipitation data suggest higher precipitations at the fossil locality during the early Paleogene than at present. CONCLUSIONS The fossils described herein supplement fig fossil records known from other regions indicating that figs were widely diverse across low latitudes by the early Paleogene. These data support a Eurasian origin for figs, highlight a pivotal role for the Indian subcontinent during the early phase of fig diversification, and depict a perhumid-to-humid climate with high rainfall concordant with paleoclimate evidence from the Gurha mine.
Collapse
Affiliation(s)
- Kajal Chandra
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - R A Spicer
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Anumeha Shukla
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, India
| | - Teresa Spicer
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
| | - R C Mehrotra
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, India
| | - Amit Kumar Singh
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| |
Collapse
|
22
|
Diversity and conservation of higher plants in Northwest Yunnan-Southeast Tibet. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
23
|
Finch KN, Jones FA, Cronn RC. Cryptic species diversity in a widespread neotropical tree genus: The case of Cedrela odorata. AMERICAN JOURNAL OF BOTANY 2022; 109:1622-1640. [PMID: 36098061 PMCID: PMC9827871 DOI: 10.1002/ajb2.16064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Reconciling the use of taxonomy to partition morphological variation and describe genetic divergence within and among closely related species is a persistent challenge in phylogenetics. We reconstructed phylogenetic relationships among Cedrela odorata (Meliaceae) and five closely allied species to test the genetic basis for the current model of species delimitation in this economically valuable and threatened genus. METHODS We prepared a nuclear species tree with the program SNPhylo and 16,000 single-nucleotide polymorphisms from 168 Cedrela specimens. Based on clades present and ancestral patterns ADMIXTURE, we designed nine species delimitation models and compared each model to current taxonomy with Bayes factor delimitation. Timing of major lineage divergences was estimated with the program SNAPP. RESULTS The resulting analysis revealed that modern C. odorata evolved from two genetically distinct ancestral sources. All species delimitation models tested better fit the data than the model representing current taxonomic delimitation. Models with the greatest marginal likelihoods separated Mesoamerican C. odorata and South American C. odorata into two species and lumped C. angustifolia and C. montana as a single species. We estimated that Cedrela diversified in South America within the last 19 million years following one or more dispersal events from Mesoamerican lineages. CONCLUSIONS Our analyses show that the present taxonomic understanding within the genus obscures divergent lineages in C. odorata due in part to morphological differentiation and taxonomic distinctions that are not predictably associated with genetic divergence. A more accurate application of taxonomy to C. odorata and related species may aid in its conservation, management, and restoration efforts.
Collapse
Affiliation(s)
- Kristen N. Finch
- Department of Botany and Plant PathologyOregon State University2082 Cordley Hall, 2701 SW Campus WayCorvallisOR97331USA
| | - F. Andrew Jones
- Department of Botany and Plant PathologyOregon State University2082 Cordley Hall, 2701 SW Campus WayCorvallisOR97331USA
- Smithsonian Tropical Research InstituteBalboa, AnconRepublic of Panama
| | - Richard C. Cronn
- USFS PNW Research Station3200 SW Jefferson WayCorvallisOR97331USA
| |
Collapse
|
24
|
Fehrer J, Bertrand YJK, Hartmann M, Caklová P, Josefiová J, Bräutigam S, Chrtek J. A Multigene Phylogeny of Native American Hawkweeds ( Hieracium Subgen. Chionoracium, Cichorieae, Asteraceae): Origin, Speciation Patterns, and Migration Routes. PLANTS (BASEL, SWITZERLAND) 2022; 11:2584. [PMID: 36235450 PMCID: PMC9571344 DOI: 10.3390/plants11192584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Native American hawkweeds are mainly mountainous species that are distributed all over the New World. They are severely understudied with respect to their origin, colonization of the vast distribution area, and species relationships. Here, we attempt to reconstruct the evolutionary history of the group by applying seven molecular markers (plastid, nuclear ribosomal and low-copy genes). Phylogenetic analyses revealed that Chionoracium is a subgenus of the mainly Eurasian genus Hieracium, which originated from eastern European hawkweeds about 1.58-2.24 million years ago. Plastid DNA suggested a single origin of all Chionoracium species. They colonized the New World via Beringia and formed several distinct lineages in North America. Via one Central American lineage, the group colonized South America and radiated into more than a hundred species within about 0.8 million years, long after the closure of the Isthmus of Panama and the most recent uplift of the Andes. Despite some incongruences shown by different markers, most of them revealed the same crown groups of closely related taxa, which were, however, largely in conflict with traditional sectional classifications. We provide a basic framework for further elucidation of speciation patterns. A thorough taxonomic revision of Hieracium subgen. Chionoracium is recommended.
Collapse
Affiliation(s)
- Judith Fehrer
- Institute of Botany, Czech Academy of Sciences, 25243 Průhonice, Czech Republic
| | - Yann J. K. Bertrand
- Institute of Botany, Czech Academy of Sciences, 25243 Průhonice, Czech Republic
| | - Matthias Hartmann
- Institute of Botany, Czech Academy of Sciences, 25243 Průhonice, Czech Republic
- Department of Geobotany & Botanical Garden, Institute of Biology, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
- Thünen Institute of Biodiversity, Bundesallee 65, 38116 Braunschweig, Germany
| | - Petra Caklová
- Institute of Botany, Czech Academy of Sciences, 25243 Průhonice, Czech Republic
| | - Jiřina Josefiová
- Institute of Botany, Czech Academy of Sciences, 25243 Průhonice, Czech Republic
| | | | - Jindřich Chrtek
- Institute of Botany, Czech Academy of Sciences, 25243 Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, 12801 Prague, Czech Republic
| |
Collapse
|
25
|
Guevara Andino JE, Hernández C, Valencia R, Forrister D, Endara MJ. Accelerating the discovery of rare tree species in Amazonian forests: integrating long monitoring tree plot data with metabolomics and phylogenetics for the description of a new species in the hyperdiverse genus Inga Mill. PeerJ 2022; 10:e13767. [PMID: 36061752 PMCID: PMC9435521 DOI: 10.7717/peerj.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/30/2022] [Indexed: 01/17/2023] Open
Abstract
In species-rich regions and highly speciose genera, the need for species identification and taxonomic recognition has led to the development of emergent technologies. Here, we combine long-term plot data with untargated metabolomics, and morphological and phylogenetic data to describe a new rare species in the hyperdiverse genus of trees Inga Mill. Our combined data show that Inga coleyana is a new lineage splitting from their closest relatives I. coruscans and I. cylindrica. Moreover, analyses of the chemical defensive profile demonstrate that I. coleyana has a very distinctive chemistry from their closest relatives, with I. coleyana having a chemistry based on saponins and I. cylindrica and I. coruscans producing a series of dihydroflavonols in addition to saponins. Finally, data from our network of plots suggest that I. coleyana is a rare and probably endemic taxon in the hyper-diverse genus Inga. Thus, the synergy produced by different approaches, such as long-term plot data and metabolomics, could accelerate taxonomic recognition in challenging tropical biomes.
Collapse
Affiliation(s)
- Juan Ernesto Guevara Andino
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud-BIOMAS, Universidad de las Americas, Quito, Ecuador
| | - Consuelo Hernández
- Laboratorio de Ecología de Plantas. Herbario QCA, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Renato Valencia
- Laboratorio de Ecología de Plantas. Herbario QCA, Escuela de Ciencias Biológicas,, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Dale Forrister
- Department of Biology, University of Utah, Salt Lake City, United States of America,Estación de Biodiversidad Tiputini, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito—USFQ, Quito, Ecuador
| | - María-José Endara
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud-BIOMAS, Universidad de las Americas, Quito, Ecuador
| |
Collapse
|
26
|
New directions in tropical phenology. Trends Ecol Evol 2022; 37:683-693. [PMID: 35680467 DOI: 10.1016/j.tree.2022.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/08/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022]
Abstract
Earth's most speciose biomes are in the tropics, yet tropical plant phenology remains poorly understood. Tropical phenological data are comparatively scarce and viewed through the lens of a 'temperate phenological paradigm' expecting phenological traits to respond to strong, predictably annual shifts in climate (e.g., between subfreezing and frost-free periods). Digitized herbarium data greatly expand existing phenological data for tropical plants; and circular data, statistics, and models are more appropriate for analyzing tropical (and temperate) phenological datasets. Phylogenetic information, which remains seldom applied in phenological investigations, provides new insights into phenological responses of large groups of related species to climate. Consistent combined use of herbarium data, circular statistical distributions, and robust phylogenies will rapidly advance our understanding of tropical - and temperate - phenology.
