1
|
Ando Y, Kobo A, Niwa T, Yamakawa A, Konoma S, Kobayashi Y, Nureki O, Taguchi H, Itoh Y, Chadani Y. A mini-hairpin shaped nascent peptide blocks translation termination by a distinct mechanism. Nat Commun 2025; 16:2323. [PMID: 40057501 PMCID: PMC11890864 DOI: 10.1038/s41467-025-57659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
Protein synthesis by ribosomes produces functional proteins but also serves diverse regulatory functions, which depend on the coding amino acid sequences. Certain nascent peptides interact with the ribosome exit tunnel to arrest translation and modulate themselves or the expression of downstream genes. However, a comprehensive understanding of the mechanisms of such ribosome stalling and its regulation remains elusive. In this study, we systematically screen for unidentified ribosome arrest peptides through phenotypic evaluation, proteomics, and mass spectrometry analyses, leading to the discovery of the arrest peptides PepNL and NanCL in E. coli. Our cryo-EM study on PepNL reveals a distinct arrest mechanism, in which the N-terminus of PepNL folds back towards the tunnel entrance to prevent the catalytic GGQ motif of the release factor from accessing the peptidyl transferase center, causing translation arrest at the UGA stop codon. Furthermore, unlike sensory arrest peptides that require an arrest inducer, PepNL uses tryptophan as an arrest inhibitor, where Trp-tRNATrp reads through the stop codon. Our findings illuminate the mechanism and regulatory framework of nascent peptide-induced translation arrest, paving the way for exploring regulatory nascent peptides.
Collapse
Affiliation(s)
- Yushin Ando
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Akinao Kobo
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Tatsuya Niwa
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan
| | - Ayako Yamakawa
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Suzuna Konoma
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Yuki Kobayashi
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Hideki Taguchi
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan.
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan.
| | - Yuzuru Itoh
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Yuhei Chadani
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan.
| |
Collapse
|
2
|
Campbell A, Esser HF, Burroughs AM, Berninghausen O, Aravind L, Becker T, Green R, Beckmann R, Buskirk AR. The RNA helicase HrpA rescues collided ribosomes in E. coli. Mol Cell 2025; 85:999-1007.e7. [PMID: 39922193 PMCID: PMC11890964 DOI: 10.1016/j.molcel.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/22/2024] [Accepted: 01/17/2025] [Indexed: 02/10/2025]
Abstract
Although many antibiotics inhibit bacterial ribosomes, the loss of known factors that rescue stalled ribosomes does not lead to robust antibiotic sensitivity in E. coli, suggesting the existence of additional mechanisms. Here, we show that the RNA helicase HrpA rescues stalled ribosomes in E. coli. Acting selectively on ribosomes that have collided, HrpA uses ATP hydrolysis to split stalled ribosomes into subunits. Cryoelectron microscopy (cryo-EM) structures reveal how HrpA simultaneously binds to two collided ribosomes, explaining its selectivity, and how its helicase module engages downstream mRNA such that, by exerting a pulling force on the mRNA, it would destabilize the stalled ribosome. These studies show that ribosome splitting is a conserved mechanism that allows proteobacteria to tolerate ribosome-targeting antibiotics.
Collapse
Affiliation(s)
- Annabelle Campbell
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hanna F Esser
- Gene Center and Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - A Maxwell Burroughs
- Computational Biology Branch, Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Otto Berninghausen
- Gene Center and Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - L Aravind
- Computational Biology Branch, Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Thomas Becker
- Gene Center and Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Aguilar Rangel M, Stein K, Frydman J. A machine learning approach uncovers principles and determinants of eukaryotic ribosome pausing. SCIENCE ADVANCES 2024; 10:eado0738. [PMID: 39423268 PMCID: PMC11488575 DOI: 10.1126/sciadv.ado0738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Nonuniform local translation speed dictates diverse protein biogenesis outcomes. To unify known and uncover unknown principles governing eukaryotic elongation rate, we developed a machine learning pipeline to analyze RiboSeq datasets. We find that the chemical nature of the incoming amino acid determines how codon optimality influences elongation rate, with hydrophobic residues more dependent on transfer RNA (tRNA) levels than charged residues. Unexpectedly, we find that wobble interactions exert a widespread effect on elongation pausing, with wobble-mediated decoding being slower than Watson-Crick decoding, irrespective of tRNA levels. Applying our ribosome pausing principles to ribosome collisions reveals that disomes arise upon apposition of fast-decoding and slow-decoding signatures. We conclude that codon choice and tRNA pools are evolutionarily constrained to harmonize elongation rate with cotranslational folding while minimizing wobble pairing and deleterious stalling.
Collapse
Affiliation(s)
| | - Kevin Stein
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| | - Judith Frydman
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
4
|
Campbell A, Esser HF, Maxwell Burroughs A, Berninghausen O, Aravind L, Becker T, Green R, Beckmann R, Buskirk AR. The RNA helicase HrpA rescues collided ribosomes in E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612461. [PMID: 39314269 PMCID: PMC11419001 DOI: 10.1101/2024.09.11.612461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Although many antibiotics inhibit bacterial ribosomes, loss of known factors that rescue stalled ribosomes does not lead to robust antibiotic sensitivity in E. coli, suggesting the existence of additional mechanisms. Here, we show that the RNA helicase HrpA rescues stalled ribosomes in E. coli. Acting selectively on ribosomes that have collided, HrpA uses ATP hydrolysis to split stalled ribosomes into subunits. Cryo-EM structures reveal how HrpA simultaneously binds to two collided ribosomes, explaining its selectivity, and how its helicase module engages downstream mRNA, such that by exerting a pulling force on the mRNA, it would destabilize the stalled ribosome. These studies show that ribosome splitting is a conserved mechanism that allows proteobacteria to tolerate ribosome-targeting antibiotics.
Collapse
Affiliation(s)
- Annabelle Campbell
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine; Baltimore, United States
| | - Hanna F. Esser
- Gene Center and Department of Biochemistry, University of Munich; Munich, Germany
| | - A. Maxwell Burroughs
- Computational Biology Branch, Intramural Research Program, National Library of Medicine, National Institutes of Health; Bethesda, United States
| | - Otto Berninghausen
- Gene Center and Department of Biochemistry, University of Munich; Munich, Germany
| | - L. Aravind
- Computational Biology Branch, Intramural Research Program, National Library of Medicine, National Institutes of Health; Bethesda, United States
| | - Thomas Becker
- Gene Center and Department of Biochemistry, University of Munich; Munich, Germany
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine; Baltimore, United States
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine; Baltimore, United States
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich; Munich, Germany
| | - Allen R. Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine; Baltimore, United States
| |
Collapse
|
5
|
Chadani Y, Yamanouchi S, Uemura E, Yamasaki K, Niwa T, Ikeda T, Kurihara M, Iwasaki W, Taguchi H. The ABCF proteins in Escherichia coli individually cope with 'hard-to-translate' nascent peptide sequences. Nucleic Acids Res 2024; 52:5825-5840. [PMID: 38661232 PMCID: PMC11162784 DOI: 10.1093/nar/gkae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Organisms possess a wide variety of proteins with diverse amino acid sequences, and their synthesis relies on the ribosome. Empirical observations have led to the misconception that ribosomes are robust protein factories, but in reality, they have several weaknesses. For instance, ribosomes stall during the translation of the proline-rich sequences, but the elongation factor EF-P assists in synthesizing proteins containing the poly-proline sequences. Thus, living organisms have evolved to expand the translation capability of ribosomes through the acquisition of translation elongation factors. In this study, we have revealed that Escherichia coli ATP-Binding Cassette family-F (ABCF) proteins, YheS, YbiT, EttA and Uup, individually cope with various problematic nascent peptide sequences within the exit tunnel. The correspondence between noncanonical translations and ABCFs was YheS for the translational arrest by nascent SecM, YbiT for poly-basic sequence-dependent stalling and poly-acidic sequence-dependent intrinsic ribosome destabilization (IRD), EttA for IRD at the early stage of elongation, and Uup for poly-proline-dependent stalling. Our results suggest that ATP hydrolysis-coupled structural rearrangement and the interdomain linker sequence are pivotal for handling 'hard-to-translate' nascent peptides. Our study highlights a new aspect of ABCF proteins to reduce the potential risks that are encoded within the nascent peptide sequences.
Collapse
Affiliation(s)
- Yuhei Chadani
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Shun Yamanouchi
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Eri Uemura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Kohei Yamasaki
- Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Toma Ikeda
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Miku Kurihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
6
|
Kobo A, Taguchi H, Chadani Y. Nonspecific N-terminal tetrapeptide insertions disrupt the translation arrest induced by ribosome-arresting peptide sequences. J Biol Chem 2024; 300:107360. [PMID: 38735477 PMCID: PMC11190716 DOI: 10.1016/j.jbc.2024.107360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024] Open
Abstract
The nascent polypeptide chains passing through the ribosome tunnel not only serve as an intermediate of protein synthesis but also, in some cases, act as dynamic genetic information, controlling translation through interaction with the ribosome. One notable example is Escherichia coli SecM, in which translation of the ribosome arresting peptide (RAP) sequence in SecM leads to robust elongation arrest. Translation regulations, including the SecM-induced translation arrest, play regulatory roles such as gene expression control. Recent investigations have indicated that the insertion of a peptide sequence, SKIK (or MSKIK), into the adjacent N-terminus of the RAP sequence of SecM behaves as an "arrest canceler". As the study did not provide a direct assessment of the strength of translation arrest, we conducted detailed biochemical analyses. The results revealed that the effect of SKIK insertion on weakening SecM-induced translation arrest was not specific to the SKIK sequence, that is, other tetrapeptide sequences inserted just before the RAP sequence also attenuated the arrest. Our data suggest that SKIK or other tetrapeptide insertions disrupt the context of the RAP sequence rather than canceling or preventing the translation arrest.
