1
|
Khariushin IV, Ovsyannikov AS, Baudron SA, Ward JS, Kiesilä A, Rissanen K, Kalenius E, Chessé M, Nowicka B, Solovieva SE, Antipin IS, Bulach V, Ferlay S. Face-controlled chirality induction in octahedral thiacalixarene-based porous coordination cages. NANOSCALE 2025; 17:1980-1989. [PMID: 39651803 DOI: 10.1039/d4nr03622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Nanosized chiral octahedral M32 coordination cages were prepared via self-assembly of sulfonylcalix[4]arene tetranuclear M(II) clusters (M = Co or Ni) with enantiomerically enriched linkers based on tris(dipyrrinato)cobalt(III) complexes, appended with peripheral carboxylic groups. Two pairs of enantiomers of cages were obtained and unambiguously characterized from a structural point of view, using single crystal X-ray diffraction. Chiral-HPLC was used to evidence the enantiomers. In the solid state, the compounds present intrinsic and extrinsic porosity: the intrinsic porosity is linked with the size of the cages, which present an inner diameter of ca. 19 Å. The obtained solid-state supramolecular architectures demonstrated good performances as adsorbents for water and 2-butanol guest molecules.
Collapse
Affiliation(s)
- Ivan V Khariushin
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Alexander S Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan 420088, Russian Federation
| | - Stéphane A Baudron
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Jas S Ward
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Anniina Kiesilä
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Elina Kalenius
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Matthieu Chessé
- LIMA UMR 7042, Université de Strasbourg et CNRS et UHA, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Igor S Antipin
- Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Véronique Bulach
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Sylvie Ferlay
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| |
Collapse
|
2
|
Zhang Z, Zhang S, Liu X, Li L, Wang S, Yang R, Zhang L, You Z, Shui F, Yang S, Yang Z, Zhao Q, Li B, Bu XH. Efficient Fluorocarbons Capture Using Radical-Containing Covalent Triazine Frameworks. J Am Chem Soc 2024; 146:31213-31220. [PMID: 39480434 DOI: 10.1021/jacs.4c11470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Efficiently capturing fluorocarbons, potent greenhouse gases with high global warming potentials (GWP), remains a daunting challenge due to limited effective approaches for constructing high-performance adsorbents. To tackle this issue, we have pioneered a novel strategy of developing radical porous materials as effective adsorbents for fluorocarbon capture. The resulting radical covalent triazine framework (CTF), CTF-azo-R, shows exceptional fluorocarbon (perfluorohexane, a representative model pollutant among fluorocarbons) uptake capacity of 270 wt %, a record-high value among all porous materials reported to date. Spectral characteristics, experimental studies, and theoretical calculations indicate that the presence of stable radicals in CTF-azo-R contributes to its superior fluorocarbon capture performance. Furthermore, CTF-azo-R demonstrates exceptionally high chemical and thermal stabilities that fully meet the requirements for practical applications in diverse environments. Our work not only establishes radical CTF-azo-R as a promising candidate for fluorocarbon capture but also introduces a novel approach for constructing advanced fluorocarbon adsorbents by incorporating radical sites into porous materials. This strategy paves the way for the development of radical adsorbents, fostering advancements in both fluorocarbon capture and the broader field of adsorption and separation.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Shuo Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiongli Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Lin Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Shan Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Rufeng Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Laiyu Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Zifeng You
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Feng Shui
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Shiqi Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Zhendong Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Qiao Zhao
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Baiyan Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
3
|
Ono Y, Hirao T, Kawata N, Haino T. Latent porosity of planar tris(phenylisoxazolyl)benzene. Nat Commun 2024; 15:8314. [PMID: 39333129 PMCID: PMC11436937 DOI: 10.1038/s41467-024-52526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Interest in developing separation systems for chemical entities based on crystalline molecules has provided momentum for the fabrication of synthetic porous materials showing selectivity in molecular encapsulation, such as metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, zeolites, and macrocyclic molecular crystals. Among these, macrocyclic molecular crystals have generated renewed interest for use in separation systems. Selective encapsulation relies on the sizes, shapes, and dimensions of the pores present in the macrocyclic cavities; thus, nonmacrocyclic molecular crystals with high selectivity for molecular encapsulation via porosity-without-pore behaviors have not been studied. Here, we report that planar tris(phenylisoxazolyl)benzene forms porous molecular crystals possessing latent pores exhibiting porosity-without-pore behavior. After exposing the crystals to complementary guest molecules, the latent pores encapsulate cis- and trans-decalin while maintaining the structural rigidity responsible for the high selectivity. The encapsulation via porosity without pores is a kinetic process with remarkable selectivity for cis-decalin over trans-decalin with a cis-/trans-ratio of 96:4, which is confirmed by single-crystal X-ray diffraction and powder X-ray diffraction analyses. Hirshfeld surface analysis and fingerprint plots show that the latent intermolecular pores are rigidified by intermolecular dipole‒dipole and π-π stacking interactions, which determines the remarkable selectivity of molecular recognition.
Collapse
Affiliation(s)
- Yudai Ono
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM²), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Naomi Kawata
- Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM²), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
| |
Collapse
|
4
|
Okabe K, Yamashina M, Tsurumaki E, Uekusa H, Toyota S. Solid-State Self-Assembly: Exclusive Formation and Dynamic Interconversion of Discrete Cyclic Assemblies Based on Molecular Tweezers. J Org Chem 2024; 89:9488-9495. [PMID: 38913719 PMCID: PMC11232003 DOI: 10.1021/acs.joc.4c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In contrast to self-assembly in solution systems, the construction of well-defined assemblies in the solid state has long been identified as a challenging task. Herein, we report the formation of tweezers-shaped molecules into various assemblies through a solid-state self-assembly strategy. The relatively flexible molecular tweezers undergo exclusive and quantitative assembly into either cyclic hexamers or a porous network through classical recrystallization or the exposure of powders to solvent vapor, despite the fact that they form only dimers in solution. The cyclic hexamers have high thermal stability and exhibit moderate solid-state fluorescence. The formation of heterologous assemblies consisting of different tweezers allows for tuning these solid-state properties of the cyclic hexamer. Furthermore, (trimethylsilyl)ethynyl-substituted tweezers demonstrate solvent-vapor-induced dynamic interconversion between the cyclic hexamer and a pseudocyclic dimer in the solid state. This assembly behavior, which has been studied extensively in solution-based supramolecular chemistry, had not been accomplished in the solid state so far.
Collapse
Affiliation(s)
- Koki Okabe
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Masahiro Yamashina
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Hidehiro Uekusa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
5
|
Xia W, Yang Y, Sheng L, Zhou Z, Chen L, Zhang Z, Zhang Z, Yang Q, Ren Q, Bao Z. Temperature-dependent molecular sieving of fluorinated propane/propylene mixtures by a flexible-robust metal-organic framework. SCIENCE ADVANCES 2024; 10:eadj6473. [PMID: 38241379 PMCID: PMC10798556 DOI: 10.1126/sciadv.adj6473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
The electronics industry necessitates highly selective adsorption separation of hexafluoropropylene (C3F6) from perfluoropropane (C3F8), which poses a challenge due to their similar physiochemical properties. In this work, we present a microporous flexible-robust metal-organic framework (Ca-tcpb) with thermoregulatory gate opening, a rare phenomenon that allows tunable sieving of C3F8/C3F6. Remarkably, the temperature-dependent adsorption behavior enhances the discrimination between the larger C3F8 and the smaller C3F6, resulting in unprecedented C3F6/C3F8 selectivity (over 10,000) compared to other well-known porous materials at an optimal temperature (298 K). Dynamic breakthrough experiments demonstrate that high-purity C3F8 (over 99.999%) could be obtained from a C3F6/C3F8 (10:90) mixture under ambient conditions. The unique attributes of this material encompass exceptional adsorption selectivity, remarkable structural stability, and outstanding separation performance, positioning it as a highly promising candidate for C3F6/C3F8 separation. Single-crystal structural analysis of C3F6-loaded Ca-tcpb and theoretical calculations elucidate the host-guest interaction via multiple intermolecular interactions.
Collapse
Affiliation(s)
- Wei Xia
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Yisi Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, 350007 Fuzhou, P. R. China
| | - Liangzheng Sheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Zhijie Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Lihang Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, 350007 Fuzhou, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| |
Collapse
|
6
|
Marrett JM, Titi HM, Teoh Y, Friščić T. Supramolecular "baking powder": a hexameric halogen-bonded phosphonium salt cage encapsulates and functionalises small-molecule carbonyl compounds. Chem Sci 2023; 15:298-306. [PMID: 38131078 PMCID: PMC10732138 DOI: 10.1039/d2sc04615f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
We report a hexameric supramolecular cage assembled from the components of a Wittig-type phosphonium salt, held together by charge-assisted halogen bonds. The cage reliably encapsulates small polar molecules, including aldehydes and ketones, to provide host-guest systems where components are pre-formulated in a near-ideal stoichiometry for a mechanochemical base-activated Wittig olefination. These pre-formulated solids represent a proof-of-principle for a previously not reported supramolecular design of solid-state reactivity in which the host for molecular inclusion also acts as a complementary reagent for the subsequent chemical transformation of an array of guests. The host-guest solid-state complexes can act as supramolecular surrogates to their Wittig olefination vinylbromide products in a Sonogashira-type coupling that enables one-pot mechanochemical conversion of an aldehyde to an enediyne.
