1
|
Kanaoka Y, Mori T, Nagaike W, Itaya S, Nonaka Y, Kohga H, Haruyama T, Sugano Y, Miyazaki R, Ichikawa M, Uchihashi T, Tsukazaki T. AFM observation of protein translocation mediated by one unit of SecYEG-SecA complex. Nat Commun 2025; 16:225. [PMID: 39779699 PMCID: PMC11711467 DOI: 10.1038/s41467-024-54875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Protein translocation across cellular membranes is an essential and nano-scale dynamic process. In the bacterial cytoplasmic membrane, the core proteins in this process are a membrane protein complex, SecYEG, corresponding to the eukaryotic Sec61 complex, and a cytoplasmic protein, SecA ATPase. Despite more than three decades of extensive research on Sec proteins, from genetic experiments to cutting-edge single-molecule analyses, no study has visually demonstrated protein translocation. Here, we visualize the translocation, via one unit of a SecYEG-SecA-embedded nanodisc, of an unfolded substrate protein by high-speed atomic force microscopy (HS-AFM). Additionally, the uniform unidirectional distribution of nanodiscs on a mica substrate enables the HS-AFM image data analysis, revealing dynamic structural changes in the polypeptide-crosslinking domain of SecA between wide-open and closed states depending on nucleotides. The nanodisc-AFM approach will allow us to execute detailed analyses of Sec proteins as well as visualize nano-scale events of other membrane proteins.
Collapse
Grants
- JPMJKP23H2 MEXT | Japan Science and Technology Agency (JST)
- JPMJPR20E1 MEXT | Japan Science and Technology Agency (JST)
- hp230209, hp240215, hp240277 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JPMXP1323015482 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 24ZR1403800 Natural Science Foundation of Shanghai (Natural Science Foundation of Shanghai Municipality)
- Naito Foundation
- Takeda Science Foundation
- JSPS/MEXT KAKENHI (Grant Nos. JP22H02567, JP22H02586, JP21H05155, JP21H05153, JP21K19226, JP21KK0125 to T.T.) The Chemo-Sero-Therapeutic Research Institute, the Institute for Fermentation (Osaka), and Yamada Science Foundation
- JSPS/MEXT KAKENHI (Grant Nos. JP21H05157, JP24K03035) MEXT as “Program for Promoting Researches on the Supercomputer Fugaku”(JPMXP1020230119)
- JSPS/MEXT KAKENHI (Grant No. JP23K14146 to H.K)
- JSPS/MEXT KAKENHI (Grant Nos. JP22K15061, JP22H05567 to R.M)
- JSPS/MEXT KAKENHI (Grant Nos. JP22K15075, JP20K15733)
- JSPS/MEXT KAKENHI (Grant Nos. JP21H000393, JP24K01309 to T.U.)
Collapse
Affiliation(s)
- Yui Kanaoka
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Takaharu Mori
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan.
| | - Wataru Nagaike
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Seira Itaya
- Nara Institute of Science and Technology, Nara, Japan
| | - Yuto Nonaka
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | | | | | | | | | - Muneyoshi Ichikawa
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Takayuki Uchihashi
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan.
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Science, Okazaki, Aichi, Japan.
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan.
| | | |
Collapse
|
2
|
Crossley JA, Allen WJ, Watkins DW, Sabir T, Radford SE, Tuma R, Collinson I, Fessl T. Dynamic coupling of fast channel gating with slow ATP-turnover underpins protein transport through the Sec translocon. EMBO J 2024; 43:1-13. [PMID: 38177311 PMCID: PMC10883268 DOI: 10.1038/s44318-023-00004-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024] Open
Abstract
The Sec translocon is a highly conserved membrane assembly for polypeptide transport across, or into, lipid bilayers. In bacteria, secretion through the core channel complex-SecYEG in the inner membrane-is powered by the cytosolic ATPase SecA. Here, we use single-molecule fluorescence to interrogate the conformational state of SecYEG throughout the ATP hydrolysis cycle of SecA. We show that the SecYEG channel fluctuations between open and closed states are much faster (~20-fold during translocation) than ATP turnover, and that the nucleotide status of SecA modulates the rates of opening and closure. The SecY variant PrlA4, which exhibits faster transport but unaffected ATPase rates, increases the dwell time in the open state, facilitating pre-protein diffusion through the pore and thereby enhancing translocation efficiency. Thus, rapid SecYEG channel dynamics are allosterically coupled to SecA via modulation of the energy landscape, and play an integral part in protein transport. Loose coupling of ATP-turnover by SecA to the dynamic properties of SecYEG is compatible with a Brownian-rachet mechanism of translocation, rather than strict nucleotide-dependent interconversion between different static states of a power stroke.
Collapse
Affiliation(s)
- Joel A Crossley
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, LS1 3HE, UK
| | - William J Allen
- School of Biochemistry, University of Bristol, Bristol, BS8 1QU, UK
| | - Daniel W Watkins
- School of Biochemistry, University of Bristol, Bristol, BS8 1QU, UK
| | - Tara Sabir
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, LS1 3HE, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, BS8 1QU, UK.
| | - Tomas Fessl
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic.
| |
Collapse
|
3
|
Allen WJ, Collinson I. A unifying mechanism for protein transport through the core bacterial Sec machinery. Open Biol 2023; 13:230166. [PMID: 37643640 PMCID: PMC10465204 DOI: 10.1098/rsob.230166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Encapsulation and compartmentalization are fundamental to the evolution of cellular life, but they also pose a challenge: how to partition the molecules that perform biological functions-the proteins-across impermeable barriers into sub-cellular organelles, and to the outside. The solution lies in the evolution of specialized machines, translocons, found in every biological membrane, which act both as gate and gatekeeper across and into membrane bilayers. Understanding how these translocons operate at the molecular level has been a long-standing ambition of cell biology, and one that is approaching its denouement; particularly in the case of the ubiquitous Sec system. In this review, we highlight the fruits of recent game-changing technical innovations in structural biology, biophysics and biochemistry to present a largely complete mechanism for the bacterial version of the core Sec machinery. We discuss the merits of our model over alternative proposals and identify the remaining open questions. The template laid out by the study of the Sec system will be of immense value for probing the many other translocons found in diverse biological membranes, towards the ultimate goal of altering or impeding their functions for pharmaceutical or biotechnological purposes.
Collapse
Affiliation(s)
- William J. Allen
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
4
|
Atomic Force Microscopy Reveals Complexity Underlying General Secretory System Activity. Int J Mol Sci 2022; 24:ijms24010055. [PMID: 36613499 PMCID: PMC9820662 DOI: 10.3390/ijms24010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The translocation of specific polypeptide chains across membranes is an essential activity for all life forms. The main components of the general secretory (Sec) system of E. coli include integral membrane translocon SecYEG, peripheral ATPase SecA, and SecDF, an ancillary complex that enhances polypeptide secretion by coupling translocation to proton motive force. Atomic force microscopy (AFM), a single-molecule imaging technique, is well suited to unmask complex, asynchronous molecular activities of membrane-associated proteins including those comprising the Sec apparatus. Using AFM, the dynamic structure of membrane-external protein topography of Sec system components can be directly visualized with high spatial-temporal precision. This mini-review is focused on AFM imaging of the Sec system in near-native fluid conditions where activity can be maintained and biochemically verified. Angstrom-scale conformational changes of SecYEG are reported on 100 ms timescales in fluid lipid bilayers. The association of SecA with SecYEG, forming membrane-bound SecYEG/SecA translocases, is directly visualized. Recent work showing topographical aspects of the translocation process that vary with precursor species is also discussed. The data suggests that the Sec system does not employ a single translocation mechanism. We posit that differences in the spatial frequency distribution of hydrophobic content within precursor sequences may be a determining factor in mechanism selection. Precise AFM investigations of active translocases are poised to advance our currently vague understanding of the complicated macromolecular movements underlying protein export across membranes.
