1
|
Nazarova M, Sexton T. The dance of promoters and enhancers in gene regulation: fast or slow, entwined or distant? J Mol Biol 2025:169223. [PMID: 40404008 DOI: 10.1016/j.jmb.2025.169223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/09/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025]
Abstract
Gene regulation involves a dynamic and precise choreography, with enhancers and promoters moving through the nuclear landscape in search of functional encounters. Advances in live-cell imaging have revealed that they do not follow universal rules, but instead explore their environment with peculiar specificity. Yet we are still far from understanding how this motion translates into transcriptional output. How do enhancers find and activate their target genes? Are these processes coordinated or independent? This review studies the evolving view of enhancer-promoter dynamics, focusing on the insights from cutting-edge imaging techniques and the challenges of capturing their fleeting movements in real time.
Collapse
Affiliation(s)
- Mariia Nazarova
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg 6704 Illkirch, France
| | - Tom Sexton
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg 6704 Illkirch, France.
| |
Collapse
|
2
|
Mader A, Rodriguez AI, Yuan T, Surovtsev I, King MC, Mochrie SGJ. Coarse-grained chromatin dynamics by tracking multiple similarly labeled gene loci. Biophys J 2025:S0006-3495(25)00287-5. [PMID: 40369871 DOI: 10.1016/j.bpj.2025.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/02/2025] [Accepted: 05/08/2025] [Indexed: 05/16/2025] Open
Abstract
The "holy grail" of chromatin research would be to follow the chromatin configuration in individual live cells over time. One way to achieve this goal would be to track the positions of multiple loci arranged along the chromatin polymer with fluorescent labels. Using distinguishable labels would define each locus uniquely in a microscopic image but would restrict the number of loci that could be observed simultaneously due to experimental limits to the number of distinguishable labels. Using the same label for all loci circumvents this limitation but requires a (currently lacking) framework for how to establish each observed locus identity, i.e., to which genomic position it corresponds. Here, we analyze theoretically, using simulations of Rouse model polymers, how single-particle tracking of multiple identically labeled loci enables the determination of loci identity. We show that the probability of correctly assigning observed loci to genomic positions converges exponentially to unity as the number of observed loci configurations increases. The convergence rate depends only weakly on the number of labeled loci, so that even large numbers of loci can be identified with high fidelity by tracking them across about eight independent chromatin configurations. In the case of two distinct labels that alternate along the chromatin polymer, we find that the probability of the correct assignment converges faster than for same-labeled loci, requiring observation of fewer independent chromatin configurations to establish loci identities. Finally, for a modified Rouse model polymer, which realizes a population of dynamic loops, we find that the success probability also converges to unity exponentially as the number of observed loci configurations increases, albeit slightly more slowly than for a classical Rouse model polymer. Altogether, these results establish particle tracking of multiple identically or alternately labeled loci over time as a feasible way to infer temporal dynamics of the coarse-grained configuration of the chromatin polymer in individual living cells.
Collapse
Affiliation(s)
- Alexander Mader
- Department of Physics, Yale University, New Haven, Connecticut
| | - Andrew I Rodriguez
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Tianyu Yuan
- Department of Physics, Yale University, New Haven, Connecticut; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut
| | - Ivan Surovtsev
- Department of Physics, Yale University, New Haven, Connecticut; Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Megan C King
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut; Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut
| | - Simon G J Mochrie
- Department of Physics, Yale University, New Haven, Connecticut; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut; Department of Applied Physics, Yale University, New Haven, Connecticut.
| |
Collapse
|
3
|
Maeshima K. The shifting paradigm of chromatin structure: from the 30-nm chromatin fiber to liquid-like organization. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025:pjab.101.020. [PMID: 40301047 DOI: 10.2183/pjab.101.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The organization and dynamics of chromatin are critical for genome functions such as transcription and DNA replication/repair. Historically, chromatin was assumed to fold into the 30-nm fiber and progressively arrange into larger helical structures, as described in the textbook model. However, over the past 15 years, extensive evidence including our studies has dramatically transformed the view of chromatin from a static, regular structure to one that is more variable and dynamic. In higher eukaryotic cells, chromatin forms condensed yet liquid-like domains, which appear to be the basic unit of chromatin structure, replacing the 30-nm fiber. These domains maintain proper accessibility, ensuring the regulation of DNA reaction processes. During mitosis, these domains assemble to form more gel-like mitotic chromosomes, which are further constrained by condensins and other factors. Based on the available evidence, I discuss the physical properties of chromatin in live cells, emphasizing its viscoelastic nature-balancing local fluidity with global stability to support genome functions.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, ROIS
- Graduate Institute for Advanced Studies, SOKENDAI
| |
Collapse
|
4
|
Fujishiro S, Sasai M, Maeshima K. Chromatin domains in the cell: Phase separation and condensation. Curr Opin Struct Biol 2025; 91:103006. [PMID: 39983411 DOI: 10.1016/j.sbi.2025.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/23/2025]
Abstract
Negatively charged genomic DNA wraps around positively charged core histone octamers to form nucleosomes, which, along with proteins and RNAs, self-organize into chromatin within the nucleus. In eukaryotic cells, chromatin forms loops that collapse into chromatin domains and serve as functional units of the genome. Chromatin domains vary in physical properties based on gene activity and are assembled into A (euchromatin) and B (heterochromatin) compartments. Since various factors-such as chromatin-binding proteins, histone modifications, transcriptional states, depletion attraction, and cations-can significantly impact chromatin organization, the formation processes of these hierarchical structures remain unclear. No single imaging, genomics, or modeling method can provide a complete picture of the process. Beautiful models can sometimes fool our thinking. In this short review, we critically discuss the formation mechanisms of the chromatin domain in the cell from a physical point of view, including phase separation and condensation.
Collapse
Affiliation(s)
- Shin Fujishiro
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, 606-8103, Japan.
| | - Masaki Sasai
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, 606-8103, Japan; Department of Complex Systems Science, Nagoya University, Nagoya, 464-8603, Japan.
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan; Graduate Institute for Advanced Studies (SOKENDAI), Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
5
|
Minami K, Nakazato K, Ide S, Kaizu K, Higashi K, Tamura S, Toyoda A, Takahashi K, Kurokawa K, Maeshima K. Replication-dependent histone labeling dissects the physical properties of euchromatin/heterochromatin in living human cells. SCIENCE ADVANCES 2025; 11:eadu8400. [PMID: 40153514 PMCID: PMC11952110 DOI: 10.1126/sciadv.adu8400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025]
Abstract
A string of nucleosomes, where genomic DNA is wrapped around histones, is organized in the cell as chromatin, ranging from euchromatin to heterochromatin, with distinct genome functions. Understanding physical differences between euchromatin and heterochromatin is crucial, yet specific labeling methods in living cells remain limited. Here, we have developed replication-dependent histone (Repli-Histo) labeling to mark nucleosomes in euchromatin and heterochromatin based on DNA replication timing. Using this approach, we investigated local nucleosome motion in the four known chromatin classes, from euchromatin to heterochromatin, of living human and mouse cells. The more euchromatic (earlier-replicated) and more heterochromatic (later-replicated) regions exhibit greater and lesser nucleosome motions, respectively. Notably, the motion profile in each chromatin class persists throughout interphase. Genome chromatin is essentially replicated from regions with greater nucleosome motions, although the replication timing is perturbed. Our findings, combined with computational modeling, suggest that earlier-replicated regions have more accessibility, and local chromatin motion can be a major determinant of genome-wide replication timing.
Collapse
Affiliation(s)
- Katsuhiko Minami
- Genome Dynamics Laboratory, National Institute of Genetics, ROIS, Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Kako Nakazato
- Genome Dynamics Laboratory, National Institute of Genetics, ROIS, Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Satoru Ide
- Genome Dynamics Laboratory, National Institute of Genetics, ROIS, Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Kazunari Kaizu
- Laboratory for Biologically Inspired Computing, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Cell Modeling and Simulation Group, The Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Koichi Higashi
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
- Genome Evolution Laboratory, National Institute of Genetics, ROIS, Mishima, Shizuoka 411-8540, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, ROIS, Mishima, Shizuoka 411-8540, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, ROIS, Mishima, Shizuoka 411-8540, Japan
| | - Koichi Takahashi
- Laboratory for Biologically Inspired Computing, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Ken Kurokawa
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
- Genome Evolution Laboratory, National Institute of Genetics, ROIS, Mishima, Shizuoka 411-8540, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, ROIS, Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
6
|
Uhlmann F. A unified model for cohesin function in sisterchromatid cohesion and chromatin loop formation. Mol Cell 2025; 85:1058-1071. [PMID: 40118039 DOI: 10.1016/j.molcel.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/12/2025] [Accepted: 02/06/2025] [Indexed: 03/23/2025]
Abstract
The ring-shaped cohesin complex topologically entraps two DNAs to establish sister chromatid cohesion. Cohesin also shapes the interphase chromatin landscape by forming DNA loops, which it is thought to achieve using an in vitro-observed loop extrusion mechanism. However, recent studies revealed that loop-extrusion-deficient cohesin retains its ability to form chromatin loops, suggesting a divergence of in vitro and in vivo loop formation. Instead of loop extrusion, we examine whether cohesin forms chromatin loops by a mechanism akin to sister chromatid cohesion establishment: sequential topological capture of two DNAs. We explore similarities and differences between the "loop capture" and the "loop extrusion" model, how they compare at explaining experimental observations, and how future approaches can delineate their possible respective contributions. We extend our DNA-DNA capture model for cohesin function to related structural maintenance of chromosomes (SMC) family members, condensin, the Smc5-Smc6 complex, and bacterial SMC complexes.
Collapse
Affiliation(s)
- Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
7
|
Tan ZY, Cai 蔡舒君 S, Paithankar SA, Liu T, Nie X, Shi J, Gan 甘露 L. Macromolecular and cytological changes in fission yeast G0 nuclei. J Cell Sci 2025; 138:jcs263654. [PMID: 40013339 DOI: 10.1242/jcs.263654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
When starved of nitrogen, cells of the fission yeast Schizosaccharomyces pombe enter a quiescent 'G0' state with smaller nuclei and transcriptional repression. The genomics of S. pombe G0 cells has been well studied, but much of its nuclear cell biology remains unknown. Here, we use confocal microscopy, immunoblots and electron cryotomography to investigate the cytological, biochemical and ultrastructural differences between S. pombe proliferating, G1-arrested and G0 cell nuclei, with an emphasis on the histone acetylation, RNA polymerase II fates and macromolecular complex packing. Compared to proliferating cells, G0 cells have lower levels of histone acetylation, nuclear RNA polymerase II and active transcription. The G0 nucleus has similar macromolecular crowding yet fewer chromatin-associated multi-megadalton globular complexes. Induced histone hyperacetylation during nitrogen starvation results in cells that have larger nuclei and therefore chromatin that is less compact. However, these histone-hyperacetylated cells remain transcriptionally repressed with similar nuclear crowding. Canonical nucleosomes - those that resemble the crystal structure - are rare in proliferating, G1-arrested and G0 cells. Our study therefore shows that extreme changes in nucleus physiology are possible without extreme reorganization at the macromolecular level.