Collapse
Affiliation(s)
- Akinao Kobo
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan; Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| | - Yuhei Chadani
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan.
| |
Collapse
|
7
|
Judd HNG, Martínez AK, Klepacki D, Vázquez-Laslop N, Sachs MS, Cruz-Vera LR. Functional domains of a ribosome arresting peptide are affected by surrounding nonconserved residues. J Biol Chem 2024; 300:105780. [PMID: 38395310 PMCID: PMC10941005 DOI: 10.1016/j.jbc.2024.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Expression of the Escherichia coli tnaCAB operon, responsible for L-tryptophan (L-Trp) transport and catabolism, is regulated by L-Trp-directed translation arrest and the ribosome arresting peptide TnaC. The function of TnaC relies on conserved residues distributed throughout the peptide, which are involved in forming an L-Trp binding site at the ribosome exit tunnel and inhibiting the ribosome function. We aimed to understand whether nonconserved amino acids surrounding these critical conserved residues play a functional role in TnaC-mediated ribosome arrest. We have isolated two intragenic suppressor mutations that restore arrest function of TnaC mutants; one of these mutations is located near the L-Trp binding site, while the other mutation is located near the ribosome active site. We used reporter gene fusions to show that both suppressor mutations have similar effects on TnaC mutants at the conserved residues involved in forming a free L-Trp binding site. However, they diverge in suppressing loss-of-function mutations in a conserved TnaC residue at the ribosome active site. With ribosome toeprinting assays, we determined that both suppressor mutations generate TnaC peptides, which are highly sensitive to L-Trp. Puromycin-challenge assays with isolated arrested ribosomes indicate that both TnaC suppressor mutants are resistant to peptidyl-tRNA cleavage by puromycin in the presence of L-Trp; however, they differ in their resistance to puromycin in the absence of L-Trp. We propose that the TnaC peptide two functionally distinct segments, a sensor domain and a stalling domain, and that the functional versatility of these domains is fine-tuned by the nature of their surrounding nonconserved residues.
Collapse
Affiliation(s)
- Heather N G Judd
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Allyson K Martínez
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Dorota Klepacki
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA; Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Nora Vázquez-Laslop
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA; Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Luis R Cruz-Vera
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA.
| |
Collapse
|
8
|
Park EN, Mackens-Kiani T, Berhane R, Esser H, Erdenebat C, Burroughs AM, Berninghausen O, Aravind L, Beckmann R, Green R, Buskirk AR. B. subtilis MutS2 splits stalled ribosomes into subunits without mRNA cleavage. EMBO J 2024; 43:484-506. [PMID: 38177497 PMCID: PMC10897456 DOI: 10.1038/s44318-023-00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024] Open
Abstract
Stalled ribosomes are rescued by pathways that recycle the ribosome and target the nascent polypeptide for degradation. In E. coli, these pathways are triggered by ribosome collisions through the recruitment of SmrB, a nuclease that cleaves the mRNA. In B. subtilis, the related protein MutS2 was recently implicated in ribosome rescue. Here we show that MutS2 is recruited to collisions by its SMR and KOW domains, and we reveal the interaction of these domains with collided ribosomes by cryo-EM. Using a combination of in vivo and in vitro approaches, we show that MutS2 uses its ABC ATPase activity to split ribosomes, targeting the nascent peptide for degradation through the ribosome quality control pathway. However, unlike SmrB, which cleaves mRNA in E. coli, we see no evidence that MutS2 mediates mRNA cleavage or promotes ribosome rescue by tmRNA. These findings clarify the biochemical and cellular roles of MutS2 in ribosome rescue in B. subtilis and raise questions about how these pathways function differently in diverse bacteria.
Collapse
Affiliation(s)
- Esther N Park
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Timur Mackens-Kiani
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - Rebekah Berhane
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanna Esser
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - Chimeg Erdenebat
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - A Maxwell Burroughs
- Computational Biology Branch, Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Otto Berninghausen
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - L Aravind
- Computational Biology Branch, Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Höpfler M, Hegde RS. Control of mRNA fate by its encoded nascent polypeptide. Mol Cell 2023; 83:2840-2855. [PMID: 37595554 PMCID: PMC10501990 DOI: 10.1016/j.molcel.2023.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/20/2023]
Abstract
Cells tightly regulate mRNA processing, localization, and stability to ensure accurate gene expression in diverse cellular states and conditions. Most of these regulatory steps have traditionally been thought to occur before translation by the action of RNA-binding proteins. Several recent discoveries highlight multiple co-translational mechanisms that modulate mRNA translation, localization, processing, and stability. These mechanisms operate by recognition of the nascent protein, which is necessarily coupled to its encoding mRNA during translation. Hence, the distinctive sequence or structure of a particular nascent chain can recruit recognition factors with privileged access to the corresponding mRNA in an otherwise crowded cellular environment. Here, we draw on both well-established and recent examples to provide a conceptual framework for how cells exploit nascent protein recognition to direct mRNA fate. These mechanisms allow cells to dynamically and specifically regulate their transcriptomes in response to changes in cellular states to maintain protein homeostasis.
Collapse
|
10
|
Park E, Mackens-Kiani T, Berhane R, Esser H, Erdenebat C, Burroughs AM, Berninghausen O, Aravind L, Beckmann R, Green R, Buskirk AR. B. subtilis MutS2 splits stalled ribosomes into subunits without mRNA cleavage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539626. [PMID: 37205477 PMCID: PMC10187299 DOI: 10.1101/2023.05.05.539626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Stalled ribosomes are rescued by pathways that recycle the ribosome and target the nascent polypeptide for degradation. In E. coli, these pathways are triggered by ribosome collisions through recruitment of SmrB, a nuclease that cleaves the mRNA. In B. subtilis, the related protein MutS2 was recently implicated in ribosome rescue. Here we show that MutS2 is recruited to collisions by its SMR and KOW domains and reveal the interaction of these domains with collided ribosomes by cryo-EM. Using a combination of in vivo and in vitro approaches, we show that MutS2 uses its ABC ATPase activity to split ribosomes, targeting the nascent peptide for degradation by the ribosome quality control pathway. Notably, we see no evidence of mRNA cleavage by MutS2, nor does it promote ribosome rescue by tmRNA as SmrB cleavage does in E. coli. These findings clarify the biochemical and cellular roles of MutS2 in ribosome rescue in B. subtilis and raise questions about how these pathways function differently in various bacteria.
Collapse
Affiliation(s)
- Esther Park
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Timur Mackens-Kiani
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - Rebekah Berhane
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hanna Esser
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - Chimeg Erdenebat
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - A. Maxwell Burroughs
- Computational Biology Branch, Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Otto Berninghausen
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - L. Aravind
- Computational Biology Branch, Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Allen R. Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
11
|
Kurita D, Himeno H. Bacterial Ribosome Rescue Systems. Microorganisms 2022; 10:372. [PMID: 35208827 PMCID: PMC8874680 DOI: 10.3390/microorganisms10020372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022] Open
Abstract
To maintain proteostasis, the cell employs multiple ribosome rescue systems to relieve the stalled ribosome on problematic mRNA. One example of problematic mRNA is non-stop mRNA that lacks an in-frame stop codon produced by endonucleolytic cleavage or transcription error. In Escherichia coli, there are at least three ribosome rescue systems that deal with the ribosome stalled on non-stop mRNA. According to one estimation, 2-4% of translation is the target of ribosome rescue systems even under normal growth conditions. In the present review, we discuss the recent findings of ribosome rescue systems in bacteria.
Collapse
Affiliation(s)
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Hirosaki University, 3, Bunkyo-cho, Hirosaki 036-8561, Japan;
| |
Collapse
|
12
|
Chadani Y, Sugata N, Niwa T, Ito Y, Iwasaki S, Taguchi H. Nascent polypeptide within the exit tunnel stabilizes the ribosome to counteract risky translation. EMBO J 2021; 40:e108299. [PMID: 34672004 PMCID: PMC8634131 DOI: 10.15252/embj.2021108299] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 01/26/2023] Open
Abstract
Continuous translation elongation, irrespective of amino acid sequences, is a prerequisite for living organisms to produce their proteomes. However, nascent polypeptide products bear an inherent risk of elongation abortion. For example, negatively charged sequences with occasional intermittent prolines, termed intrinsic ribosome destabilization (IRD) sequences, weaken the translating ribosomal complex, causing certain nascent chain sequences to prematurely terminate translation. Here, we show that most potential IRD sequences in the middle of open reading frames remain cryptic and do not interrupt translation, due to two features of the nascent polypeptide. Firstly, the nascent polypeptide itself spans the exit tunnel, and secondly, its bulky amino acid residues occupy the tunnel entrance region, thereby serving as a bridge and protecting the large and small ribosomal subunits from dissociation. Thus, nascent polypeptide products have an inbuilt ability to ensure elongation continuity.