Collapse
Affiliation(s)
- Joseph M Marrett
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal H3A 0B8 Canada
| | - Hatem M Titi
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal H3A 0B8 Canada
| | - Yong Teoh
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal H3A 0B8 Canada
| | - Tomislav Friščić
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal H3A 0B8 Canada
| |
Collapse
|
7
|
Meng L, Lan JH, Huang ZW, Liu Y, Hu KQ, Yuan LY, Wang XP, Chai ZF, Mei L, Shi WQ. Sequential Water Sorption/Desorption of a Nonporous Adaptive Organic Ligand Bridged Coordination Polymer for Atmospheric Moisture Harvesting. Chemistry 2023; 29:e202301929. [PMID: 37429820 DOI: 10.1002/chem.202301929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Moisture harvesters with favourable attributes such as easy synthetic availability and good processability as alternatives for atmospheric moisture harvesting (AWH) are desirable. This study reports a novel nonporous anionic coordination polymer (CP) of uranyl squarate with methyl viologen (MV2+ ) as charge balancing ions (named U-Squ-CP) which displays intriguing sequential water sorption/desorption behavior as the relative humidity (RH) changes gradually. The evaluation of AWH performance of U-Squ-CP shows that it can absorb water vapor under air atmosphere at a low RH of 20 % typical of the levels found in most dry regions of the world, and have good cycling durability, thus demonstrating the capability as a potential moisture harvester for AWH. To the authors' knowledge, this is the first report on non-porous organic ligand bridged CP materials for AWH. Moreover, a stepwise water-filling mechanism for the water sorption/desorption process is deciphered by comprehensive characterizations combining single-crystal diffraction, which provides a reasonable explanation for the special moisture harvesting behaviour of this non-porous crystalline material.
Collapse
Affiliation(s)
- Liao Meng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Featured Metal Materials, Life-cycle Safety for Composite Structures, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Wei Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, China
| | - Yang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Peng Wang
- State Key Laboratory of Featured Metal Materials, Life-cycle Safety for Composite Structures, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Zhou W, Li A, Zhou M, Xu Y, Zhang Y, He Q. Nonporous amorphous superadsorbents for highly effective and selective adsorption of iodine in water. Nat Commun 2023; 14:5388. [PMID: 37666841 PMCID: PMC10477329 DOI: 10.1038/s41467-023-41056-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
Adsorbents widely utilized for environmental remediation, water purification, and gas storage have been usually reported to be either porous or crystalline materials. In this contribution, we report the synthesis of two covalent organic superphane cages, that are utilized as the nonporous amorphous superadsorbents for aqueous iodine adsorption with the record-breaking iodine adsorption capability and selectivity. In the static adsorption system, the cages exhibit iodine uptake capacity of up to 8.41 g g-1 in I2 aqueous solution and 9.01 g g-1 in I3- (KI/I2) aqueous solution, respectively, even in the presence of a large excess of competing anions. In the dynamic flow-through experiment, the aqueous iodine adsorption capability for I2 and I3- can reach up to 3.59 and 5.79 g g-1, respectively. Moreover, these two superphane cages are able to remove trace iodine in aqueous media from ppm level (5.0 ppm) down to ppb level concentration (as low as 11 ppb). Based on a binding-induced adsorption mechanism, such nonporous amorphous molecular materials prove superior to all existing porous adsorbents. This study can open up a new avenue for development of state-of-the-art adsorption materials for practical uses with conceptionally new nonporous amorphous superadsorbents (NAS).
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Aimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Min Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yiyao Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yi Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| |
Collapse
|
9
|
Eaby AC, Myburgh DC, Kosimov A, Kwit M, Esterhuysen C, Janiak AM, Barbour LJ. Dehydration of a crystal hydrate at subglacial temperatures. Nature 2023; 616:288-292. [PMID: 37045922 PMCID: PMC10097597 DOI: 10.1038/s41586-023-05749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 01/23/2023] [Indexed: 04/14/2023]
Abstract
Water is one of the most important substances on our planet1. It is ubiquitous in its solid, liquid and vaporous states and all known biological systems depend on its unique chemical and physical properties. Moreover, many materials exist as water adducts, chief among which are crystal hydrates (a specific class of inclusion compound), which usually retain water indefinitely at subambient temperatures2. We describe a porous organic crystal that readily and reversibly adsorbs water into 1-nm-wide channels at more than 55% relative humidity. The water uptake/release is chromogenic, thus providing a convenient visual indication of the hydration state of the crystal over a wide temperature range. The complementary techniques of X-ray diffraction, optical microscopy, differential scanning calorimetry and molecular simulations were used to establish that the nanoconfined water is in a state of flux above -70 °C, thus allowing low-temperature dehydration to occur. We were able to determine the kinetics of dehydration over a wide temperature range, including well below 0 °C which, owing to the presence of atmospheric moisture, is usually challenging to accomplish. This discovery unlocks opportunities for designing materials that capture/release water over a range of temperatures that extend well below the freezing point of bulk water.
Collapse
Affiliation(s)
- Alan C Eaby
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, South Africa
| | - Dirkie C Myburgh
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, South Africa
| | - Akmal Kosimov
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Marcin Kwit
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Catharine Esterhuysen
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, South Africa.
| | | | - Leonard J Barbour
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
10
|
Luo Y, Clabbers MTB, Qiao J, Yuan Z, Yang W, Zou X. Visualizing the Entire Range of Noncovalent Interactions in Nanocrystalline Hybrid Materials Using 3D Electron Diffraction. J Am Chem Soc 2022; 144:10817-10824. [PMID: 35678508 PMCID: PMC9490833 DOI: 10.1021/jacs.2c02426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
Noncovalent interactions
are essential in the formation and properties
of a diverse range of hybrid materials. However, reliably identifying
the noncovalent interactions in nanocrystalline materials remains
challenging using conventional methods such as X-ray diffraction and
spectroscopy. Here, we demonstrate that accurate atomic positions
including hydrogen atoms can be determined using three-dimensional
electron diffraction (3D ED), from which the entire range of noncovalent
interactions in a nanocrystalline aluminophosphate hybrid material
SCM-34 are directly visualized. The protonation states of both the
inorganic and organic components in SCM-34 are determined from the
hydrogen positions. All noncovalent interactions, including hydrogen-bonding,
electrostatic, π–π stacking, and van der Waals
interactions, are unambiguously identified, which provides detailed
insights into the formation of the material. The 3D ED data also allow
us to distinguish different types of covalent bonds based on their
bond lengths and to identify an elongated terminal P=O π-bond
caused by noncovalent interactions. Our results show that 3D ED can
be a powerful tool for resolving detailed noncovalent interactions
in nanocrystalline materials. This can improve our understanding of
hybrid systems and guide the development of novel functional materials.
Collapse
Affiliation(s)
- Yi Luo
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Max T B Clabbers
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jian Qiao
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, 1658 Pudong Beilu, Shanghai 201208, China
| | - Zhiqing Yuan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, 1658 Pudong Beilu, Shanghai 201208, China
| | - Weimin Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, 1658 Pudong Beilu, Shanghai 201208, China
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
11
|
Multiple yet switchable hydrogen-bonded organic frameworks with white-light emission. Nat Commun 2022; 13:1882. [PMID: 35388019 PMCID: PMC8987099 DOI: 10.1038/s41467-022-29565-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/17/2022] [Indexed: 12/22/2022] Open
Abstract
The development of new strategies to construct on-demand porous lattice frameworks from simple motifs is desirable. However, mitigating complexity while combing multiplicity and reversibility in the porous architectures is a challenging task. Herein, based on the synergy of dynamic intermolecular interactions and flexible molecular conformation of a simple cyano-modified tetraphenylethylene tecton, eleven kinetic-stable hydrogen-bonded organic frameworks (HOFs) with various shapes and two thermo-stable non-porous structures with rare perpendicular conformation are obtained. Multimode reversible structural transformations along with visible fluorescence output between porous and non-porous or between different porous forms is realized under different external stimuli. Furthermore, the collaborative of flexible framework and soft long-chain guests facilitate the relaxation from intrinsic blue emission to yellow emission in the excited state, which represents a strategy for generating white-light emission. The dynamic intermolecular interactions, facilitated by flexible molecular conformation and soft guests, diversifies the strategies of construction of versatile smart molecular frameworks. Switchable hydrogen-bonded frameworks have potential applications in the development of smart materials. Herein, the authors report eleven hydrogen-bonded organic frameworks and two non-porous structures that can undergo reversible structural and fluorescence switching; white-light emission is enabled.