Collapse
Affiliation(s)
- Zhi Yang Tan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Shujun Cai 蔡舒君
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Saayli A Paithankar
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Tingsheng Liu
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Xin Nie
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Lu Gan 甘露
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| |
Collapse
|
8
|
Mader A, Rodriguez AI, Yuan T, Surovtsev I, King MC, Mochrie SGJ. Coarse-grained chromatin dynamics by tracking multiple similarly labeled gene loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640402. [PMID: 40060506 PMCID: PMC11888427 DOI: 10.1101/2025.02.27.640402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
The "holy grail" of chromatin research would be to follow the chromatin configuration in individual live cells over time. One way to achieve this goal would be to track the positions of multiple loci arranged along the chromatin polymer with fluorescent labels. Use of distinguishable labels would define each locus uniquely in a microscopic image but would restrict the number of loci that could be observed simultaneously, because of experimental limits to the number of distinguishable labels. Use of the same label for all loci circumvents this limitation but requires a (currently lacking) framework for how to establish each observed locus identity, i.e. to which genomic position it corresponds. Here we analyze theoretically, using simulations of Rouse-model polymers, how single-particle-tracking of multiple identically-labeled loci enables determination of loci identity. We show that the probability of correctly assigning observed loci to genomic positions converges exponentially to unity as the number of observed loci configurations increases. The convergence rate depends only weakly on the number of labeled loci, so that even large numbers of loci can be identified with high fidelity by tracking them across about 8 independent chromatin configurations. In the case of two distinct labels that alternate along the chromatin polymer, we find that the probability of the correct assignment converges faster than for same-labeled loci, requiring observation of fewer independent chromatin configurations to establish loci identities. Finally, for a modified Rouse-model polymer, that realizes a population of dynamic loops, we find that the success probability also converges to unity exponentially as the number of observed loci configurations increases, albeit slightly more slowly than for a classical Rouse model polymer. Altogether, these results establish particle tracking of multiple identically- or alternately-labeled loci over time as a feasible way to infer temporal dynamics of the coarse-grained configuration of the chromatin polymer in individual living cells.
Collapse
Affiliation(s)
- Alexander Mader
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Andrew I. Rodriguez
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Tianyu Yuan
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Ivan Surovtsev
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Megan C. King
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Simon G. J. Mochrie
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
9
|
Maarouf A, Iqbal F, Sanaullah S, Locatelli M, Atanasiu AT, Kolbin D, Hommais C, Mühlemann JK, Bonin K, Bloom K, Liu J, Vidi PA. RAD51 regulates eukaryotic chromatin motions in the absence of DNA damage. Mol Biol Cell 2024; 35:ar136. [PMID: 39292916 PMCID: PMC11617103 DOI: 10.1091/mbc.e24-04-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
In yeasts and higher eukaryotes, chromatin motions may be tuned to genomic functions, with transcriptional activation and the DNA damage response both leading to profound changes in chromatin dynamics. The RAD51 recombinase is a key mediator of chromatin mobility following DNA damage. As functions of RAD51 beyond DNA repair are being discovered, we asked whether RAD51 modulates chromatin dynamics in the absence of DNA damage and found that inhibition or depletion of RAD51 alters chromatin motions in undamaged cells. Inhibition of RAD51 increased nucleosome clustering. Predictions from polymer models are that chromatin clusters reduce chain mobility and, indeed, we measured reduced motion of individual chromatin loci in cells treated with a RAD51 inhibitor. This effect was conserved in mammalian cells, yeasts, and plant cells. In contrast, RAD51 depletion or inhibition increased global chromatin motions at the microscale. The results uncover a role for RAD51 in regulating local and global chromatin dynamics independently from DNA damage and highlight the importance of considering different physical scales when studying chromatin dynamics.
Collapse
Affiliation(s)
- Amine Maarouf
- Institut de Cancérologie de l'Ouest, Angers F-49055, France
| | - Fadil Iqbal
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202
| | - Sarvath Sanaullah
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Maëlle Locatelli
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Andrew T. Atanasiu
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Daniel Kolbin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Chloé Hommais
- Institut de Cancérologie de l'Ouest, Angers F-49055, France
| | - Joëlle K. Mühlemann
- Climate Resilient Crop Production Laboratory, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit (KU) Leuven, Leuven 3000, Belgium
| | - Keith Bonin
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jing Liu
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907
| | - Pierre-Alexandre Vidi
- Institut de Cancérologie de l'Ouest, Angers F-49055, France
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
10
|
Ritter C, Lee JY, Pham MT, Pabba MK, Cardoso MC, Bartenschlager R, Rohr K. Multi-detector fusion and Bayesian smoothing for tracking viral and chromatin structures. Med Image Anal 2024; 97:103227. [PMID: 38897031 DOI: 10.1016/j.media.2024.103227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/15/2023] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Automatic tracking of viral and intracellular structures displayed as spots with varying sizes in fluorescence microscopy images is an important task to quantify cellular processes. We propose a novel probabilistic tracking approach for multiple particle tracking based on multi-detector and multi-scale data fusion as well as Bayesian smoothing. The approach integrates results from multiple detectors using a novel intensity-based covariance intersection method which takes into account information about the image intensities, positions, and uncertainties. The method ensures a consistent estimate of multiple fused particle detections and does not require an optimization step. Our probabilistic tracking approach performs data fusion of detections from classical and deep learning methods as well as exploits single-scale and multi-scale detections. In addition, we use Bayesian smoothing to fuse information of predictions from both past and future time points. We evaluated our approach using image data of the Particle Tracking Challenge and achieved state-of-the-art results or outperformed previous methods. Our method was also assessed on challenging live cell fluorescence microscopy image data of viral and cellular proteins expressed in hepatitis C virus-infected cells and chromatin structures in non-infected cells, acquired at different spatial-temporal resolutions. We found that the proposed approach outperforms existing methods.
Collapse
Affiliation(s)
- C Ritter
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, Germany.
| | - J-Y Lee
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, Heidelberg, Germany; German Center for Infection Research (DZIF), Heidelberg Partner Site, Germany
| | - M-T Pham
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, Heidelberg, Germany; German Center for Infection Research (DZIF), Heidelberg Partner Site, Germany
| | - M K Pabba
- Department of Biology, Cell Biology and Epigenetics, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany
| | - M C Cardoso
- Department of Biology, Cell Biology and Epigenetics, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany
| | - R Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, Heidelberg, Germany; German Center for Infection Research (DZIF), Heidelberg Partner Site, Germany
| | - K Rohr
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, Germany.
| |
Collapse
|
11
|
Li J, Xiong N, West K, Leung M, Ching Y, Huang J, Yuan J, Yu CH, Leung J, Huen M. Nuclear F-actin assembly on damaged chromatin is regulated by DYRK1A and Spir1 phosphorylation. Nucleic Acids Res 2024; 52:8897-8912. [PMID: 38966995 PMCID: PMC11347173 DOI: 10.1093/nar/gkae574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Nuclear actin-based movements support DNA double-strand break (DSB) repair. However, molecular determinants that promote filamentous actin (F-actin) formation on the damaged chromatin remain undefined. Here we describe the DYRK1A kinase as a nuclear activity that promotes local F-actin assembly to support DSB mobility and repair, accomplished in part by its targeting of actin nucleator spire homolog 1 (Spir1). Indeed, perturbing DYRK1A-dependent phosphorylation of S482 mis-regulated Spir1 accumulation at damaged-modified chromatin, and led to compromised DSB-associated actin polymerization and attenuated DNA repair. Our findings uncover a role of the DYRK1A-Spir1 axis in nuclear actin dynamics during early DSB responses, and highlight the intricate details of nuclear cytoskeletal network in DSB repair and genome stability maintenance.
Collapse
Affiliation(s)
- Junshi Li
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, S.A.R
| | - Nan Xiong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, S.A.R
| | - Kirk L West
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Manton Leung
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
| | - Yick Pang Ching
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jian Yuan
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Cheng-Han Yu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
| | - Justin Leung
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, S.A.R
| |
Collapse
|
12
|
Pabba MK, Meyer J, Celikay K, Schermelleh L, Rohr K, Cardoso MC. DNA choreography: correlating mobility and organization of DNA across different resolutions from loops to chromosomes. Histochem Cell Biol 2024; 162:109-131. [PMID: 38758428 PMCID: PMC11227476 DOI: 10.1007/s00418-024-02285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/18/2024]
Abstract
The dynamics of DNA in the cell nucleus plays a role in cellular processes and fates but the interplay of DNA mobility with the hierarchical levels of DNA organization is still underexplored. Here, we made use of DNA replication to directly label genomic DNA in an unbiased genome-wide manner. This was followed by live-cell time-lapse microscopy of the labeled DNA combining imaging at different resolutions levels simultaneously and allowing one to trace DNA motion across organization levels within the same cells. Quantification of the labeled DNA segments at different microscopic resolution levels revealed sizes comparable to the ones reported for DNA loops using 3D super-resolution microscopy, topologically associated domains (TAD) using 3D widefield microscopy, and also entire chromosomes. By employing advanced chromatin tracking and image registration, we discovered that DNA exhibited higher mobility at the individual loop level compared to the TAD level and even less at the chromosome level. Additionally, our findings indicate that chromatin movement, regardless of the resolution, slowed down during the S phase of the cell cycle compared to the G1/G2 phases. Furthermore, we found that a fraction of DNA loops and TADs exhibited directed movement with the majority depicting constrained movement. Our data also indicated spatial mobility differences with DNA loops and TADs at the nuclear periphery and the nuclear interior exhibiting lower velocity and radius of gyration than the intermediate locations. On the basis of these insights, we propose that there is a link between DNA mobility and its organizational structure including spatial distribution, which impacts cellular processes.