Collapse
Affiliation(s)
- Yuhei Chadani
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Nobuyuki Sugata
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Tatsuya Niwa
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Yosuke Ito
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry LaboratoryRIKEN Cluster for Pioneering ResearchSaitamaJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
| | - Hideki Taguchi
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
13
|
Abstract
Single-gene deletions can affect the expression levels of other genes in the same operon in bacterial genomes. Here, we used proteomics for 133 Escherichia coli gene deletion mutants and transcriptome sequencing (RNA-seq) data from 71 mutants to probe the extent of transcriptional and post-transcriptional effects of gene deletions in operons. Transcriptional effects were common on genes located downstream of the deletion and were consistent across all operon members, with nearly 40% of operons showing greater than 2-fold up- or downregulation. Surprisingly, we observed an additional post-transcriptional effect that leads to the downregulation of the gene located directly downstream of the targeted gene. This effect was correlated with their intergenic distance, despite the ribosome binding site of the gene downstream remaining intact during library construction. Overall, the data presented can guide future library construction and highlight the importance of follow-up experiments for assessing direct effects of single-gene deletions in operons. IMPORTANCE Single-gene deletion libraries have allowed genome-wide characterization of gene function and interactions. While each mutant intends to disrupt the function of a single gene, it can unintentionally target other genes, such as those located in the same operon as the deletion. The extent to which such polar effects occur in deletion libraries has not been assessed. In this work, we use proteomics and transcriptomics data to show that transcript level changes lead to nearly 40% of deletions in operons affecting the protein levels of genes located downstream by at least 2-fold. Furthermore, we observed a post-transcriptional effect on the gene located directly downstream of the deletion. These results can guide the design of future gene deletion libraries and emphasizes the importance of follow-up work when linking genotypes to phenotypes.
Collapse
|
14
|
Su T, Kudva R, Becker T, Buschauer R, Komar T, Berninghausen O, von Heijne G, Cheng J, Beckmann R. Structural basis of l-tryptophan-dependent inhibition of release factor 2 by the TnaC arrest peptide. Nucleic Acids Res 2021; 49:9539-9547. [PMID: 34403461 PMCID: PMC8450073 DOI: 10.1093/nar/gkab665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/13/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022] Open
Abstract
In Escherichia coli, elevated levels of free l-tryptophan (l-Trp) promote translational arrest of the TnaC peptide by inhibiting its termination. However, the mechanism by which translation-termination by the UGA-specific decoding release factor 2 (RF2) is inhibited at the UGA stop codon of stalled TnaC-ribosome-nascent chain complexes has so far been ambiguous. This study presents cryo-EM structures for ribosomes stalled by TnaC in the absence and presence of RF2 at average resolutions of 2.9 and 3.5 Å, respectively. Stalled TnaC assumes a distinct conformation composed of two small α-helices that act together with residues in the peptide exit tunnel (PET) to coordinate a single L-Trp molecule. In addition, while the peptidyl-transferase center (PTC) is locked in a conformation that allows RF2 to adopt its canonical position in the ribosome, it prevents the conserved and catalytically essential GGQ motif of RF2 from adopting its active conformation in the PTC. This explains how translation of the TnaC peptide effectively allows the ribosome to function as a L-Trp-specific small-molecule sensor that regulates the tnaCAB operon.
Collapse
Affiliation(s)
- Ting Su
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Renuka Kudva
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-10691, Sweden.,Science for Life Laboratories, Solna 17165, Sweden
| | - Thomas Becker
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Robert Buschauer
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Tobias Komar
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Otto Berninghausen
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-10691, Sweden.,Science for Life Laboratories, Solna 17165, Sweden
| | - Jingdong Cheng
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Roland Beckmann
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| |
Collapse
|
15
|
Bruni F, Giancaspero TA, Oreb M, Tolomeo M, Leone P, Boles E, Roberti M, Caselle M, Barile M. Subcellular Localization of Fad1p in Saccharomyces cerevisiae: A Choice at Post-Transcriptional Level? Life (Basel) 2021; 11:967. [PMID: 34575116 PMCID: PMC8470081 DOI: 10.3390/life11090967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
FAD synthase is the last enzyme in the pathway that converts riboflavin into FAD. In Saccharomyces cerevisiae, the gene encoding for FAD synthase is FAD1, from which a sole protein product (Fad1p) is expected to be generated. In this work, we showed that a natural Fad1p exists in yeast mitochondria and that, in its recombinant form, the protein is able, per se, to both enter mitochondria and to be destined to cytosol. Thus, we propose that FAD1 generates two echoforms-that is, two identical proteins addressed to different subcellular compartments. To shed light on the mechanism underlying the subcellular destination of Fad1p, the 3' region of FAD1 mRNA was analyzed by 3'RACE experiments, which revealed the existence of (at least) two FAD1 transcripts with different 3'UTRs, the short one being 128 bp and the long one being 759 bp. Bioinformatic analysis on these 3'UTRs allowed us to predict the existence of a cis-acting mitochondrial localization motif, present in both the transcripts and, presumably, involved in protein targeting based on the 3'UTR context. Here, we propose that the long FAD1 transcript might be responsible for the generation of mitochondrial Fad1p echoform.
Collapse
Affiliation(s)
- Francesco Bruni
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (F.B.); (T.A.G.); (M.T.); (P.L.); (M.R.)
| | - Teresa Anna Giancaspero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (F.B.); (T.A.G.); (M.T.); (P.L.); (M.R.)
| | - Mislav Oreb
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; (M.O.); (E.B.)
| | - Maria Tolomeo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (F.B.); (T.A.G.); (M.T.); (P.L.); (M.R.)
| | - Piero Leone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (F.B.); (T.A.G.); (M.T.); (P.L.); (M.R.)
| | - Eckhard Boles
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; (M.O.); (E.B.)
| | - Marina Roberti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (F.B.); (T.A.G.); (M.T.); (P.L.); (M.R.)
| | - Michele Caselle
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy;
| | - Maria Barile
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (F.B.); (T.A.G.); (M.T.); (P.L.); (M.R.)
| |
Collapse
|
16
|
Structural basis for the tryptophan sensitivity of TnaC-mediated ribosome stalling. Nat Commun 2021; 12:5340. [PMID: 34504068 PMCID: PMC8429421 DOI: 10.1038/s41467-021-25663-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Free L-tryptophan (L-Trp) stalls ribosomes engaged in the synthesis of TnaC, a leader peptide controlling the expression of the Escherichia coli tryptophanase operon. Despite extensive characterization, the molecular mechanism underlying the recognition and response to L-Trp by the TnaC-ribosome complex remains unknown. Here, we use a combined biochemical and structural approach to characterize a TnaC variant (R23F) with greatly enhanced sensitivity for L-Trp. We show that the TnaC-ribosome complex captures a single L-Trp molecule to undergo termination arrest and that nascent TnaC prevents the catalytic GGQ loop of release factor 2 from adopting an active conformation at the peptidyl transferase center. Importantly, the L-Trp binding site is not altered by the R23F mutation, suggesting that the relative rates of L-Trp binding and peptidyl-tRNA cleavage determine the tryptophan sensitivity of each variant. Thus, our study reveals a strategy whereby a nascent peptide assists the ribosome in detecting a small metabolite.
Collapse
|
17
|
Huang Y, Zhang Q, Yang L, Lin L, Xie J, Yao J, Zhou X, Zhang L, Shen H, Yang P. Puromycin-Modified Silica Microsphere-Based Nascent Proteomics Method for Rapid and Deep Nascent Proteome Profile. Anal Chem 2021; 93:6403-6413. [PMID: 33856767 DOI: 10.1021/acs.analchem.0c05393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nascent proteome is crucial in directly revealing how the expression of a gene is regulated on a translation level. In the nascent protein identification, puromycin capture is one of the pivotal methods, but it is still facing the challenge in the deep profiling of nascent proteomes due to the low abundance of most nascent proteins. Here, we describe the synthesis of puromycin-modified silica microspheres (PMSs) as the sorbent of dispersive solid-phase microextraction and the establishment of the PMS-based nascent proteomics (PMSNP) method for efficient capture and analysis of nascent proteins. The modification efficiency of puromycin groups on silica microspheres reached 91.8% through the click reaction. After the optimization and simplification of PMSNP, more than 3500 and 3900 nascent proteins were rapidly identified in HeLa cells and mouse brains within 13.5 h, respectively. The PMSNP method was successfully applied to explore changes in the translation process in a biological stress model, namely, the lipopolysaccharide-stimulated HeLa cells. Biological functional analyses revealed the unique characters of the nascent proteomes and exhibited the superiority of the PMSNP in the identification of low abundance and secreted nascent proteins, thus demonstrating the sensitivity and immediacy of the PMSNP method.