Collapse
|
5
|
Kaushik S, He H, Dalbey RE. Bacterial Signal Peptides- Navigating the Journey of Proteins. Front Physiol 2022; 13:933153. [PMID: 35957980 PMCID: PMC9360617 DOI: 10.3389/fphys.2022.933153] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
In 1971, Blobel proposed the first statement of the Signal Hypothesis which suggested that proteins have amino-terminal sequences that dictate their export and localization in the cell. A cytosolic binding factor was predicted, and later the protein conducting channel was discovered that was proposed in 1975 to align with the large ribosomal tunnel. The 1975 Signal Hypothesis also predicted that proteins targeted to different intracellular membranes would possess distinct signals and integral membrane proteins contained uncleaved signal sequences which initiate translocation of the polypeptide chain. This review summarizes the central role that the signal peptides play as address codes for proteins, their decisive role as targeting factors for delivery to the membrane and their function to activate the translocation machinery for export and membrane protein insertion. After shedding light on the navigation of proteins, the importance of removal of signal peptide and their degradation are addressed. Furthermore, the emerging work on signal peptidases as novel targets for antibiotic development is described.
Collapse
|
6
|
Roussel G, Lindner E, White SH. Topology of the SecA ATPase Bound to Large Unilamellar Vesicles. J Mol Biol 2022; 434:167607. [PMID: 35489383 PMCID: PMC10085631 DOI: 10.1016/j.jmb.2022.167607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/27/2022]
Abstract
The soluble cytoplasmic ATPase motor protein SecA powers protein transport across the Escherichia coli inner membrane via the SecYEG translocon. Although dimeric in solution, SecA associates monomerically with SecYEG during secretion according to several crystallographic and cryo-EM structural studies. The steps SecA follows from its dimeric cytoplasmic state to its active SecYEG monomeric state are largely unknown. We have previously shown that dimeric SecA in solution dissociates into monomers upon electrostatic binding to negatively charged lipid vesicles formed from E. coli lipids. Here we address the question of the disposition of SecA on the membrane prior to binding to membrane embedded SecYEG. We mutated to cysteine, one at a time, 25 surface-exposed residues of a Cys-free SecA. To each of these we covalently linked the polarity-sensitive fluorophore NBD whose intensity and fluorescence wavelength-shift change upon vesicle binding report on the the local membrane polarity. We established from these measurements the disposition of SecA bound to the membrane in the absence of SecYEG. Our results confirmed that SecA is anchored in the membrane interface primarily by the positive charges of the N terminus domain. But we found that a region of the nucleotide binding domain II is also important for binding. Both domains are rich in positively charged residues, consistent with electrostatic interactions playing the major role in membrane binding. Selective replacement of positively charged residues in these domains with alanine resulted in weaker binding to the membrane, which allowed us to quantitate the relative importance of the domains in stabilizing SecA on membranes. Fluorescence quenchers inside the vesicles had little effect on NBD fluorescence, indicating that SecA does not penetrate significantly across the membrane. Overall, the topology of SecA on the membrane is consistent with the conformation of SecA observed in crystallographic and cryo-EM structures of SecA-SecYEG complexes, suggesting that SecA can switch between the membrane-associated and the translocon-associated states without significant changes in conformation.
Collapse
Affiliation(s)
- Guillaume Roussel
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, United States
| | - Eric Lindner
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, United States
| | - Stephen H White
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, United States.
| |
Collapse
|
7
|
A nexus of intrinsic dynamics underlies translocase priming. Structure 2021; 29:846-858.e7. [PMID: 33852897 DOI: 10.1016/j.str.2021.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/06/2021] [Accepted: 03/25/2021] [Indexed: 11/22/2022]
Abstract
The cytoplasmic ATPase SecA and the membrane-embedded SecYEG channel assemble to form the Sec translocase. How this interaction primes and catalytically activates the translocase remains unclear. We show that priming exploits a nexus of intrinsic dynamics in SecA. Using atomistic simulations, smFRET, and HDX-MS, we reveal multiple dynamic islands that cross-talk with domain and quaternary motions. These dynamic elements are functionally important and conserved. Central to the nexus is a slender stem through which rotation of the preprotein clamp of SecA is biased by ATPase domain motions between open and closed clamping states. An H-bonded framework covering most of SecA enables multi-tier dynamics and conformational alterations with minimal energy input. As a result, cognate ligands select preexisting conformations and alter local dynamics to regulate catalytic activity and clamp motions. These events prime the translocase for high-affinity reception of non-folded preprotein clients. Dynamics nexuses are likely universal and essential in multi-liganded proteins.
Collapse
|
8
|
Seinen AB, Spakman D, van Oijen AM, Driessen AJM. Cellular dynamics of the SecA ATPase at the single molecule level. Sci Rep 2021; 11:1433. [PMID: 33446830 PMCID: PMC7809386 DOI: 10.1038/s41598-021-81081-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/04/2021] [Indexed: 12/04/2022] Open
Abstract
In bacteria, the SecA ATPase provides the driving force for protein secretion via the SecYEG translocon. While the dynamic interplay between SecA and SecYEG in translocation is widely appreciated, it is not clear how SecA associates with the translocon in the crowded cellular environment. We use super-resolution microscopy to directly visualize the dynamics of SecA in Escherichia coli at the single-molecule level. We find that SecA is predominantly associated with and evenly distributed along the cytoplasmic membrane as a homodimer, with only a minor cytosolic fraction. SecA moves along the cell membrane as three distinct but interconvertible diffusional populations: (1) A state loosely associated with the membrane, (2) an integral membrane form, and (3) a temporarily immobile form. Disruption of the proton-motive-force, which is essential for protein secretion, re-localizes a significant portion of SecA to the cytoplasm and results in the transient location of SecA at specific locations at the membrane. The data support a model in which SecA diffuses along the membrane surface to gain access to the SecYEG translocon.
Collapse
Affiliation(s)
- Anne-Bart Seinen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.,AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - Dian Spakman
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | | | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
9
|
Refined measurement of SecA-driven protein secretion reveals that translocation is indirectly coupled to ATP turnover. Proc Natl Acad Sci U S A 2020; 117:31808-31816. [PMID: 33257538 DOI: 10.1073/pnas.2010906117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The universally conserved Sec system is the primary method cells utilize to transport proteins across membranes. Until recently, measuring the activity-a prerequisite for understanding how biological systems work-has been limited to discontinuous protein transport assays with poor time resolution or reported by large, nonnatural tags that perturb the process. The development of an assay based on a split superbright luciferase (NanoLuc) changed this. Here, we exploit this technology to unpick the steps that constitute posttranslational protein transport in bacteria. Under the conditions deployed, the transport of a model preprotein substrate (proSpy) occurs at 200 amino acids (aa) per minute, with SecA able to dissociate and rebind during transport. Prior to that, there is no evidence for a distinct, rate-limiting initiation event. Kinetic modeling suggests that SecA-driven transport activity is best described by a series of large (∼30 aa) steps, each coupled to hundreds of ATP hydrolysis events. The features we describe are consistent with a nondeterministic motor mechanism, such as a Brownian ratchet.
Collapse
|
10
|
Lazaratos M, Karathanou K, Bondar AN. Graphs of dynamic H-bond networks: from model proteins to protein complexes in cell signaling. Curr Opin Struct Biol 2020; 64:79-87. [DOI: 10.1016/j.sbi.2020.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
|
11
|
Lindič N, Loboda J, Usenik A, Vidmar R, Turk D. The Structure of Clostridioides difficile SecA2 ATPase Exposes Regions Responsible for Differential Target Recognition of the SecA1 and SecA2-Dependent Systems. Int J Mol Sci 2020; 21:ijms21176153. [PMID: 32858965 PMCID: PMC7503281 DOI: 10.3390/ijms21176153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
SecA protein is a major component of the general bacterial secretory system. It is an ATPase that couples nucleotide hydrolysis to protein translocation. In some Gram-positive pathogens, a second paralogue, SecA2, exports a different set of substrates, usually virulence factors. To identify SecA2 features different from SecA(1)s, we determined the crystal structure of SecA2 from Clostridioides difficile, an important nosocomial pathogen, in apo and ATP-γ-S-bound form. The structure reveals a closed monomer lacking the C-terminal tail (CTT) with an otherwise similar multidomain organization to its SecA(1) homologues and conserved binding of ATP-γ-S. The average in vitro ATPase activity rate of C. difficile SecA2 was 2.6 ± 0.1 µmolPi/min/µmol. Template-based modeling combined with evolutionary conservation analysis supports a model where C. difficile SecA2 in open conformation binds the target protein, ensures its movement through the SecY channel, and enables dimerization through PPXD/HWD cross-interaction of monomers during the process. Both approaches exposed regions with differences between SecA(1) and SecA2 homologues, which are in agreement with the unique adaptation of SecA2 proteins for a specific type of substrate, a role that can be addressed in further studies.