Collapse
Affiliation(s)
- Maruthi K Pabba
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Janis Meyer
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Heidelberg, Germany
| | - Kerem Celikay
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Heidelberg, Germany
| | | | - Karl Rohr
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Heidelberg, Germany.
| | - M Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
13
|
Korabel N, Warmenhoven JW, Henthorn NT, Ingram S, Fedotov S, Heaven CJ, Kirkby KJ, Taylor MJ, Merchant MJ. Modelling Heterogeneous Anomalous Dynamics of Radiation-Induced Double-Strand Breaks in DNA during Non-Homologous End-Joining Pathway. ENTROPY (BASEL, SWITZERLAND) 2024; 26:502. [PMID: 38920510 PMCID: PMC11202905 DOI: 10.3390/e26060502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
The process of end-joining during nonhomologous repair of DNA double-strand breaks (DSBs) after radiation damage is considered. Experimental evidence has revealed that the dynamics of DSB ends exhibit subdiffusive motion rather than simple diffusion with rare directional movement. Traditional models often overlook the rare long-range directed motion. To address this limitation, we present a heterogeneous anomalous diffusion model consisting of subdiffusive fractional Brownian motion interchanged with short periods of long-range movement. Our model sheds light on the underlying mechanisms of heterogeneous diffusion in DSB repair and could be used to quantify the DSB dynamics on a time scale inaccessible to single particle tracking analysis. The model predicts that the long-range movement of DSB ends is responsible for the misrepair of DSBs in the form of dicentric chromosome lesions.
Collapse
Affiliation(s)
- Nickolay Korabel
- Department of Mathematics, The University of Manchester, Manchester M13 9PL, UK;
| | - John W. Warmenhoven
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (J.W.W.); (N.T.H.); (S.I.); (C.J.H.); (K.J.K.); (M.J.T.); (M.J.M.)
- The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Nicholas T. Henthorn
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (J.W.W.); (N.T.H.); (S.I.); (C.J.H.); (K.J.K.); (M.J.T.); (M.J.M.)
- The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Samuel Ingram
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (J.W.W.); (N.T.H.); (S.I.); (C.J.H.); (K.J.K.); (M.J.T.); (M.J.M.)
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Sergei Fedotov
- Department of Mathematics, The University of Manchester, Manchester M13 9PL, UK;
| | - Charlotte J. Heaven
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (J.W.W.); (N.T.H.); (S.I.); (C.J.H.); (K.J.K.); (M.J.T.); (M.J.M.)
- The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Karen J. Kirkby
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (J.W.W.); (N.T.H.); (S.I.); (C.J.H.); (K.J.K.); (M.J.T.); (M.J.M.)
- The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Michael J. Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (J.W.W.); (N.T.H.); (S.I.); (C.J.H.); (K.J.K.); (M.J.T.); (M.J.M.)
- The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Michael J. Merchant
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (J.W.W.); (N.T.H.); (S.I.); (C.J.H.); (K.J.K.); (M.J.T.); (M.J.M.)
- The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| |
Collapse
|
14
|
Doležalová A, Beránková D, Koláčková V, Hřibová E. Insight into chromatin compaction and spatial organization in rice interphase nuclei. FRONTIERS IN PLANT SCIENCE 2024; 15:1358760. [PMID: 38863533 PMCID: PMC11165205 DOI: 10.3389/fpls.2024.1358760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Chromatin organization and its interactions are essential for biological processes, such as DNA repair, transcription, and DNA replication. Detailed cytogenetics data on chromatin conformation, and the arrangement and mutual positioning of chromosome territories in interphase nuclei are still widely missing in plants. In this study, level of chromatin condensation in interphase nuclei of rice (Oryza sativa) and the distribution of chromosome territories (CTs) were analyzed. Super-resolution, stimulated emission depletion (STED) microscopy showed different levels of chromatin condensation in leaf and root interphase nuclei. 3D immuno-FISH experiments with painting probes specific to chromosomes 9 and 2 were conducted to investigate their spatial distribution in root and leaf nuclei. Six different configurations of chromosome territories, including their complete association, weak association, and complete separation, were observed in root meristematic nuclei, and four configurations were observed in leaf nuclei. The volume of CTs and frequency of their association varied between the tissue types. The frequency of association of CTs specific to chromosome 9, containing NOR region, is also affected by the activity of the 45S rDNA locus. Our data suggested that the arrangement of chromosomes in the nucleus is connected with the position and the size of the nucleolus.
Collapse
Affiliation(s)
| | | | | | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Science, Centre of Plants Structural and Functional Genomics, Olomouc, Czechia
| |
Collapse
|
15
|
Meschichi A, Rosa S. Plant chromatin on the move: an overview of chromatin mobility during transcription and DNA repair. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:953-962. [PMID: 36811211 DOI: 10.1111/tpj.16159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
It has become increasingly clear in recent years that chromosomes are highly dynamic entities. Chromatin mobility and re-arrangement are involved in many biological processes, including gene regulation and the maintenance of genome stability. Despite extensive studies on chromatin mobility in yeast and animal systems, up until recently, not much had been investigated at this level in plants. For plants to achieve proper growth and development, they need to respond rapidly and appropriately to environmental stimuli. Therefore, understanding how chromatin mobility can support plant responses may offer profound insights into the functioning of plant genomes. In this review, we discuss the state of the art related to chromatin mobility in plants, including the available technologies for their role in various cellular processes.
Collapse
Affiliation(s)
- Anis Meschichi
- Plant Biology Department, Swedish University of Agricultural Sciences (SLU), Almas Allé 5, Uppsala, Sweden
| | - Stefanie Rosa
- Plant Biology Department, Swedish University of Agricultural Sciences (SLU), Almas Allé 5, Uppsala, Sweden
| |
Collapse
|
16
|
Pabba MK, Ritter C, Chagin VO, Meyer J, Celikay K, Stear JH, Loerke D, Kolobynina K, Prorok P, Schmid AK, Leonhardt H, Rohr K, Cardoso MC. Replisome loading reduces chromatin motion independent of DNA synthesis. eLife 2023; 12:RP87572. [PMID: 37906089 PMCID: PMC10617993 DOI: 10.7554/elife.87572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Chromatin has been shown to undergo diffusional motion, which is affected during gene transcription by RNA polymerase activity. However, the relationship between chromatin mobility and other genomic processes remains unclear. Hence, we set out to label the DNA directly in a sequence unbiased manner and followed labeled chromatin dynamics in interphase human cells expressing GFP-tagged proliferating cell nuclear antigen (PCNA), a cell cycle marker and core component of the DNA replication machinery. We detected decreased chromatin mobility during the S-phase compared to G1 and G2 phases in tumor as well as normal diploid cells using automated particle tracking. To gain insight into the dynamical organization of the genome during DNA replication, we determined labeled chromatin domain sizes and analyzed their motion in replicating cells. By correlating chromatin mobility proximal to the active sites of DNA synthesis, we showed that chromatin motion was locally constrained at the sites of DNA replication. Furthermore, inhibiting DNA synthesis led to increased loading of DNA polymerases. This was accompanied by accumulation of the single-stranded DNA binding protein on the chromatin and activation of DNA helicases further restricting local chromatin motion. We, therefore, propose that it is the loading of replisomes but not their catalytic activity that reduces the dynamics of replicating chromatin segments in the S-phase as well as their accessibility and probability of interactions with other genomic regions.
Collapse
Affiliation(s)
| | - Christian Ritter
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg UniversityHeidelbergGermany
| | - Vadim O Chagin
- Department of Biology, Technical University of DarmstadtDarmstadtGermany
- Institute of Cytology RASSt. PetersburgRussian Federation
| | - Janis Meyer
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg UniversityHeidelbergGermany
| | - Kerem Celikay
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg UniversityHeidelbergGermany
| | - Jeffrey H Stear
- EMBL Australia Node in Single Molecule Science, University of New South WalesSydneyAustralia
| | - Dinah Loerke
- Department of Physics & Astronomy, University of DenverDenverUnited States
| | - Ksenia Kolobynina
- Department of Biology, Technical University of DarmstadtDarmstadtGermany
| | - Paulina Prorok
- Department of Biology, Technical University of DarmstadtDarmstadtGermany
| | - Alice Kristin Schmid
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg UniversityHeidelbergGermany
| | | | - Karl Rohr
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg UniversityHeidelbergGermany
| | - M Cristina Cardoso
- Department of Biology, Technical University of DarmstadtDarmstadtGermany
| |
Collapse
|
17
|
Sexton T, Platania A, Erb C, Barbieri M, Molcrette B, Grandgirard E, de Kort M, Meabum K, Taylor T, Shchuka V, Kocanova S, Oliveira G, Mitchell J, Soutoglou E, Lenstra T, Molina N, Papantonis A, Bystricky K. Competition between transcription and loop extrusion modulates promoter and enhancer dynamics. RESEARCH SQUARE 2023:rs.3.rs-3164817. [PMID: 37645793 PMCID: PMC10462181 DOI: 10.21203/rs.3.rs-3164817/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The spatiotemporal configuration of genes with distal regulatory elements, and the impact of chromatin mobility on transcription, remain unclear. Loop extrusion is an attractive model for bringing genetic elements together, but how this functionally interacts with transcription is also largely unknown. We combine live tracking of genomic loci and nascent transcripts with molecular dynamics simulations to assess the spatiotemporal arrangement of the Sox2 gene and its enhancer, in response to a battery of perturbations. We find a close link between chromatin mobility and transcriptional status: active elements display more constrained mobility, consistent with confinement within specialized nuclear sites, and alterations in enhancer mobility distinguish poised from transcribing alleles. Strikingly, we find that whereas loop extrusion and transcription factor-mediated clustering contribute to promoter-enhancer proximity, they have antagonistic effects on chromatin dynamics. This provides an experimental framework for the underappreciated role of chromatin dynamics in genome regulation.