Collapse
|
27
|
Needham JF, Johnson DJ, Anderson-Teixeira KJ, Bourg N, Bunyavejchewin S, Butt N, Cao M, Cárdenas D, Chang-Yang CH, Chen YY, Chuyong G, Dattaraja HS, Davies SJ, Duque A, Ewango CEN, Fernando ES, Fisher R, Fletcher CD, Foster R, Hao Z, Hart T, Hsieh CF, Hubbell SP, Itoh A, Kenfack D, Koven CD, Larson AJ, Lutz JA, McShea W, Makana JR, Malhi Y, Marthews T, Bt Mohamad M, Morecroft MD, Norden N, Parker G, Shringi A, Sukumar R, Suresh HS, Sun IF, Tan S, Thomas DW, Thompson J, Uriarte M, Valencia R, Yao TL, Yap SL, Yuan Z, Yuehua H, Zimmerman JK, Zuleta D, McMahon SM. Demographic composition, not demographic diversity, predicts biomass and turnover across temperate and tropical forests. GLOBAL CHANGE BIOLOGY 2022; 28:2895-2909. [PMID: 35080088 DOI: 10.1111/gcb.16100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The growth and survival of individual trees determine the physical structure of a forest with important consequences for forest function. However, given the diversity of tree species and forest biomes, quantifying the multitude of demographic strategies within and across forests and the way that they translate into forest structure and function remains a significant challenge. Here, we quantify the demographic rates of 1961 tree species from temperate and tropical forests and evaluate how demographic diversity (DD) and demographic composition (DC) differ across forests, and how these differences in demography relate to species richness, aboveground biomass (AGB), and carbon residence time. We find wide variation in DD and DC across forest plots, patterns that are not explained by species richness or climate variables alone. There is no evidence that DD has an effect on either AGB or carbon residence time. Rather, the DC of forests, specifically the relative abundance of large statured species, predicted both biomass and carbon residence time. Our results demonstrate the distinct DCs of globally distributed forests, reflecting biogeography, recent history, and current plot conditions. Linking the DC of forests to resilience or vulnerability to climate change, will improve the precision and accuracy of predictions of future forest composition, structure, and function.
Collapse
Affiliation(s)
- Jessica F Needham
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Daniel J Johnson
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Kristina J Anderson-Teixeira
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
- Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA
| | - Norman Bourg
- Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA
| | - Sarayudh Bunyavejchewin
- Department of National Parks, Wildlife and Plant Conservation, Forest Research Office, Chatuchak, Bangkok, Thailand
| | - Nathalie Butt
- School of Earth and Environmental Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dairon Cárdenas
- Herbario Amazónico Colombiana, Instituto Amazónico de Investigaciones Científicas Sinchi, Bogotá, Colombia
| | - Chia-Hao Chang-Yang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Yun Chen
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan
| | - George Chuyong
- Department of Plant Science, University of Buea, Buea, Cameroon
| | | | - Stuart J Davies
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
- Smithsonian Tropical Research Institute, Washington DC, USA
| | - Alvaro Duque
- Departmento de Ciencias Forestales, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | - Corneille E N Ewango
- Faculty of the Management of Renewable Natural Resources, University of Kisangani, Kisangani, Democratic Republic of Congo
| | - Edwino S Fernando
- Department of Forest Biological Sciences, University of the Philippines, Los Baños, Philippines
- Institute of Biology, University of the Philippines-Diliman, Quezon City, Philippines
| | - Rosie Fisher
- CICERO Center for International Climate Research, Oslo, Norwary
| | | | - Robin Foster
- Department of Botany, Field Museum, Chicago, Illinois, USA
| | - Zhanqing Hao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Terese Hart
- Tshuapa-Lomami-Lualaba Project (TL2), Lukuru Wildlife Research Foundation, Kinshasa, Democratic Republic of Congo
| | - Chang-Fu Hsieh
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Stephen P Hubbell
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Akira Itoh
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - David Kenfack
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
- Smithsonian Tropical Research Institute, Washington DC, USA
| | - Charles D Koven
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Andrew J Larson
- Department of Forest Management and Wilderness Institute, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| | - James A Lutz
- Wildland Resources Department, Utah State University, Logan, Utah, USA
| | - William McShea
- Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA
| | - Jean-Remy Makana
- Faculty of Sciences, Department of Plant Ecology & Natural Resources Management, University of Kisangani, Kisangani, Democratic Republic of Congo
| | - Yadvinder Malhi
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | | | | | | | - Natalia Norden
- Programa de Ciencias Básicas de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Geoffrey Parker
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Ankur Shringi
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Raman Sukumar
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
- Divecha Center for Climate Change, Indian Institute of Science, Bangalore, Karnataka, India
| | - Hebbalalu S Suresh
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
- Divecha Center for Climate Change, Indian Institute of Science, Bangalore, Karnataka, India
| | - I-Fang Sun
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan
| | - Sylvester Tan
- Sarawak Forestry Department, Kuching, Sarawak, Malaysia
| | - Duncan W Thomas
- School of Biological Sciences, Washington State University, Vancouver, Washington, USA
| | - Jill Thompson
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, UK
| | - Maria Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Renato Valencia
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Tze Leong Yao
- Forest Research Institute Malaysia, Kepong, Selangor, Malaysia
| | | | - Zuoqiang Yuan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Hu Yuehua
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, Río Piedras, Puerto Rico
| | - Daniel Zuleta
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
- Smithsonian Tropical Research Institute, Washington DC, USA
| | - Sean M McMahon
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| |
Collapse
|
28
|
Zhang L, Sun F, Ma S, Wang C, Wei B, Zhang Y. Phylogeography of Amygdalus mongolica in relation to Quaternary climatic aridification and oscillations in northwestern China. PeerJ 2022; 10:e13345. [PMID: 35509965 PMCID: PMC9059755 DOI: 10.7717/peerj.13345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 04/06/2022] [Indexed: 01/14/2023] Open
Abstract
Quaternary period geological events and climatic oscillations significantly affect the geographic structure and genetic diversity of species distribution in arid northwestern China. Amygdalus mongolica is a relict and endangered shrub that occurs primarily in arid areas of northwestern China. Based on variation patterns present at three cpDNA regions (psbK-psbI, trnL-trnF and trnV) and in one nDNA sequence (ITS1-ITS4) in 174 individuals representing 15 populations, the spatial genetic structure and demographic history of A. mongolica was examined across its entire geographic range. The 17 different haplotypes and 10 ribotypes showed two lineages, distributed across the Western (Mazong Mountains, Hexi Corridor, and Alxa Left Banner) and Eastern regions (Urad Houqi, Yinshan Mountains, Urad Zhongqi, and Daqing Mountains) according to the median-joining network and the BI (Bayesian inference) and ML (Maximum likelihood) trees. AMOVA analysis demonstrated that over 65% of the observed genetic variation was related to this lineage split. The expansions of the Ulanbuhe and Tengger deserts and the eastward extension of the Yinshan Mountains since the Quaternary period likely interrupted gene flow and triggered the observed divergence in the two allopatric regions; arid landscape fragmentation accompanied by local environmental heterogeneity further increased local adaptive differentiation between the Western and Eastern groups. Based on the evidence from phylogeographical patterns and the distribution of genetic variation, A. mongolica distributed in the eastern and western regions are speculated to have experienced eastward migration along the southern slopes of the Lang Mountains and westward migration along the margins of the Ulanbuhe and Tengger deserts to the Hexi Corridor, respectively. For setting a conservation management plan, it is recommended that the south slopes of the Lang Mountains and northern Helan Mountains be identified as the two primary conservation areas, as they have high genetic variation and habitats that are more suitable.