Collapse
|
12
|
Kniazeva MV, Ovsyannikov AS, Nowicka B, Kyritsakas N, Samigullina AI, Gubaidullin AT, Islamov DR, Dorovatovskii PV, Popova EV, Kleshnina SR, Solovieva SE, Antipin IS, Ferlay S. Porous nickel and cobalt hexanuclear ring-like clusters built from two different kind of calixarene ligands – new molecular traps for small volatile molecules. CrystEngComm 2022. [DOI: 10.1039/d1ce01361k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation and structural analysis of porous hexanuclear ring-like cluster complexes built from two different kind of calixarene ligands is presented, together with their stability and vapor solvent sorption properties.
Collapse
Affiliation(s)
- Mariia V. Kniazeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Alexander S. Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Aida I. Samigullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Aidar T. Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Daut R. Islamov
- Laboratory for Structural Analysis of Biomacromolecules, Kazan Scientific Center of Russian Academy of Sciences, Lobachevskogo 2 str, Kazan 420008, Russian Federation
| | - Pavel V. Dorovatovskii
- National Research Centre “Kurchatov Institute”, Acad. Kurchatov 1 Sq., 123182 Moscow, Russian Federation
| | - Elena V. Popova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Sofiya R. Kleshnina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | | | - Igor S. Antipin
- Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Sylvie Ferlay
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France
| |
Collapse
|
13
|
Bauer JO, Espinosa‐Jalapa NA, Fontana N, Götz T, Falk A. Functional Group Variation in
tert
‐Butyldiphenylsilanes (TBDPS): Syntheses, Reactivities, and Effects on the Intermolecular Interaction Pattern in the Molecular Crystalline State. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jonathan O. Bauer
- Institut für Anorganische Chemie Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Noel Angel Espinosa‐Jalapa
- Institut für Anorganische Chemie Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Nicolò Fontana
- Institut für Anorganische Chemie Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Tobias Götz
- Institut für Anorganische Chemie Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Alexander Falk
- Institut für Anorganische Chemie Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 93053 Regensburg Germany
| |
Collapse
|
14
|
Wei P, He X, Zheng Z, He D, Li Q, Gong J, Zhang J, Sung HHY, Williams ID, Lam JWY, Liu M, Tang BZ. Robust Supramolecular Nano-Tunnels Built from Molecular Bricks*. Angew Chem Int Ed Engl 2021; 60:7148-7154. [PMID: 33300645 DOI: 10.1002/anie.202013117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/12/2020] [Indexed: 01/10/2023]
Abstract
Herein we report a linear ionic molecule that assembles into a supramolecular nano-tunnel structure through synergy of trident-type ionic interactions and π-π stacking interactions. The nano-tunnel crystal exhibits anisotropic guest adsorption behavior. The material shows good thermal stability and undergoes multi-stage single-crystal-to-single-crystal phase transformations to a nonporous structure on heating. The material exhibits a remarkable chemical stability under both acidic and basic conditions, which is rarely observed in supramolecular organic frameworks and is often related to structures with designed hydrogen-bonding interactions. Because of the high polarity of the tunnels, this molecular crystal also shows a large CO2 -adsorption capacity while excluding other gases at ambient temperature, leading to high CO2 /CH4 selectivity. Aggregation-induced emission of the molecules gives the bulk crystals vapochromic properties.
Collapse
Affiliation(s)
- Peifa Wei
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, SCUT-HKUST Joint Research Institute, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xuan He
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Zheng Zheng
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, SCUT-HKUST Joint Research Institute, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Donglin He
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Qiyao Li
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, SCUT-HKUST Joint Research Institute, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Junyi Gong
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, SCUT-HKUST Joint Research Institute, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jun Zhang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, SCUT-HKUST Joint Research Institute, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Herman H Y Sung
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, SCUT-HKUST Joint Research Institute, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ian D Williams
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, SCUT-HKUST Joint Research Institute, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, SCUT-HKUST Joint Research Institute, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ming Liu
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, SCUT-HKUST Joint Research Institute, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
15
|
Wei P, He X, Zheng Z, He D, Li Q, Gong J, Zhang J, Sung HHY, Williams ID, Lam JWY, Liu M, Tang BZ. Robust Supramolecular Nano‐Tunnels Built from Molecular Bricks**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Peifa Wei
- Department of Chemistry The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction SCUT-HKUST Joint Research Institute Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- Institutes of Physical Science and Information Technology Anhui University Hefei 230601 China
| | - Xuan He
- Institutes of Physical Science and Information Technology Anhui University Hefei 230601 China
| | - Zheng Zheng
- Department of Chemistry The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction SCUT-HKUST Joint Research Institute Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Donglin He
- Materials Innovation Factory and Department of Chemistry University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Qiyao Li
- Department of Chemistry The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction SCUT-HKUST Joint Research Institute Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Junyi Gong
- Department of Chemistry The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction SCUT-HKUST Joint Research Institute Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Jun Zhang
- Department of Chemistry The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction SCUT-HKUST Joint Research Institute Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Herman H. Y. Sung
- Department of Chemistry The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction SCUT-HKUST Joint Research Institute Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Ian D. Williams
- Department of Chemistry The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction SCUT-HKUST Joint Research Institute Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Jacky W. Y. Lam
- Department of Chemistry The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction SCUT-HKUST Joint Research Institute Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Ming Liu
- Materials Innovation Factory and Department of Chemistry University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Ben Zhong Tang
- Department of Chemistry The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction SCUT-HKUST Joint Research Institute Institute for Advanced Study Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- Center for Aggregation-Induced Emission State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| |
Collapse
|
16
|
Zhang G, Hua B, Dey A, Ghosh M, Moosa BA, Khashab NM. Intrinsically Porous Molecular Materials (IPMs) for Natural Gas and Benzene Derivatives Separations. Acc Chem Res 2021; 54:155-168. [PMID: 33332097 DOI: 10.1021/acs.accounts.0c00582] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ConspectusSeparating and purifying chemicals without heat would go a long way toward reducing the overall energy consumption and the harmful environmental footprint of the process. Molecular separation processes are critical for the production of raw materials, commodity chemicals, and specialty fuels. Over 50% of the energy used in the production of these materials is spent on separation and purification processes, which primarily includes vacuum and cryogenic distillations. Chemical manufacturers are now investigating modest thermal approaches, such as membranes and adsorbent materials, as they are more cognizant than ever of the need to save energy and prevent pollution. Porous materials, such as zeolites, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs), have dominated the field of industrial separations as their high surface areas and robust pores make them ideal candidates for molecular separations of gases and hydrocarbons. Separation processes involving porous materials can save 70%-90% of energy costs compared to that of thermally driven distillations. However, most porous materials have low thermal, chemical, and moisture stability, in addition to limited solution processability, which tremendously constrain their broad industrial translation. Intrinsically porous molecular materials (IPMs) are a subclass of porous molecular materials that are comprised of molecular host macrocycles or cages that absorb guests in or around their intrinsic cavity. IPMs range from discrete porous molecules to assemblies with amorphous or highly crystalline structures that are held together by weak supramolecular interactions. Compared to the coordination or dynamic covalent bond-constructed porous frameworks, IPMs possess high thermal, chemical, and moisture stability and maintain their porosity under critical conditions. Moreover, the intrinsic porosity endows IPMs with excellent host-guest properties in solid, liquid (organic or aqueous), and gas states, which can be further utilized to construct diverse separation strategies, such as solid-gas adsorption, solid-liquid absorption, and liquid-liquid extraction. The diversity of host-guest interactions in the engineered IPMs affords a plethora of possibilities for the development of the ideal "molecular sieves". Herein, we present a different take on the applicability of intrinsically porous materials such as cyclodextrin (CD), cucurbiturils (CB), pillararene (P), trianglamines (T), and porous organic cages (POCs) that showed an impressive performance in gas purification and benzene derivatives separation. IPMs can be easily scaled up and are quite stable and solution processable that consequently facilitates a favorable technological transformation from the traditional energy-intensive separations. We will account for the main advances in molecular host-guest chemistry to design "on-demand" separation processes and also outline future challenges and opportunities for this promising technology.
Collapse
Affiliation(s)
- Gengwu Zhang
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bin Hua
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Avishek Dey
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Munmun Ghosh
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Basem A. Moosa
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Niveen M. Khashab
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
17
|
Miao LP, Qi Q, Han XB, Zhang W. DCM self-trapping by the host deformation in flexible host–guest molecules. CrystEngComm 2021. [DOI: 10.1039/d1ce00301a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The desolvated structure can self-trap the DCM molecules to return to the 1·DCM state via ligand deformation even under weak host–guest interactions. The capture behavior of DCM is mostly due to the flexibility of the ligand.