Collapse
Affiliation(s)
- Tom Sexton
- IGBMC (Institute of Genetics and Molecular and Cellular Biology)
| | | | - Cathie Erb
- IGBMC (Institute of Genetics and Molecular and Cellular Biology)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Nacho Molina
- IGBMC (Institute of Genetics and Molecular and Cellular Biology)
| | | | | |
Collapse
|
18
|
Uezu S, Yamamoto T, Oide M, Takayama Y, Okajima K, Kobayashi A, Yamamoto M, Nakasako M. Ultrastructure and fractal property of chromosomes in close-to-native yeast nuclei visualized using X-ray laser diffraction. Sci Rep 2023; 13:10802. [PMID: 37407674 PMCID: PMC10322978 DOI: 10.1038/s41598-023-37733-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Genome compaction and activity in the nucleus depend on spatiotemporal changes in the organization of chromatins in chromosomes. However, the direct imaging of the chromosome structures in the nuclei has been difficult and challenging. Herein, we directly visualized the structure of chromosomes in frozen-hydrated nuclei of budding yeast in the interphase using X-ray laser diffraction. The reconstructed projection electron density maps revealed inhomogeneous distributions of chromosomes, such as a 300 nm assembly and fibrous substructures in the elliptic-circular shaped nuclei of approximately 800 nm. In addition, from the diffraction patterns, we confirmed the absence of regular arrangements of chromosomes and chromatins with 400-20 nm spacing, and demonstrated that chromosomes were composed of self-similarly assembled substructural domains with an average radius of gyration of 58 nm and smooth surfaces. Based on these analyses, we constructed putative models to discuss the organization of 16 chromosomes, carrying DNA of 4.1 mm in 800 nm ellipsoid of the nucleus at the interphase. We anticipate the structural parameters on the fractal property of chromosomes and the experimental images to be a starting point for constructing more sophisticated 3D structural models of the nucleus.
Collapse
Affiliation(s)
- So Uezu
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa, 223-8522, Japan
- RIKEN, Spring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayogun, Hyogo, 679-5148, Japan
| | - Takahiro Yamamoto
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa, 223-8522, Japan
- RIKEN, Spring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayogun, Hyogo, 679-5148, Japan
| | - Mao Oide
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa, 223-8522, Japan
- RIKEN, Spring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayogun, Hyogo, 679-5148, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-Ku, Tokyo, 102-0076, Japan
| | - Yuki Takayama
- RIKEN, Spring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayogun, Hyogo, 679-5148, Japan
- Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori-Cho, Ako-Gun, Hyogo, 678-1297, Japan
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai, 980-8577, Japan
- CRESTO, Japan Science and Technology Agency, Chiyoda-Ku, Tokyo, 102-0076, Japan
| | - Koji Okajima
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa, 223-8522, Japan
- RIKEN, Spring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayogun, Hyogo, 679-5148, Japan
| | - Amane Kobayashi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa, 223-8522, Japan
- RIKEN, Spring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayogun, Hyogo, 679-5148, Japan
| | - Masaki Yamamoto
- RIKEN, Spring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayogun, Hyogo, 679-5148, Japan
| | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa, 223-8522, Japan.
- RIKEN, Spring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayogun, Hyogo, 679-5148, Japan.
| |
Collapse
|
19
|
van Staalduinen J, van Staveren T, Grosveld F, Wendt KS. Live-cell imaging of chromatin contacts opens a new window into chromatin dynamics. Epigenetics Chromatin 2023; 16:27. [PMID: 37349773 PMCID: PMC10288748 DOI: 10.1186/s13072-023-00503-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Our understanding of the organization of the chromatin fiber within the cell nucleus has made great progress in the last few years. High-resolution techniques based on next-generation sequencing as well as optical imaging that can investigate chromatin conformations down to the single cell level have revealed that chromatin structure is highly heterogeneous at the level of the individual allele. While TAD boundaries and enhancer-promoter pairs emerge as hotspots of 3D proximity, the spatiotemporal dynamics of these different types of chromatin contacts remain largely unexplored. Investigation of chromatin contacts in live single cells is necessary to close this knowledge gap and further enhance the current models of 3D genome organization and enhancer-promoter communication. In this review, we first discuss the potential of single locus labeling to study architectural and enhancer-promoter contacts and provide an overview of the available single locus labeling techniques such as FROS, TALE, CRISPR-dCas9 and ANCHOR, and discuss the latest developments and applications of these systems.
Collapse
Affiliation(s)
- Jente van Staalduinen
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Thomas van Staveren
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands.
| |
Collapse
|
20
|
Santana-Sosa S, Matos-Perdomo E, Ayra-Plasencia J, Machín F. A Yeast Mitotic Tale for the Nucleus and the Vacuoles to Embrace. Int J Mol Sci 2023; 24:9829. [PMID: 37372977 DOI: 10.3390/ijms24129829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The morphology of the nucleus is roughly spherical in most eukaryotic cells. However, this organelle shape needs to change as the cell travels through narrow intercellular spaces during cell migration and during cell division in organisms that undergo closed mitosis, i.e., without dismantling the nuclear envelope, such as yeast. In addition, the nuclear morphology is often modified under stress and in pathological conditions, being a hallmark of cancer and senescent cells. Thus, understanding nuclear morphological dynamics is of uttermost importance, as pathways and proteins involved in nuclear shaping can be targeted in anticancer, antiaging, and antifungal therapies. Here, we review how and why the nuclear shape changes during mitotic blocks in yeast, introducing novel data that associate these changes with both the nucleolus and the vacuole. Altogether, these findings suggest a close relationship between the nucleolar domain of the nucleus and the autophagic organelle, which we also discuss here. Encouragingly, recent evidence in tumor cell lines has linked aberrant nuclear morphology to defects in lysosomal function.
Collapse
Affiliation(s)
- Silvia Santana-Sosa
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Emiliano Matos-Perdomo
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Jessel Ayra-Plasencia
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Félix Machín
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
- Faculty of Health Sciences, Fernando Pessoa Canarias University, 35450 Santa María de Guía, Spain
| |
Collapse
|
21
|
Pradhan S, Apaydin S, Bucevičius J, Gerasimaitė R, Kostiuk G, Lukinavičius G. Sequence-specific DNA labelling for fluorescence microscopy. Biosens Bioelectron 2023; 230:115256. [PMID: 36989663 DOI: 10.1016/j.bios.2023.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
The preservation of nucleus structure during microscopy imaging is a top priority for understanding chromatin organization, genome dynamics, and gene expression regulation. In this review, we summarize the sequence-specific DNA labelling methods that can be used for imaging in fixed and/or living cells without harsh treatment and DNA denaturation: (i) hairpin polyamides, (ii) triplex-forming oligonucleotides, (iii) dCas9 proteins, (iv) transcription activator-like effectors (TALEs) and (v) DNA methyltransferases (MTases). All these techniques are capable of identifying repetitive DNA loci and robust probes are available for telomeres and centromeres, but visualizing single-copy sequences is still challenging. In our futuristic vision, we see gradual replacement of the historically important fluorescence in situ hybridization (FISH) by less invasive and non-destructive methods compatible with live cell imaging. Combined with super-resolution fluorescence microscopy, these methods will open the possibility to look into unperturbed structure and dynamics of chromatin in living cells, tissues and whole organisms.
Collapse
|
22
|
Platania A, Erb C, Barbieri M, Molcrette B, Grandgirard E, de Kort MAC, Meaburn K, Taylor T, Shchuka VM, Kocanova S, Oliveira GM, Mitchell JA, Soutoglou E, Lenstra TL, Molina N, Papantonis A, Bystricky K, Sexton T. Competition between transcription and loop extrusion modulates promoter and enhancer dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538222. [PMID: 37162887 PMCID: PMC10168261 DOI: 10.1101/2023.04.25.538222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The spatiotemporal configuration of genes with distal regulatory elements, and the impact of chromatin mobility on transcription, remain unclear. Loop extrusion is an attractive model for bringing genetic elements together, but how this functionally interacts with transcription is also largely unknown. We combine live tracking of genomic loci and nascent transcripts with molecular dynamics simulations to assess the 4D arrangement of the Sox2 gene and its enhancer, in response to a battery of perturbations. We find that alterations in chromatin mobility, not promoter-enhancer distance, is more informative about transcriptional status. Active elements display more constrained mobility, consistent with confinement within specialized nuclear sites, and alterations in enhancer mobility distinguish poised from transcribing alleles. Strikingly, we find that whereas loop extrusion and transcription factor-mediated clustering contribute to promoter-enhancer proximity, they have antagonistic effects on chromatin dynamics. This provides an experimental framework for the underappreciated role of chromatin dynamics in genome regulation.
Collapse
Affiliation(s)
- Angeliki Platania
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Cathie Erb
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Mariano Barbieri
- Translational Epigenetics Group, Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Bastien Molcrette
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Erwan Grandgirard
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Marit AC de Kort
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Karen Meaburn
- Genome Damage and Stability Centre, Sussex University, School of Life Sciences, University of Sussex, Brighton, UK
| | - Tiegh Taylor
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Virlana M Shchuka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Silvia Kocanova
- Molecular Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI) University of Toulouse Paul Sabatier, CNRS, 31062 Toulouse, France
| | - Guilherme Monteiro Oliveira
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Evi Soutoglou
- Genome Damage and Stability Centre, Sussex University, School of Life Sciences, University of Sussex, Brighton, UK
| | - Tineke L Lenstra
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Nacho Molina
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Argyris Papantonis
- Translational Epigenetics Group, Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Kerstin Bystricky
- Molecular Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI) University of Toulouse Paul Sabatier, CNRS, 31062 Toulouse, France
- Institut Universitaire de France (IUF)
| | - Tom Sexton
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| |
Collapse
|
23
|
Cosma MP, Neguembor MV. The magic of unraveling genome architecture and function. Cell Rep 2023; 42:112361. [PMID: 37059093 DOI: 10.1016/j.celrep.2023.112361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Over the last decades, technological breakthroughs in super-resolution microscopy have allowed us to reach molecular resolution and design experiments of unprecedented complexity. Investigating how chromatin is folded in 3D, from the nucleosome level up to the entire genome, is becoming possible by "magic" (imaging genomic), i.e., the combination of imaging and genomic approaches. This offers endless opportunities to delve into the relationship between genome structure and function. Here, we review recently achieved objectives and the conceptual and technical challenges the field of genome architecture is currently undertaking. We discuss what we have learned so far and where we are heading. We elucidate how the different super-resolution microscopy approaches and, more specifically, live-cell imaging have contributed to the understanding of genome folding. Moreover, we discuss how future technical developments could address remaining open questions.