Collapse
Affiliation(s)
- Lin Zhang
- Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Science, Shihezi, Xinjiang, China
| | - Fangfang Sun
- Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Science, Shihezi, Xinjiang, China
| | - Songmei Ma
- Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Science, Shihezi, Xinjiang, China
| | - Chuncheng Wang
- Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi, Xinjiang, China
| | - Bo Wei
- Institute of Geographic Sciences and Natural Resources Research, Beijing, China
| | - Yunling Zhang
- General grassland station of Xinjiang, Urumqi, Xingjiang, China
| |
Collapse
|
29
|
Phylogeny and Historical Biogeography of Veronica Subgenus Pentasepalae (Plantaginaceae): Evidence for Its Origin and Subsequent Dispersal. BIOLOGY 2022; 11:biology11050639. [PMID: 35625367 PMCID: PMC9138021 DOI: 10.3390/biology11050639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary The Irano-Turanian phytogeographical region is considered a biodiversity reservoir for adjacent regions. The present phylogeographic study suggests that Veronica subgenus Pentasepalae originated in the Iranian plateau and was dispersed via a North African route to the Mediterranean and the Euro-Siberian regions. These findings highlight the importance of the Iranian plateau as a center of origin for many temperate plant species. Our results also resolve several taxonomic and phylogenetic issues surrounding the Southwest Asian species of this subgenus. Abstract Veronica subgenus Pentasepalae is the largest subgenus of Veronica in the Northern Hemisphere with approximately 80 species mainly from Southwest Asia. In order to reconstruct the phylogenetic relationships among the members of V. subgenus Pentasepalae and to test the “out of the Iranian plateau” hypothesis, we applied thorough taxonomic sampling, employing nuclear DNA (ITS) sequence data complimented with morphological studies and chromosome number counts. Several high or moderately supported clades are reconstructed, but the backbone of the phylogenetic tree is generally unresolved, and many Southwest Asian species are scattered along a large polytomy. It is proposed that rapid diversification of the Irano-Turanian species in allopatric glacial refugia and a relatively high rate of extinction during interglacial periods resulted in such phylogenetic topology. The highly variable Asian V. orientalis–V. multifida complex formed a highly polyphyletic assemblage, emphasizing the idea of cryptic speciation within this group. The phylogenetic results allow the re-assignment of two species into this subgenus. In addition, V. bombycina subsp. bolkardaghensis, V. macrostachya subsp. schizostegia and V. fuhsii var. linearis are raised to species rank and the new name V. parsana is proposed for the latter. Molecular dating and ancestral area reconstructions indicate a divergence age of about 9 million years ago and a place of origin on the Iranian Plateau. Migration to the Western Mediterranean region has likely taken place through a North African route during early quaternary glacial times. This study supports the assumption of the Irano-Turanian region as a source of taxa for neighboring regions, particularly in the alpine flora.
Collapse
|
30
|
Lu M, Fradera-Soler M, Forest F, Barraclough TG, Grace OM. Evidence linking life-form to a major shift in diversification rate in Crassula. AMERICAN JOURNAL OF BOTANY 2022; 109:272-290. [PMID: 34730230 DOI: 10.1002/ajb2.1797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Plants have evolved different ecological strategies in response to environmental challenges, and a higher lability of such strategies is more common in plant groups that adapt to various niches. Crassula (Crassulaceae), occurring in varied mesic to xeric habitats, exhibits a remarkable diversity of life-forms. However, whether any particular life-form trait has shaped species diversification in Crassula has remained unexplored. This study aims to investigate diversification patterns within Crassula and identify potential links to its life-form evolution. METHODS A phylogenetic tree of 140 Crassula taxa was reconstructed using plastid and nuclear loci and dated based on the nuclear DNA information only. We reconstructed ancestral life-form characters to estimate the evolutionary trends of ecophysiological change, and subsequently estimated net diversification rates. Multiple diversification models were applied to examine the association between certain life-forms and net diversification rates. RESULTS Our findings confirm a radiation within Crassula in the last 10 million years. A configuration of net diversification rate shifts was detected, which coincides with the emergence of a speciose lineage during the late Miocene. The results of ancestral state reconstruction demonstrate a high lability of life-forms in Crassula, and the trait-dependent diversification analyses revealed that the increased diversification is strongly associated with a compact growth form. CONCLUSIONS Transitions between life-forms in Crassula seem to have driven adaptation and shaped diversification of this genus across various habitats. The diversification patterns we inferred are similar to those observed in other major succulent lineages, with the most-speciose clades originating in the late Miocene.
Collapse
Affiliation(s)
- Meng Lu
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, UK
| | - Marc Fradera-Soler
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, UK
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Olwen M Grace
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| |
Collapse
|
31
|
You J, Lougheed SC, Zhao Y, Zhang G, Liu W, Lu F, Wang Y, Zhang W, Yang J, Qiong L, Song Z. Comparative phylogeography study reveals introgression and incomplete lineage sorting during rapid diversification of Rhodiola. ANNALS OF BOTANY 2022; 129:185-200. [PMID: 34718397 PMCID: PMC8796671 DOI: 10.1093/aob/mcab133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Many plant taxa in the Qinghai-Tibetan Plateau (QTP) and the Hengduan Mountains (HM) radiated rapidly during the Quaternary but with frequent secondary contact between diverging populations. Incomplete lineage sorting and introgressive hybridization might be involved during the rapid radiation, but their effects on phylogeography have not been fully determined. METHODS We investigated the chloroplast DNA (cpDNA)/internal transcribed spacer (ITS) sequence variations of 611 samples of Rhodiola bupleuroides, R. discolor, R. fastigiata and R. chrysanthemifolia from the QTP and HM to compare the phylogeographic patterns between the four species with different evolutionary histories, geographic ranges and reproductive modes. KEY RESULTS The divergence times of these species were consistent with the last peak of in situ speciation in the HM. While closely related species exhibited different phylogeographic patterns, they shared several ribotypes and haplotypes in sympatric populations, suggesting introgressive hybridization. A significant phylogenetic discordance between ribotypes and haplotypes was detected in three species, implying incomplete lineage sorting. Rhodiola discolor houses an extraordinary richness of cpDNA haplotypes, and this finding may be attributed to adaptive radiation. CONCLUSION In addition to geographic isolation and climate oscillations during the Quaternary, both introgressive hybridization and incomplete lineage sorting play important roles in species that experienced rapid diversification in the QTP and HM.
Collapse
Affiliation(s)
- Jianling You
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Institute of Botany, Tibet University–Fudan University Joint Laboratory for Biodiversity and Global Change, Fudan University, Shanghai, China
- BGI-Yunnan, BGI-Shenzhen, Kunming, China
| | | | - Yao Zhao
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Guojie Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Wensheng Liu
- College of Life Science and Technology, Central South University of Forestry and Techonology, Changsha, China
| | - Fan Lu
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Institute of Botany, Tibet University–Fudan University Joint Laboratory for Biodiversity and Global Change, Fudan University, Shanghai, China
| | - Yuguo Wang
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Institute of Botany, Tibet University–Fudan University Joint Laboratory for Biodiversity and Global Change, Fudan University, Shanghai, China
| | - Wenju Zhang
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Institute of Botany, Tibet University–Fudan University Joint Laboratory for Biodiversity and Global Change, Fudan University, Shanghai, China
| | - Ji Yang
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Institute of Botany, Tibet University–Fudan University Joint Laboratory for Biodiversity and Global Change, Fudan University, Shanghai, China
| | - La Qiong
- Tibet University–Fudan University Joint Laboratory for Biodiversity and Global Change, Tibet University, Thasa, China
| | - Zhiping Song
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Institute of Botany, Tibet University–Fudan University Joint Laboratory for Biodiversity and Global Change, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Palazzesi L, Hidalgo O, Barreda VD, Forest F, Höhna S. The rise of grasslands is linked to atmospheric CO 2 decline in the late Palaeogene. Nat Commun 2022; 13:293. [PMID: 35022396 PMCID: PMC8755714 DOI: 10.1038/s41467-021-27897-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/13/2021] [Indexed: 01/25/2023] Open
Abstract
Grasslands are predicted to experience a major biodiversity change by the year 2100. A better understanding of how grasslands have responded to past environmental changes will help predict the outcome of current and future environmental changes. Here, we explore the relationship between past atmospheric CO2 and temperature fluctuations and the shifts in diversification rate of Poaceae (grasses) and Asteraceae (daisies), two exceptionally species-rich grassland families (~11,000 and ~23,000 species, respectively). To this end, we develop a Bayesian approach that simultaneously estimates diversification rates through time from time-calibrated phylogenies and correlations between environmental variables and diversification rates. Additionally, we present a statistical approach that incorporates the information of the distribution of missing species in the phylogeny. We find strong evidence supporting a simultaneous increase in diversification rates for grasses and daisies after the most significant reduction of atmospheric CO2 in the Cenozoic (~34 Mya). The fluctuations of paleo-temperatures, however, appear not to have had a significant relationship with the diversification of these grassland families. Overall, our results shed new light on our understanding of the origin of grasslands in the context of past environmental changes. A better understanding of how grasslands have responded to past environmental changes will help predict the outcomes of future changes. This study explores past climatic fluctuations and shifts in the diversification rate of grasses and daisies, finding strong evidence for a simultaneous increase in their diversification rates following a reduction of atmospheric CO2 in the Cenozoic.