Collapse
Affiliation(s)
- Yuanyu Huang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Quanqing Zhang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Lujie Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Ling Lin
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Juanjuan Xie
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Jun Yao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Xinwen Zhou
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Lei Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Huali Shen
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China.,Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China.,NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P.R. China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P.R. China.,Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China.,NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
18
|
A Translation-Aborting Small Open Reading Frame in the Intergenic Region Promotes Translation of a Mg 2+ Transporter in Salmonella Typhimurium. mBio 2021; 12:mBio.03376-20. [PMID: 33849981 PMCID: PMC8092293 DOI: 10.1128/mbio.03376-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Translation initiation regions in mRNAs that include the ribosome-binding site (RBS) and the start codon are often sequestered within a secondary structure. Therefore, to initiate protein synthesis, the mRNA secondary structure must be unfolded to allow the RBS to be accessible to the ribosome. Bacterial mRNAs often harbor upstream open reading frames (uORFs) in the 5′ untranslated regions (UTRs). Translation of the uORF usually affects downstream gene expression at the levels of transcription and/or translation initiation. Unlike other uORFs mostly located in the 5′ UTR, we discovered an 8-amino-acid ORF, designated mgtQ, in the intergenic region between the mgtC virulence gene and the mgtB Mg2+ transporter gene in the Salmonella mgtCBRU operon. Translation of mgtQ promotes downstream mgtB Mg2+ transporter expression at the level of translation by releasing the ribosome-binding sequence of the mgtB gene that is sequestered in a translation-inhibitory stem-loop structure. Interestingly, mgtQ Asp2 and Glu5 codons that induce ribosome destabilization are required for mgtQ-mediated mgtB translation. Moreover, the mgtQ Asp and Glu codons-mediated mgtB translation is counteracted by the ribosomal subunit L31 that stabilizes ribosome. Substitution of the Asp2 and Glu5 codons in mgtQ decreases MgtB Mg2+ transporter production and thus attenuates Salmonella virulence in mice, likely by limiting Mg2+ acquisition during infection.
Collapse
|
19
|
Müller C, Crowe-McAuliffe C, Wilson DN. Ribosome Rescue Pathways in Bacteria. Front Microbiol 2021; 12:652980. [PMID: 33815344 PMCID: PMC8012679 DOI: 10.3389/fmicb.2021.652980] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Ribosomes that become stalled on truncated or damaged mRNAs during protein synthesis must be rescued for the cell to survive. Bacteria have evolved a diverse array of rescue pathways to remove the stalled ribosomes from the aberrant mRNA and return them to the free pool of actively translating ribosomes. In addition, some of these pathways target the damaged mRNA and the incomplete nascent polypeptide chain for degradation. This review highlights the recent developments in our mechanistic understanding of bacterial ribosomal rescue systems, including drop-off, trans-translation mediated by transfer-messenger RNA and small protein B, ribosome rescue by the alternative rescue factors ArfA and ArfB, as well as Bacillus ribosome rescue factor A, an additional rescue system found in some Gram-positive bacteria, such as Bacillus subtilis. Finally, we discuss the recent findings of ribosome-associated quality control in particular bacterial lineages mediated by RqcH and RqcP. The importance of rescue pathways for bacterial survival suggests they may represent novel targets for the development of new antimicrobial agents against multi-drug resistant pathogenic bacteria.
Collapse
Affiliation(s)
| | | | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
20
|
Koch S, Seinen AB, Kamel M, Kuckla D, Monzel C, Kedrov A, Driessen AJM. Single-molecule analysis of dynamics and interactions of the SecYEG translocon. FEBS J 2020; 288:2203-2221. [PMID: 33058437 DOI: 10.1111/febs.15596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
Protein translocation and insertion into the bacterial cytoplasmic membrane are the essential processes mediated by the Sec machinery. The core machinery is composed of the membrane-embedded translocon SecYEG that interacts with the secretion-dedicated ATPase SecA and translating ribosomes. Despite the simplicity and the available structural insights on the system, diverse molecular mechanisms and functional dynamics have been proposed. Here, we employ total internal reflection fluorescence microscopy to study the oligomeric state and diffusion of SecYEG translocons in supported lipid bilayers at the single-molecule level. Silane-based coating ensured the mobility of lipids and reconstituted translocons within the bilayer. Brightness analysis suggested that approx. 70% of the translocons were monomeric. The translocons remained in a monomeric form upon ribosome binding, but partial oligomerization occurred in the presence of nucleotide-free SecA. Individual trajectories of SecYEG in the lipid bilayer revealed dynamic heterogeneity of diffusion, as translocons commonly switched between slow and fast mobility modes with corresponding diffusion coefficients of 0.03 and 0.7 µm2 ·s-1 . Interactions with SecA ATPase had a minor effect on the lateral mobility, while bound ribosome:nascent chain complexes substantially hindered the diffusion of single translocons. Notably, the mobility of the translocon:ribosome complexes was not affected by the solvent viscosity or macromolecular crowding modulated by Ficoll PM 70, so it was largely determined by interactions within the lipid bilayer and at the interface. We suggest that the complex mobility of SecYEG arises from the conformational dynamics of the translocon and protein:lipid interactions.
Collapse
Affiliation(s)
- Sabrina Koch
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| | - Anne-Bart Seinen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands.,Biophysics, AMOLF, Amsterdam, The Netherlands
| | - Michael Kamel
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Germany
| | - Daniel Kuckla
- Experimental Medical Physics, Department of Physics, Heinrich Heine University Düsseldorf, Germany
| | - Cornelia Monzel
- Experimental Medical Physics, Department of Physics, Heinrich Heine University Düsseldorf, Germany
| | - Alexej Kedrov
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Germany
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| |
Collapse
|
21
|
Lynch CT, Lynch H, Burke S, Hawkins K, Buttimer C, Mc Carthy C, Egan J, Whyte P, Bolton D, Coffey A, Lucey B. Antimicrobial Resistance Determinants Circulating among Thermophilic Campylobacter Isolates Recovered from Broilers in Ireland Over a One-Year Period. Antibiotics (Basel) 2020; 9:E308. [PMID: 32521746 PMCID: PMC7344827 DOI: 10.3390/antibiotics9060308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Campylobacteriosis is the leading cause of human bacterial gastroenteritis, very often associated with poultry consumption. Thermophilic Campylobacter (Campylobacter jejuni and Campylobacter coli) isolates (n = 158) recovered from broiler neck skin and caecal contents in Ireland over a one-year period, resistant to at least one of three clinically relevant antimicrobial classes, were screened for resistance determinants. All ciprofloxacin-resistant isolates (n = 99) harboured the C257T nucleotide mutation (conferring the Thr-86-Ile substitution) in conjunction with other synonymous and nonsynonymous mutations, which may have epidemiological value. The A2075G nucleotide mutation and amino acid substitutions in L4 and L22 were detected in all erythromycin-resistant isolates (n = 5). The tetO gene was detected in 100% (n = 119) of tetracycline-resistant isolates and three of which were found to harbour the mosaic tetracycline resistance gene tetO/32/O. Two streptomycin-resistant C. jejuni isolates (isolated from the same flock) harboured ant(6)-Ib, located in a multidrug resistance genomic island, containing aminoglycoside, streptothricin (satA) and tetracycline resistance genes (truncated tetO and mosaic tetO/32/O). The ant(6)-Ie gene was identified in two streptomycin-resistant C. coli isolates. This study highlights the widespread acquisition of antimicrobial resistance determinants among chicken-associated Campylobacter isolates, through horizontal gene transfer or clonal expansion of resistant lineages. The stability of such resistance determinants is compounded by the fluidity of mobile genetic element.
Collapse
Affiliation(s)
- Caoimhe T. Lynch
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| | - Helen Lynch
- NRL Campylobacter, Backweston Laboratory Complex, Young’s Cross, Celbridge, W23 X3PH Kildare, Ireland; (H.L.); (J.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Sarah Burke
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| | - Kayleigh Hawkins
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| | - Colin Buttimer
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Conor Mc Carthy
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| | - John Egan
- NRL Campylobacter, Backweston Laboratory Complex, Young’s Cross, Celbridge, W23 X3PH Kildare, Ireland; (H.L.); (J.E.)
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin 15, Ireland;
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Brigid Lucey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| |
Collapse
|
22
|
Gelsinger DR, Dallon E, Reddy R, Mohammad F, Buskirk A, DiRuggiero J. Ribosome profiling in archaea reveals leaderless translation, novel translational initiation sites, and ribosome pausing at single codon resolution. Nucleic Acids Res 2020; 48:5201-5216. [PMID: 32382758 PMCID: PMC7261190 DOI: 10.1093/nar/gkaa304] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
High-throughput methods, such as ribosome profiling, have revealed the complexity of translation regulation in Bacteria and Eukarya with large-scale effects on cellular functions. In contrast, the translational landscape in Archaea remains mostly unexplored. Here, we developed ribosome profiling in a model archaeon, Haloferax volcanii, elucidating, for the first time, the translational landscape of a representative of the third domain of life. We determined the ribosome footprint of H. volcanii to be comparable in size to that of the Eukarya. We linked footprint lengths to initiating and elongating states of the ribosome on leadered transcripts, operons, and on leaderless transcripts, the latter representing 70% of H. volcanii transcriptome. We manipulated ribosome activity with translation inhibitors to reveal ribosome pausing at specific codons. Lastly, we found that the drug harringtonine arrested ribosomes at initiation sites in this archaeon. This drug treatment allowed us to confirm known translation initiation sites and also reveal putative novel initiation sites in intergenic regions and within genes. Ribosome profiling revealed an uncharacterized complexity of translation in this archaeon with bacteria-like, eukarya-like, and potentially novel translation mechanisms. These mechanisms are likely to be functionally essential and to contribute to an expanded proteome with regulatory roles in gene expression.