Collapse
Affiliation(s)
- Maria Pia Cosma
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, 510080 Guangzhou, China; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.
| |
Collapse
|
24
|
Weiβ M, Chanou A, Schauer T, Tvardovskiy A, Meiser S, König AC, Schmidt T, Kruse E, Ummethum H, Trauner M, Werner M, Lalonde M, Hauck SM, Scialdone A, Hamperl S. Single-copy locus proteomics of early- and late-firing DNA replication origins identifies a role of Ask1/DASH complex in replication timing control. Cell Rep 2023; 42:112045. [PMID: 36701236 PMCID: PMC9989823 DOI: 10.1016/j.celrep.2023.112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/28/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
The chromatin environment at origins of replication is thought to influence DNA replication initiation in eukaryotic genomes. However, it remains unclear how and which chromatin features control the firing of early-efficient (EE) or late-inefficient (LI) origins. Here, we use site-specific recombination and single-locus chromatin isolation to purify EE and LI replication origins in Saccharomyces cerevisiae. Using mass spectrometry, we define the protein composition of native chromatin regions surrounding the EE and LI replication start sites. In addition to known origin interactors, we find the microtubule-binding Ask1/DASH complex as an origin-regulating factor. Strikingly, tethering of Ask1 to individual origin sites advances replication timing (RT) of the targeted chromosomal domain. Targeted degradation of Ask1 globally changes RT of a subset of origins, which can be reproduced by inhibiting microtubule dynamics. Thus, our findings mechanistically connect RT and chromosomal organization via Ask1/DASH with the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Matthias Weiβ
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Anna Chanou
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Tamas Schauer
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Andrey Tvardovskiy
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Stefan Meiser
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Ann-Christine König
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Center for Environmental Health, Heidemannstrasse 1, 80939 München, Germany
| | - Tobias Schmidt
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Elisabeth Kruse
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Henning Ummethum
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Manuel Trauner
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Marcel Werner
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Maxime Lalonde
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Center for Environmental Health, Heidemannstrasse 1, 80939 München, Germany
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Stephan Hamperl
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany.
| |
Collapse
|
25
|
González L, Kolbin D, Trahan C, Jeronimo C, Robert F, Oeffinger M, Bloom K, Michnick SW. Adaptive partitioning of a gene locus to the nuclear envelope in Saccharomyces cerevisiae is driven by polymer-polymer phase separation. Nat Commun 2023; 14:1135. [PMID: 36854718 PMCID: PMC9975218 DOI: 10.1038/s41467-023-36391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/30/2023] [Indexed: 03/03/2023] Open
Abstract
Partitioning of active gene loci to the nuclear envelope (NE) is a mechanism by which organisms increase the speed of adaptation and metabolic robustness to fluctuating resources in the environment. In the yeast Saccharomyces cerevisiae, adaptation to nutrient depletion or other stresses, manifests as relocalization of active gene loci from nucleoplasm to the NE, resulting in more efficient transport and translation of mRNA. The mechanism by which this partitioning occurs remains a mystery. Here, we demonstrate that the yeast inositol depletion-responsive gene locus INO1 partitions to the nuclear envelope, driven by local histone acetylation-induced polymer-polymer phase separation from the nucleoplasmic phase. This demixing is consistent with recent evidence for chromatin phase separation by acetylation-mediated dissolution of multivalent histone association and fits a physical model where increased bending stiffness of acetylated chromatin polymer causes its phase separation from de-acetylated chromatin. Increased chromatin spring stiffness could explain nucleation of transcriptional machinery at active gene loci.
Collapse
Affiliation(s)
- Lidice González
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Daniel Kolbin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christian Trahan
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, H3A 1A3, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Marlene Oeffinger
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC, H3C 3J7, Canada
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephen W Michnick
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
26
|
Illuminating the Live-Cell Dynamics of Hepatitis B Virus Covalently Closed Circular DNA Using the CRISPR-Tag System. mBio 2023; 14:e0355022. [PMID: 36840581 PMCID: PMC10128046 DOI: 10.1128/mbio.03550-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is the major obstacle to curing chronic hepatitis B (CHB). Current cccDNA detection methods are mostly based on biochemical extraction and bulk measurements. They nevertheless generated a general sketch of its biological features. However, an understanding of the spatiotemporal features of cccDNA is still lacking. To achieve this, we established a system combining CRISPR-Tag and recombinant HBV minicircle technology to visualize cccDNA at single-cell level in real time. Using this system, we found that the observed recombinant cccDNA (rcccDNA) correlated quantitatively with its active transcripts when a low to medium number of foci (<20) are present, but this correlation was lost in cells harboring high copy numbers (≥20) of rcccDNA. The disruption of HBx expression seems to displace cccDNA from the dCas9-accessible region, while HBx complementation restored the number of observable cccDNA foci. This indicated regulation of cccDNA accessibility by HBx. Second, observable HBV and duck HBV (DHBV) cccDNA molecules are substantially lost during cell division, and the remaining ones were distributed randomly to daughter cells. In contrast, Kaposi's sarcoma-associated herpesvirus (KSHV)-derived episomes can be retained in a LANA (latency-associated nuclear antigen)-dependent manner. Last, the dynamics of rcccDNA episomes in nuclei displayed confined diffusion at short time scales, with directional transport over longer time scales. In conclusion, this system enables the study of physiological kinetics of cccDNA at the single-cell level. The differential accessibility of rcccDNA to dCas9 under various physiological conditions may be exploited to elucidate the complex transcriptional and epigenetic regulation of the HBV minichromosome. IMPORTANCE Understanding the formation and maintenance of HBV cccDNA has always been a central issue in the study of HBV pathobiology. However, little progress has been made due to the lack of robust assay systems and its resistance to genetic modification. Here, a live-cell imaging system by grafting CRISPR-Tag into the recombinant cccDNA was established to visualize its molecular behavior in real time. We found that the accessibility of rcccDNA to dCas9-based imaging is related to HBx-regulated mechanisms. We also confirmed the substantial loss of observable rcccDNA in one-round cell division and random distribution of the remaining molecules. Molecular dynamics analysis revealed the confined movement of the rcccDNA episome, suggesting its juxtaposition to chromatin domains. Overall, this novel system offers a unique platform to investigate the intranuclear dynamics of cccDNA within live cells.
Collapse
|
27
|
Presnell KV, Melhem O, Morse NJ, Alper HS. Modular, Synthetic Boolean Logic Gates Enabled in Saccharomyces cerevisiae through T7 Polymerases/CRISPR dCas9 Designs. ACS Synth Biol 2022; 11:3414-3425. [PMID: 36206523 DOI: 10.1021/acssynbio.2c00327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Synthetic control of gene expression, whether simply promoter selection or higher-order Boolean-style logic, is an important tool for metabolic engineering and synthetic biology. This work develops a suite of orthogonal T7 RNA polymerase systems capable of exerting AND/OR switchlike control over transcription in the yeastSaccharomyces cerevisiae. When linked with CRISPR dCas9-based regulation systems, more complex circuitry is possible including AND/OR/NAND/NOR style control in response to combinations of extracellular copper and galactose. Additionally, we demonstrate that these T7 system designs are modular and can accommodate alternative stimuli sensing as demonstrated through blue light induction. These designs should greatly reduce the time and labor necessary for developing Boolean gene circuits in yeast with novel applications including metabolic pathway control in the future.
Collapse
Affiliation(s)
- Kristin V Presnell
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Omar Melhem
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Nicholas J Morse
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street Stop C0400, Austin, Texas 78712, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas 78712, United States
| |
Collapse
|
28
|
Shinkai S, Itoga H, Kyoda K, Onami S. PHi-C2: interpreting Hi-C data as the dynamic 3D genome state. Bioinformatics 2022; 38:4984-4986. [PMID: 36087002 PMCID: PMC9620818 DOI: 10.1093/bioinformatics/btac613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/14/2022] [Indexed: 11/14/2022] Open
Abstract
Summary High-throughput chromosome conformation capture (Hi-C) is a widely used assay for studying the three-dimensional (3D) genome organization across the whole genome. Here, we present PHi-C2, a Python package supported by mathematical and biophysical polymer modeling that converts input Hi-C matrix data into the polymer model’s dynamics, structural conformations and rheological features. The updated optimization algorithm for regenerating a highly similar Hi-C matrix provides a fast and accurate optimal solution compared to the previous version by eliminating the factors underlying the inefficiency of the optimization algorithm in the iterative optimization process. In addition, we have enabled a Google Colab workflow to run the algorithm, wherein users can easily change the parameters and check the results in the notebook. Overall, PHi-C2 represents a valuable tool for mining the dynamic 3D genome state embedded in Hi-C data. Availability and implementation PHi-C2 as the phic Python package is freely available under the GPL license and can be installed from the Python package index. The source code is available from GitHub at https://github.com/soyashinkai/PHi-C2. Moreover, users do not have to prepare a Python environment because PHi-C2 can run on Google Colab (https://bit.ly/3rlptGI). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Soya Shinkai
- RIKEN Center for Biosystems Dynamics Research Laboratory for Developmental Dynamics, , Kobe, 650-0047, Japan
| | - Hiroya Itoga
- RIKEN Center for Biosystems Dynamics Research Laboratory for Developmental Dynamics, , Kobe, 650-0047, Japan
| | - Koji Kyoda
- RIKEN Center for Biosystems Dynamics Research Laboratory for Developmental Dynamics, , Kobe, 650-0047, Japan
| | - Shuichi Onami
- RIKEN Center for Biosystems Dynamics Research Laboratory for Developmental Dynamics, , Kobe, 650-0047, Japan
- Life Science Data Sharing Unit, Infrastructure Research and Development Division, RIKEN Information R&D and Strategy Headquarters , Kobe, 650-0047, Japan
| |
Collapse
|
29
|
Iida S, Shinkai S, Itoh Y, Tamura S, Kanemaki MT, Onami S, Maeshima K. Single-nucleosome imaging reveals steady-state motion of interphase chromatin in living human cells. SCIENCE ADVANCES 2022; 8:eabn5626. [PMID: 35658044 PMCID: PMC9166292 DOI: 10.1126/sciadv.abn5626] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Dynamic chromatin behavior plays a critical role in various genome functions. However, it remains unclear how chromatin behavior changes during interphase, where the nucleus enlarges and genomic DNA doubles. While the previously reported chromatin movements varied during interphase when measured using a minute or longer time scale, we unveil that local chromatin motion captured by single-nucleosome imaging/tracking on a second time scale remained steady throughout G1, S, and G2 phases in live human cells. This motion mode appeared to change beyond this time scale. A defined genomic region also behaved similarly. Combined with Brownian dynamics modeling, our results suggest that this steady-state chromatin motion was mainly driven by thermal fluctuations. Steady-state motion temporarily increased following a DNA damage response. Our findings support the viscoelastic properties of chromatin. We propose that the observed steady-state chromatin motion allows cells to conduct housekeeping functions, such as transcription and DNA replication, under similar environments during interphase.