Collapse
Affiliation(s)
- Le-Ping Miao
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Qi Qi
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Xiang-Bin Han
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Wen Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| |
Collapse
|
18
|
Abstract
AbstractSome organic molecules encapsulate solvents upon crystallization. One class of compounds that shows a high propensity to form such crystalline solvates are tetraaryladamantanes (TAAs). Recently, tetrakis(dialkoxyphenyl)-adamantanes have been shown to encapsulate a wide range of guest molecules in their crystals, and to stabilize the guest molecules against undesired reactions. The term ‘encapsulating organic crystals’ (EnOCs) has been coined for these species. In this work, we studied the behavior of three TAAs upon exposition to different guest molecules by means of sorption technique. We firstly measured the vapor adsorption/desorption isotherms with water, tetrahydrofuran and toluene, and secondly, we studied the uptake of methane on dry and wet TAAs. Uptake of methane beyond one molar equivalent was detected for wet crystals, even though the materials showed a lack of porosity. Thus far, such behavior, which we ascribe to methane hydrate formation, had been described for porous non-crystalline materials or crystals with detectable porosity, not for non-porous organic crystals. Our results show that TAA crystals have interesting properties beyond the formation of conventional solvates. Gas-containing organic crystals may find application as reservoirs for gases that are difficult to encapsulate or are slow to form crystalline hydrates in the absence of a host compound.Wet tetraaryladamantane crystals take up methane in form of methane hydrate structure I, even though they appear non-porous to argon.
Collapse
|
19
|
Campillo-Alvarado G, Li C, Feng Z, Hutchins KM, Swenson DC, Höpfl H, Morales-Rojas H, MacGillivray LR. Single-Crystal-to-Single-Crystal [2 + 2] Photodimerization Involving B←N Coordination with Generation of a Thiophene Host. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Changan Li
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Zhiting Feng
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kristin M. Hutchins
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Dale C. Swenson
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Herbert Höpfl
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | - Hugo Morales-Rojas
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | | |
Collapse
|
20
|
Nishihara H, Matsuura K, Ohwada M, Yamamoto M, Matsuo Y, Maruyama J, Hayasaka Y, Yamaguchi S, Kamiya K, Konaka H, Inoue M, Tani F. Synthesis of Ordered Carbonaceous Framework with Microporosity from Porphyrin with Ethynyl Groups. CHEM LETT 2020. [DOI: 10.1246/cl.200141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Kenta Matsuura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Mao Ohwada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Masanori Yamamoto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Yoshiaki Matsuo
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha Himeji, Hyogo 671-2280, Japan
| | - Jun Maruyama
- Research Division of Environmental Technology, Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Yuichiro Hayasaka
- The Electron Microscopy Centre, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Shingi Yamaguchi
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kazuhide Kamiya
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Hisashi Konaka
- Application & Software Development Department, X-ray Instrument Division, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan
| | - Masataka Inoue
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
21
|
Zhou Y, Jie K, Zhao R, Huang F. Supramolecular-Macrocycle-Based Crystalline Organic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904824. [PMID: 31535778 DOI: 10.1002/adma.201904824] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Supramolecular macrocycles are well known as guest receptors in supramolecular chemistry, especially host-guest chemistry. In addition to their wide applications in host-guest chemistry and related areas, macrocycles have also been employed to construct crystalline organic materials (COMs) owing to their particular structures that combine both rigidity and adaptivity. There are two main types of supramolecular-macrocycle-based COMs: those constructed from macrocycles themselves and those prepared from macrocycles with other organic linkers. This review summarizes recent developments in supramolecular-macrocycle-based COMs, which are categorized by various types of macrocycles, including cyclodextrins, calixarenes, resorcinarenes, pyrogalloarenes, cucurbiturils, pillararenes, and others. Effort is made to focus on the structures of supramolecular-macrocycle-based COMs and their structure-function relationships. In addition, the application of supramolecular-macrocycle-based COMs in gas storage or separation, molecular separation, solid-state electrolytes, proton conduction, iodine capture, water or environmental treatment, etc., are also presented. Finally, perspectives and future challenges in the field of supramolecular-macrocycle-based COMs are discussed.
Collapse
Affiliation(s)
- Yujuan Zhou
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kecheng Jie
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Run Zhao
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
22
|
Tashiro S, Shionoya M. Novel Porous Crystals with Macrocycle-Based Well-Defined Molecular Recognition Sites. Acc Chem Res 2020; 53:632-643. [PMID: 31970991 DOI: 10.1021/acs.accounts.9b00566] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Molecular recognition is one of the fundamental events in biological systems, as typified by enzymes that enable highly efficient and selective catalytic reactions through precise recognition of substrate(s) and cofactor(s) in the binding pockets. Chemists therefore have long been inspired by such excellent molecular systems to develop various synthetic receptors with well-defined binding sites. Their effort is currently being devoted to the construction of not only molecular receptors but also self-assembled host compounds possessing connected cavities (pores) in the crystalline frameworks to rationally design functional porous materials capable of efficiently adsorbing molecules or ions at binding sites on the pore walls. However, it is still challenging to design multiple distinct binding sites that are precisely arranged in an identical framework, which is currently one of the most important targets in this field to realize elaborate molecular systems beyond natural enzymes.In this Account, we provide an overview of porous crystals with well-defined molecular recognition sites. We first show several strategies for arranging macrocyclic binding sites in crystalline frameworks such as metal-organic frameworks, porous molecular crystals, and covalent organic frameworks. Porous metal-macrocycle frameworks (MMFs) that we have recently developed are then described as a new type of porous crystals with well-defined multiple distinct binding sites. The MMF-1 crystal, which was developed first and is composed of four stereoisomers of helical PdII3-macrocycle complexes, has one-dimensional channels with dimensions of 1.4 nm × 1.9 nm equipped with enantiomeric pairs of five distinct binding sites. This structural feature of MMF-1 therefore allows for site-selective and asymmetric arrangement of not only single but also multiple guest molecules in the crystalline channels based on molecular recognition between the guests and the multiple binding sites. This characteristic was also exploited to develop a heterogeneous catalyst by non-covalently immobilizing an organic acid on the pore surface of MMF-1 to conduct size-specific catalytic reactions. In addition, adsorption of a photoreactive substrate in MMF was found to switch the photoreaction pathway to cause another reaction with the aid of photoactivated PdII centers arranged on the pore walls. Furthermore, the dynamic, transient process of molecular arrangement incorporated in MMF-1 has been successfully visualized by single-crystal X-ray diffraction analysis. The formation of homochiral MMF-2 composed of only (P)- or (M)-helical PdII3-macrocycle complexes is also described. Thus, macrocycle-based porous crystals with a complex structure such as MMFs are expected to serve as novel porous materials that have great potential to mimic or surpass enzymes by utilizing well-defined multiple binding sites capable of spatially arranging a catalyst, substrate, and effector for highly selective and allosterically tunable catalytic reactions, which can be also visualized by crystallographic analysis because of their crystalline nature.
Collapse
Affiliation(s)
- Shohei Tashiro
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
23
|
Yang W, Samanta K, Wan X, Thikekar TU, Chao Y, Li S, Du K, Xu J, Gao Y, Zuilhof H, Sue AC. Tiara[5]arenes: Synthesis, Solid‐State Conformational Studies, Host–Guest Properties, and Application as Nonporous Adaptive Crystals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913055] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Weiwei Yang
- Institute for Molecular Design and Synthesis School of Pharmaceutical Science & Technology Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 P. R. China
| | - Kushal Samanta
- Institute for Molecular Design and Synthesis School of Pharmaceutical Science & Technology Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 P. R. China
| | - Xintong Wan
- Institute for Molecular Design and Synthesis School of Pharmaceutical Science & Technology Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 P. R. China
| | - Tushar Ulhas Thikekar
- Institute for Molecular Design and Synthesis School of Pharmaceutical Science & Technology Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 P. R. China
| | - Yang Chao
- Institute for Molecular Design and Synthesis School of Pharmaceutical Science & Technology Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 P. R. China
| | - Shunshun Li
- Institute for Molecular Design and Synthesis School of Pharmaceutical Science & Technology Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 P. R. China
| | - Ke Du
- Institute for Molecular Design and Synthesis School of Pharmaceutical Science & Technology Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 P. R. China
| | - Jun Xu
- Institute for Molecular Design and Synthesis School of Pharmaceutical Science & Technology Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 P. R. China
| | - Yan Gao
- Institute for Molecular Design and Synthesis School of Pharmaceutical Science & Technology Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 P. R. China
| | - Han Zuilhof
- Institute for Molecular Design and Synthesis School of Pharmaceutical Science & Technology Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 P. R. China
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708 WE Wageningen The Netherlands
- Department of Chemical and Materials Engineering Faculty of Engineering King Abdulaziz University Jeddah Saudi Arabia
| | - Andrew C.‐H. Sue
- Institute for Molecular Design and Synthesis School of Pharmaceutical Science & Technology Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 P. R. China
| |
Collapse
|
24
|
Yang W, Samanta K, Wan X, Thikekar TU, Chao Y, Li S, Du K, Xu J, Gao Y, Zuilhof H, Sue ACH. Tiara[5]arenes: Synthesis, Solid-State Conformational Studies, Host-Guest Properties, and Application as Nonporous Adaptive Crystals. Angew Chem Int Ed Engl 2020; 59:3994-3999. [PMID: 31763754 PMCID: PMC7187373 DOI: 10.1002/anie.201913055] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Indexed: 12/12/2022]
Abstract
Tiara[5]arenes (T[5]s), a new class of five‐fold symmetric oligophenolic macrocycles that are not accessible from the addition of formaldehyde to phenol, were synthesized for the first time. These pillar[5]arene‐derived structures display both unique conformational freedom, differing from that of pillararenes, with a rich blend of solid‐state conformations and excellent host–guest interactions in solution. Finally we show how this novel macrocyclic scaffold can be functionalized in a variety of ways and used as functional crystalline materials to distinguish uniquely between benzene and cyclohexane.