Collapse
Affiliation(s)
- Luis Palazzesi
- Museo Argentino de Ciencias Naturales & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1405DJR, Argentina. .,Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK.
| | - Oriane Hidalgo
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK.,Institut Botánic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Catalonia, Spain
| | - Viviana D Barreda
- Museo Argentino de Ciencias Naturales & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1405DJR, Argentina
| | - Félix Forest
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Sebastian Höhna
- GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333, Munich, Germany. .,Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333, Munich, Germany.
| |
Collapse
|
33
|
Yang Z, Ma W, He X, Zhao T, Yang X, Wang L, Ma Q, Liang L, Wang G. Species divergence and phylogeography of Corylus heterophylla Fisch complex (Betulaceae): Inferred from molecular, climatic and morphological data. Mol Phylogenet Evol 2022; 168:107413. [PMID: 35031460 DOI: 10.1016/j.ympev.2022.107413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
Historical geo-climatic changes have shaped the geographical distributions and genetic diversity of numerous plant taxa in East Asia, which promote species divergence and ultimately speciation. Here, we integrated multiple approaches, including molecular phylogeography, ecological niche modeling, and morphological traits to examine the nucleotide diversity and interspecific divergence within Corylus heterophylla complex (C. heterophylla, C. kweichowensis, and C. yunnanensis). These three sibling taxa harbored similar high levels of nucleotide diversity at the species level. The molecular data (SCNG and cpDNA) unanimously supported the division of C. heterophylla complex into two major clades, with C. yunnanensis diverged earlier from the complex, whereas C. heterophylla and C. kweichowensis could hardly be separated. The split between the two clades (c. 12.89 Ma) coincided with the formation of Sichuan Basin in the middle Miocene, while the divergence among and within the five subclades (YUN1-YUN3, HK1-HK2) occurred from the late Miocene to the Pleistocene. C. heterophylla of northern China experienced glacial contraction and interglacial expansion during the Quaternary, whereas C. kweichowensis and C. yunnanensis of southern China presented population expansion even during the last glacial maximum. Despite of high levels of genetic admixture between C. heterophylla and C. kweichowensis, significant ecological and morphological discrepancy as well as incomplete geographic isolation indicated that adaptive evolution triggered by divergent selection may have played important roles in incipient ecological speciation.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, 100091, China
| | - Wenxu Ma
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, 100091, China
| | - Xin He
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, 100091, China
| | - Tiantian Zhao
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, 100091, China
| | | | - Lujun Wang
- Anhui Academy of Forestry, Hefei, 230031, China
| | - Qinghua Ma
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, 100091, China
| | - Lisong Liang
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, 100091, China
| | - Guixi Wang
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, 100091, China.
| |
Collapse
|
34
|
Earth history events shaped the evolution of uneven biodiversity across tropical moist forests. Proc Natl Acad Sci U S A 2021; 118:2026347118. [PMID: 34599095 PMCID: PMC8501849 DOI: 10.1073/pnas.2026347118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 02/07/2023] Open
Abstract
Tropical moist forests harbor much of the world’s biodiversity, but this diversity is not evenly distributed globally, with tropical moist forests in the Neotropics and Indomalaya generally exhibiting much greater diversity than in the Afrotropics. Here, we assess the ubiquity of this “pantropical diversity disparity” (PDD) using the present-day distributions of over 150,000 species of plants and animals, and we compare these distributions with a spatial model of diversification combined with reconstructions of plate tectonics, temperature, and aridity. Our study demonstrates that differences in paleoenvironmental dynamics between continents, including mountain building, aridification, and global temperature fluxes, can explain the PDD by shaping spatial and temporal patterns of species origination and extinction, providing a close match to observed distributions of plants and animals. Far from a uniform band, the biodiversity found across Earth’s tropical moist forests varies widely between the high diversity of the Neotropics and Indomalaya and the relatively lower diversity of the Afrotropics. Explanations for this variation across different regions, the “pantropical diversity disparity” (PDD), remain contentious, due to difficulty teasing apart the effects of contemporary climate and paleoenvironmental history. Here, we assess the ubiquity of the PDD in over 150,000 species of terrestrial plants and vertebrates and investigate the relationship between the present-day climate and patterns of species richness. We then investigate the consequences of paleoenvironmental dynamics on the emergence of biodiversity gradients using a spatially explicit model of diversification coupled with paleoenvironmental and plate tectonic reconstructions. Contemporary climate is insufficient in explaining the PDD; instead, a simple model of diversification and temperature niche evolution coupled with paleoaridity constraints is successful in reproducing the variation in species richness and phylogenetic diversity seen repeatedly among plant and animal taxa, suggesting a prevalent role of paleoenvironmental dynamics in combination with niche conservatism. The model indicates that high biodiversity in Neotropical and Indomalayan moist forests is driven by complex macroevolutionary dynamics associated with mountain uplift. In contrast, lower diversity in Afrotropical forests is associated with lower speciation rates and higher extinction rates driven by sustained aridification over the Cenozoic. Our analyses provide a mechanistic understanding of the emergence of uneven diversity in tropical moist forests across 110 Ma of Earth’s history, highlighting the importance of deep-time paleoenvironmental legacies in determining biodiversity patterns.
Collapse
|
35
|
Samacá-Sáenz E, Santos BF, José Martínez J, Egan SP, Shaw SR, Hanson PE, Zaldívar-Riverón A. Ultraconserved elements-based systematics reveals evolutionary patterns of host-plant family shifts and phytophagy within the predominantly parasitoid braconid wasp subfamily Doryctinae. Mol Phylogenet Evol 2021; 166:107319. [PMID: 34563693 DOI: 10.1016/j.ympev.2021.107319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Phytophagy has promoted species diversification in many insect groups, including Hymenoptera, one of the most diverse animal orders on Earth. In the predominantly parasitoid family Braconidae, an association with insect-induced, plant galls in angiosperms have been reported in three subfamilies, but in particular in the Doryctinae, where it has been recorded to occur in species of ten genera. Allorhogas Gahan is the most species-rich of these genera, with its species having different phytophagous strategies. Here we conducted a comprehensive phylogenomic study for the doryctine gall-associated genera, with an emphasis on Allorhogas, using ultraconserved elements (UCEs). Based on this estimate of phylogeny we: (1) evaluated their taxonomic composition, (2) estimated the timing of origin of the gall-associated clade and divergence of its main subclades, and (3) performed ancestral state reconstruction analyses for life history traits related to their host-plant association. Our phylogenetic hypothesis confirmed Allorhogas as polyphyletic, with most of its members being nested in a main clade composed of various subclades, each comprising species with a particular host-plant family and herbivorous feeding habit. The origin of gall-association was estimated to have occurred during the late Oligocene to early Miocene, with a subsequent diversification of subclades during the middle to late Miocene and Pliocene. Overlap in divergence timing appears to occur between some taxa and their host-associated plant lineages. Evolution of the feeding strategies in the group shows "inquilinism-feeding" as the likely ancestral state, with gall-formation in different plant organs and seed predation having independently evolved on multiple occasions.
Collapse
Affiliation(s)
- Ernesto Samacá-Sáenz
- Colección Nacional de Insectos, Instituto de Biología, Universidad Nacional Autónoma de México, 3er. circuito exterior s/n, Cd. Universitaria, Copilco, Coyoacán, A. P. 70-233, C. P. 04510 Ciudad de México, Mexico; Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Universidad Nacional Autónoma de México, Coyoacán, C. P. 04510, Ciudad de México, Mexico
| | - Bernardo F Santos
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire naturelle, CNRS, SU, EPHE, UA, 57 rue Cuvier CP50, 75231 Paris Cedex 05, France
| | - Juan José Martínez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Uruguay 151, L6300CLB, Santa Rosa, La Pampa, Argentina
| | - Scott P Egan
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Scott R Shaw
- University of Wyoming Insect Museum, Department of Ecosystem Science and Management (3354), University of Wyoming, Laramie, WY 82072, USA
| | - Paul E Hanson
- Escuela de Biología, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | - Alejandro Zaldívar-Riverón
- Colección Nacional de Insectos, Instituto de Biología, Universidad Nacional Autónoma de México, 3er. circuito exterior s/n, Cd. Universitaria, Copilco, Coyoacán, A. P. 70-233, C. P. 04510 Ciudad de México, Mexico.
| |
Collapse
|
36
|
Magalhães KX, da Silva RDF, Sawakuchi AO, Gonçalves AP, Gomes GFE, Muriel-Cunha J, Sabaj MH, de Sousa LM. Phylogeography of Baryancistrus xanthellus (Siluriformes: Loricariidae), a rheophilic catfish endemic to the Xingu River basin in eastern Amazonia. PLoS One 2021; 16:e0256677. [PMID: 34449827 PMCID: PMC8396747 DOI: 10.1371/journal.pone.0256677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022] Open
Abstract
Baryancistrus xanthellus (Loricariidae) is an endemic fish species from the Xingu River basin with its life history in the shallow rapid waters flowing over bedrock substrates. In order to investigate the genetic diversity and demographic history of B. xanthellus we analyzed sequence data for one mitochondrial gene (Cyt b) and introns 1 and 5 of nuclear genes Prolactin (Prl) and Ribosomal Protein L3 (RPL3). The analyses contain 358 specimens of B. xanthellus from 39 localities distributed throughout its range. The number of genetically diverged groups was estimated using Bayesian inference on Cyt b haplotypes. Haplotype networks, AMOVA and pairwise fixation index was used to evaluate population structure and gene flow. Historical demography was inferred through neutrality tests and the Extended Bayesian Skyline Plot (EBSP) method. Five longitudinally distributed Cyt b haplogroups for B. xanthellus were identified in the Xingu River and its major tributaries, the Bacajá and Iriri. The demographic analysis suggests that rapids habitats have expanded in the Iriri and Lower Xingu rivers since 200 ka (thousand years) ago. This expansion is possibly related to an increase in water discharge as a consequence of higher rainfall across eastern Amazonia. Conversely, this climate shift also would have promoted zones of sediment trapping and reduction of rocky habitats in the Xingu River channel upstream of the Iriri River mouth. Populations of B. xanthellus showed strong genetic structure along the free-flowing river channels of the Xingu and its major tributaries, the Bacajá and Iriri. The recent impoundment of the Middle Xingu channel for the Belo Monte hydroelectric dam may isolate populations at the downstream limit of the species distribution. Therefore, future conservation plans must consider the genetic diversity of B. xanthellus throughout its range.