Collapse
Affiliation(s)
| | - Emma Dallon
- Department of Biology, the Johns Hopkins University, Baltimore, MD, USA
| | - Rahul Reddy
- Department of Biology, the Johns Hopkins University, Baltimore, MD, USA
| | - Fuad Mohammad
- Department of Molecular Biology and Genetics, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jocelyne DiRuggiero
- Department of Biology, the Johns Hopkins University, Baltimore, MD, USA
- Department of Earth and Planetary Sciences, the Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
23
|
Aleksashin NA, Szal T, d'Aquino AE, Jewett MC, Vázquez-Laslop N, Mankin AS. A fully orthogonal system for protein synthesis in bacterial cells. Nat Commun 2020; 11:1858. [PMID: 32313034 PMCID: PMC7170887 DOI: 10.1038/s41467-020-15756-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Ribosome engineering is a powerful approach for expanding the catalytic potential of the protein synthesis apparatus. Due to the potential detriment the properties of the engineered ribosome may have on the cell, the designer ribosome needs to be functionally isolated from the translation machinery synthesizing cellular proteins. One solution to this problem was offered by Ribo-T, an engineered ribosome with tethered subunits which, while producing a desired protein, could be excluded from general translation. Here, we provide a conceptually different design of a cell with two orthogonal protein synthesis systems, where Ribo-T produces the proteome, while the dissociable ribosome is committed to the translation of a specific mRNA. The utility of this system is illustrated by generating a comprehensive collection of mutants with alterations at every rRNA nucleotide of the peptidyl transferase center and isolating gain-of-function variants that enable the ribosome to overcome the translation termination blockage imposed by an arrest peptide.
Collapse
Affiliation(s)
- Nikolay A Aleksashin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.,Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Teresa Szal
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Anne E d'Aquino
- Interdisciplinary Biological Science Program, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA.,Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.,Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA. .,Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
24
|
Planson AG, Sauveplane V, Dervyn E, Jules M. Bacterial growth physiology and RNA metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194502. [PMID: 32044462 DOI: 10.1016/j.bbagrm.2020.194502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
Bacteria are sophisticated systems with high capacity and flexibility to adapt to various environmental conditions. Each prokaryote however possesses a defined metabolic network, which sets its overall metabolic capacity, and therefore the maximal growth rate that can be reached. To achieve optimal growth, bacteria adopt various molecular strategies to optimally adjust gene expression and optimize resource allocation according to the nutrient availability. The resulting physiological changes are often accompanied by changes in the growth rate, and by global regulation of gene expression. The growth-rate-dependent variation of the abundances in the cellular machineries, together with condition-specific regulatory mechanisms, affect RNA metabolism and fate and pose a challenge for rational gene expression reengineering of synthetic circuits. This article is part of a Special Issue entitled: RNA and gene control in bacteria, edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Anne-Gaëlle Planson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Vincent Sauveplane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Etienne Dervyn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
25
|
Dynamics of transcription–translation coordination tune bacterial indole signaling. Nat Chem Biol 2019; 16:440-449. [DOI: 10.1038/s41589-019-0430-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
|
26
|
Ito K, Mori H, Chiba S. Monitoring substrate enables real-time regulation of a protein localization pathway. FEMS Microbiol Lett 2019; 365:4983124. [PMID: 29790986 DOI: 10.1093/femsle/fny109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
Protein localization machinery supports cell survival and physiology, suggesting the potential importance of its expression regulation. Here, we summarize a remarkable scheme of regulation, which allows real-time feedback regulation of the machinery expression. A class of regulatory nascent polypeptides, called monitoring substrates, undergoes force-sensitive translation arrest. The resulting ribosome stalling on the mRNA then affects mRNA folding to expose the ribosome-binding site of the downstream target gene and upregulate its translation. The target gene encodes a component of the localization machinery, whose physical action against the monitoring substrate leads to arrest cancellation. Thus, this scheme of feedback loop allows the cell to adjust the amount of the machinery to correlate inversely with the effectiveness of the process at a given moment. The system appears to have emerged late in evolution, in which a narrow range of organisms selected a distinct monitoring substrate-machinery combination. Currently, regulatory systems of SecM-SecA, VemP-SecDF2 and MifM-YidC2 are known to occur in different bacterial species.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| | - Hiroyuki Mori
- Japan and Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Shinobu Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| |
Collapse
|
27
|
Regulation of Bacterial Gene Expression by Transcription Attenuation. Microbiol Mol Biol Rev 2019; 83:83/3/e00019-19. [PMID: 31270135 DOI: 10.1128/mmbr.00019-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A wide variety of mechanisms that control gene expression in bacteria are based on conditional transcription termination. Generally, in these mechanisms, a transcription terminator is located between a promoter and a downstream gene(s), and the efficiency of the terminator is controlled by a regulatory effector that can be a metabolite, protein, or RNA. The most common type of regulation involving conditional termination is transcription attenuation, in which the primary regulatory target is an essential element of a single terminator. The terminator can be either intrinsic or Rho dependent, with each presenting unique regulatory targets. Transcription attenuation mechanisms can be divided into five classes based primarily on the manner in which transcription termination is rendered conditional. This review summarizes each class of control mechanisms from a historical perspective, describes important examples in a physiological context and the current state of knowledge, highlights major advances, and discusses expectations of future discoveries.
Collapse
|
28
|
Shanmuganathan V, Schiller N, Magoulopoulou A, Cheng J, Braunger K, Cymer F, Berninghausen O, Beatrix B, Kohno K, von Heijne G, Beckmann R. Structural and mutational analysis of the ribosome-arresting human XBP1u. eLife 2019; 8:46267. [PMID: 31246176 PMCID: PMC6624018 DOI: 10.7554/elife.46267] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/20/2019] [Indexed: 12/17/2022] Open
Abstract
XBP1u, a central component of the unfolded protein response (UPR), is a mammalian protein containing a functionally critical translational arrest peptide (AP). Here, we present a 3 Å cryo-EM structure of the stalled human XBP1u AP. It forms a unique turn in the ribosomal exit tunnel proximal to the peptidyl transferase center where it causes a subtle distortion, thereby explaining the temporary translational arrest induced by XBP1u. During ribosomal pausing the hydrophobic region 2 (HR2) of XBP1u is recognized by SRP, but fails to efficiently gate the Sec61 translocon. An exhaustive mutagenesis scan of the XBP1u AP revealed that only 8 out of 20 mutagenized positions are optimal; in the remaining 12 positions, we identify 55 different mutations increase the level of translational arrest. Thus, the wildtype XBP1u AP induces only an intermediate level of translational arrest, allowing efficient targeting by SRP without activating the Sec61 channel.
Collapse
Affiliation(s)
- Vivekanandan Shanmuganathan
- Gene Center, Department of Biochemistry, Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nina Schiller
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | - Jingdong Cheng
- Gene Center, Department of Biochemistry, Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katharina Braunger
- Gene Center, Department of Biochemistry, Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Cymer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Otto Berninghausen
- Gene Center, Department of Biochemistry, Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Birgitta Beatrix
- Gene Center, Department of Biochemistry, Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kenji Kohno
- Institute for Research Initiatives, Nara Institute of Science and Technology, Takayama, Japan
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Roland Beckmann
- Gene Center, Department of Biochemistry, Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
29
|
Increased freedom of movement in the nascent chain results in dynamic changes in the structure of the SecM arrest motif. Biosci Rep 2019; 39:BSR20181246. [PMID: 30563926 PMCID: PMC6340945 DOI: 10.1042/bsr20181246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
Ribosomes are responsible for the synthesis of all cellular proteins. Due to the diversity of sequence and properties, it was initially believed that translating nascent chains would travel unhindered through the ribosome exit tunnel, however a small but increasing number of proteins have been identified that interact with the exit tunnel to induce translational arrest, Escherichia coli (E. coli) secretion monitor (SecM) is one such stalling peptide. How and why these peptides interact with the exit tunnel is not fully understood, however key features required for stalling appear to be an essential peptide arrest motif at the C-terminus and compaction of the nascent chain within the exit tunnel upon stalling. Mutagenesis of the SecM arrest sequence has identified three conservative point mutations that can retain a degree of stalling in this highly conserved sequence. This level of stalling is further increased when coupled with mutation of a non-essential arrest motif residue P153A. Further analysis of these mutants by pegylation assays indicates that this increase in stalling activity during translation is due to the ability of the P153A mutation to reintroduce compaction of the nascent chain within the exit tunnel possibly due to the improved flexibility of the nascent chain provided by the removal of a restrictive proline residue. The data presented here suggest that arrest sequences may be more prevalent and less highly conserved than previously thought, and highlight the significance of the interactions between the nascent chain and the exit tunnel to affecting translation arrest.