Collapse
Affiliation(s)
- Nataša Lindič
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (N.L.); (J.L.); (A.U.); (R.V.)
| | - Jure Loboda
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (N.L.); (J.L.); (A.U.); (R.V.)
| | - Aleksandra Usenik
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (N.L.); (J.L.); (A.U.); (R.V.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (N.L.); (J.L.); (A.U.); (R.V.)
| | - Dušan Turk
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (N.L.); (J.L.); (A.U.); (R.V.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova Cesta 39, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-477-3857
| |
Collapse
|
12
|
Molecular movie of nucleotide binding to a motor protein. Biochim Biophys Acta Gen Subj 2020; 1864:129654. [PMID: 32512170 DOI: 10.1016/j.bbagen.2020.129654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/13/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND The SecA DEAD (Asp-Glu-Ala-Asp) motor protein uses binding and hydrolysis of adenosine triphosphate (ATP) to push secretory proteins across the plasma membrane of bacteria. The reaction coordinate of nucleotide exchange is unclear at the atomic level of detail. METHODS We performed multiple atomistic computations of the DEAD motor domain of SecA with different occupancies of the nucleotide and magnesium ion sites, for a total of ~1.7 μs simulation time. To characterize dynamics at the active site we analyzed hydrogen-bond networks. RESULTS ATP and ADP can bind spontaneously at the interface between the nucleotide binding domains, albeit at an intermediate binding site distinct from the native site. Binding of the nucleotide is facilitated by the presence of a magnesium ion close to the glutamic group of the conserved DEAD motif. In the absence of the magnesium ion, protein interactions of the ADP molecule are perturbed. CONCLUSIONS A protein hydrogen-bond network whose dynamics couples to the occupancy of the magnesium ion site helps guide the nucleotide along the nucleotide exchange path. In SecA, release of magnesium might be required to destabilize the ADP binding site prior to release of the nucleotide. GENERAL SIGNIFICANCE We identified dynamic hydrogen-bond networks that help control nucleotide exchange in SecA, and stabilize ADP at an intermediate site that could explain slow release. The reaction coordinate of the protein motor involves complex rearrangements of a hydrogen-bond network at the active site, with perturbation of the magnesium ion site likely occurring prior to the release of ADP.
Collapse
|
13
|
Roussel G, White SH. The SecA ATPase motor protein binds to Escherichia coli liposomes only as monomers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183358. [PMID: 32416191 DOI: 10.1016/j.bbamem.2020.183358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 02/02/2023]
Abstract
The essential SecA motor ATPase acts in concert with the SecYEG translocon to secrete proteins into the periplasmic space of Escherichia coli. In aqueous solutions, SecA exists largely as dimers, but the oligomeric state on membranes is less certain. Crystallographic studies have suggested several possible solution dimeric states, but its oligomeric state when bound to membranes directly or indirectly via the translocon is controversial. We have shown using disulfide crosslinking that the principal solution dimer, corresponding to a crystallographic dimer (PDB 1M6N), binds only weakly to large unilamellar vesicles (LUV) formed from E. coli lipids. We report here that other soluble crosslinked crystallographic dimers also bind weakly, if at all, to LUV. Furthermore, using a simple glutaraldehyde crosslinking scheme, we show that SecA is always monomeric when bound to LUV formed from E. coli lipids.
Collapse
Affiliation(s)
- Guillaume Roussel
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Stephen H White
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, United States of America.
| |
Collapse
|
14
|
Del Val C, Bondar AN. Diversity and sequence motifs of the bacterial SecA protein motor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183319. [PMID: 32335021 DOI: 10.1016/j.bbamem.2020.183319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/17/2020] [Accepted: 04/19/2020] [Indexed: 12/24/2022]
Abstract
SecA is an essential component of the Sec protein secretion pathway in bacteria. Secretory proteins targeted to the Sec pathway by their N-terminal signal peptide bind to SecA, which couples binding and hydrolysis of adenosine triphosphate with movement of the secretory protein across the membrane-embedded SecYEG protein translocon. The phylogenetic diversity of bacteria raises the important question as to whether the region of SecA where the pre-protein binds has conserved sequence features that might impact the reaction mechanism of SecA. To address this question we established a large data set of SecA protein sequences and implemented a protocol to cluster and analyze these sequences according to features of two of the SecA functional domains, the protein binding domain and the nucleotide-binding domain 1. We identify remarkable sequence diversity of the protein binding domain, but also conserved motifs with potential role in protein binding. The N-terminus of SecA has sequence motifs that could help anchor SecA to the membrane. The overall sequence length and net estimated charge of SecA sequences depend on the organism.
Collapse
Affiliation(s)
- Coral Del Val
- University of Granada, Departmrent of Computer Science and Artificial Intelligence, E-18071 Granada, Spain; University of Granada, Andalusian Research Institute in Data Science and Computational Intelligence, E-18071 Granada, Spain.
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, D-14195 Berlin, Germany.
| |
Collapse
|
15
|
De Geyter J, Portaliou AG, Srinivasu B, Krishnamurthy S, Economou A, Karamanou S. Trigger factor is a bona fide secretory pathway chaperone that interacts with SecB and the translocase. EMBO Rep 2020; 21:e49054. [PMID: 32307852 DOI: 10.15252/embr.201949054] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
Bacterial secretory preproteins are translocated across the inner membrane post-translationally by the SecYEG-SecA translocase. Mature domain features and signal peptides maintain preproteins in kinetically trapped, largely soluble, folding intermediates. Some aggregation-prone preproteins require chaperones, like trigger factor (TF) and SecB, for solubility and/or targeting. TF antagonizes the contribution of SecB to secretion by an unknown molecular mechanism. We reconstituted this interaction in vitro and studied targeting and secretion of the model preprotein pro-OmpA. TF and SecB display distinct, unsuspected roles in secretion. Tightly associating TF:pro-OmpA targets the translocase at SecA, but TF prevents pro-OmpA secretion. In solution, SecB binds TF:pro-OmpA with high affinity. At the membrane, when bound to the SecA C-tail, SecB increases TF and TF:pro-OmpA affinities for the translocase and allows pro-OmpA to resume translocation. Our data reveal that TF, a main cytoplasmic folding pathway chaperone, is also a bona fide post-translational secretory chaperone that directly interacts with both SecB and the translocase to mediate regulated protein secretion. Thus, TF links the cytoplasmic folding and secretion chaperone networks.
Collapse
Affiliation(s)
- Jozefien De Geyter
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Athina G Portaliou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Bindu Srinivasu
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Srinath Krishnamurthy
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Abstract
More than a third of all bacterial polypeptides, comprising the 'exportome', are transported to extracytoplasmic locations. Most of the exportome is targeted and inserts into ('membranome') or crosses ('secretome') the plasma membrane. The membranome and secretome use distinct targeting signals and factors, and driving forces, but both use the ubiquitous and essential Sec translocase and its SecYEG protein-conducting channel. Membranome export is co-translational and uses highly hydrophobic N-terminal signal anchor sequences recognized by the signal recognition particle on the ribosome, that also targets C-tail anchor sequences. Translating ribosomes drive movement of these polypeptides through the lateral gate of SecY into the inner membrane. On the other hand, secretome export is post-translational and carries two types of targeting signals: cleavable N-terminal signal peptides and multiple short hydrophobic targeting signals in their mature domains. Secretome proteins remain translocation competent due to occupying loosely folded to completely non-folded states during targeting. This is accomplished mainly by the intrinsic properties of mature domains and assisted by signal peptides and/or chaperones. Secretome proteins bind to the dimeric SecA subunit of the translocase. SecA converts from a dimeric preprotein receptor to a monomeric ATPase motor and drives vectorial crossing of chains through SecY aided by the proton motive force. Signal peptides are removed by signal peptidases and translocated chains fold or follow subsequent trafficking.