Collapse
Affiliation(s)
- Keila Xavier Magalhães
- Laboratório de Ictiologia de Altamira, Universidade Federal do Pará, Altamira, Pará, Brazil
| | | | | | - Alany Pedrosa Gonçalves
- Instituto Nacional de Pesquisa da Amazônia, INPA, Programa de Pós-Graduação em Biologia de Água Doce e Pesca Interior, Manaus, Amazonas, Brazil
| | | | - Janice Muriel-Cunha
- Instituto de Estudos Costeiros, Campus Bragança, Universidade Federal do Pará, Bragança, Pará, Brazil
| | - Mark H. Sabaj
- Department of Ichthyology, The Academy of Natural Sciences of Drexel University, Philadelphia, PA, United States of America
| | - Leandro Melo de Sousa
- Laboratório de Ictiologia de Altamira, Universidade Federal do Pará, Altamira, Pará, Brazil
- * E-mail:
| |
Collapse
|
37
|
Baraloto C, Vleminckx J, Engel J, Petronelli P, Dávila N, RÍos M, Valderrama Sandoval EH, Mesones I, Guevara Andino JE, Fortunel C, Allie E, Paine CET, Dourdain A, Goret J, Valverde‐Barrantes OJ, Draper F, Fine PVA. Biogeographic history and habitat specialization shape floristic and phylogenetic composition across Amazonian forests. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christopher Baraloto
- Institute of Environment Department of Biological Sciences Florida International University 11200 Southwest 8th Street Miami Florida 33199 USA
- INRAE UMR Ecologie des Forêts de Guyane Université de Guyane Université des Antilles Campus agronomique, BP 316 Kourou Cedex 97379 France
| | - Jason Vleminckx
- Institute of Environment Department of Biological Sciences Florida International University 11200 Southwest 8th Street Miami Florida 33199 USA
| | - Julien Engel
- AMAP (botAnique et Modélisation de l’Architecture des Plantes et des végétations) Université de Montpellier, CIRAD, CNRS, INRAE, IRD Boulevard de la Lironde Montpellier Cedex 5 TA A‐51/PS234398 France
| | - Pascal Petronelli
- CIRAD, UMR Ecologie des Forêts de Guyane Université de Guyane Université des Antilles Campus agronomique, BP 316 Kourou Cedex 97379 France
| | - Nállarett Dávila
- Instituto de Investigaciones de la Amazonia Peruana Iquitos, Peru, Avenida José A. Quiñones km 2.5 Iquitos Loreto Perú
| | - Marcos RÍos
- Instituto de Investigaciones de la Amazonia Peruana Iquitos, Peru, Avenida José A. Quiñones km 2.5 Iquitos Loreto Perú
| | | | - Italo Mesones
- Department of Integrative Biology and Jepson Herbaria University of California, Berkeley 3040 Valley Life Sciences Building 3140 Berkeley California 94720‐3140 USA
| | | | - Claire Fortunel
- AMAP (botAnique et Modélisation de l’Architecture des Plantes et des végétations) Université de Montpellier, CIRAD, CNRS, INRAE, IRD Boulevard de la Lironde Montpellier Cedex 5 TA A‐51/PS234398 France
| | - Elodie Allie
- INRAE UMR Ecologie des Forêts de Guyane Université de Guyane Université des Antilles Campus agronomique, BP 316 Kourou Cedex 97379 France
| | - C. E. Timothy Paine
- Environmental and Rural Sciences University of New England Armidale New South Wales 2351 Australia
| | - Aurélie Dourdain
- CIRAD, UMR Ecologie des Forêts de Guyane Université de Guyane Université des Antilles Campus agronomique, BP 316 Kourou Cedex 97379 France
| | - Jean‐Yves Goret
- INRAE UMR Ecologie des Forêts de Guyane Université de Guyane Université des Antilles Campus agronomique, BP 316 Kourou Cedex 97379 France
| | - Oscar J. Valverde‐Barrantes
- Institute of Environment Department of Biological Sciences Florida International University 11200 Southwest 8th Street Miami Florida 33199 USA
| | - Freddie Draper
- Institute of Environment Department of Biological Sciences Florida International University 11200 Southwest 8th Street Miami Florida 33199 USA
- Center for Global Discovery and Conservation Science Arizona State University 1001 South McAllister Avenue Tempe Tempe Arizona 85287 USA
- School of Geography University of Leeds Woodhouse Leeds LS2 9JT UK
| | - Paul V. A. Fine
- Department of Integrative Biology and Jepson Herbaria University of California, Berkeley 3040 Valley Life Sciences Building 3140 Berkeley California 94720‐3140 USA
| |
Collapse
|
38
|
Esquerré D, Keogh JS, Demangel D, Morando M, Avila LJ, Sites JW, Ferri-Yáñez F, Leaché AD. Rapid radiation and rampant reticulation: Phylogenomics of South American Liolaemus lizards. Syst Biol 2021; 71:286-300. [PMID: 34259868 DOI: 10.1093/sysbio/syab058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 01/09/2023] Open
Abstract
Understanding the factors that cause heterogeneity among gene trees can increase the accuracy of species trees. Discordant signals across the genome are commonly produced by incomplete lineage sorting (ILS) and introgression, which in turn can result in reticulate evolution. Species tree inference using the multispecies coalescent is designed to deal with ILS and is robust to low levels of introgression, but extensive introgression violates the fundamental assumption that relationships are strictly bifurcating. In this study, we explore the phylogenomics of the iconic Liolaemus subgenus of South American lizards, a group of over 100 species mostly distributed in and around the Andes mountains. Using mitochondrial DNA (mtDNA) and genome-wide restriction-site associated DNA sequencing (RADseq; nDNA hereafter), we inferred a time-calibrated mtDNA gene tree, nDNA species trees, and phylogenetic networks. We found high levels of discordance between mtDNA and nDNA, which we attribute in part to extensive ILS resulting from rapid diversification. These data also reveal extensive and deep introgression, which combined with rapid diversification, explain the high level of phylogenetic discordance. We discuss these findings in the context of Andean orogeny and glacial cycles that fragmented, expanded, and contracted species distributions. Finally, we use the new phylogeny to resolve long-standing taxonomic issues in one of the most studied lizard groups in the New World.
Collapse
Affiliation(s)
- Damien Esquerré
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | | | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC- CONICET), Puerto Madryn, Chubut, Argentina
| | - Luciano J Avila
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC- CONICET), Puerto Madryn, Chubut, Argentina
| | - Jack W Sites
- Department of Biology and M.L. Bean Life Science Museum, Brigham Young University, Provo, Utah, USA
| | - Francisco Ferri-Yáñez
- Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, CSIC & Laboratorio Internacional en Cambio Global CSIC-PUC (LINCGlobal), Calle José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Adam D Leaché
- Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA
| |
Collapse
|
39
|
Allen KE, Greenbaum E, Hime PM, Tapondjou N. WP, Sterkhova VV, Kusamba C, Rödel M, Penner J, Peterson AT, Brown RM. Rivers, not refugia, drove diversification in arboreal, sub-Saharan African snakes. Ecol Evol 2021; 11:6133-6152. [PMID: 34141208 PMCID: PMC8207163 DOI: 10.1002/ece3.7429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 12/26/2022] Open
Abstract
The relative roles of rivers versus refugia in shaping the high levels of species diversity in tropical rainforests have been widely debated for decades. Only recently has it become possible to take an integrative approach to test predictions derived from these hypotheses using genomic sequencing and paleo-species distribution modeling. Herein, we tested the predictions of the classic river, refuge, and river-refuge hypotheses on diversification in the arboreal sub-Saharan African snake genus Toxicodryas. We used dated phylogeographic inferences, population clustering analyses, demographic model selection, and paleo-distribution modeling to conduct a phylogenomic and historical demographic analysis of this genus. Our results revealed significant population genetic structure within both Toxicodryas species, corresponding geographically to river barriers and divergence times from the mid-Miocene to Pliocene. Our demographic analyses supported the interpretation that rivers are indications of strong barriers to gene flow among populations since their divergence. Additionally, we found no support for a major contraction of suitable habitat during the last glacial maximum, allowing us to reject both the refuge and river-refuge hypotheses in favor of the river-barrier hypothesis. Based on conservative interpretations of our species delimitation analyses with the Sanger and ddRAD data sets, two new cryptic species are identified from east-central Africa. This study highlights the complexity of diversification dynamics in the African tropics and the advantages of integrative approaches to studying speciation in tropical regions.