Collapse
Affiliation(s)
- Weiwei Yang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Kushal Samanta
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Xintong Wan
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Tushar Ulhas Thikekar
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Yang Chao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Shunshun Li
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Ke Du
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Jun Xu
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Yan Gao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Han Zuilhof
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Andrew C-H Sue
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| |
Collapse
|
25
|
Seki T, Ida K, Sato H, Aono S, Sakaki S, Ito H. Aurophilicity-Mediated Construction of Emissive Porous Molecular Crystals as Versatile Hosts for Liquid and Solid Guests. Chemistry 2020; 26:735-744. [PMID: 31599004 DOI: 10.1002/chem.201904597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 11/08/2022]
Abstract
The first examples of porous molecular crystals that are assembled through Au⋅⋅⋅Au interactions of gold complex 1 are here reported along with their exchange properties with respect to their guest components. Single-crystal X-ray diffraction (XRD) analyses indicate that the crystal structure of 1/CH2 Cl2 ⋅pentane is based on cyclic hexamers of 1, which are formed through six Au⋅⋅⋅Au interactions. The packing of these cyclic hexamers affords a porous architecture, in which the one-dimensional channel segment contains CH2 Cl2 and pentane as guests. These guests can be exchanged through operationally simple methods under retention of the host framework of 1, which furnished 1/guest complexes with 26 different guests. A single-crystal XRD analysis of 1/eicosane, which contains the long linear alkane eicosane (n-C20 H42 ), successfully provided its accurately modeled structure within the porous material. These host-guest complexes show chromic luminescence with both blue- and redshifted emissions. Moreover, this porous organometallic material can exhibit luminescent mechanochromism through release of guests.
Collapse
Affiliation(s)
- Tomohiro Seki
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Kentaro Ida
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Hiroyasu Sato
- Rigaku Corporation, Akishima, Tokyo, 196-8666, Japan
| | - Shinji Aono
- Fukui Institute for Fundamental Chemistry, Kyoto University, Nishihiraki-cho, Takano, Sakyo-ku, Kyoto, 606-8103, Japan
| | - Shigeyoshi Sakaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Nishihiraki-cho, Takano, Sakyo-ku, Kyoto, 606-8103, Japan
| | - Hajime Ito
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
26
|
Wang L, Zhang S, Wang Y, Zhang B. Dispersion-induced structural preference in the ultrafast dynamics of diphenyl ether. RSC Adv 2020; 10:18093-18098. [PMID: 35517230 PMCID: PMC9053750 DOI: 10.1039/d0ra02224a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/28/2020] [Indexed: 11/21/2022] Open
Abstract
Dispersion interactions are omnipresent in large aromatic systems and influence the dynamics as intermolecular forces. The structural preference induced by dispersion interactions is demonstrated to influence the excited state dynamics of diphenyl ether (DPE) using femtosecond time-resolved transient absorption (TA) associated with quantum chemical calculations. The experimental results in aprotic solvents show that the S1 state is populated upon irradiation at 267 nm with excess vibrational energy dissipating to solvent molecules in several picoseconds, and then decays via internal conversion (IC) within 50 ps as well as intersystem crossing (ISC) and fluorescence with a lifetime of nanoseconds. The polarity of the solvent disturbs the excited state energies and enhances the energy barriers of the ISC channel. Furthermore, the intermolecular dispersion interactions with protic solvents result in the OH–π isomer dominating in methanol and the OH–O isomer is slightly preferred in t-butanol in the ground state. The hydrogen bonded isomer measurements show an additional change from OH–O to OH–π geometry in the first 1 ps besides the relaxation processes in aprotic solvents. The time constants measured in the TA spectra suggest that the OH–O isomer facilitates IC. The results show that the OH–π isomer has a more rigid structure and a higher barrier for IC, making it harder to reach the geometric conical intersection through conformer rearrangement. This work enables us to have a good knowledge of how the structural preference induced by dispersion interactions affects excited state dynamics of the heteroaromatic compounds. Dispersion interactions are omnipresent in large aromatic systems and influence the dynamics as intermolecular forces.![]()
Collapse
Affiliation(s)
- Lian Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Innovation Academy for Precision Measurement Science and Technology
- Chinese Academy of Sciences
- Wuhan 430071
- China
| | - Song Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Innovation Academy for Precision Measurement Science and Technology
- Chinese Academy of Sciences
- Wuhan 430071
- China
| | - Ye Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Innovation Academy for Precision Measurement Science and Technology
- Chinese Academy of Sciences
- Wuhan 430071
- China
| | - Bing Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Innovation Academy for Precision Measurement Science and Technology
- Chinese Academy of Sciences
- Wuhan 430071
- China
| |
Collapse
|
27
|
Shimoyama D, Sekiya R, Haino T. Absorption of chemicals in amorphous trisresorcinarene. Chem Commun (Camb) 2020; 56:12582-12585. [DOI: 10.1039/d0cc05066k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Trisresorcinarene is an interesting class of macrocyclic host. Its unique structure and insolubility allow to function as a amorphous solid absorbent capable of absorbing various aromatic and aliphatic hydrocarbons.
Collapse
Affiliation(s)
- Daisuke Shimoyama
- Department of Chemistry
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Ryo Sekiya
- Department of Chemistry
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Takeharu Haino
- Department of Chemistry
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima
- Japan
| |
Collapse
|
28
|
Kniazeva MV, Ovsyannikov AS, Islamov DR, Samigullina AI, Gubaidullin AT, Dorovatovskii PV, Solovieva SE, Antipin IS, Ferlay S. Nuclearity control in calix[4]arene-based zinc( ii) coordination complexes. CrystEngComm 2020. [DOI: 10.1039/d0ce01232g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three zinc-based coordination complexes were selectively generated in the crystalline phase using a new flexible molecular “tweezers” calix[4]arene derivative ligand decorated with two appended carboxylic moieties and benzyl spacers ((3-4H)).
Collapse
Affiliation(s)
- Mariia V. Kniazeva
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russian Federation
| | - Alexander S. Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russian Federation
| | | | - Aida I. Samigullina
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russian Federation
| | - Aidar T. Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center
- Russian Academy of Sciences
- Kazan 420088
- Russian Federation
| | | | | | | | - Sylvie Ferlay
- CNRS
- CMC UMR 7140
- Université de Strasbourg
- F-67000 Strasbourg
- France
| |
Collapse
|
29
|
Zhang Y, Su K, Hong Z, Han Z, Yuan D. Robust Cationic Calix[4]arene Polymer as an Efficient Catalyst for Cycloaddition of Epoxides with CO2. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05312] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yiwen Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, China
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, China
| | - Zixiao Hong
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Zhengbo Han
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, China
| |
Collapse
|
30
|
Bélanger‐Chabot G, Braunschweig H. Hexahalogendiborat‐Dianionen: Eine neue Klasse binärer Borhalogenide. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guillaume Bélanger‐Chabot
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Holger Braunschweig
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
31
|
Oguz M, Bhatti AA, Dogan B, Karakurt S, Durdagi S, Yilmaz M. Formation of the inclusion complex of water soluble fluorescent calix[4]arene and naringenin: solubility, cytotoxic effect and molecular modeling studies. J Biomol Struct Dyn 2019; 38:3801-3813. [PMID: 31526236 DOI: 10.1080/07391102.2019.1668301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Naringenin is considered as an important flavonoid in phytochemistry because of its important effect on cancer chemoprevention. Unfortunately its poor solubility has restricted its therapeutic applications. In this study, an efficient water-soluble fluorescent calix[4]arene (compound 5) was synthesized as host macromolecule to increase solubility and cytotoxicity in cancer cells of water-insoluble naringenin as well as to clarify localization of naringenin into the cells. Complex formed by host-guest interaction between compound 5 and naringenin was analyzed with UV-visible, fluorescence, FTIR spectroscopic techniques and molecular modeling studies. Stern-Volmer analysis showed binding constant value of Ksv 3.5 × 107 M-1 suggesting strong interaction between host and guest. Binding capacity shows 77% of naringenin was loaded on compound 5. Anticarcinogenic effects of naringenin complex were evaluated on human colorectal carcinoma cells (DLD-1) and it was found that 5-naringenin complex inhibits proliferation of DLD-1 cells 3.4-fold more compared to free naringenin. Fluorescence imaging studies show 5-naringenin complex was accumulated into the cytoplasm instead of the nucleus. Increased solubility and cytotoxicity of naringenin with fluorescent calix[4]arene makes it one of the potential candidates as a therapeutic enhancer. For deep understanding of host-guest interaction mechanisms, complementary multiscale molecular modeling studies were also carried out.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehmet Oguz
- Department of Chemistry, Selcuk University, Konya, Turkey.,Department of Advanced Material and Nanotechnology, Selcuk University, Konya, Turkey
| | - Asif Ali Bhatti
- Department of Chemistry, Selcuk University, Konya, Turkey.,Department of Chemistry, Government College University Hyderabad, Hyderabad, Pakistan
| | - Berna Dogan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Serdar Karakurt
- Department of Biochemistry, Selcuk University, Konya, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Mustafa Yilmaz
- Department of Chemistry, Selcuk University, Konya, Turkey
| |
Collapse
|
32
|
Tolborg K, Iversen BB. Electron Density Studies in Materials Research. Chemistry 2019; 25:15010-15029. [DOI: 10.1002/chem.201903087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/13/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Kasper Tolborg
- Center for Materials CrystallographyDepartment of Chemistry and iNANOAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Bo B. Iversen
- Center for Materials CrystallographyDepartment of Chemistry and iNANOAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
33
|
Bélanger-Chabot G, Braunschweig H. Hexahalodiborate Dianions: A New Family of Binary Boron Halides. Angew Chem Int Ed Engl 2019; 58:14270-14274. [PMID: 31361383 PMCID: PMC7028027 DOI: 10.1002/anie.201906666] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 01/05/2023]
Abstract
The electron‐precise binary boron subhalide species [B2X6]2− X=F, Br, I) were synthesized and their structures confirmed by X‐ray crystallography. The existence of the previously claimed [B2Cl6]2−, which had been questioned, was also confirmed by X‐ray crystallography. The dianions are isoelectronic to hexahaloethanes, are subhalide analogues of the well‐known tetrahaloborate anions (BX4−), and are rare examples of molecular electron‐precise binary boron species beyond B2X4, BX3, and [BX4]−.