Collapse
|
17
|
Novel Sequence Feature of SecA Translocase Protein Unique to the Thermophilic Bacteria: Bioinformatics Analyses to Investigate Their Potential Roles. Microorganisms 2019; 8:microorganisms8010059. [PMID: 31905784 PMCID: PMC7023208 DOI: 10.3390/microorganisms8010059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 11/25/2022] Open
Abstract
SecA is an evolutionarily conserved protein that plays an indispensable role in the secretion of proteins across the bacterial cell membrane. Comparative analyses of SecA homologs have identified two large conserved signature inserts (CSIs) that are unique characteristics of thermophilic bacteria. A 50 aa conserved insert in SecA is exclusively present in the SecA homologs from the orders Thermotogales and Aquificales, while a 76 aa insert in SecA is specific for the order Thermales and Hydrogenibacillus schlegelii. Phylogenetic analyses on SecA sequences show that the shared presence of these CSIs in unrelated groups of thermophiles is not due to lateral gene transfers, but instead these large CSIs have likely originated independently in these lineages due to their advantageous function. Both of these CSIs are located in SecA protein in a surface exposed region within the ATPase domain. To gain insights into the functional significance of the 50 aa CSI in SecA, molecular dynamics (MD) simulations were performed at two different temperatures using ADP-bound SecA from Thermotoga maritima. These analyses have identified a conserved network of water molecules near the 50 aa insert in which the Glu185 residue from the CSI is found to play a key role towards stabilizing these interactions. The results provide evidence for the possible role of the 50 aa CSI in stabilizing the binding interaction of ADP/ATP, which is required for SecA function. Additionally, the surface-exposed CSIs in SecA, due to their potential to make novel protein-protein interactions, could also contribute to the thermostability of SecA from thermophilic bacteria.
Collapse
|
18
|
Roussel G, White SH. Binding of SecA ATPase monomers and dimers to lipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183112. [PMID: 31676370 DOI: 10.1016/j.bbamem.2019.183112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 11/29/2022]
Abstract
The Escherichia coli SecA ATPase motor protein is essential for secretion of proteins through the SecYEG translocon into the periplasmic space. Its function relies upon interactions with the surrounding lipid bilayer as well as SecYEG translocon. That negatively charged lipids are required for bilayer binding has been known for >25 years, but little systematic quantitative data is available. We have carried out an extensive investigation of SecA partitioning into large unilamellar vesicles (LUV) using a wide range of lipid and electrolyte compositions, including the principal cytoplasmic salt of E. coli, potassium glutamate, which we have shown stabilizes SecA. The water-to-bilayer transfer free energy is about -7.5 kcal mol-1 for typical E. coli lipid compositions. Although it has been established that SecA is dimeric in the cytoplasm, we find that the most widely cited dimer form (PDB 1M6N) binds only weakly to LUVs formed from E. coli lipids.
Collapse
Affiliation(s)
- Guillaume Roussel
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America
| | - Stephen H White
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America.
| |
Collapse
|
19
|
Cranford-Smith T, Huber D. The way is the goal: how SecA transports proteins across the cytoplasmic membrane in bacteria. FEMS Microbiol Lett 2019; 365:4969678. [PMID: 29790985 PMCID: PMC5963308 DOI: 10.1093/femsle/fny093] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023] Open
Abstract
In bacteria, translocation of most soluble secreted proteins (and outer membrane proteins in Gram-negative bacteria) across the cytoplasmic membrane by the Sec machinery is mediated by the essential ATPase SecA. At its core, this machinery consists of SecA and the integral membrane proteins SecYEG, which form a protein conducting channel in the membrane. Proteins are recognised by the Sec machinery by virtue of an internally encoded targeting signal, which usually takes the form of an N-terminal signal sequence. In addition, substrate proteins must be maintained in an unfolded conformation in the cytoplasm, prior to translocation, in order to be competent for translocation through SecYEG. Recognition of substrate proteins occurs via SecA—either through direct recognition by SecA or through secondary recognition by a molecular chaperone that delivers proteins to SecA. Substrate proteins are then screened for the presence of a functional signal sequence by SecYEG. Proteins with functional signal sequences are translocated across the membrane in an ATP-dependent fashion. The current research investigating each of these steps is reviewed here.
Collapse
Affiliation(s)
- Tamar Cranford-Smith
- Institute for Microbiology and Infection School of Biosciences University of Birmingham Edgbaston Birmingham B15 2TT, UK
| | - Damon Huber
- Institute for Microbiology and Infection School of Biosciences University of Birmingham Edgbaston Birmingham B15 2TT, UK
| |
Collapse
|
20
|
Komarudin AG, Driessen AJM. SecA-Mediated Protein Translocation through the SecYEG Channel. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0028-2019. [PMID: 31373268 PMCID: PMC10957188 DOI: 10.1128/microbiolspec.psib-0028-2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 01/02/2023] Open
Abstract
In bacteria, the Sec translocase mediates the translocation of proteins into and across the cytoplasmic membrane. It consists of a protein conducting channel SecYEG, the ATP-dependent motor SecA, and the accessory SecDF complex. Here we discuss the function and structure of the Sec translocase.
Collapse
Affiliation(s)
- Amalina Ghaisani Komarudin
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|
21
|
Ma C, Wu X, Sun D, Park E, Catipovic MA, Rapoport TA, Gao N, Li L. Structure of the substrate-engaged SecA-SecY protein translocation machine. Nat Commun 2019; 10:2872. [PMID: 31253804 PMCID: PMC6599042 DOI: 10.1038/s41467-019-10918-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/10/2019] [Indexed: 11/28/2022] Open
Abstract
The Sec61/SecY channel allows the translocation of many proteins across the eukaryotic endoplasmic reticulum membrane or the prokaryotic plasma membrane. In bacteria, most secretory proteins are transported post-translationally through the SecY channel by the SecA ATPase. How a polypeptide is moved through the SecA-SecY complex is poorly understood, as structural information is lacking. Here, we report an electron cryo-microscopy (cryo-EM) structure of a translocating SecA-SecY complex in a lipid environment. The translocating polypeptide chain can be traced through both SecA and SecY. In the captured transition state of ATP hydrolysis, SecA’s two-helix finger is close to the polypeptide, while SecA’s clamp interacts with the polypeptide in a sequence-independent manner by inducing a short β-strand. Taking into account previous biochemical and biophysical data, our structure is consistent with a model in which the two-helix finger and clamp cooperate during the ATPase cycle to move a polypeptide through the channel. Proteins are translocated across membranes through the Sec61/SecY channel. Here, the authors present the structure of a translocating peptide chain trapped inside the SecA-SecY complex which suggests how peptides are actively moved through the channel.
Collapse
Affiliation(s)
- Chengying Ma
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Xiaofei Wu
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Dongjie Sun
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Eunyong Park
- University of California-Berkeley, Stanley Hall, Berkeley, CA, 94720, USA
| | - Marco A Catipovic
- Department of Cell Biology, Howard Hughes Medical Institute and Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Tom A Rapoport
- Department of Cell Biology, Howard Hughes Medical Institute and Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.
| | - Long Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
22
|
Jamshad M, Knowles TJ, White SA, Ward DG, Mohammed F, Rahman KF, Wynne M, Hughes GW, Kramer G, Bukau B, Huber D. The C-terminal tail of the bacterial translocation ATPase SecA modulates its activity. eLife 2019; 8:48385. [PMID: 31246174 PMCID: PMC6620043 DOI: 10.7554/elife.48385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/26/2019] [Indexed: 11/25/2022] Open
Abstract
In bacteria, the translocation of proteins across the cytoplasmic membrane by the Sec machinery requires the ATPase SecA. SecA binds ribosomes and recognises nascent substrate proteins, but the molecular mechanism of nascent substrate recognition is unknown. We investigated the role of the C-terminal tail (CTT) of SecA in nascent polypeptide recognition. The CTT consists of a flexible linker (FLD) and a small metal-binding domain (MBD). Phylogenetic analysis and ribosome binding experiments indicated that the MBD interacts with 70S ribosomes. Disruption of the MBD only or the entire CTT had opposing effects on ribosome binding, substrate-protein binding, ATPase activity and in vivo function, suggesting that the CTT influences the conformation of SecA. Site-specific crosslinking indicated that F399 in SecA contacts ribosomal protein uL29, and binding to nascent chains disrupts this interaction. Structural studies provided insight into the CTT-mediated conformational changes in SecA. Our results suggest a mechanism for nascent substrate protein recognition.