Collapse
Affiliation(s)
- Kaitlin E. Allen
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKSUSA
- Biodiversity InstituteUniversity of KansasLawrenceKSUSA
| | - Eli Greenbaum
- Department of Biological SciencesUniversity of Texas at El PasoEl PasoTXUSA
| | - Paul M. Hime
- Biodiversity InstituteUniversity of KansasLawrenceKSUSA
| | - Walter P. Tapondjou N.
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKSUSA
- Biodiversity InstituteUniversity of KansasLawrenceKSUSA
| | - Viktoria V. Sterkhova
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKSUSA
- Biodiversity InstituteUniversity of KansasLawrenceKSUSA
| | - Chifundera Kusamba
- Laboratoire d’Hérpétologie, Département de BiologieCentre de Recherche en Sciences NaturellesLwiroDemocratic Republic of Congo
| | - Mark‐Oliver Rödel
- Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Johannes Penner
- Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Chair of Wildlife Ecology and ManagementUniversity of FreiburgFreiburgGermany
| | - A. Townsend Peterson
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKSUSA
- Biodiversity InstituteUniversity of KansasLawrenceKSUSA
| | - Rafe M. Brown
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKSUSA
- Biodiversity InstituteUniversity of KansasLawrenceKSUSA
| |
Collapse
|
40
|
Matos-Maraví P, Wahlberg N, Freitas AVL, Devries P, Antonelli A, Penz CM. Mesoamerica is a cradle and the Atlantic Forest is a museum of Neotropical butterfly diversity: insights from the evolution and biogeography of Brassolini (Lepidoptera: Nymphalidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Regional species diversity is explained ultimately by speciation, extinction and dispersal. Here, we estimate dispersal and speciation rates of Neotropical butterflies to propose an explanation for the distribution and diversity of extant species. We focused on the tribe Brassolini (owl butterflies and allies), a Neotropical group that comprises 17 genera and 108 species, most of them endemic to rainforest biomes. We inferred a robust species tree using the multispecies coalescent framework and a dataset including molecular and morphological characters. This formed the basis for three changes in Brassolini classification: (1) Naropina syn. nov. is subsumed within Brassolina; (2) Aponarope syn. nov. is subsumed within Narope; and (3) Selenophanes orgetorix comb. nov. is reassigned from Catoblepia to Selenophanes. By applying biogeographical stochastic mapping, we found contrasting species diversification and dispersal dynamics across rainforest biomes, which might be explained, in part, by the geological and environmental history of each bioregion. Our results revealed a mosaic of biome-specific evolutionary histories within the Neotropics, where butterfly species have diversified rapidly (cradles: Mesoamerica), have accumulated gradually (museums: Atlantic Forest) or have diversified and accumulated alternately (Amazonia). Our study contributes evidence from a major butterfly lineage that the Neotropics are a museum and a cradle of species diversity.
Collapse
Affiliation(s)
- Pável Matos-Maraví
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, 41319 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Carl Skottsbergs gata 22B, 41319 Gothenburg, Sweden
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic
| | - Niklas Wahlberg
- Department of Biology, Lund University, Sölvegatan 37, 22362 Lund, Sweden
| | - André V L Freitas
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, CEP 13.083-862 Campinas, São Paulo, Brazil
| | - Phil Devries
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
- Courtesy Curators of Lepidoptera, Florida Museum of Natural History, 1659 Museum Road, Gainesville, FL 32611, USA
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, 41319 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Carl Skottsbergs gata 22B, 41319 Gothenburg, Sweden
- Royal Botanical Gardens Kew, Richmond TW9 3AE, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Carla M Penz
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| |
Collapse
|
41
|
Jung T, Horta Jung M, Webber JF, Kageyama K, Hieno A, Masuya H, Uematsu S, Pérez-Sierra A, Harris AR, Forster J, Rees H, Scanu B, Patra S, Kudláček T, Janoušek J, Corcobado T, Milenković I, Nagy Z, Csorba I, Bakonyi J, Brasier CM. The Destructive Tree Pathogen Phytophthora ramorum Originates from the Laurosilva Forests of East Asia. J Fungi (Basel) 2021; 7:jof7030226. [PMID: 33803849 PMCID: PMC8003361 DOI: 10.3390/jof7030226] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
As global plant trade expands, tree disease epidemics caused by pathogen introductions are increasing. Since ca 2000, the introduced oomycete Phytophthora ramorum has caused devastating epidemics in Europe and North America, spreading as four ancient clonal lineages, each of a single mating type, suggesting different geographical origins. We surveyed laurosilva forests for P. ramorum around Fansipan mountain on the Vietnam-China border and on Shikoku and Kyushu islands, southwest Japan. The surveys yielded 71 P. ramorum isolates which we assigned to eight new lineages, IC1 to IC5 from Vietnam and NP1 to NP3 from Japan, based on differences in colony characteristics, gene x environment responses and multigene phylogeny. Molecular phylogenetic trees and networks revealed the eight Asian lineages were dispersed across the topology of the introduced European and North American lineages. The deepest node within P. ramorum, the divergence of lineages NP1 and NP2, was estimated at 0.5 to 1.6 Myr. The Asian lineages were each of a single mating type, and at some locations, lineages of "opposite" mating type were present, suggesting opportunities for inter-lineage recombination. Based on the high level of phenotypic and phylogenetic diversity in the sample populations, the coalescence results and the absence of overt host symptoms, we conclude that P. ramorum comprises many anciently divergent lineages native to the laurosilva forests between eastern Indochina and Japan.
Collapse
Affiliation(s)
- Thomas Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic; (M.H.J.); (S.P.); (T.K.); (J.J.); (T.C.); (I.M.); (Z.N.)
- Phytophthora Research and Consultancy, 83131 Nußdorf, Germany
- Correspondence: (T.J.); (C.M.B.); Tel.: +420-545136172 (T.J.)
| | - Marília Horta Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic; (M.H.J.); (S.P.); (T.K.); (J.J.); (T.C.); (I.M.); (Z.N.)
- Phytophthora Research and Consultancy, 83131 Nußdorf, Germany
| | - Joan F. Webber
- Forest Research, Alice Holt Lodge, Farnham GU10 4LH, Surrey, UK; (J.F.W.); (A.P.-S.); (A.R.H.); (J.F.); (H.R.)
| | - Koji Kageyama
- River Basin Research Center, Gifu University, Gifu 501-1193, Japan; (K.K.); (A.H.)
| | - Ayaka Hieno
- River Basin Research Center, Gifu University, Gifu 501-1193, Japan; (K.K.); (A.H.)
| | - Hayato Masuya
- Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki 305-8687, Japan;
| | - Seiji Uematsu
- Departament of Bioregulation and Biointeraction, Laboratory of Molecular and Cellular Biology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan;
| | - Ana Pérez-Sierra
- Forest Research, Alice Holt Lodge, Farnham GU10 4LH, Surrey, UK; (J.F.W.); (A.P.-S.); (A.R.H.); (J.F.); (H.R.)
| | - Anna R. Harris
- Forest Research, Alice Holt Lodge, Farnham GU10 4LH, Surrey, UK; (J.F.W.); (A.P.-S.); (A.R.H.); (J.F.); (H.R.)
| | - Jack Forster
- Forest Research, Alice Holt Lodge, Farnham GU10 4LH, Surrey, UK; (J.F.W.); (A.P.-S.); (A.R.H.); (J.F.); (H.R.)
| | - Helen Rees
- Forest Research, Alice Holt Lodge, Farnham GU10 4LH, Surrey, UK; (J.F.W.); (A.P.-S.); (A.R.H.); (J.F.); (H.R.)
| | - Bruno Scanu
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Sneha Patra
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic; (M.H.J.); (S.P.); (T.K.); (J.J.); (T.C.); (I.M.); (Z.N.)