Collapse
Affiliation(s)
- Guillaume Bélanger-Chabot
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
34
|
Tominaga M, Kunitomi N, Ohara K, Kawahata M, Itoh T, Katagiri K, Yamaguchi K. Hollow and Solid Spheres Assembled from Functionalized Macrocycles Containing Adamantane. J Org Chem 2019; 84:5109-5117. [PMID: 30951304 DOI: 10.1021/acs.joc.9b00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An adamantane-based macrocycle possessing eight hydroxyl groups (1) was synthesized, in which the macrocyclic framework comprises two disubstituted adamantane molecules bearing phenyl derivatives connected to two biphenylene spacers by oxygen atoms. Furthermore, functionalized macrocycles containing methyl (2) and methoxycarbonylmethyl (3) groups were prepared. From the X-ray crystallographic analysis, the backbone of the macrocycles in all crystals had a nearly hexagonal shape with a cavity and these macrocycles could be arranged into different tubular structures dependent on the substituents. In acetone, macrocycle (1) formed stable hollow spherical aggregates with multilayer membranes. In contrast, macrocycle (3) exhibited no production of self-assembled materials in chloroform. The addition of hexane into the solution caused the generation of solid spheres and their fused network aggregates, which were finally transformed into crystals owing to the solvent effects.
Collapse
Affiliation(s)
- Masahide Tominaga
- Faculty of Pharmaceutical Sciences at Kagawa Campus , Tokushima Bunri University , 1314-1 Shido , Sanuki , Kagawa 769-2193 , Japan
| | - Nobuto Kunitomi
- Faculty of Pharmaceutical Sciences at Kagawa Campus , Tokushima Bunri University , 1314-1 Shido , Sanuki , Kagawa 769-2193 , Japan
| | - Kazuaki Ohara
- Faculty of Pharmaceutical Sciences at Kagawa Campus , Tokushima Bunri University , 1314-1 Shido , Sanuki , Kagawa 769-2193 , Japan
| | - Masatoshi Kawahata
- Faculty of Pharmaceutical Sciences at Kagawa Campus , Tokushima Bunri University , 1314-1 Shido , Sanuki , Kagawa 769-2193 , Japan
| | - Tsutomu Itoh
- Center for Analytical Instrumentation , Chiba University , 1-33 Yayoi-cho , Inage-ku, Chiba 263-8522 , Japan
| | - Kosuke Katagiri
- Department of Chemistry, Faculty of Science and Engineering , Konan University , 8-9-1 Okamoto, Higashinada-ku , Kobe , Hyogo 658-8501 , Japan
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus , Tokushima Bunri University , 1314-1 Shido , Sanuki , Kagawa 769-2193 , Japan
| |
Collapse
|
35
|
Shetty D, Boutros S, Eskhan A, De Lena AM, Skorjanc T, Asfari Z, Traboulsi H, Mazher J, Raya J, Banat F, Trabolsi A. Thioether-Crown-Rich Calix[4]arene Porous Polymer for Highly Efficient Removal of Mercury from Water. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12898-12903. [PMID: 30852896 DOI: 10.1021/acsami.9b02259] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A rational design of adsorbents with high uptake efficiency and fast kinetics for highly toxic pollutants is a key challenge in environmental remediation. Here, we report the design of a well-defined thioether-crown-rich porous calix[4]arene-based mesoporous polymer S-CX4P and its utility in removal of highly relevant toxic mercury (Hg2+) from water. The polymer shows an exceptional, record-high uptake efficiency of 1686 mg g-1 and the fastest initial adsorption rate of 278 mg g-1 min-1. Remarkably, S-CX4P can effectively remove Hg2+ from high concentration (5 ppm) to below the acceptable limit for drinking water (2 ppb) even in the presence of other competitive metals at high concentrations. In addition, the polymer can be easily regenerated at room temperature and reused multiple times with negligible loss in uptake rate and efficiency. The results demonstrate the potential of rationally designed thioether-crown-rich polymers for high performance mercury removal.
Collapse
Affiliation(s)
- Dinesh Shetty
- Science Division , New York University Abu Dhabi (NYUAD) , P.O. Box 129188, Saadiyat Island, Abu Dhabi , UAE
| | - Sandra Boutros
- Science Division , New York University Abu Dhabi (NYUAD) , P.O. Box 129188, Saadiyat Island, Abu Dhabi , UAE
| | - Asma Eskhan
- Chemical Engineering Department , Khalifa University , P.O. Box 127788, Abu Dhabi , UAE
| | - Anna Marie De Lena
- Chemical Engineering Department , Khalifa University , P.O. Box 127788, Abu Dhabi , UAE
| | - Tina Skorjanc
- Science Division , New York University Abu Dhabi (NYUAD) , P.O. Box 129188, Saadiyat Island, Abu Dhabi , UAE
| | - Zouhair Asfari
- Equipe Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/UdS, 67087 Strasbourg Cedex, France
| | | | | | - Jesus Raya
- Membrane Biophysics and NMR, Institute of Chemistry, UMR 7177 , University of Strasbourg , 67000 Strasbourg , France
| | - Fawzi Banat
- Chemical Engineering Department , Khalifa University , P.O. Box 127788, Abu Dhabi , UAE
| | - Ali Trabolsi
- Science Division , New York University Abu Dhabi (NYUAD) , P.O. Box 129188, Saadiyat Island, Abu Dhabi , UAE
| |
Collapse
|
36
|
Shi MW, Thomas SP, Hathwar VR, Edwards AJ, Piltz RO, Jayatilaka D, Koutsantonis GA, Overgaard J, Nishibori E, Iversen BB, Spackman MA. Measurement of Electric Fields Experienced by Urea Guest Molecules in the 18-Crown-6/Urea (1:5) Host-Guest Complex: An Experimental Reference Point for Electric-Field-Assisted Catalysis. J Am Chem Soc 2019; 141:3965-3976. [PMID: 30761898 DOI: 10.1021/jacs.8b12927] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-resolution synchrotron and neutron single-crystal diffraction data of 18-crown-6/(pentakis)urea measured at 30 K are combined, with the aim of better appreciating the electrostatics associated with intermolecular interactions in condensed matter. With two 18-crown-6 molecules and five different urea molecules in the crystal, this represents the most ambitious combined X-ray/synchrotron and neutron experimental charge density analysis to date on a cocrystal or host-guest system incorporating such a large number of unique molecules. The dipole moments of the five urea guest molecules in the crystal are enhanced considerably compared to values determined for isolated molecules, and 2D maps of the electrostatic potential and electric field show clearly how the urea molecules are oriented with dipole moments aligned along the electric field exerted by their molecular neighbors. Experimental electric fields in the range of 10-19 GV m-1, obtained for the five different urea environments, corroborate independent measurements of electric fields in the active sites of enzymes and provide an important experimental reference point for recent discussions focused on electric-field-assisted catalysis.