Collapse
Affiliation(s)
- Mohammed Jamshad
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Timothy J Knowles
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Scott A White
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Douglas G Ward
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Kazi Fahmida Rahman
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Max Wynne
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Gareth W Hughes
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, Heidelberg, Germany
| | - Damon Huber
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
23
|
Sanganna Gari RR, Chattrakun K, Marsh BP, Mao C, Chada N, Randall LL, King GM. Direct visualization of the E. coli Sec translocase engaging precursor proteins in lipid bilayers. SCIENCE ADVANCES 2019; 5:eaav9404. [PMID: 31206019 PMCID: PMC6561738 DOI: 10.1126/sciadv.aav9404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Escherichia coli exports proteins via a translocase comprising SecA and the translocon, SecYEG. Structural changes of active translocases underlie general secretory system function, yet directly visualizing dynamics has been challenging. We imaged active translocases in lipid bilayers as a function of precursor protein species, nucleotide species, and stage of translocation using atomic force microscopy (AFM). Starting from nearly identical initial states, SecA more readily dissociated from SecYEG when engaged with the precursor of outer membrane protein A as compared to the precursor of galactose-binding protein. For the SecA that remained bound to the translocon, the quaternary structure varied with nucleotide, populating SecA2 primarily with adenosine diphosphate (ADP) and adenosine triphosphate, and the SecA monomer with the transition state analog ADP-AlF3. Conformations of translocases exhibited precursor-dependent differences on the AFM imaging time scale. The data, acquired under near-native conditions, suggest that the translocation process varies with precursor species.
Collapse
Affiliation(s)
| | - Kanokporn Chattrakun
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Brendan P. Marsh
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Chunfeng Mao
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Nagaraju Chada
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Linda L. Randall
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Gavin M. King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
24
|
Abstract
Single-molecule studies provide unprecedented details about processes that are difficult to grasp by bulk biochemical assays that yield ensemble-averaged results. One of these processes is the translocation and insertion of proteins across and into the bacterial cytoplasmic membrane. This process is facilitated by the universally conserved secretion (Sec) system, a multi-subunit membrane protein complex that consists of dissociable cytoplasmic targeting components, a molecular motor, a protein-conducting membrane pore, and accessory membrane proteins. Here, we review recent insights into the mechanisms of protein translocation and membrane protein insertion from single-molecule studies.
Collapse
Affiliation(s)
- Anne-Bart Seinen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
- Current affiliation: Biophysics Group, AMOLF, 1098 XG Amsterdam, Netherlands
| | - Arnold J.M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| |
Collapse
|
25
|
Roussel G, Lindner E, White SH. Stabilization of SecA ATPase by the primary cytoplasmic salt of Escherichia coli. Protein Sci 2019; 28:984-989. [PMID: 30968480 DOI: 10.1002/pro.3619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/08/2019] [Indexed: 11/11/2022]
Abstract
Much is known about the structure, function, and stability of the SecA motor ATPase that powers the secretion of periplasmic proteins across the inner membrane of Escherichia coli. Most studies of SecA are carried out in buffered sodium or potassium chloride salt solutions. However, the principal intracellular salt of E. coli is potassium glutamate (KGlu), which is known to stabilize folded proteins and protein-nucleic acid complexes. Here we report that KGlu stabilizes SecA, including its dimeric state, and increases its ATPase activity, suggesting that SecA is likely fully folded, stable, and active in vivo at 37°C. Furthermore, KGlu also stabilizes a precursor form of the secreted maltose-binding protein.
Collapse
Affiliation(s)
- Guillaume Roussel
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California, 92697-4560
| | - Eric Lindner
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California, 92697-4560
| | - Stephen H White
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California, 92697-4560
| |
Collapse
|
26
|
Karathanou K, Bondar AN. Using Graphs of Dynamic Hydrogen-Bond Networks To Dissect Conformational Coupling in a Protein Motor. J Chem Inf Model 2019; 59:1882-1896. [PMID: 31038944 DOI: 10.1021/acs.jcim.8b00979] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DExD/H-box proteins are soluble enzymes that couple binding and hydrolysis of adenosine triphosphate (ATP) with reactions involving RNA metabolism or bind and push newly synthesized proteins across bacterial cell membranes. Knowledge of the reaction mechanism of these enzymes could help the development of new therapeutics. In order to explore the mechanism of long-distance conformational coupling in SecA, the DEAD-box motor of the Sec protein secretion in bacteria, we implemented algorithms that provide simplified graph representations of the protein's dynamic hydrogen-bond networks. We find that mutations near the nucleotide-binding site or changes of the nucleotide-binding state of SecA associate with altered dynamics at the preprotein binding domain and identify extended networks of hydrogen bonds that connect the active site of SecA to the region where SecA binds newly synthesized secretory proteins. Water molecules participate in hydrogen-bonded water chains that bridge functional domains of SecA and could contribute to long-distance conformational coupling.
Collapse
Affiliation(s)
- Konstantina Karathanou
- Freie Universität Berlin , Department of Physics, Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin , Department of Physics, Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| |
Collapse
|
27
|
Catipovic MA, Bauer BW, Loparo JJ, Rapoport TA. Protein translocation by the SecA ATPase occurs by a power-stroke mechanism. EMBO J 2019; 38:embj.2018101140. [PMID: 30877095 DOI: 10.15252/embj.2018101140] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 11/09/2022] Open
Abstract
SecA belongs to the large class of ATPases that use the energy of ATP hydrolysis to perform mechanical work resulting in protein translocation across membranes, protein degradation, and unfolding. SecA translocates polypeptides through the SecY membrane channel during protein secretion in bacteria, but how it achieves directed peptide movement is unclear. Here, we use single-molecule FRET to derive a model that couples ATP hydrolysis-dependent conformational changes of SecA with protein translocation. Upon ATP binding, the two-helix finger of SecA moves toward the SecY channel, pushing a segment of the polypeptide into the channel. The finger retracts during ATP hydrolysis, while the clamp domain of SecA tightens around the polypeptide, preserving progress of translocation. The clamp opens after phosphate release and allows passive sliding of the polypeptide chain through the SecA-SecY complex until the next ATP binding event. This power-stroke mechanism may be used by other ATPases that move polypeptides.
Collapse
Affiliation(s)
- Marco A Catipovic
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Benedikt W Bauer
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Tom A Rapoport
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA .,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Vandenberk N, Karamanou S, Portaliou AG, Zorzini V, Hofkens J, Hendrix J, Economou A. The Preprotein Binding Domain of SecA Displays Intrinsic Rotational Dynamics. Structure 2018; 27:90-101.e6. [PMID: 30471924 DOI: 10.1016/j.str.2018.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/27/2018] [Accepted: 10/10/2018] [Indexed: 11/26/2022]
Abstract
SecA converts ATP energy to protein translocation work. Together with the membrane-embedded SecY channel it forms the bacterial protein translocase. How secretory proteins bind to SecA and drive conformational cascades to promote their secretion remains unknown. To address this, we focus on the preprotein binding domain (PBD) of SecA. PBD crystalizes in three distinct states, swiveling around its narrow stem. Here, we examined whether PBD displays intrinsic dynamics in solution using single-molecule Förster resonance energy transfer (smFRET). Unique cysteinyl pairs on PBD and apposed domains were labeled with donor/acceptor dyes. Derivatives were analyzed using pulsed interleaved excitation and multi-parameter fluorescence detection. The PBD undergoes significant rotational motions, occupying at least three distinct states in dimeric and four in monomeric soluble SecA. Nucleotides do not affect smFRET-detectable PBD dynamics. These findings lay the foundations for single-molecule dissection of translocase mechanics and suggest models for possible PBD involvement during catalysis.
Collapse
Affiliation(s)
- Niels Vandenberk
- KU Leuven, Department of Chemistry, Division for Molecular Imaging and Photonics, Laboratory for Photochemistry and Spectroscopy, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Molecular Bacteriology, Herestraat 49, Gasthuisberg Campus, B-3000 Leuven, Belgium
| | - Athina G Portaliou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Molecular Bacteriology, Herestraat 49, Gasthuisberg Campus, B-3000 Leuven, Belgium
| | - Valentina Zorzini
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Molecular Bacteriology, Herestraat 49, Gasthuisberg Campus, B-3000 Leuven, Belgium
| | - Johan Hofkens
- KU Leuven, Department of Chemistry, Division for Molecular Imaging and Photonics, Laboratory for Photochemistry and Spectroscopy, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Jelle Hendrix
- KU Leuven, Department of Chemistry, Division for Molecular Imaging and Photonics, Laboratory for Photochemistry and Spectroscopy, Celestijnenlaan 200F, B-3001 Leuven, Belgium; Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, B-3590 Diepenbeek, Belgium.