Collapse
|
30
|
Charon J, Manteca A, Innis CA. Using the Bacterial Ribosome as a Discovery Platform for Peptide-Based Antibiotics. Biochemistry 2019; 58:75-84. [PMID: 30372045 PMCID: PMC7615898 DOI: 10.1021/acs.biochem.8b00927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The threat of bacteria resistant to multiple antibiotics poses a major public health problem requiring immediate and coordinated action worldwide. While infectious pathogens have become increasingly resistant to commercially available drugs, antibiotic discovery programs in major pharmaceutical companies have produced no new antibiotic scaffolds in 40 years. As a result, new strategies must be sought to obtain a steady supply of novel scaffolds capable of countering the spread of resistance. The bacterial ribosome is a major target for antimicrobials and is inhibited by more than half of the antibiotics used today. Recent studies showing that the ribosome is a target for several classes of ribosomally synthesized antimicrobial peptides point to ribosome-targeting peptides as a promising source of antibiotic scaffolds. In this Perspective, we revisit the current paradigm of antibiotic discovery by proposing that the bacterial ribosome can be used both as a target and as a tool for the production and selection of peptide-based antimicrobials. Turning the ribosome into a high-throughput platform for the directed evolution of peptide-based antibiotics could be achieved in different ways. One possibility would be to use a combination of state-of-the-art microfluidics and genetic reprogramming techniques, which we will review briefly. If it is successful, this strategy has the potential to produce new classes of antibiotics for treating multi-drug-resistant pathogens.
Collapse
Affiliation(s)
- Justine Charon
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, Institut National de la Santé et de la Recherche Médicale (U1212) and Centre National de la Recherche Scientifique (UMR 5320), Pessac 33607, France
| | - Aitor Manteca
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, Institut National de la Santé et de la Recherche Médicale (U1212) and Centre National de la Recherche Scientifique (UMR 5320), Pessac 33607, France
| | - C. Axel Innis
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, Institut National de la Santé et de la Recherche Médicale (U1212) and Centre National de la Recherche Scientifique (UMR 5320), Pessac 33607, France
| |
Collapse
|
31
|
Zhao D, Baez WD, Fredrick K, Bundschuh R. RiboProP: a probabilistic ribosome positioning algorithm for ribosome profiling. Bioinformatics 2018; 35:1486-1493. [DOI: 10.1093/bioinformatics/bty854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/03/2018] [Accepted: 10/09/2018] [Indexed: 11/14/2022] Open
Abstract
Abstract
Motivation
Ribosome profiling has been widely used to study translation in a genome-wide fashion. It requires deep sequencing of ribosome protected mRNA fragments followed by mapping of fragments to the reference genome. For applications such as identification of ribosome pausing sites, it is not enough to map a fragment to a given gene, but the exact position of the ribosome represented by the fragment must be identified for each mRNA fragment. The assignment of the correct ribosome position is complicated by the broad length distribution of the ribosome protected fragments caused by the known sequence bias of micrococcal nuclease (MNase), the most widely used nuclease for digesting mRNAs in bacteria. Available mapping algorithms suffer from either MNase bias or low accuracy in characterizing the ribosome pausing kinetics.
Results
In this paper, we introduce a new computational method for mapping the ribosome protected fragments to ribosome locations. We first develop a mathematical model of the interplay between MNase digestion and ribosome protection of the mRNAs. We then use the model to reconstruct the ribosome occupancy profile on a per gene level. We demonstrate that our method has the capability of mitigating the sequence bias introduced by MNase and accurately locating ribosome pausing sites at codon resolution. We believe that our method can be broadly applied to ribosome profiling studies on bacteria where codon resolution is necessary.
Availability and implementation
Source code implementing our approach can be downloaded under GPL3 license at http://bioserv.mps.ohio-state.edu/RiboProP.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dengke Zhao
- Interdisciplinary Biophysics Graduate Program, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - William D Baez
- Department of Physics, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Kurt Fredrick
- Department of Microbiology, Division of Hematology, The Ohio State University, Columbus, OH, USA
- Center for RNA Biology, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Ralf Bundschuh
- Interdisciplinary Biophysics Graduate Program, Division of Hematology, The Ohio State University, Columbus, OH, USA
- Department of Physics, Division of Hematology, The Ohio State University, Columbus, OH, USA
- Center for RNA Biology, Division of Hematology, The Ohio State University, Columbus, OH, USA
- Department of Chemistry & Biochemistry, Division of Hematology, The Ohio State University, Columbus, OH, USA
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
32
|
Vázquez-Laslop N, Mankin AS. How Macrolide Antibiotics Work. Trends Biochem Sci 2018; 43:668-684. [PMID: 30054232 PMCID: PMC6108949 DOI: 10.1016/j.tibs.2018.06.011] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/17/2018] [Accepted: 06/29/2018] [Indexed: 01/24/2023]
Abstract
Macrolide antibiotics inhibit protein synthesis by targeting the bacterial ribosome. They bind at the nascent peptide exit tunnel and partially occlude it. Thus, macrolides have been viewed as 'tunnel plugs' that stop the synthesis of every protein. More recent evidence, however, demonstrates that macrolides selectively inhibit the translation of a subset of cellular proteins, and that their action crucially depends on the nascent protein sequence and on the antibiotic structure. Therefore, macrolides emerge as modulators of translation rather than as global inhibitors of protein synthesis. The context-specific action of macrolides is the basis for regulating the expression of resistance genes. Understanding the details of the mechanism of macrolide action may inform rational design of new drugs and unveil important principles of translation regulation.
Collapse
Affiliation(s)
- Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
33
|
Paknia E, Chari A, Stark H, Fischer U. The Ribosome Cooperates with the Assembly Chaperone pICln to Initiate Formation of snRNPs. Cell Rep 2018; 16:3103-3112. [PMID: 27653676 DOI: 10.1016/j.celrep.2016.08.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/11/2016] [Accepted: 08/15/2016] [Indexed: 01/05/2023] Open
Abstract
The formation of macromolecular complexes within the crowded environment of cells often requires aid from assembly chaperones. PRMT5 and SMN complexes mediate this task for the assembly of the common core of pre-mRNA processing small nuclear ribonucleoprotein particles (snRNPs). Core formation is initiated by the PRMT5-complex subunit pICln, which pre-arranges the core proteins into spatial positions occupied in the assembled snRNP. The SMN complex then accepts these pICln-bound proteins and unites them with small nuclear RNA (snRNA). Here, we have analyzed how newly synthesized snRNP proteins are channeled into the assembly pathway to evade mis-assembly. We show that they initially remain bound to the ribosome near the polypeptide exit tunnel and dissociate upon association with pICln. Coincident with its release activity, pICln ensures the formation of cognate heterooligomers and their chaperoned guidance into the assembly pathway. Our study identifies the ribosomal quality control hub as a site where chaperone-mediated assembly of macromolecular complexes can be initiated.
Collapse
Affiliation(s)
- Elham Paknia
- Department of Biochemistry, University of Wuerzburg, 97074 Wuerzburg, Germany; Department for Structural Dynamics, Max-Planck-Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Ashwin Chari
- Department for Structural Dynamics, Max-Planck-Institute for Biophysical Chemistry, 37077 Goettingen, Germany.
| | - Holger Stark
- Department for Structural Dynamics, Max-Planck-Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Utz Fischer
- Department of Biochemistry, University of Wuerzburg, 97074 Wuerzburg, Germany; Department of Radiation Medicine and Applied Sciences, University of California at San Diego, San Diego, CA 92037, USA.
| |
Collapse
|
34
|
Liu SD, Wu YN, Wang TM, Zhang C, Xing XH. Maltose Utilization as a Novel Selection Strategy for Continuous Evolution of Microbes with Enhanced Metabolite Production. ACS Synth Biol 2017; 6:2326-2338. [PMID: 28841296 DOI: 10.1021/acssynbio.7b00247] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have developed a novel selection circuit based on carbon source utilization that establishes and sustains growth-production coupling over several generations in a medium with maltose as the sole carbon source. In contrast to traditional antibiotic resistance-based circuits, we first proved that coupling of cell fitness to metabolite production by our circuit was more robust with a much lower escape risk even after many rounds of selection. We then applied the selection circuit to the optimization of L-tryptophan (l-Trp) production. We demonstrated that it enriched for specific mutants with increased l-Trp productivity regardless of whether it was applied to a small and defined mutational library or a relatively large and undefined one. From the latter, we identified four novel mutations with enhanced l-Trp output. Finally, we used it to select for several high l-Trp producers with randomly generated genome-wide mutations and obtained strains with up to 65% increased l-Trp production. This selection circuit provides new perspectives for the optimization of microbial cell factories for diverse metabolite production and the discovery of novel genotype-phenotype associations at the single-gene and whole-genome levels.