Collapse
Affiliation(s)
- Ming W Shi
- School of Molecular Sciences , University of Western Australia , 35 Stirling Highway , Crawley , WA 6009 , Australia
| | - Sajesh P Thomas
- School of Molecular Sciences , University of Western Australia , 35 Stirling Highway , Crawley , WA 6009 , Australia.,Center for Materials Crystallography and Department of Chemistry , Aarhus University , Langelandsgade 140 , DK-8000 Aarhus C , Denmark
| | - Venkatesha R Hathwar
- Center for Materials Crystallography and Department of Chemistry , Aarhus University , Langelandsgade 140 , DK-8000 Aarhus C , Denmark.,Division of Physics, Faculty of Pure and Applied Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8571 , Japan
| | - Alison J Edwards
- Australian Nuclear Science and Technology Organization , Australian Centre for Neutron Scattering , New Illawarra Road , Lucas Heights , New South Wales 2234 , Australia
| | - Ross O Piltz
- Australian Nuclear Science and Technology Organization , Australian Centre for Neutron Scattering , New Illawarra Road , Lucas Heights , New South Wales 2234 , Australia
| | - Dylan Jayatilaka
- School of Molecular Sciences , University of Western Australia , 35 Stirling Highway , Crawley , WA 6009 , Australia
| | - George A Koutsantonis
- School of Molecular Sciences , University of Western Australia , 35 Stirling Highway , Crawley , WA 6009 , Australia
| | - Jacob Overgaard
- Center for Materials Crystallography and Department of Chemistry , Aarhus University , Langelandsgade 140 , DK-8000 Aarhus C , Denmark
| | - Eiji Nishibori
- Division of Physics, Faculty of Pure and Applied Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8571 , Japan
| | - Bo B Iversen
- Center for Materials Crystallography and Department of Chemistry , Aarhus University , Langelandsgade 140 , DK-8000 Aarhus C , Denmark
| | - Mark A Spackman
- School of Molecular Sciences , University of Western Australia , 35 Stirling Highway , Crawley , WA 6009 , Australia
| |
Collapse
|
37
|
Ng CK, Toh RW, Lin TT, Luo HK, Hor TSA, Wu J. Metal-salen molecular cages as efficient and recyclable heterogeneous catalysts for cycloaddition of CO 2 with epoxides under ambient conditions. Chem Sci 2019; 10:1549-1554. [PMID: 30809373 PMCID: PMC6357855 DOI: 10.1039/c8sc05019h] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 11/24/2018] [Indexed: 01/02/2023] Open
Abstract
A salen based molecular cage, salen@cage, was synthesized and complexed with Co and Al to yield metal-salen molecular cages, Co(ii)@cage, Co(iii)@cage and Al(iii)@cage. These cages were demonstrated to be efficient heterogeneous catalysts for the cycloaddition of CO2 with styrene oxide, achieving full conversion at 25 °C and 1 atm CO2. Good to excellent yields of various cyclic carbonates were also achieved under mild conditions. Al(iii)@cage can be reused up to five times without any significant loss of its high catalytic activity. The capability to access a variety of heterogeneous organometallic catalysts with salen@cage offers new prospects for practical CO2 utilization and chemical manufacturing.
Collapse
Affiliation(s)
- Chee Koon Ng
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Singapore . ;
- Institute of Materials Research and Engineering , Agency for Science, Technology and Research , #08-03, 2 Fusionopolis Way, Innovis , Singapore 138634 , Singapore
| | - Ren Wei Toh
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Singapore . ;
| | - Ting Ting Lin
- Institute of Materials Research and Engineering , Agency for Science, Technology and Research , #08-03, 2 Fusionopolis Way, Innovis , Singapore 138634 , Singapore
| | - He-Kuan Luo
- Institute of Materials Research and Engineering , Agency for Science, Technology and Research , #08-03, 2 Fusionopolis Way, Innovis , Singapore 138634 , Singapore
| | - T S Andy Hor
- Department of Chemistry , The University of Hong Kong , Pokfulam , Hong Kong SAR , China
| | - Jie Wu
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Singapore . ;
| |
Collapse
|
38
|
Co-crystal screening of disubstituted adamantane molecules with N-heterocyclic moieties for hydrogen-bonded arrays. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Madhu S, Gonnade RG, Das T, Vanka K, Sanjayan GJ. Twelve-Armed Hexaphenylbenzene-Based Giant Supramolecular Framework for Entrapping Guest Molecules. Chempluschem 2018; 83:1032-1037. [PMID: 31950723 DOI: 10.1002/cplu.201800478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Indexed: 11/11/2022]
Abstract
Host-guest chemistry is a functional model in supramolecular chemistry for understanding specific process occurring in biological systems. Herein, we describe a rationally designed giant multiarmed hexaphenylbenzene (HPB)-based supramolecular frameworks which encapsulate a variety of guest molecules in the voids of their crystal lattice through the cooperative interplay of multivalency, noncovalent forces and backbone rigidity. In this connection, pseudo-axially substituted twelve-armed hexaphenylbenzene was synthesized and its molecular entrapping nature was studied by varying number of H-bond donor-acceptor sites in the arms. The per-methyl esterified HPB acted as a cavitand to include nonpolar and polar aprotic guests in its crystal structure via C-H⋅⋅⋅π, C-H⋅⋅⋅O and C-H⋅⋅⋅N interactions. The corresponding amidated HPB showed unprecedented inclusion of ammonia and segregation of the guest molecules according to their polarity in the lattice. Furthermore, this molecular entrapping system has been used to obtain the crystal structure of a hitherto unproven 2-azaallenium intermediate, which had been proposed to be involved in aminomethylation of activated arenes.
Collapse
Affiliation(s)
- Suresh Madhu
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110001, India
| | - Rajesh G Gonnade
- Center for Material Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Tamal Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Gangadhar J Sanjayan
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110001, India
| |
Collapse
|
40
|
McMahon DP, Stephenson A, Chong SY, Little MA, Jones JTA, Cooper AI, Day GM. Computational modelling of solvent effects in a prolific solvatomorphic porous organic cage. Faraday Discuss 2018; 211:383-399. [PMID: 30083695 PMCID: PMC6208051 DOI: 10.1039/c8fd00031j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/22/2018] [Indexed: 11/21/2022]
Abstract
Crystal structure prediction methods can enable the in silico design of functional molecular crystals, but solvent effects can have a major influence on relative lattice energies, sometimes thwarting predictions. This is particularly true for porous solids, where solvent included in the pores can have an important energetic contribution. We present a Monte Carlo solvent insertion procedure for predicting the solvent filling of porous structures from crystal structure prediction landscapes, tested using a highly solvatomorphic porous organic cage molecule, CC1. Using this method, we can understand why the predicted global energy minimum structure for CC1 is never observed from solvent crystallisation. We also explain the formation of three different solvatomorphs of CC1 from three structurally-similar chlorinated solvents. Calculated solvent stabilisation energies are found to correlate with experimental results from thermogravimetric analysis, suggesting a future computational framework for a priori materials design that factors in solvation effects.
Collapse
Affiliation(s)
- David P. McMahon
- Computational Systems Chemistry
, School of Chemistry
, University of Southampton
,
SO17 1BJ
, UK
.
| | - Andrew Stephenson
- Department of Chemistry and Materials Innovation Factory
, University of Liverpool
,
Crown St.
, Liverpool L69 7ZD
, UK
.
| | - Samantha Y. Chong
- Department of Chemistry and Materials Innovation Factory
, University of Liverpool
,
Crown St.
, Liverpool L69 7ZD
, UK
.
| | - Marc A. Little
- Department of Chemistry and Materials Innovation Factory
, University of Liverpool
,
Crown St.
, Liverpool L69 7ZD
, UK
.
| | - James T. A. Jones
- Department of Chemistry and Materials Innovation Factory
, University of Liverpool
,
Crown St.
, Liverpool L69 7ZD
, UK
.
| | - Andrew I. Cooper
- Department of Chemistry and Materials Innovation Factory
, University of Liverpool
,
Crown St.
, Liverpool L69 7ZD
, UK
.
| | - Graeme M. Day
- Computational Systems Chemistry
, School of Chemistry
, University of Southampton
,
SO17 1BJ
, UK
.
| |
Collapse
|
41
|
A comparison of the behaviour of two closely related xanthenyl-derived host compounds in the presence of vaporous dihaloalkanes. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0833-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Tan LL, Li Y, Jin Y, Zhang W, Yang YW. Pillar[6]arene-based Molecular Trap with Unusual Conformation and Topology. Isr J Chem 2018. [DOI: 10.1002/ijch.201800057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Li-Li Tan
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU); Xi'an 710072 P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry; Jilin University; Changchun 130012 P. R. China
| | - Yupeng Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry; Jilin University; Changchun 130012 P. R. China
| | - Yinghua Jin
- Department of Chemistry and Biochemistry; University of Colorado; Boulder, Colorado 80309 USA
| | - Wei Zhang
- Department of Chemistry and Biochemistry; University of Colorado; Boulder, Colorado 80309 USA
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry; Jilin University; Changchun 130012 P. R. China
| |
Collapse
|
43
|
Ryvlin D, Girschikofsky M, Schollmeyer D, Hellmann R, Waldvogel SR. Methyl-Substituted α-Cyclodextrin as Affinity Material for Storage, Separation, and Detection of Trichlorofluoromethane. GLOBAL CHALLENGES (HOBOKEN, NJ) 2018; 2:1800057. [PMID: 31565344 PMCID: PMC6607158 DOI: 10.1002/gch2.201800057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Indexed: 06/10/2023]
Abstract
The severely ozone-depleting trichlorofluoromethane is still appearing in several recycling processes or industrial applications. A simple and selective supramolecular complex formation of per-methylated α-cyclodextrin (1) with the highly volatile trichlorofluoromethane (2) is reported. This interaction moreover leads to thermally stable crystals. Per-methylated α-cyclodextrin is successfully exploited as a reversible and selective adsorption material for liquid and airborne trichlorofluoromethane as well as an affinity material for the chemical sensing and detection of this particular volatile organic component.