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Molecular Bacteriology, Herestraat 49, Gasthuisberg Campus, B-3000 Leuven, Belgium.
| |
Collapse
|
29
|
Chada N, Chattrakun K, Marsh BP, Mao C, Bariya P, King GM. Single-molecule observation of nucleotide induced conformational changes in basal SecA-ATP hydrolysis. SCIENCE ADVANCES 2018; 4:eaat8797. [PMID: 30397644 PMCID: PMC6200364 DOI: 10.1126/sciadv.aat8797] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/13/2018] [Indexed: 05/06/2023]
Abstract
SecA is the critical adenosine triphosphatase that drives preprotein transport through the translocon, SecYEG, in Escherichia coli. This process is thought to be regulated by conformational changes of specific domains of SecA, but real-time, real-space measurement of these changes is lacking. We use single-molecule atomic force microscopy (AFM) to visualize nucleotide-dependent conformations and conformational dynamics of SecA. Distinct topographical populations were observed in the presence of specific nucleotides. AFM investigations during basal adenosine triphosphate (ATP) hydrolysis revealed rapid, reversible transitions between a compact and an extended state at the ~100-ms time scale. A SecA mutant lacking the precursor-binding domain (PBD) aided interpretation. Further, the biochemical activity of SecA prepared for AFM was confirmed by tracking inorganic phosphate release. We conclude that ATP-driven dynamics are largely due to PBD motion but that other segments of SecA contribute to this motion during the transition state of the ATP hydrolysis cycle.
Collapse
Affiliation(s)
- Nagaraju Chada
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Kanokporn Chattrakun
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Brendan P. Marsh
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Chunfeng Mao
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Priya Bariya
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Gavin M. King
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO 65211, USA
- Corresponding author.
| |
Collapse
|
30
|
Yanez Orozco IS, Mindlin FA, Ma J, Wang B, Levesque B, Spencer M, Rezaei Adariani S, Hamilton G, Ding F, Bowen ME, Sanabria H. Identifying weak interdomain interactions that stabilize the supertertiary structure of the N-terminal tandem PDZ domains of PSD-95. Nat Commun 2018; 9:3724. [PMID: 30214057 PMCID: PMC6137104 DOI: 10.1038/s41467-018-06133-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 08/16/2018] [Indexed: 01/01/2023] Open
Abstract
Previous studies of the N-terminal PDZ tandem from PSD-95 produced divergent models and failed to identify interdomain contacts stabilizing the structure. We used ensemble and single-molecule FRET along with replica-exchange molecular dynamics to fully characterize the energy landscape. Simulations and experiments identified two conformations: an open-like conformation with a small contact interface stabilized by salt bridges, and a closed-like conformation with a larger contact interface stabilized by surface-exposed hydrophobic residues. Both interfaces were confirmed experimentally. Proximity of interdomain contacts to the binding pockets may explain the observed coupling between conformation and binding. The low-energy barrier between conformations allows submillisecond dynamics, which were time-averaged in previous NMR and FRET studies. Moreover, the small contact interfaces were likely overridden by lattice contacts as crystal structures were rarely sampled in simulations. Our hybrid approach can identify transient interdomain interactions, which are abundant in multidomain proteins yet often obscured by dynamic averaging.
Collapse
Affiliation(s)
| | - Frank A Mindlin
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Junyan Ma
- Department of Chemistry, Clemson University, Clemson, SC, USA
- Center for Optical Materials Science and Engineering Technology, Clemson, SC, USA
| | - Bo Wang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Brie Levesque
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Matheu Spencer
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | | | - George Hamilton
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA.
| | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA.
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA.
- Center for Optical Materials Science and Engineering Technology, Clemson, SC, USA.
| |
Collapse
|
31
|
Large conformational changes of a highly dynamic pre-protein binding domain in SecA. Commun Biol 2018; 1:130. [PMID: 30272009 PMCID: PMC6123708 DOI: 10.1038/s42003-018-0133-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/31/2018] [Indexed: 11/24/2022] Open
Abstract
SecA is an essential molecular motor for the translocation of proteins across the membrane via the bacterial Sec secretion system. While the Sec system is found in all cells from archaea to multicellular eukaryotes, the SecA protein is mainly found in bacteria. The mechanism of how the motor protein works on a molecular level is still under dispute but it is well established that SecA binds ATP and uses its hydrolysis for the translocation of substrates. In this work, we addressed the question of which conformational changes the protein might undergo during protein translocation. To this end, we investigated the molecular movements of SecA in the absence or the presence of ATP using single-molecule FRET measurements and in silico normal mode analyses. Our results demonstrate that the pre-protein binding domain of SecA is highly dynamic in the absence of the nucleotide and moves towards the helical wing domain in an ATP-bound state. Isabel Ernst et al. use single-molecule FRET measurements and in silico analyses to show the conformational changes of bacterial SecA. They show that the Preprotein Binding Domain is highly dynamic in the absence of ATP and moves toward the Helical Wing Domain when ATP is bound into the “wide open” position.
Collapse
|
32
|
Jin J, Hsieh YH, Chaudhary AS, Cui J, Houghton JE, Sui SF, Wang B, Tai PC. SecA inhibitors as potential antimicrobial agents: differential actions on SecA-only and SecA-SecYEG protein-conducting channels. FEMS Microbiol Lett 2018; 365:5037921. [PMID: 30007321 PMCID: PMC7190897 DOI: 10.1093/femsle/fny145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Sec-dependent protein translocation is an essential process in bacteria. SecA is a key component of the translocation machinery and has multiple domains that interact with various ligands. SecA acts as an ATPase motor to drive the precursor protein/peptide through the SecYEG protein translocation channels. As SecA is unique to bacteria and there is no mammalian counterpart, it is an ideal target for the development of new antimicrobials. Several reviews detail the assays for ATPase and protein translocation, as well as the search for SecA inhibitors. Recent studies have shown that, in addition to the SecA-SecYEG translocation channels, there are SecA-only channels in the lipid bilayers, which function independently from the SecYEG machinery. This mini-review focuses on recent advances on the newly developed SecA inhibitors that allow the evaluation of their potential as antimicrobial agents, as well as a fundamental understanding of mechanisms of SecA function(s). These SecA inhibitors abrogate the effects of efflux pumps in both Gram-positive and Gram-negative bacteria. We also discuss recent findings that SecA binds to ribosomes and nascent peptides, which suggest other roles of SecA. A model for the multiple roles of SecA is presented.
Collapse
Affiliation(s)
- Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Ying-Hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Arpana S Chaudhary
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - Jianmei Cui
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - John E Houghton
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Sen-fang Sui
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Binghe Wang
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - Phang C Tai
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
33
|
Knyazev DG, Kuttner R, Zimmermann M, Sobakinskaya E, Pohl P. Driving Forces of Translocation Through Bacterial Translocon SecYEG. J Membr Biol 2018; 251:329-343. [PMID: 29330604 PMCID: PMC6028853 DOI: 10.1007/s00232-017-0012-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/22/2017] [Indexed: 11/09/2022]
Abstract
This review focusses on the energetics of protein translocation via the Sec translocation machinery. First we complement structural data about SecYEG's conformational rearrangements by insight obtained from functional assays. These include measurements of SecYEG permeability that allow assessment of channel gating by ligand binding and membrane voltage. Second we will discuss the power stroke and Brownian ratcheting models of substrate translocation and the role that the two models assign to the putative driving forces: (i) ATP (SecA) and GTP (ribosome) hydrolysis, (ii) interaction with accessory proteins, (iii) membrane partitioning and folding, (iv) proton motive force (PMF), and (v) entropic contributions. Our analysis underlines how important energized membranes are for unravelling the translocation mechanism in future experiments.