Collapse
Affiliation(s)
- Shiori Iida
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI, Mishima, Japan
| | - Soya Shinkai
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yuji Itoh
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan
| | - Masato T. Kanemaki
- Department of Genetics, School of Life Science, SOKENDAI, Mishima, Japan
- Molecular Cell Engineering Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan
| | - Shuichi Onami
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan
- Department of Genetics, School of Life Science, SOKENDAI, Mishima, Japan
- Corresponding author.
| |
Collapse
|
30
|
Ide S, Tamura S, Maeshima K. Chromatin behavior in living cells: Lessons from single‐nucleosome imaging and tracking. Bioessays 2022; 44:e2200043. [DOI: 10.1002/bies.202200043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Satoru Ide
- Genome Dynamics Laboratory National Institute of Genetics, ROIS Mishima Shizuoka Japan
- Department of Genetics School of Life Science SOKENDAI Mishima Shizuoka Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory National Institute of Genetics, ROIS Mishima Shizuoka Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory National Institute of Genetics, ROIS Mishima Shizuoka Japan
- Department of Genetics School of Life Science SOKENDAI Mishima Shizuoka Japan
| |
Collapse
|
31
|
Brandstetter K, Zülske T, Ragoczy T, Hörl D, Guirao-Ortiz M, Steinek C, Barnes T, Stumberger G, Schwach J, Haugen E, Rynes E, Korber P, Stamatoyannopoulos JA, Leonhardt H, Wedemann G, Harz H. Differences in nanoscale organization of regulatory active and inactive human chromatin. Biophys J 2022; 121:977-990. [PMID: 35150617 PMCID: PMC8943813 DOI: 10.1016/j.bpj.2022.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/11/2021] [Accepted: 02/07/2022] [Indexed: 11/25/2022] Open
Abstract
Methodological advances in conformation capture techniques have fundamentally changed our understanding of chromatin architecture. However, the nanoscale organization of chromatin and its cell-to-cell variance are less studied. Analyzing genome-wide data from 733 human cell and tissue samples, we identified 2 prototypical regions that exhibit high or absent hypersensitivity to deoxyribonuclease I, respectively. These regulatory active or inactive regions were examined in the lymphoblast cell line K562 by using high-throughput super-resolution microscopy. In both regions, we systematically measured the physical distance of 2 fluorescence in situ hybridization spots spaced by only 5 kb of DNA. Unexpectedly, the resulting distance distributions range from very compact to almost elongated configurations of more than 200-nm length for both the active and inactive regions. Monte Carlo simulations of a coarse-grained model of these chromatin regions based on published data of nucleosome occupancy in K562 cells were performed to understand the underlying mechanisms. There was no parameter set for the simulation model that can explain the microscopically measured distance distributions. Obviously, the chromatin state given by the strength of internucleosomal interaction, nucleosome occupancy, or amount of histone H1 differs from cell to cell, which results in the observed broad distance distributions. This large variability was not expected, especially in inactive regions. The results for the mechanisms for different distance distributions on this scale are important for understanding the contacts that mediate gene regulation. Microscopic measurements show that the inactive region investigated here is expected to be embedded in a more compact chromatin environment. The simulation results of this region require an increase in the strength of internucleosomal interactions. It may be speculated that the higher density of chromatin is caused by the increased internucleosomal interaction strength.
Collapse
Affiliation(s)
- Katharina Brandstetter
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tilo Zülske
- Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany
| | - Tobias Ragoczy
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - David Hörl
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Miguel Guirao-Ortiz
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Clemens Steinek
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Toby Barnes
- Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Gabriela Stumberger
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jonathan Schwach
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eric Haugen
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Eric Rynes
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Philipp Korber
- Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - John A Stamatoyannopoulos
- Altius Institute for Biomedical Sciences, Seattle, Washington; Department of Genome Sciences, University of Washington, Seattle, Washington; Department of Medicine, Division of Oncology, University of Washington, Seattle, Washington
| | - Heinrich Leonhardt
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gero Wedemann
- Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany.
| | - Hartmann Harz
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
32
|
Chemically Induced Chromosomal Interaction (CICI) method to study chromosome dynamics and its biological roles. Nat Commun 2022; 13:757. [PMID: 35140210 PMCID: PMC8828778 DOI: 10.1038/s41467-022-28416-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/14/2022] [Indexed: 01/01/2023] Open
Abstract
Numerous intra- and inter-chromosomal contacts have been mapped in eukaryotic genomes, but it remains challenging to link these 3D structures to their regulatory functions. To establish the causal relationships between chromosome conformation and genome functions, we develop a method, Chemically Induced Chromosomal Interaction (CICI), to selectively perturb the chromosome conformation at targeted loci. Using this method, long-distance chromosomal interactions can be induced dynamically between intra- or inter-chromosomal loci pairs, including the ones with very low Hi-C contact frequencies. Measurement of CICI formation time allows us to probe chromosome encounter dynamics between different loci pairs across the cell cycle. We also conduct two functional tests of CICI. We perturb the chromosome conformation near a DNA double-strand break and observe altered donor preference in homologous recombination; we force interactions between early and late-firing DNA replication origins and find no significant changes in replication timing. These results suggest that chromosome conformation plays a deterministic role in homology-directed DNA repair, but not in the establishment of replication timing. Overall, our study demonstrates that CICI is a powerful tool to study chromosome dynamics and 3D genome function. Methods to selectively manipulate specific long-distance chromosomal interactions are limited. Here the authors develop a method called Chemically Induced Chromosomal Interaction (CICI) to engineer interactions and demonstrate that 3D conformation plays a causal role in establishing donor DNA preference during DNA repair.
Collapse
|
33
|
García Fernández F, Fabre E. The Dynamic Behavior of Chromatin in Response to DNA Double-Strand Breaks. Genes (Basel) 2022; 13:genes13020215. [PMID: 35205260 PMCID: PMC8872016 DOI: 10.3390/genes13020215] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The primary functions of the eukaryotic nucleus as a site for the storage, retrieval, and replication of information require a highly dynamic chromatin organization, which can be affected by the presence of DNA damage. In response to double-strand breaks (DSBs), the mobility of chromatin at the break site is severely affected and, to a lesser extent, that of other chromosomes. The how and why of such movement has been widely studied over the last two decades, leading to different mechanistic models and proposed potential roles underlying both local and global mobility. Here, we review the state of the knowledge on current issues affecting chromatin mobility upon DSBs, and highlight its role as a crucial step in the DNA damage response (DDR).
Collapse
Affiliation(s)
- Fabiola García Fernández
- Institut Curie, CNRS UMR3664, Sorbonne Université, F-75005 Paris, France
- Correspondence: (F.G.F.); (E.F.)
| | - Emmanuelle Fabre
- Génomes Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Université de Paris, F-75010 Paris, France
- Correspondence: (F.G.F.); (E.F.)
| |
Collapse
|
34
|
Phipps J, Dubrana K. DNA Repair in Space and Time: Safeguarding the Genome with the Cohesin Complex. Genes (Basel) 2022; 13:198. [PMID: 35205243 PMCID: PMC8872453 DOI: 10.3390/genes13020198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/04/2022] Open
Abstract
DNA double-strand breaks (DSBs) are a deleterious form of DNA damage, which must be robustly addressed to ensure genome stability. Defective repair can result in chromosome loss, point mutations, loss of heterozygosity or chromosomal rearrangements, which could lead to oncogenesis or cell death. We explore the requirements for the successful repair of DNA DSBs by non-homologous end joining and homology-directed repair (HDR) mechanisms in relation to genome folding and dynamics. On the occurrence of a DSB, local and global chromatin composition and dynamics, as well as 3D genome organization and break localization within the nuclear space, influence how repair proceeds. The cohesin complex is increasingly implicated as a key regulator of the genome, influencing chromatin composition and dynamics, and crucially genome organization through folding chromosomes by an active loop extrusion mechanism, and maintaining sister chromatid cohesion. Here, we consider how this complex is now emerging as a key player in the DNA damage response, influencing repair pathway choice and efficiency.
Collapse
Affiliation(s)
| | - Karine Dubrana
- UMR Stabilité Génétique Cellules Souches et Radiations, INSERM, iRCM/IBFJ CEA, Université de Paris and Université Paris-Saclay, F-92265 Fontenay-aux-Roses, France;
| |
Collapse
|
35
|
Leung HY, Yeung MHY, Leung WT, Wong KH, Tang WY, Cho WCS, Wong HT, Tsang HF, Wong YKE, Pei XM, Cheng HYL, Chan AKC, Wong SCC. The current and future applications of in situ hybridization technologies in anatomical pathology. Expert Rev Mol Diagn 2022; 22:5-18. [PMID: 34779317 DOI: 10.1080/14737159.2022.2007076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION In situ hybridization (ISH) plays an important role in the field of molecular diagnostics, especially in an anatomical pathology laboratory. ISH is a technique that can detect the targeted DNA or RNA sequences in tissue sections from frozen or fixed materials with labeled DNA or RNA probes. Radioactive and non-radioactive probes are the two major probes that can be used to label the targeted nucleic acids. AREAS COVERED Two decades after the Human Genome Project, ISH has not only simply been applied to identify the chromosomal location of a human gene but has also been extensively applied to gene expressions studies and utilized for clinical diagnosis, especially for the determination of biomarkers for breast and ovarian cancers - human epidermal growth factor receptor 2. Duchenne muscular dystrophy, Cri-du-chat syndrome, Angelman syndrome, PraderWilli syndrome, cystic fibrosis, and trisomy are diseases that can also be detected by ISH. In this review, the basic principles, historical development, advantages and disadvantages, enhancement in reporting molecules and probes, advancement in detection methods, in situ PCR, clinical applications and novel applications of ISH will be discussed. EXPERT OPINION With the advancement in ISH technologies and appropriate training, diagnosis can be improved in Anatomical Pathology.