- Laboratory of Ecological Plant Physiology, CzechGlobe, Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Tomáš Kudláček
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic; (M.H.J.); (S.P.); (T.K.); (J.J.); (T.C.); (I.M.); (Z.N.)
| | - Josef Janoušek
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic; (M.H.J.); (S.P.); (T.K.); (J.J.); (T.C.); (I.M.); (Z.N.)
| | - Tamara Corcobado
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic; (M.H.J.); (S.P.); (T.K.); (J.J.); (T.C.); (I.M.); (Z.N.)
| | - Ivan Milenković
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic; (M.H.J.); (S.P.); (T.K.); (J.J.); (T.C.); (I.M.); (Z.N.)
| | - Zoltán Nagy
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic; (M.H.J.); (S.P.); (T.K.); (J.J.); (T.C.); (I.M.); (Z.N.)
| | - Ildikó Csorba
- Centre for Agricultural Research, Plant Protection Institute, ELKH, H-1022 Budapest, Hungary; (I.C.); (J.B.)
| | - József Bakonyi
- Centre for Agricultural Research, Plant Protection Institute, ELKH, H-1022 Budapest, Hungary; (I.C.); (J.B.)
| | - Clive M. Brasier
- Forest Research, Alice Holt Lodge, Farnham GU10 4LH, Surrey, UK; (J.F.W.); (A.P.-S.); (A.R.H.); (J.F.); (H.R.)
- Correspondence: (T.J.); (C.M.B.); Tel.: +420-545136172 (T.J.)
| |
Collapse
|
42
|
Cordobés FM, Robbiati FO, Anton AM, Scrivanti LR. Phylogeny, evolution and ecological speciation analyses of Imperata (Poaceae: Andropogoneae) in the Neotropics. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1887959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fernando Moro Cordobés
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Universidad Nacional de Córdoba, Córdoba, Prov. de Córdoba, Argentina
| | - Federico Omar Robbiati
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Universidad Nacional de Córdoba, Córdoba, Prov. de Córdoba, Argentina
| | - Ana María Anton
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Universidad Nacional de Córdoba, Córdoba, Prov. de Córdoba, Argentina
| | - Lidia Raquel Scrivanti
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Universidad Nacional de Córdoba, Córdoba, Prov. de Córdoba, Argentina
| |
Collapse
|
43
|
Rech AR, Ollerton J, Dalsgaard B, Ré Jorge L, Sandel B, Svenning J, Baronio GJ, Sazima M. Population‐level plant pollination mode is influenced by Quaternary climate and pollinators. Biotropica 2021. [DOI: 10.1111/btp.12905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- André Rodrigo Rech
- Programas de Pós‐graduação em Ciência Florestal e em Biologia Animal Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Brasil
| | - Jeff Ollerton
- Faculty of Arts, Science and Technology University of Northampton Northampton UK
| | - Bo Dalsgaard
- Center for Macroecology, Evolution and Climate GLOBE Institute University of Copenhagen Copenhagen Ø Denmark
| | - Leonardo Ré Jorge
- Department of Ecology Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
| | - Brody Sandel
- Department of Biology Santa Clara University Santa Clara CA USA
| | - Jens‐Christian Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) Department of Biology Aarhus University Aarhus C Denmark
- Departamento Section for Ecoinformatics & Biodiversity Department of Biology Aarhus University Aarhus C Denmark
| | - Gudryan J. Baronio
- Programas de Pós‐graduação em Ciência Florestal e em Biologia Animal Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Brasil
| | - Marlies Sazima
- Laboratório de Biologia Vegetal Instituto de Biologia Universidade Estadual de Campinas Campinas Brasil
| |
Collapse
|
44
|
Abstract
Taxonomy is the science that explores, describes, names, and classifies all organisms. In this introductory chapter, we highlight the major historical steps in the elaboration of this science, which provides baseline data for all fields of biology and plays a vital role for society but is also an independent, complex, and sound hypothesis-driven scientific discipline.In a first part, we underline that plant taxonomy is one of the earliest scientific disciplines that emerged thousands of years ago, even before the important contributions of the Greeks and Romans (e.g., Theophrastus, Pliny the Elder, and Dioscorides). In the fifteenth-sixteenth centuries, plant taxonomy benefited from the Great Navigations, the invention of the printing press, the creation of botanic gardens, and the use of the drying technique to preserve plant specimens. In parallel with the growing body of morpho-anatomical data, subsequent major steps in the history of plant taxonomy include the emergence of the concept of natural classification , the adoption of the binomial naming system (with the major role of Linnaeus) and other universal rules for the naming of plants, the formulation of the principle of subordination of characters, and the advent of the evolutionary thought. More recently, the cladistic theory (initiated by Hennig) and the rapid advances in DNA technologies allowed to infer phylogenies and to propose true natural, genealogy-based classifications.In a second part, we put the emphasis on the challenges that plant taxonomy faces nowadays. The still very incomplete taxonomic knowledge of the worldwide flora (the so-called taxonomic impediment) is seriously hampering conservation efforts that are especially crucial as biodiversity has entered its sixth extinction crisis. It appears mainly due to insufficient funding, lack of taxonomic expertise, and lack of communication and coordination. We then review recent initiatives to overcome these limitations and to anticipate how taxonomy should and could evolve. In particular, the use of molecular data has been era-splitting for taxonomy and may allow an accelerated pace of species discovery. We examine both strengths and limitations of such techniques in comparison to morphology-based investigations, we give broad recommendations on the use of molecular tools for plant taxonomy, and we highlight the need for an integrative taxonomy based on evidence from multiple sources.
Collapse
Affiliation(s)
- Germinal Rouhan
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, Sorbonne Université, Ecole Pratique des Hautes Etudes, Université des Antilles, CNRS, Paris, France.
| | - Myriam Gaudeul
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, Sorbonne Université, Ecole Pratique des Hautes Etudes, Université des Antilles, CNRS, Paris, France
| |
Collapse
|
45
|
Schneider JV, Paule J, Jungcurt T, Cardoso D, Amorim AM, Berberich T, Zizka G. Resolving Recalcitrant Clades in the Pantropical Ochnaceae: Insights From Comparative Phylogenomics of Plastome and Nuclear Genomic Data Derived From Targeted Sequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:638650. [PMID: 33613613 PMCID: PMC7890083 DOI: 10.3389/fpls.2021.638650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/15/2021] [Indexed: 05/13/2023]
Abstract
Plastid DNA sequence data have been traditionally widely used in plant phylogenetics because of the high copy number of plastids, their uniparental inheritance, and the blend of coding and non-coding regions with divergent substitution rates that allow the reconstruction of phylogenetic relationships at different taxonomic ranks. In the present study, we evaluate the utility of the plastome for the reconstruction of phylogenetic relationships in the pantropical plant family Ochnaceae (Malpighiales). We used the off-target sequence read fraction of a targeted sequencing study (targeting nuclear loci only) to recover more than 100 kb of the plastid genome from the majority of the more than 200 species of Ochnaceae and all but two genera using de novo and reference-based assembly strategies. Most of the recalcitrant nodes in the family's backbone were resolved by our plastome-based phylogenetic inference, corroborating the most recent classification system of Ochnaceae and findings from a phylogenomic study based on nuclear loci. Nonetheless, the phylogenetic relationships within the major clades of tribe Ochnineae, which comprise about two thirds of the family's species diversity, received mostly low support. Generally, the phylogenetic resolution was lowest at the infrageneric level. Overall there was little phylogenetic conflict compared to a recent analysis of nuclear loci. Effects of taxon sampling were invoked as the most likely reason for some of the few well-supported discords. Our study demonstrates the utility of the off-target fraction of a target enrichment study for assembling near-complete plastid genomes for a large proportion of samples.
Collapse
Affiliation(s)
- Julio V. Schneider
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Entomology III, Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | - Juraj Paule
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Tanja Jungcurt
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Domingos Cardoso
- Instituto de Biologia, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - André Márcio Amorim
- Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
- Herbário André Maurício Vieira de Carvalho, CEPEC, CEPLAC, Itabuna, Brazil
| | - Thomas Berberich
- Senckenberg Biodiversity and Climate Research Center, Lab-Center, Frankfurt am Main, Germany
| | - Georg Zizka
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
- *Correspondence: Georg Zizka, ;
| |
Collapse
|
46
|
Lima DF, Goldenberg R, Forest F, Cowan RS, Lucas EJ. Phylogeny and biogeography of Myrcia sect. Aguava (Myrtaceae, Myrteae) based on phylogenomic and Sanger data provide evidence for a Cerrado origin and geographically structured clades. Mol Phylogenet Evol 2020; 157:107043. [PMID: 33346112 DOI: 10.1016/j.ympev.2020.107043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/18/2022]
Abstract
Myrcia is one of the largest exclusively Neotropical angiosperm genera, including ca. 800 species divided into nine sections. Myrcia sect. Aguava is one of most complex sections of Myrcia due to high morphological variation and wide distribution range of some species, including M. guianensis, with distribution throughout South America and a complex taxonomic history. We used complete plastid DNA sequences data generated using next-generation sequencing of 45 terminals, mostly from Myrcia sect. Aguava. These data were combined with five target DNA regions (ITS, psbA-trnH, trnL-trnF, trnQ-rps16, ndhF) of additional terminals to increase taxonomic coverage. Phylogenetic analyses were conducted using a maximum likelihood approach, and divergence times and ancestral range distributions were estimated. Myrcia sect. Aguava is monophyletic and exclusively comprises species with trilocular ovaries but has no relationship with other groups within Myrcia that possess trilocular ovaries. Three main lineages that correspond to geographical distribution are recognized within Myrcia sect. Aguava. Multiple accessions reveal a non-monophyletic Myrcia guianensis and stress the biogeographical structure inside the group. Myrcia sect. Aguava had a probable mid-Miocene origin in the Cerrado, but lineages that persisted there diversified only more recently, when the present-day vegetation started to stabilize. Posterior migrations to Atlantic Forest, Amazon and Caribbean occurred at the end of Miocene, evidencing transitions from open and dry to forested and more humid areas that are less frequent in the Neotropics. Overall, it is observed that related lineages remained in ecologically similar environments. Future perspectives on Myrcia and Myrteae in the phylogenomic era are also discussed.