Collapse
Affiliation(s)
- Shu-De Liu
- MOE Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
| | - Yi-Nan Wu
- MOE Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
| | - Tian-Min Wang
- MOE Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
| | - Xin-Hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Buskirk AR, Green R. Ribosome pausing, arrest and rescue in bacteria and eukaryotes. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0183. [PMID: 28138069 DOI: 10.1098/rstb.2016.0183] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 12/17/2022] Open
Abstract
Ribosomes translate genetic information into polypeptides in several basic steps: initiation, elongation, termination and recycling. When ribosomes are arrested during elongation or termination, the cell's capacity for protein synthesis is reduced. There are numerous quality control systems in place to distinguish between paused ribosomes that need some extra input to proceed and terminally stalled ribosomes that need to be rescued. Here, we discuss similarities and differences in the systems for resolution of pauses and rescue of arrested ribosomes in bacteria and eukaryotes, and how ribosome profiling has transformed our ability to decipher these molecular events.This article is part of the themed issue 'Perspectives on the ribosome'.
Collapse
Affiliation(s)
- Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD, USA
| |
Collapse
|
36
|
Chadani Y, Niwa T, Izumi T, Sugata N, Nagao A, Suzuki T, Chiba S, Ito K, Taguchi H. Intrinsic Ribosome Destabilization Underlies Translation and Provides an Organism with a Strategy of Environmental Sensing. Mol Cell 2017; 68:528-539.e5. [PMID: 29100053 DOI: 10.1016/j.molcel.2017.10.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/28/2017] [Accepted: 10/06/2017] [Indexed: 01/05/2023]
Abstract
Nascent polypeptides can modulate the polypeptide elongation speed on the ribosome. Here, we show that nascent chains can even destabilize the translating Escherichia coli ribosome from within. This phenomenon, termed intrinsic ribosome destabilization (IRD), occurs in response to a special amino acid sequence of the nascent chain, without involving the release or the recycling factors. Typically, a consecutive array of acidic residues and those intermitted by alternating prolines induce IRD. The ribosomal protein bL31, which bridges the two subunits, counteracts IRD, such that only strong destabilizing sequences abort translation in living cells. We found that MgtL, the leader peptide of a Mg2+ transporter (MgtA), contains a translation-aborting sequence, which sensitizes the ribosome to a decline in Mg2+ concentration and thereby triggers the MgtA-upregulating genetic scheme. Translation proceeds at an inherent risk of ribosomal destabilization, and nascent chain-ribosome complexes can function as a Mg2+ sensor by harnessing IRD.
Collapse
Affiliation(s)
- Yuhei Chadani
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Takashi Izumi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Nobuyuki Sugata
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8565, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8565, Japan
| | - Shinobu Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Koreaki Ito
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
| |
Collapse
|
37
|
Florin T, Maracci C, Graf M, Karki P, Klepacki D, Berninghausen O, Beckmann R, Vázquez-Laslop N, Wilson DN, Rodnina MV, Mankin AS. An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome. Nat Struct Mol Biol 2017; 24:752-757. [PMID: 28741611 PMCID: PMC5589491 DOI: 10.1038/nsmb.3439] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Many antibiotics stop bacterial growth by inhibiting different steps of protein synthesis. However, no specific inhibitors of translation termination are known. Proline-rich antimicrobial peptides, a component of the antibacterial defense system of multicellular organisms, interfere with bacterial growth by inhibiting translation. Here we show that Api137, a derivative of the insect-produced antimicrobial peptide apidaecin, arrests terminating ribosomes using a unique mechanism of action. Api137 binds to the Escherichia coli ribosome and traps release factors 1 or 2 subsequent to release of the nascent polypeptide chain. A high-resolution cryo-EM structure of the ribosome complexed with release factor 1 and Api137 reveals the molecular interactions that lead to release factor trapping. Api137-mediated depletion of the cellular pool of free release factors causes the majority of ribosomes to stall at stop codons prior to polypeptide release, thereby resulting in a global shutdown of translation termination.
Collapse
Affiliation(s)
- Tanja Florin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Michael Graf
- Gene Center, Department for Biochemistry and Center for Protein Science Munich (CiPSM), University of Munich, Munich, Germany
| | - Prajwal Karki
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dorota Klepacki
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Otto Berninghausen
- Gene Center, Department for Biochemistry and Center for Protein Science Munich (CiPSM), University of Munich, Munich, Germany
| | - Roland Beckmann
- Gene Center, Department for Biochemistry and Center for Protein Science Munich (CiPSM), University of Munich, Munich, Germany
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniel N Wilson
- Gene Center, Department for Biochemistry and Center for Protein Science Munich (CiPSM), University of Munich, Munich, Germany.,Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
38
|
Po P, Delaney E, Gamper H, Szantai-Kis DM, Speight L, Tu L, Kosolapov A, Petersson EJ, Hou YM, Deutsch C. Effect of Nascent Peptide Steric Bulk on Elongation Kinetics in the Ribosome Exit Tunnel. J Mol Biol 2017; 429:1873-1888. [PMID: 28483649 DOI: 10.1016/j.jmb.2017.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 12/17/2022]
Abstract
All proteins are synthesized by the ribosome, a macromolecular complex that accomplishes the life-sustaining tasks of faithfully decoding mRNA and catalyzing peptide bond formation at the peptidyl transferase center (PTC). The ribosome has evolved an exit tunnel to host the elongating new peptide, protect it from proteolytic digestion, and guide its emergence. It is here that the nascent chain begins to fold. This folding process depends on the rate of translation at the PTC. We report here that besides PTC events, translation kinetics depend on steric constraints on nascent peptide side chains and that confined movements of cramped side chains within and through the tunnel fine-tune elongation rates.
Collapse
Affiliation(s)
- Pengse Po
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin Delaney
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - D Miklos Szantai-Kis
- Department of Biochemistry and Molecular Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lee Speight
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - LiWei Tu
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrey Kosolapov
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Carol Deutsch
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
Nomiyama H, Osada N, Takahashi I, Terao K, Yamagata K, Yoshie O. Translational Repression of a Splice Variant of Cynomolgus Macaque CXCL1L by Its C-Terminal Sequence. J Interferon Cytokine Res 2017; 37:129-138. [PMID: 28186423 DOI: 10.1089/jir.2016.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously isolated a cDNA clone from cynomolgus macaque encoding a novel CXC chemokine that we termed CXCL1L from its close similarity to CXCL1. However, the cDNA consisted of 3 exons instead of 4 exons that were typically seen in other CXC chemokines. Here, we isolated a cDNA encoding the full-length variant of CXCL1L that we termed CXCL1Lβ. CXCL1Lβ is 50 amino acids longer than the original CXCL1L, which we now term CXCL1Lα. The CXCL1Lβ mRNA is much more abundantly expressed in the cynomolgus macaque tissues than CXCL1Lα mRNA. However, CXCL1Lβ protein was poorly produced by transfected cells compared with that of CXCL1Lα. When the coding region of the fourth exon was fused to the C-terminus of CXCL1 or even to a nonsecretory protein firefly luciferase, the fused proteins were also barely produced, although the mRNAs were abundantly expressed. The polysome profiling analysis suggested that the inhibition was mainly at the translational level. Furthermore, we demonstrated that the C-terminal 5 amino acids of CXCL1Lβ were critical for the translational repression. The present study, thus, reveals a unique translational regulation controlling the production of a splicing variant of CXCL1L. Since the CXCL1L gene is functional only in the Old World monkeys, we also discuss possible reasons for the conservation of the active CXCL1L gene in these monkeys during the primate evolution.
Collapse
Affiliation(s)
- Hisayuki Nomiyama
- 1 Department of Molecular Enzymology, Kumamoto University Graduate School of Medical Sciences , Kumamoto, Japan
| | - Naoki Osada
- 2 Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University , Sapporo, Japan
| | - Ichiro Takahashi
- 3 Tsukuba Primate Research Center, National Institute of Biomedical Innovation , Health and Nutrition (NIBIOHN), Tsukuba, Japan
| | - Keiji Terao
- 3 Tsukuba Primate Research Center, National Institute of Biomedical Innovation , Health and Nutrition (NIBIOHN), Tsukuba, Japan
| | - Kazuya Yamagata
- 4 Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University , Kumamoto, Japan
| | - Osamu Yoshie
- 5 The Health and Kampo Institute , Sendai, Japan
| |
Collapse
|
40
|
Qian S, Cirino PC. Using metabolite-responsive gene regulators to improve microbial biosynthesis. Curr Opin Chem Eng 2016. [DOI: 10.1016/j.coche.2016.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
41
|
Fyfe C, Grossman TH, Kerstein K, Sutcliffe J. Resistance to Macrolide Antibiotics in Public Health Pathogens. Cold Spring Harb Perspect Med 2016; 6:a025395. [PMID: 27527699 PMCID: PMC5046686 DOI: 10.1101/cshperspect.a025395] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Macrolide resistance mechanisms can be target-based with a change in a 23S ribosomal RNA (rRNA) residue or a mutation in ribosomal protein L4 or L22 affecting the ribosome's interaction with the antibiotic. Alternatively, mono- or dimethylation of A2058 in domain V of the 23S rRNA by an acquired rRNA methyltransferase, the product of an erm (erythromycin ribosome methylation) gene, can interfere with antibiotic binding. Acquired genes encoding efflux pumps, most predominantly mef(A) + msr(D) in pneumococci/streptococci and msr(A/B) in staphylococci, also mediate resistance. Drug-inactivating mechanisms include phosphorylation of the 2'-hydroxyl of the amino sugar found at position C5 by phosphotransferases and hydrolysis of the macrocyclic lactone by esterases. These acquired genes are regulated by either translation or transcription attenuation, largely because cells are less fit when these genes, especially the rRNA methyltransferases, are highly induced or constitutively expressed. The induction of gene expression is cleverly tied to the mechanism of action of macrolides, relying on antibiotic-bound ribosomes stalled at specific sequences of nascent polypeptides to promote transcription or translation of downstream sequences.