Collapse
Affiliation(s)
- Hoi Yi Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Wai Tung Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - King Hin Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Wai Yan Tang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region, China
| | - Heong Ting Wong
- Department of Pathology, Kiang Wu Hospital, Santo António, Macau Special Administrative Region, China
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Yin Kwan Evelyn Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Xiao Meng Pei
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Hennie Yuk Lin Cheng
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Amanda Kit Ching Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region, China
| | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| |
Collapse
|
36
|
Natesan R, Gowrishankar K, Kuttippurathu L, Kumar PBS, Rao M. Active Remodeling of Chromatin and Implications for In Vivo Folding. J Phys Chem B 2021; 126:100-109. [DOI: 10.1021/acs.jpcb.1c08655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ramakrishnan Natesan
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Lakshmi Kuttippurathu
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - P. B. Sunil Kumar
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad 668557, Kerala, India
| | - Madan Rao
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bengaluru 560065, India
| |
Collapse
|
37
|
3D Genome Organization: Causes and Consequences for DNA Damage and Repair. Genes (Basel) 2021; 13:genes13010007. [PMID: 35052348 PMCID: PMC8775012 DOI: 10.3390/genes13010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 01/02/2023] Open
Abstract
The inability to repair damaged DNA severely compromises the integrity of any organism. In eukaryotes, the DNA damage response (DDR) operates within chromatin, a tightly organized DNA–histone complex in a non-random manner within the nucleus. Chromatin thus orchestrates various cellular processes, including repair. Here, we examine the chromatin landscape before, during, and after the DNA damage, focusing on double strand breaks (DSBs). We study how chromatin is modified during the repair process, not only around the damaged region (in cis), but also genome-wide (in trans). Recent evidence has highlighted a complex landscape in which different chromatin parameters (stiffness, compaction, loops) are transiently modified, defining “codes” for each specific stage of the DDR. We illustrate a novel aspect of DDR where chromatin modifications contribute to the movement of DSB-damaged chromatin, as well as undamaged chromatin, ensuring the mobilization of DSBs, their clustering, and their repair processes.
Collapse
|
38
|
Nozaki T, Chang F, Weiner B, Kleckner N. High Temporal Resolution 3D Live-Cell Imaging of Budding Yeast Meiosis Defines Discontinuous Actin/Telomere-Mediated Chromosome Motion, Correlated Nuclear Envelope Deformation and Actin Filament Dynamics. Front Cell Dev Biol 2021; 9:687132. [PMID: 34900979 PMCID: PMC8656277 DOI: 10.3389/fcell.2021.687132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Chromosome movement is prominent at mid-meiotic prophase and is proposed to enhance the efficiency and/or stringency of homolog pairing and/or to help prevent or resolve topological entanglements. Here, we combine fluorescent repressor operator system (FROS) labeling with three-dimensional (3D) live-cell imaging at high spatio-temporal resolution to define the detailed kinetics of mid-meiotic prophase motion for a single telomere-proximal locus in budding yeast. Telomere motions can be grouped into three general categories: (i) pauses, in which the telomere “jiggles in place”; (ii) rapid, straight/curvilinear motion which reflects Myo2/actin-mediated transport of the monitored telomere; and (iii) slower directional motions, most of which likely reflect indirectly promoted motion of the monitored telomere in coordination with actin-mediated motion of an unmarked telomere. These and other findings highlight the importance of dynamic assembly/disassembly of telomere/LINC/actin ensembles and also suggest important roles for nuclear envelope deformations promoted by actin-mediated telomere/LINC movement. The presented low-SNR (signal-to-noise ratio) imaging methodology provides opportunities for future exploration of homolog pairing and related phenomena.
Collapse
Affiliation(s)
- Tadasu Nozaki
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Frederick Chang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Beth Weiner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
39
|
Hansen JC, Maeshima K, Hendzel MJ. The solid and liquid states of chromatin. Epigenetics Chromatin 2021; 14:50. [PMID: 34717733 PMCID: PMC8557566 DOI: 10.1186/s13072-021-00424-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
The review begins with a concise description of the principles of phase separation. This is followed by a comprehensive section on phase separation of chromatin, in which we recount the 60 years history of chromatin aggregation studies, discuss the evidence that chromatin aggregation intrinsically is a physiologically relevant liquid-solid phase separation (LSPS) process driven by chromatin self-interaction, and highlight the recent findings that under specific solution conditions chromatin can undergo liquid-liquid phase separation (LLPS) rather than LSPS. In the next section of the review, we discuss how certain chromatin-associated proteins undergo LLPS in vitro and in vivo. Some chromatin-binding proteins undergo LLPS in purified form in near-physiological ionic strength buffers while others will do so only in the presence of DNA, nucleosomes, or chromatin. The final section of the review evaluates the solid and liquid states of chromatin in the nucleus. While chromatin behaves as an immobile solid on the mesoscale, nucleosomes are mobile on the nanoscale. We discuss how this dual nature of chromatin, which fits well the concept of viscoelasticity, contributes to genome structure, emphasizing the dominant role of chromatin self-interaction.
Collapse
Affiliation(s)
- Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, and Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, 411-8540, Japan.
| | - Michael J Hendzel
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
40
|
Oliveira GM, Oravecz A, Kobi D, Maroquenne M, Bystricky K, Sexton T, Molina N. Precise measurements of chromatin diffusion dynamics by modeling using Gaussian processes. Nat Commun 2021; 12:6184. [PMID: 34702821 PMCID: PMC8548522 DOI: 10.1038/s41467-021-26466-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/07/2021] [Indexed: 11/08/2022] Open
Abstract
The spatiotemporal organization of chromatin influences many nuclear processes: from chromosome segregation to transcriptional regulation. To get a deeper understanding of these processes, it is essential to go beyond static viewpoints of chromosome structures, to accurately characterize chromatin's diffusion properties. We present GP-FBM: a computational framework based on Gaussian processes and fractional Brownian motion to extract diffusion properties from stochastic trajectories of labeled chromatin loci. GP-FBM uses higher-order temporal correlations present in the data, therefore, outperforming existing methods. Furthermore, GP-FBM allows to interpolate incomplete trajectories and account for substrate movement when two or more particles are present. Using our method, we show that average chromatin diffusion properties are surprisingly similar in interphase and mitosis in mouse embryonic stem cells. We observe surprising heterogeneity in local chromatin dynamics, correlating with potential regulatory activity. We also present GP-Tool, a user-friendly graphical interface to facilitate usage of GP-FBM by the research community.
Collapse
Affiliation(s)
- Guilherme M Oliveira
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, France.
| | - Attila Oravecz
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, France
| | - Dominique Kobi
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, France
| | - Manon Maroquenne
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, France
| | - Kerstin Bystricky
- Molecular Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI) UPS, CNRS, Toulouse, France
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, France.
| | - Nacho Molina
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, France.
| |
Collapse
|
41
|
Itoh Y, Woods EJ, Minami K, Maeshima K, Collepardo-Guevara R. Liquid-like chromatin in the cell: What can we learn from imaging and computational modeling? Curr Opin Struct Biol 2021; 71:123-135. [PMID: 34303931 DOI: 10.1016/j.sbi.2021.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022]
Abstract
Chromatin in eukaryotic cells is a negatively charged long polymer consisting of DNA, histones, and various associated proteins. With its highly charged and heterogeneous nature, chromatin structure varies greatly depending on various factors (e.g. chemical modifications and protein enrichment) and the surrounding environment (e.g. cations): from a 10-nm fiber, a folded 30-nm fiber, to chromatin condensates/droplets. Recent advanced imaging has observed that chromatin exhibits a dynamic liquid-like behavior and undergoes structural variations within the cell. Current computational modeling has made it possible to reconstruct the liquid-like chromatin in the cell by dealing with a number of nucleosomes on multiscale levels and has become a powerful technique to inspect the molecular mechanisms giving rise to the observed behavior, which imaging methods cannot do on their own. Based on new findings from both imaging and modeling studies, we discuss the dynamic aspect of chromatin in living cells and its functional relevance.
Collapse
Affiliation(s)
- Yuji Itoh
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Esmae J Woods
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Katsuhiko Minami
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan.
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK; Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| |
Collapse
|
42
|
The selfish yeast plasmid utilizes the condensin complex and condensed chromatin for faithful partitioning. PLoS Genet 2021; 17:e1009660. [PMID: 34270553 PMCID: PMC8318298 DOI: 10.1371/journal.pgen.1009660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/28/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
Equipartitioning by chromosome association and copy number correction by DNA amplification are at the heart of the evolutionary success of the selfish yeast 2-micron plasmid. The present analysis reveals frequent plasmid presence near telomeres (TELs) and centromeres (CENs) in mitotic cells, with a preference towards the former. Inactivation of Cdc14 causes plasmid missegregation, which is correlated to the non-disjunction of TELs (and of rDNA) under this condition. Induced missegregation of chromosome XII, one of the largest yeast chromosomes which harbors the rDNA array and is highly dependent on the condensin complex for proper disjunction, increases 2-micron plasmid missegregation. This is not the case when chromosome III, one of the smallest chromosomes, is forced to missegregate. Plasmid stability decreases when the condensin subunit Brn1 is inactivated. Brn1 is recruited to the plasmid partitioning locus (STB) with the assistance of the plasmid-coded partitioning proteins Rep1 and Rep2. Furthermore, in a dihybrid assay, Brn1 interacts with Rep1-Rep2. Taken together, these findings support a role for condensin and/or condensed chromatin in 2-micron plasmid propagation. They suggest that condensed chromosome loci are among favored sites utilized by the plasmid for its chromosome-associated segregation. By homing to condensed/quiescent chromosome locales, and not over-perturbing genome homeostasis, the plasmid may minimize fitness conflicts with its host. Analogous persistence strategies may be utilized by other extrachromosomal selfish genomes, for example, episomes of mammalian viruses that hitchhike on host chromosomes for their stable maintenance.
Collapse
|
43
|
Sumner MC, Torrisi SB, Brickner DG, Brickner JH. Random sub-diffusion and capture of genes by the nuclear pore reduces dynamics and coordinates inter-chromosomal movement. eLife 2021; 10:66238. [PMID: 34002694 PMCID: PMC8195609 DOI: 10.7554/elife.66238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Hundreds of genes interact with the yeast nuclear pore complex (NPC), localizing at the nuclear periphery and clustering with co-regulated genes. Dynamic tracking of peripheral genes shows that they cycle on and off the NPC and that interaction with the NPC slows their sub-diffusive movement. Furthermore, NPC-dependent inter-chromosomal clustering leads to coordinated movement of pairs of loci separated by hundreds of nanometers. We developed fractional Brownian motion simulations for chromosomal loci in the nucleoplasm and interacting with NPCs. These simulations predict the rate and nature of random sub-diffusion during repositioning from nucleoplasm to periphery and match measurements from two different experimental models, arguing that recruitment to the nuclear periphery is due to random sub-diffusion and transient capture by NPCs. Finally, the simulations do not lead to inter-chromosomal clustering or coordinated movement, suggesting that interaction with the NPC is necessary, but not sufficient, to cause clustering.