Collapse
Affiliation(s)
- Duane F Lima
- Programa de Pós-Graduação em Biologia Vegetal, IB, Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil.
| | - Renato Goldenberg
- Departamento de Botânica, SCB, Universidade Federal do Paraná, 81531-970 Curitiba, PR, Brazil
| | - Félix Forest
- Jodrell Laboratory, Royal Botanic Gardens, Kew, TW9 3DS Richmond, Surrey, United Kingdom
| | - Robyn S Cowan
- Jodrell Laboratory, Royal Botanic Gardens, Kew, TW9 3DS Richmond, Surrey, United Kingdom
| | - Eve J Lucas
- Herbarium, Royal Botanic Gardens, Kew, TW9 3AB Richmond, Surrey, United Kingdom
| |
Collapse
|
47
|
Linan AG, Lowry PP, Miller AJ, Schatz GE, Sevathian JC, Edwards CE. RAD-sequencing reveals patterns of diversification and hybridization, and the accumulation of reproductive isolation in a clade of partially sympatric, tropical island trees. Mol Ecol 2020; 30:4520-4537. [PMID: 33210759 DOI: 10.1111/mec.15736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 12/31/2022]
Abstract
A common pattern observed in temperate tree clades is that species are often morphologically distinct and partially interfertile but maintain species cohesion despite ongoing hybridization where ranges overlap. Although closely related species commonly occur in sympatry in tropical ecosystems, little is known about patterns of hybridization within a clade over time, and the implications of this hybridization for the maintenance of species boundaries. In this study, we focused on a clade of sympatric trees in the genus Diospyros in the Mascarene islands and investigated whether species are genetically distinct, whether they hybridize, and how patterns of hybridization are related to the time since divergence among species. We sampled multiple populations from each of 12 Mascarene Diospyros species, generated genome-wide single nucleotide polymorphism data using 2bRADseq, and conducted population genomic and phylogenomic analyses. We found that Mascarene Diospyros species diverged millions of years ago and are today largely genetically distinct from one another. Although hybridization was observed between closely related species belonging to the same subclade, more distantly related species showed little evidence of interspecific hybridization. Phylogenomic analyses also suggested that introgression has occurred during the evolutionary history of the clade. This suggests that, as diversification progressed, interspecific hybridization occurred among species, but became infrequent as lineages diverged from one another and evolved reproductive barriers. Species now coexist in partial sympatry, and experience limited hybridization between close relatives. Additional research is needed to better understand the role that introgression may have played in adaptation and diversification of Mascarene Diospyros, and its relevance for conservation.
Collapse
Affiliation(s)
- Alexander G Linan
- Department of Biology, Saint Louis University, St. Louis, MO, USA.,Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, MO, USA
| | - Porter P Lowry
- Africa and Madagascar Program, Missouri Botanical Garden, St. Louis, MO, USA.,Institut de Systématique, Évolution et Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, École Pratique des Hautes Études, Université des Antilles, Paris, France
| | - Allison J Miller
- Department of Biology, Saint Louis University, St. Louis, MO, USA.,Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - George E Schatz
- Africa and Madagascar Program, Missouri Botanical Garden, St. Louis, MO, USA
| | - Jean-Claude Sevathian
- Botanist, Sustainability Consultant and Landscape Care and Maintenance Service, Beau Bassin-Rose Hill, Mauritius
| | - Christine E Edwards
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, MO, USA
| |
Collapse
|
48
|
Hou H, Ye H, Wang Z, Wu J, Gao Y, Han W, Na D, Sun G, Wang Y. Demographic history and genetic differentiation of an endemic and endangered Ulmus lamellosa (Ulmus). BMC PLANT BIOLOGY 2020; 20:526. [PMID: 33203402 PMCID: PMC7672979 DOI: 10.1186/s12870-020-02723-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 10/26/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Ulmus lamellosa (one of the ancient species of Ulmus) is an endemic and endangered plant that has undergone climatic oscillations and geographical changes. The elucidation of its demographic history and genetic differentiation is critical for understanding the evolutionary process and ecological adaption to forests in Northern China. RESULTS Polymorphic haplotypes were detected in most populations of U. lamellosa via DNA sequencing. All haplotypes were divided into three phylogeographic clades fundamentally corresponding to their geographical distribution, namely THM (Taihang Mountains), YM (Yinshan Mountains), and YSM (Yanshan Mountains) groups. The YSM group, which is regarded as ancestral, possessed higher genetic diversity and significant genetic variability in contrast to the YSM and YM groups. Meanwhile, the divergence time of intraspecies haplotypes occurred during the Miocene-Pliocene, which was associated with major Tertiary geological and/or climatic events. Different degrees of gene exchanges were identified between the three groups. During glaciation, the YSM and THM regions might have served as refugia for U. lamellosa. Based on ITS data, range expansion was not expected through evolutionary processes, except for the THM group. A series of mountain uplifts (e.g., Yanshan Mountains and Taihang Mountains) following the Miocene-Pliocene, and subsequently quaternary climatic oscillations in Northern China, further promoted divergence between U. lamellosa populations. CONCLUSIONS Geographical topology and climate change in Northern China played a critical role in establishing the current phylogeographic structural patterns of U. lamellosa. These results provide important data and clues that facilitate the demographic study of tree species in Northern China.
Collapse
Affiliation(s)
- Huimin Hou
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Hang Ye
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Zhi Wang
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Jiahui Wu
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Yue Gao
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Wei Han
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Dongchen Na
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Genlou Sun
- Saint Mary’s University, Halifax, Canada
| | - Yiling Wang
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| |
Collapse
|
49
|
Bolívar-Leguizamón SD, Silveira LF, Derryberry EP, Brumfield RT, Bravo GA. Phylogeography of the Variable Antshrike (Thamnophilus caerulescens), a South American passerine distributed along multiple environmental gradients. Mol Phylogenet Evol 2020; 148:106810. [DOI: 10.1016/j.ympev.2020.106810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/23/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
|
50
|
Genetic Structure and Pod Morphology of Inga edulis Cultivated vs. Wild Populations from the Peruvian Amazon. FORESTS 2020. [DOI: 10.3390/f11060655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research Highlights: This study assesses the genetic diversity and structure of the ice-cream-bean (Inga edulis Mart.; Fabaceae) in wild and cultivated populations from the Peruvian Amazon. This research also highlights the importance of protecting the biodiversity of the forest in the Peruvian Amazon, to preserve the genetic resources of species and allow further genetic improvement. Background and Objectives: Ice-cream-bean is one of the most commonly used species in the Amazon region for its fruits and for shading protection of other species (e.g., cocoa and coffee plantations). Comprehensive studies about the impact of domestication on this species’ genetic diversity are needed, to find the best conservation and improvement strategies. Materials and Methods: In the current study, the genetic structure and diversity were assessed by genotyping 259 trees, sampled in five wild and 22 cultivated I. edulis populations in the Peruvian Amazon, with microsatellite markers. Pod length was measured in wild and cultivated trees. Results: The average pod length in cultivated trees was significantly higher than that in wild trees. The expected genetic diversity and the average number of alleles was higher in the wild compared to the cultivated populations; thus, a loss of genetic diversity was confirmed in the cultivated populations. The cultivated trees in the Loreto region had the highest pod length and lowest allelic richness; nevertheless, the wild populations’ genetic structure was not clearly differentiated (significantly different) from that of the cultivated populations. Conclusions: A loss of genetic diversity was confirmed in the cultivated populations. The species could have been simultaneously domesticated in multiple locations, usually from local origin. The original I. edulis Amazonian germplasm should be maintained. Cultivated populations’ new germplasm influx from wild populations should be undertaken to increase genetic diversity.
Collapse
|