Collapse
Affiliation(s)
- Corey Fyfe
- Tetraphase Pharmaceuticals, Watertown, Massachusetts 02472
| | | | - Kathy Kerstein
- Tetraphase Pharmaceuticals, Watertown, Massachusetts 02472
| | | |
Collapse
|
42
|
Abstract
For more than four decades now, I have been studying how genetic information is transformed into protein-based cellular functions. This has included investigations into the mechanisms supporting cellular localization of proteins, disulfide bond formation, quality control of membranes, and translation. I tried to extract new principles and concepts that are universal among living organisms from our observations of Escherichia coli. While I wanted to distill complex phenomena into basic principles, I also tried not to overlook any serendipitous observations. In the first part of this article, I describe personal experiences during my studies of the Sec pathway, which have centered on the SecY translocon. In the second part, I summarize my views of the recent revival of translation studies, which has given rise to the concept that nonuniform polypeptide chain elongation is relevant for the subsequent fates of newly synthesized proteins. Our studies of a class of regulatory nascent polypeptides advance this concept by showing that the dynamic behaviors of the extraribosomal part of the nascent chain affect the ongoing translation process. Vibrant and regulated molecular interactions involving the ribosome, mRNA, and nascent polypeptidyl-tRNA are based, at least partly, on their autonomously interacting properties.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan;
| |
Collapse
|
43
|
Dynamic Behavior of Trigger Factor on the Ribosome. J Mol Biol 2016; 428:3588-602. [DOI: 10.1016/j.jmb.2016.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 11/22/2022]
|
44
|
Kushwaha M, Rostain W, Prakash S, Duncan JN, Jaramillo A. Using RNA as Molecular Code for Programming Cellular Function. ACS Synth Biol 2016; 5:795-809. [PMID: 26999422 DOI: 10.1021/acssynbio.5b00297] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNA is involved in a wide-range of important molecular processes in the cell, serving diverse functions: regulatory, enzymatic, and structural. Together with its ease and predictability of design, these properties can lead RNA to become a useful handle for biological engineers with which to control the cellular machinery. By modifying the many RNA links in cellular processes, it is possible to reprogram cells toward specific design goals. We propose that RNA can be viewed as a molecular programming language that, together with protein-based execution platforms, can be used to rewrite wide ranging aspects of cellular function. In this review, we catalogue developments in the use of RNA parts, methods, and associated computational models that have contributed to the programmability of biology. We discuss how RNA part repertoires have been combined to build complex genetic circuits, and review recent applications of RNA-based parts and circuitry. We explore the future potential of RNA engineering and posit that RNA programmability is an important resource for firmly establishing an era of rationally designed synthetic biology.
Collapse
Affiliation(s)
- Manish Kushwaha
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - William Rostain
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
- iSSB, Genopole,
CNRS, UEVE, Université Paris-Saclay, Évry, France
| | - Satya Prakash
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - John N. Duncan
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - Alfonso Jaramillo
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
- iSSB, Genopole,
CNRS, UEVE, Université Paris-Saclay, Évry, France
| |
Collapse
|
45
|
Translation regulation via nascent polypeptide-mediated ribosome stalling. Curr Opin Struct Biol 2016; 37:123-33. [DOI: 10.1016/j.sbi.2016.01.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 11/23/2022]
|
46
|
Intermediate-sensor assisted push–pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli. Metab Eng 2016; 33:41-51. [DOI: 10.1016/j.ymben.2015.10.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/22/2015] [Accepted: 10/15/2015] [Indexed: 01/29/2023]
|
47
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
48
|
Yordanova MM, Wu C, Andreev DE, Sachs MS, Atkins JF. A Nascent Peptide Signal Responsive to Endogenous Levels of Polyamines Acts to Stimulate Regulatory Frameshifting on Antizyme mRNA. J Biol Chem 2015; 290:17863-17878. [PMID: 25998126 PMCID: PMC4505036 DOI: 10.1074/jbc.m115.647065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Indexed: 01/06/2023] Open
Abstract
The protein antizyme is a negative regulator of cellular polyamine concentrations from yeast to mammals. Synthesis of functional antizyme requires programmed +1 ribosomal frameshifting at the 3′ end of the first of two partially overlapping ORFs. The frameshift is the sensor and effector in an autoregulatory circuit. Except for Saccharomyces cerevisiae antizyme mRNA, the frameshift site alone only supports low levels of frameshifting. The high levels usually observed depend on the presence of cis-acting stimulatory elements located 5′ and 3′ of the frameshift site. Antizyme genes from different evolutionary branches have evolved different stimulatory elements. Prior and new multiple alignments of fungal antizyme mRNA sequences from the Agaricomycetes class of Basidiomycota show a distinct pattern of conservation 5′ of the frameshift site consistent with a function at the amino acid level. As shown here when tested in Schizosaccharomyces pombe and mammalian HEK293T cells, the 5′ part of this conserved sequence acts at the nascent peptide level to stimulate the frameshifting, without involving stalling detectable by toe-printing. However, the peptide is only part of the signal. The 3′ part of the stimulator functions largely independently and acts at least mostly at the nucleotide level. When polyamine levels were varied, the stimulatory effect was seen to be especially responsive in the endogenous polyamine concentration range, and this effect may be more general. A conserved RNA secondary structure 3′ of the frameshift site has weaker stimulatory and polyamine sensitizing effects on frameshifting.
Collapse
Affiliation(s)
- Martina M Yordanova
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112-5330.
| |
Collapse
|
49
|
Sohmen D, Chiba S, Shimokawa-Chiba N, Innis CA, Berninghausen O, Beckmann R, Ito K, Wilson DN. Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling. Nat Commun 2015; 6:6941. [PMID: 25903689 PMCID: PMC4423224 DOI: 10.1038/ncomms7941] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/16/2015] [Indexed: 12/23/2022] Open
Abstract
Ribosomal stalling is used to regulate gene expression and can occur in a species-specific manner. Stalling during translation of the MifM leader peptide regulates expression of the downstream membrane protein biogenesis factor YidC2 (YqjG) in Bacillus subtilis, but not in Escherichia coli. In the absence of structures of Gram-positive bacterial ribosomes, a molecular basis for species-specific stalling has remained unclear. Here we present the structure of a Gram-positive B. subtilis MifM-stalled 70S ribosome at 3.5–3.9 Å, revealing a network of interactions between MifM and the ribosomal tunnel, which stabilize a non-productive conformation of the PTC that prevents aminoacyl-tRNA accommodation and thereby induces translational arrest. Complementary genetic analyses identify a single amino acid within ribosomal protein L22 that dictates the species specificity of the stalling event. Such insights expand our understanding of how the synergism between the ribosome and the nascent chain is utilized to modulate the translatome in a species-specific manner. Ribosome stalling regulates gene expression by exposing otherwise inaccessible downstream ribosome-binding sites. Here the authors present a high-resolution Cryo-EM structure of the Bacillus subtilis MifM-stalled 70S ribosome to provide mechanistic insight into species-specific nascent peptide induced translational arrest.
Collapse
Affiliation(s)
- Daniel Sohmen
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynen-Street 25, Munich 81377, Germany
| | - Shinobu Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
| | - Naomi Shimokawa-Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
| | - C Axel Innis
- 1] Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac, France [2] Institut National de la Santé et de la Recherche Médicale (U869), Bordeaux, France
| | - Otto Berninghausen
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynen-Street 25, Munich 81377, Germany
| | - Roland Beckmann
- 1] Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynen-Street 25, Munich 81377, Germany [2] Center for integrated Protein Science Munich (CiPSM), University of Munich, Feodor-Lynen-Street 25, Munich 81377, Germany
| | - Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
| | - Daniel N Wilson
- 1] Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynen-Street 25, Munich 81377, Germany [2] Center for integrated Protein Science Munich (CiPSM), University of Munich, Feodor-Lynen-Street 25, Munich 81377, Germany
| |
Collapse
|
50
|
Koutmou KS, Schuller AP, Brunelle JL, Radhakrishnan A, Djuranovic S, Green R. Ribosomes slide on lysine-encoding homopolymeric A stretches. eLife 2015; 4:e05534. [PMID: 25695637 PMCID: PMC4363877 DOI: 10.7554/elife.05534] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/18/2015] [Indexed: 01/29/2023] Open
Abstract
Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell-free expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome 'sliding' represents an unexpected type of ribosome movement possible during translation.
Collapse
Affiliation(s)
- Kristin S Koutmou
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
| | - Anthony P Schuller
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
| | - Julie L Brunelle
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, United States
| | - Aditya Radhakrishnan
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, United States
| |
Collapse
|