Collapse
Affiliation(s)
- Michael Chas Sumner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Steven B Torrisi
- Department of Physics, Harvard University, Cambridge, United States
| | - Donna G Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
44
|
Abstract
Genomic information is encoded on long strands of DNA, which are folded into chromatin and stored in a tiny nucleus. Nuclear chromatin is a negatively charged polymer composed of DNA, histones, and various nonhistone proteins. Because of its highly charged nature, chromatin structure varies greatly depending on the surrounding environment (e.g., cations, molecular crowding, etc.). New technologies to capture chromatin in living cells have been developed over the past 10 years. Our view on chromatin organization has drastically shifted from a regular and static one to a more variable and dynamic one. Chromatin forms numerous compact dynamic domains that act as functional units of the genome in higher eukaryotic cells and locally appear liquid-like. By changing DNA accessibility, these domains can govern various functions. Based on new evidences from versatile genomics and advanced imaging studies, we discuss the physical nature of chromatin in the crowded nuclear environment and how it is regulated.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Shiori Iida
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
45
|
Bailey MLP, Yan H, Surovtsev I, Williams JF, King MC, Mochrie SGJ. Covariance distributions in single particle tracking. Phys Rev E 2021; 103:032405. [PMID: 33862686 PMCID: PMC9115892 DOI: 10.1103/physreve.103.032405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/12/2021] [Indexed: 11/07/2022]
Abstract
Several recent experiments, including our own experiments in the fission yeast, Schizosaccharomyces pombe, have characterized the motions of gene loci within living nuclei by measuring the locus position over time, then proceeding to obtain the statistical properties of this motion. To address the question of whether a population of such single-particle tracks, obtained from many different cells, corresponds to a single mode of diffusion, we derive theoretical equations describing the probability distribution of the displacement covariance, assuming the displacement itself is a zero-mean multivariate Gaussian random variable. We also determine the corresponding theoretical means, variances, and third central moments. Bolstering the theory is good agreement between its predictions and the results obtained for various simulated and measured data sets, including simulated particle trajectories undergoing simple and anomalous diffusion, and the measured trajectories of an optically trapped bead in water, and in a viscoelastic polymer solution. We also show that, for sufficiently long tracks, each covariance distribution in all of these examples is well-described by a skew-normal distribution with mean, variance, and skewness given by the theory. However, for the experimentally measured motion of a gene locus in S. pombe, we find that the first two covariance distributions are wider than predicted, although the third and subsequent covariance distributions are well-described by theory. This observation suggests that the origin of the theory-experiment discrepancy in this case is associated with localization noise, which influences only the first two covariances. Thus, we hypothesized that the discrepancy is caused by locus-to-locus heterogeneity in the localization noise, of independent measurements of the same tagged site. Indeed, simulations implementing heterogeneous localization noise revealed that the excess covariance widths can be largely recreated on the basis of heterogeneous noise. Thus, we conclude that the motion of gene loci in fission yeast is consistent with a single mode of diffusion.
Collapse
Affiliation(s)
- Mary Lou P. Bailey
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Hao Yan
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Ivan Surovtsev
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Jessica F. Williams
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Megan C. King
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Simon G. J. Mochrie
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
46
|
Xing WQ, Ma SY, Liu YY, Xia QY. CRISPR/dCas9-mediated imaging of endogenous genomic loci in living Bombyx mori cells. INSECT SCIENCE 2020; 27:1360-1364. [PMID: 31476099 DOI: 10.1111/1744-7917.12722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/31/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Wei-Qing Xing
- Biological Science Research Center, Southwest University, Chongqing, China
| | - San-Yuan Ma
- Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, China
| | - Yuan-Yuan Liu
- Biological Science Research Center, Southwest University, Chongqing, China
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qing-You Xia
- Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
47
|
Shaban HA, Barth R, Bystricky K. Navigating the crowd: visualizing coordination between genome dynamics, structure, and transcription. Genome Biol 2020; 21:278. [PMID: 33203432 PMCID: PMC7670612 DOI: 10.1186/s13059-020-02185-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic genome is hierarchically structured yet highly dynamic. Regulating transcription in this environment demands a high level of coordination to permit many proteins to interact with chromatin fiber at appropriate sites in a timely manner. We describe how recent advances in quantitative imaging techniques overcome caveats of sequencing-based methods (Hi-C and related) by enabling direct visualization of transcription factors and chromatin at high resolution, from single genes to the whole nucleus. We discuss the contribution of fluorescence imaging to deciphering the principles underlying this coordination within the crowded nuclear space in living cells and discuss challenges ahead.
Collapse
Affiliation(s)
- Haitham A Shaban
- Spectroscopy Department, Physics Division, National Research Centre, Dokki, Cairo, 12622, Egypt.
- Current Address: Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Roman Barth
- Department of Bionanoscience, Delft University of Technology, 2628 CJ, Delft, The Netherlands
| | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
48
|
The nuclear pore primes recombination-dependent DNA synthesis at arrested forks by promoting SUMO removal. Nat Commun 2020; 11:5643. [PMID: 33159083 PMCID: PMC7648084 DOI: 10.1038/s41467-020-19516-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Nuclear Pore complexes (NPCs) act as docking sites to anchor particular DNA lesions facilitating DNA repair by elusive mechanisms. Using replication fork barriers in fission yeast, we report that relocation of arrested forks to NPCs occurred after Rad51 loading and its enzymatic activity. The E3 SUMO ligase Pli1 acts at arrested forks to safeguard integrity of nascent strands and generates poly-SUMOylation which promote relocation to NPCs but impede the resumption of DNA synthesis by homologous recombination (HR). Anchorage to NPCs allows SUMO removal by the SENP SUMO protease Ulp1 and the proteasome, promoting timely resumption of DNA synthesis. Preventing Pli1-mediated SUMO chains was sufficient to bypass the need for anchorage to NPCs and the inhibitory effect of poly-SUMOylation on HR-mediated DNA synthesis. Our work establishes a novel spatial control of Recombination-Dependent Replication (RDR) at a unique sequence that is distinct from mechanisms engaged at collapsed-forks and breaks within repeated sequences. In yeast, collapsed forks shift to the nuclear periphery to associate with two distinct perinuclear anchorage sites such as the nuclear pore complex. Here, the authors reveal the mechanisms engaged at nuclear pore complex facilitating fork integrity and restart via SUMO regulation.
Collapse
|
49
|
Kakui Y, Barrington C, Barry DJ, Gerguri T, Fu X, Bates PA, Khatri BS, Uhlmann F. Fission yeast condensin contributes to interphase chromatin organization and prevents transcription-coupled DNA damage. Genome Biol 2020; 21:272. [PMID: 33153481 PMCID: PMC7643427 DOI: 10.1186/s13059-020-02183-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 10/19/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Structural maintenance of chromosomes (SMC) complexes are central organizers of chromatin architecture throughout the cell cycle. The SMC family member condensin is best known for establishing long-range chromatin interactions in mitosis. These compact chromatin and create mechanically stable chromosomes. How condensin contributes to chromatin organization in interphase is less well understood. RESULTS Here, we use efficient conditional depletion of fission yeast condensin to determine its contribution to interphase chromatin organization. We deplete condensin in G2-arrested cells to preempt confounding effects from cell cycle progression without condensin. Genome-wide chromatin interaction mapping, using Hi-C, reveals condensin-mediated chromatin interactions in interphase that are qualitatively similar to those observed in mitosis, but quantitatively far less prevalent. Despite their low abundance, chromatin mobility tracking shows that condensin markedly confines interphase chromatin movements. Without condensin, chromatin behaves as an unconstrained Rouse polymer with excluded volume, while condensin constrains its mobility. Unexpectedly, we find that condensin is required during interphase to prevent ongoing transcription from eliciting a DNA damage response. CONCLUSIONS In addition to establishing mitotic chromosome architecture, condensin-mediated long-range chromatin interactions contribute to shaping chromatin organization in interphase. The resulting structure confines chromatin mobility and protects the genome from transcription-induced DNA damage. This adds to the important roles of condensin in maintaining chromosome stability.
Collapse
Affiliation(s)
- Yasutaka Kakui
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Waseda Institute for Advanced Study, Waseda University, 1-21-1, Nishiwaseda, Shinjuku-ku, Tokyo, 169-0051, Japan.
| | - Christopher Barrington
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - David J Barry
- Advanced Light Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Tereza Gerguri
- Biomolecular Modelling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Xiao Fu
- Biomolecular Modelling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Bhavin S Khatri
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
50
|
Cheblal A, Challa K, Seeber A, Shimada K, Yoshida H, Ferreira HC, Amitai A, Gasser SM. DNA Damage-Induced Nucleosome Depletion Enhances Homology Search Independently of Local Break Movement. Mol Cell 2020; 80:311-326.e4. [PMID: 32970994 DOI: 10.1016/j.molcel.2020.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 01/02/2023]
Abstract
To determine whether double-strand break (DSB) mobility enhances the physical search for an ectopic template during homology-directed repair (HDR), we tested the effects of factors that control chromatin dynamics, including cohesin loading and kinetochore anchoring. The former but not the latter is altered in response to DSBs. Loss of the nonhistone high-mobility group protein Nhp6 reduces histone occupancy and increases chromatin movement, decompaction, and ectopic HDR. The loss of nucleosome remodeler INO80-C did the opposite. To see whether enhanced HDR depends on DSB mobility or the global chromatin response, we tested the ubiquitin ligase mutant uls1Δ, which selectively impairs local but not global movement in response to a DSB. Strand invasion occurs in uls1Δ cells with wild-type kinetics, arguing that global histone depletion rather than DSB movement is rate limiting for HDR. Impaired break movement in uls1Δ correlates with elevated MRX and cohesin loading, despite normal resection and checkpoint activation.
Collapse
Affiliation(s)
- Anaïs Cheblal
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, 4056 Basel, Switzerland
| | - Kiran Challa
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Present address: Center for Advanced Imaging, Northwest Building, 52 Oxford St, Suite 147, Harvard University, Cambridge, MA 02138, USA
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Haruka Yoshida
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Helder C Ferreira
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Assaf Amitai
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, 4056 Basel, Switzerland.
| |
Collapse
|