Collapse
Affiliation(s)
- Dimitrij Ryvlin
- Institute of Organic ChemistryJohannes Gutenberg University MainzDuesbergweg 10–14D‐55128MainzGermany
| | - Maiko Girschikofsky
- Applied Laser and Photonics GroupUniversity of Applied Sciences AschaffenburgWürzburger Straße 45D‐63743AschaffenburgGermany
| | - Dieter Schollmeyer
- Institute of Organic ChemistryJohannes Gutenberg University MainzDuesbergweg 10–14D‐55128MainzGermany
| | - Ralf Hellmann
- Applied Laser and Photonics GroupUniversity of Applied Sciences AschaffenburgWürzburger Straße 45D‐63743AschaffenburgGermany
| | - Siegfried R. Waldvogel
- Institute of Organic ChemistryJohannes Gutenberg University MainzDuesbergweg 10–14D‐55128MainzGermany
| |
Collapse
|
44
|
Guest-driven unusual conformations in two calix[6]arene solvates and a new calix[8]arene. Z KRIST-CRYST MATER 2018. [DOI: 10.1515/zkri-2017-2110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Unusual conformations have been found in a new calix[8]arene and in new solvates of two known calix[6]arenes. The chair-like conformation with 2/m point group symmetry was found for the first time in the dimethylformamide (DMF) disolvate of the basic calix[6]arene (1) without substituents in the lower and upper rims. Such symmetry is driven by the guest geometry allowing for two equivalent hydrogen bonding patterns in the chair seat. This avoids cone distortion found in the other chair-like conformers, although they have energies lower than that of new symmetrical conformer. The molecular conformation of hexa(carboxymethoxy)calix[6]arene (2) is also described as a dimethylsulfoxide (DMSO) pentasolvate. Its conformation can be described as a 1,3,5-closed cone with three alternate phenyl rings inclined inwards to the cone, thereby closing the cone entrance. Such a conformation also suggests five acid groups are pointed towards the same side of the calyx base and are able to bind metal ions or basic compounds in the lower rim, while inclusion of guests into the cone cavity is hindered. Both inclusion and cooperative acid binding/coordination abilities are still more hindered in the lowest energy 1,2,3-alternate cone conformer of 2. The role of the solvent in avoiding cone distortion was highlighted by inspecting the conformations of 5,11,17,23,29,35,41,47-octanitro-49,50,51,52,53,54,55,56-octa-n-butoxycalix[8]arene (3) and the known nitro analogues having methyl instead of n-butyl groups. Cone distortion is found in the non-solvated crystal form of 3, while non-classical hydrogen bonds with tetrahydrofuran preclude this in the literature analogue.
Collapse
|
45
|
Self-assembly of metal-organic polyhedra into supramolecular polymers with intrinsic microporosity. Nat Commun 2018; 9:2506. [PMID: 30002378 PMCID: PMC6043503 DOI: 10.1038/s41467-018-04834-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/30/2018] [Indexed: 02/08/2023] Open
Abstract
Designed porosity in coordination materials often relies on highly ordered crystalline networks, which provide stability upon solvent removal. However, the requirement for crystallinity often impedes control of higher degrees of morphological versatility, or materials processing. Herein, we describe a supramolecular approach to the synthesis of amorphous polymer materials with controlled microporosity. The strategy entails the use of robust metal–organic polyhedra (MOPs) as porous monomers in the supramolecular polymerization reaction. Detailed analysis of the reaction mechanism of the MOPs with imidazole-based linkers revealed the polymerization to consist of three separate stages: nucleation, elongation, and cross-linking. By controlling the self-assembly pathways, we successfully tuned the resulting macroscopic form of the polymers, from spherical colloidal particles to colloidal gels with hierarchical porosity. The resulting materials display distinct microporous properties arising from the internal cavity of the MOPs. This synthetic approach could lead to the fabrication of soft, flexible materials with permanent porosity. Porosity in metal–organic materials typically relies on highly ordered crystalline networks, which hinders material processing and morphological control. Here, the authors use metal–organic polyhedra as porous monomers in supramolecular polymerization to produce colloidal spheres and gels with intrinsic microporosity.
Collapse
|
46
|
Jian FF, Liu E, Ma J. Encapsulation of Chloride-water cluster anion [Cl6(H2O)8]6- in a cage structure based [Cu(DMAP)4]2+ aggregation. Supramol Chem 2018. [DOI: 10.1080/10610278.2018.1490021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Fang Fang Jian
- Department of Chemical Enginerring, School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| | - E Liu
- Department of Chemical Enginerring, School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| | - Junying Ma
- Department of Chemical Enginerring, School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan, P. R. China
| |
Collapse
|
47
|
Nishihara H, Ohwada M, Kamimura T, Nishimura M, Tanaka H, Hiraide S, Miyahara MT, Ariga K, Ji Q, Maruyama J, Tani F. Central metal dependent modulation of induced-fit gas uptake in molecular porphyrin solids. Chem Commun (Camb) 2018; 54:7822-7825. [PMID: 29947371 DOI: 10.1039/c8cc03646b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The induced-fit accommodation of a variety of gaseous molecules including non-polar molecules has been demonstrated in porphyrin-based supramolecular architectures for the first time. Moreover, the gas uptake behaviour can be modulated by changing the central cation of porphyrin.
Collapse
Affiliation(s)
- Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tian X, Chen LX, Yao YQ, Chen K, Chen MD, Zeng X, Tao Z. 4-Sulfocalix[4]arene/Cucurbit[7]uril-Based Supramolecular Assemblies through the Outer Surface Interactions of Cucurbit[ n]uril. ACS OMEGA 2018; 3:6665-6672. [PMID: 31458841 PMCID: PMC6644559 DOI: 10.1021/acsomega.8b00829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/08/2018] [Indexed: 06/10/2023]
Abstract
Upon mixing of aqueous solutions of the freely soluble building blocks cucurbit[7]uril (Q[7]) and 4-sulfocalix[4]arene (SC[4]A), white microcrystals instantly separate in near-quantitative yield. The driving force for this assembly is suggested to be the outer-surface interaction of the Q[n]. Dynamic light scattering, scanning electron microscopy, and NMR (diffusion-ordered NMR spectroscopy) analyses have confirmed the supramolecular aggregation of Q[7] and SC[4]A. Titration 1H NMR spectroscopy and isothermal titration calorimetry have shown that the interaction ratio of Q[7] and SC[4]A is close to 3:1. Moreover, the Q[7]/SC[4]A-based supramolecular assembly can accommodate molecules of some volatile compounds or luminescent dyes. Thus, this work offers a simple and highly efficient means of preparing adsorbent or solid fluorescent materials.
Collapse
Affiliation(s)
- Xiao Tian
- Key
Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou
Province, Guizhou University, Guiyang 550025, People’s Republic of China
| | - Li Xia Chen
- Key
Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou
Province, Guizhou University, Guiyang 550025, People’s Republic of China
| | - Yu Qing Yao
- Key
Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou
Province, Guizhou University, Guiyang 550025, People’s Republic of China
| | - Kai Chen
- Collaborative
Innovation Center of Atmospheric Environment and Equipment Technology,
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution
Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, People’s Republic of China
| | - Min-Dong Chen
- Collaborative
Innovation Center of Atmospheric Environment and Equipment Technology,
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution
Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, People’s Republic of China
| | - Xi Zeng
- Key
Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou
Province, Guizhou University, Guiyang 550025, People’s Republic of China
| | - Zhu Tao
- Key
Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou
Province, Guizhou University, Guiyang 550025, People’s Republic of China
| |
Collapse
|
49
|
Sarkar T, Srinives S, Rodriquez A, Mulchandani A. Single-walled Carbon Nanotube-Calixarene Based Chemiresistor for Volatile Organic Compounds. ELECTROANAL 2018. [DOI: 10.1002/elan.201800199] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tapan Sarkar
- Department of Chemical and Environmental Engineering; University of California; Riverside, California - 92521 USA
- University School of Chemical Technology; Guru Gobind Singh Indraprastha University, Dwarka, Sector−16C; New Delhi India - 110078
| | - Sira Srinives
- Department of Chemical and Environmental Engineering; University of California; Riverside, California - 92521 USA
- Chemical Engineering Department; Mahidol University; 25/25 Puttamonthon 4 Road Nakorn Pathom Thailand - 73170
| | - Armando Rodriquez
- Department of Chemical and Environmental Engineering; University of California; Riverside, California - 92521 USA
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering; University of California; Riverside, California - 92521 USA
| |
Collapse
|
50
|
Jerry Lee Atwood. Supramol Chem 2018. [DOI: 10.1080/10610278.2018.1432322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|