Collapse
Affiliation(s)
- Denis G Knyazev
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria.
| | - Roland Kuttner
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria
| | - Mirjam Zimmermann
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria
| | | | - Peter Pohl
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria
| |
Collapse
|
34
|
Findik BT, Smith VF, Randall LL. Penetration into membrane of amino-terminal region of SecA when associated with SecYEG in active complexes. Protein Sci 2018; 27:681-691. [PMID: 29247569 DOI: 10.1002/pro.3362] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 11/12/2022]
Abstract
The general secretory (Sec) system of Escherichia coli translocates both periplasmic and outer membrane proteins through the cytoplasmic membrane. The pathway through the membrane is provided by a highly conserved translocon, which in E. coli comprises two heterotrimeric integral membrane complexes, SecY, SecE, and SecG (SecYEG), and SecD, SecF, and YajC (SecDF/YajC). SecA is an associated ATPase that is essential to the function of the Sec system. SecA plays two roles, it targets precursors to the translocon with the help of SecB and it provides energy via hydrolysis of ATP. SecA exists both free in the cytoplasm and integrally membrane associated. Here we describe details of association of the amino-terminal region of SecA with membrane. We use site-directed spin labelling and electron paramagnetic resonance spectroscopy to show that when SecA is co-assembled into lipids with SecYEG to yield highly active translocons, the N-terminal region of SecA penetrates the membrane and lies at the interface between the polar and the hydrophobic regions, parallel to the plane of the membrane at a depth of approximately 5 Å. When SecA is bound to SecYEG, preassembled into proteoliposomes, or nonspecifically bound to lipids in the absence of SecYEG, the N-terminal region penetrates more deeply (8 Å). Implications of partitioning of the SecA N-terminal region into lipids on the complex between SecB carrying a precursor and SecA are discussed.
Collapse
Affiliation(s)
- Bahar T Findik
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri, 65211
| | - Virginia F Smith
- Chemistry Department, U.S. Naval Academy, Annapolis, Maryland, 21402
| | - Linda L Randall
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri, 65211
| |
Collapse
|
35
|
Motions of the SecA protein motor bound to signal peptide: Insights from molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:416-427. [DOI: 10.1016/j.bbamem.2017.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/31/2022]
|
36
|
Crane JM, Randall LL. The Sec System: Protein Export in Escherichia coli. EcoSal Plus 2017; 7:10.1128/ecosalplus.ESP-0002-2017. [PMID: 29165233 PMCID: PMC5807066 DOI: 10.1128/ecosalplus.esp-0002-2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, proteins found in the periplasm or the outer membrane are exported from the cytoplasm by the general secretory, Sec, system before they acquire stably folded structure. This dynamic process involves intricate interactions among cytoplasmic and membrane proteins, both peripheral and integral, as well as lipids. In vivo, both ATP hydrolysis and proton motive force are required. Here, we review the Sec system from the inception of the field through early 2016, including biochemical, genetic, and structural data.
Collapse
Affiliation(s)
- Jennine M Crane
- Department of Biochemistry, University of Missouri, Columbia, MO 65201
| | - Linda L Randall
- Department of Biochemistry, University of Missouri, Columbia, MO 65201
| |
Collapse
|
37
|
Khalili Yazdi A, Namjoshi S, Hackett J, Ghonaim N, Shilton BH. Characterization of a polypeptide-binding site in the DEAD Motor of the SecA ATPase. FEBS Lett 2017; 591:3378-3390. [DOI: 10.1002/1873-3468.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 11/07/2022]
Affiliation(s)
| | - Sarita Namjoshi
- Department of Biochemistry; University of Western Ontario; London Canada
| | - Jesse Hackett
- Department of Biochemistry; University of Western Ontario; London Canada
| | - Nour Ghonaim
- Department of Biochemistry; University of Western Ontario; London Canada
| | - Brian H. Shilton
- Department of Biochemistry; University of Western Ontario; London Canada
| |
Collapse
|
38
|
Yazdi AK, Vezina GC, Shilton BH. An alternate mode of oligomerization for E. coli SecA. Sci Rep 2017; 7:11747. [PMID: 28924213 PMCID: PMC5603524 DOI: 10.1038/s41598-017-11648-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/29/2017] [Indexed: 11/08/2022] Open
Abstract
SecA is the ATPase of preprotein translocase. SecA is a dimer in solution and changes in its oligomeric state may function in preprotein translocation. The SecA-N68 construct, in which the C-terminal helical domains of SecA are deleted, was used to investigate the mechanism of SecA oligomerization. SecA-N68 is in equilibrium between monomers, dimers, and tetramers. Subunit interactions in the SecA-N68 tetramer are mediated entirely by unstructured regions at its N- and C-termini: when the termini are deleted to yield SecA-N68∆NC, the construct is completely monomeric. This monomeric construct yielded crystals diffracting to 2.6 Å that were used to solve the structure of SecA-N68, including the "preprotein crosslinking domain" (PPXD) that was missing from previous E. coli SecA structures. The SecA-N68 structure was combined with small angle X-ray scattering (SAXS) data to construct a model of the SecA-N68 tetramer that is consistent with the essential roles of the extreme N- and C-termini in oligomerization. This mode of oligomerization, which depends on binding of the extreme N-terminus to the DEAD motor domains, NBD1 and NBD2, was used to model a novel parallel and flexible SecA solution dimer that agrees well with SAXS data.
Collapse
Affiliation(s)
- Aliakbar Khalili Yazdi
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Grant C Vezina
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Brian H Shilton
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| |
Collapse
|
39
|
Abstract
We came together in Leeds to commemorate and celebrate the life and achievements of Prof. Stephen Baldwin. For many years we, together with Sheena Radford and Roman Tuma (colleagues also of the University of Leeds), have worked together on the problem of protein translocation through the essential and ubiquitous Sec system. Inspired and helped by Steve we may finally be making progress. My seminar described our latest hypothesis for the molecular mechanism of protein translocation, supported by results collected in Bristol and Leeds on the tractable bacterial secretion process–commonly known as the Sec system; work that will be published elsewhere. Below is a description of the alternative and contested models for protein translocation that we all have been contemplating for many years. This review will consider their pros and cons.
Collapse
|
40
|
Sardis MF, Tsirigotaki A, Chatzi KE, Portaliou AG, Gouridis G, Karamanou S, Economou A. Preprotein Conformational Dynamics Drive Bivalent Translocase Docking and Secretion. Structure 2017. [DOI: 10.1016/j.str.2017.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Hsieh YH, Huang YJ, Zhang H, Liu Q, Lu Y, Yang H, Houghton J, Jiang C, Sui SF, Tai PC. Dissecting structures and functions of SecA-only protein-conducting channels: ATPase, pore structure, ion channel activity, protein translocation, and interaction with SecYEG/SecDF•YajC. PLoS One 2017; 12:e0178307. [PMID: 28575061 PMCID: PMC5456053 DOI: 10.1371/journal.pone.0178307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/10/2017] [Indexed: 11/30/2022] Open
Abstract
SecA is an essential protein in the major bacterial Sec-dependent translocation pathways. E. coli SecA has 901 aminoacyl residues which form multi-functional domains that interact with various ligands to impart function. In this study, we constructed and purified tethered C-terminal deletion fragments of SecA to determine the requirements for N-terminal domains interacting with lipids to provide ATPase activity, pore structure, ion channel activity, protein translocation and interactions with SecYEG-SecDF•YajC. We found that the N-terminal fragment SecAN493 (SecA1-493) has low, intrinsic ATPase activity. Larger fragments have greater activity, becoming highest around N619-N632. Lipids greatly stimulated the ATPase activities of the fragments N608-N798, reaching maximal activities around N619. Three helices in amino-acyl residues SecA619-831, which includes the "Helical Scaffold" Domain (SecA619-668) are critical for pore formation, ion channel activity, and for function with SecYEG-SecDF•YajC. In the presence of liposomes, N-terminal domain fragments of SecA form pore-ring structures at fragment-size N640, ion channel activity around N798, and protein translocation capability around N831. SecA domain fragments ranging in size between N643-N669 are critical for functional interactions with SecYEG-SecDF•YajC. In the presence of liposomes, inactive C-terminal fragments complement smaller non-functional N-terminal fragments to form SecA-only pore structures with ion channel activity and protein translocation ability. Thus, SecA domain fragment interactions with liposomes defined critical structures and functional aspects of SecA-only channels. These data provide the mechanistic basis for SecA to form primitive, low-efficiency, SecA-only protein-conducting channels, as well as the minimal parameters for SecA to interact functionally with SecYEG-SecDF•YajC to form high-efficiency channels.
Collapse
Affiliation(s)
- Ying-hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Ying-ju Huang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Hao Zhang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Qian Liu
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Yang Lu
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Hsiuchin Yang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - John Houghton
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Chun Jiang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing China
| | - Phang C. Tai
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| |
Collapse
|
42
|
Abstract
Many proteins are translocated across the endoplasmic reticulum (ER) membrane in eukaryotes or the plasma membrane in prokaryotes. These proteins use hydrophobic signal sequences or transmembrane (TM) segments to trigger their translocation through the protein-conducting Sec61/SecY channel. Substrates are first directed to the channel by cytosolic targeting factors, which use hydrophobic pockets to bind diverse signal and TM sequences. Subsequently, these hydrophobic sequences insert into the channel, docking into a groove on the outside of the lateral gate of the channel, where they also interact with lipids. Structural data and biochemical experiments have elucidated how channel partners, the ribosome in cotranslational translocation, and the eukaryotic ER chaperone BiP or the prokaryotic cytosolic SecA ATPase in posttranslational translocation move polypeptides unidirectionally across the membrane. Structures of auxiliary components of the bacterial translocon, YidC and SecD/F, provide additional insight. Taken together, these recent advances result in mechanistic models of protein translocation.
Collapse
Affiliation(s)
- Tom A Rapoport
- Department of Cell Biology, Howard Hughes Medical Institute and Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Long Li
- Department of Cell Biology, Howard Hughes Medical Institute and Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Eunyong Park
- The Rockefeller University and Howard Hughes Medical Institute, New York, NY 10065;
| |
Collapse
|
43
|
Cai D, Wang H, He P, Zhu C, Wang Q, Wei X, Nomura CT, Chen S. A novel strategy to improve protein secretion via overexpression of the SppA signal peptide peptidase in Bacillus licheniformis. Microb Cell Fact 2017; 16:70. [PMID: 28438200 PMCID: PMC5404308 DOI: 10.1186/s12934-017-0688-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
Background Signal peptide peptidases play an important role in the removal of remnant signal peptides in the cell membrane, a critical step for extracellular protein production. Although these proteins are likely a central component for extracellular protein production, there has been a lack of research on whether protein secretion could be enhanced via overexpression of signal peptide peptidases. Results In this study, both nattokinase and α-amylase were employed as prototypical secreted target proteins to evaluate the function of putative signal peptide peptidases (SppA and TepA) in Bacillus licheniformis. We observed dramatic decreases in the concentrations of both target proteins (45 and 49%, respectively) in a sppA deficient strain, while the extracellular protein yields of nattokinase and α-amylase were increased by 30 and 67% respectively in a strain overexpressing SppA. In addition, biomass, specific enzyme activities and the relative gene transcriptional levels were also enhanced due to the overexpression of sppA, while altering the expression levels of tepA had no effect on the concentrations of the secreted target proteins. Conclusions Our results confirm that SppA, but not TepA, plays an important functional role for protein secretion in B. licheniformis. Our results indicate that the sppA overexpression strain, B. licheniformis BL10GS, could be used as a promising host strain for the industrial production of heterologous secreted proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0688-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dongbo Cai
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Hao Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Penghui He
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Chengjun Zhu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Qin Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Christopher T Nomura
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.,Department of Chemistry, The State University of New York College of Environmental Science and Forestry (SUNY ESF), Syracuse, NY, 13210, USA
| | - Shouwen Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
| |
Collapse
|
44
|
Chatzi KE, Sardis MF, Tsirigotaki A, Koukaki M, Šoštarić N, Konijnenberg A, Sobott F, Kalodimos CG, Karamanou S, Economou A. Preprotein mature domains contain translocase targeting signals that are essential for secretion. J Cell Biol 2017; 216:1357-1369. [PMID: 28404644 PMCID: PMC5412566 DOI: 10.1083/jcb.201609022] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/07/2016] [Accepted: 02/23/2017] [Indexed: 11/22/2022] Open
Abstract
Secretory proteins are only temporary cytoplasmic residents. They are typically synthesized as preproteins, carrying signal peptides N-terminally fused to their mature domains. In bacteria secretion largely occurs posttranslationally through the membrane-embedded SecA-SecYEG translocase. Upon crossing the plasma membrane, signal peptides are cleaved off and mature domains reach their destinations and fold. Targeting to the translocase is mediated by signal peptides. The role of mature domains in targeting and secretion is unclear. We now reveal that mature domains harbor their own independent targeting signals (mature domain targeting signals [MTSs]). These are multiple, degenerate, interchangeable, linear or 3D hydrophobic stretches that become available because of the unstructured states of targeting-competent preproteins. Their receptor site on the cytoplasmic face of the SecYEG-bound SecA is also of hydrophobic nature and is located adjacent to the signal peptide cleft. Both the preprotein MTSs and their receptor site on SecA are essential for protein secretion. Evidently, mature domains have their own previously unsuspected distinct roles in preprotein targeting and secretion.
Collapse
Affiliation(s)
- Katerina E Chatzi
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Marios Frantzeskos Sardis
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Alexandra Tsirigotaki
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Marina Koukaki
- Institute of Molecular Biology and Biotechnology FoRTH, Iraklio, 71110 Crete, Greece
| | - Nikolina Šoštarić
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Albert Konijnenberg
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, 2000 Antwerp, Belgium
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, 2000 Antwerp, Belgium
| | - Charalampos G Kalodimos
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Spyridoula Karamanou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium .,Institute of Molecular Biology and Biotechnology FoRTH, Iraklio, 71110 Crete, Greece
| |
Collapse
|
45
|
Abstract
A paper published in this issue of the Journal of Bacteriology (D. Huber, M. Jamshad, R. Hanmer, D. Schibich, K. Döring, I. Marcomini, G. Kramer, and B. Bukau, J Bacteriol 199:e0622-16, 2017, https://doi.org/10.1128/JB.00622-16) provides us with a timely reminder that all is not as clear as we had previously thought in the general bacterial secretion system. The paper describes a new mode of secretion through the Sec system—“uncoupled cotranslocation”—for the passage of proteins across the bacterial inner membrane and suggests that we might rethink the nature and mechanism of the targeting and transport steps toward protein export.
Collapse
|
46
|
Banerjee T, Lindenthal C, Oliver D. SecA functions in vivo as a discrete anti-parallel dimer to promote protein transport. Mol Microbiol 2016; 103:439-451. [PMID: 27802584 DOI: 10.1111/mmi.13567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2016] [Indexed: 01/28/2023]
Abstract
SecA ATPase motor protein plays a central role in bacterial protein transport by binding substrate proteins and the SecY channel complex and utilizing its ATPase activity to drive protein translocation across the plasma membrane. SecA has been shown to exist in a dynamic monomer-dimer equilibrium modulated by translocation ligands, and multiple structural forms of the dimer have been crystallized. Since the structural form of the dimer remains a controversial and unresolved question, we addressed this matter by engineering ρ-benzoylphenylalanine along dimer interfaces corresponding to the five different SecA X-ray structures and assessing their in vivo photo-crosslinking pattern. A discrete anti-parallel 1M6N-like dimer was the dominant if not exclusive dimer found in vivo, whether SecA was cytosolic or in lipid or SecYEG-bound states. SecA bound to a stable translocation intermediate was crosslinked in vivo to a second SecA protomer at its 1M6N interface, suggesting that this specific dimer likely promotes active protein translocation. Taken together, our studies strengthen models that posit, at least in part, a SecA dimer-driven translocation mechanism.
Collapse
Affiliation(s)
- Tithi Banerjee
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, 06459, USA
| | - Christine Lindenthal
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, 06459, USA
| | - Donald Oliver
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, 06459, USA
| |
Collapse
|
47
|
|
48
|
Abstract
For more than four decades now, I have been studying how genetic information is transformed into protein-based cellular functions. This has included investigations into the mechanisms supporting cellular localization of proteins, disulfide bond formation, quality control of membranes, and translation. I tried to extract new principles and concepts that are universal among living organisms from our observations of Escherichia coli. While I wanted to distill complex phenomena into basic principles, I also tried not to overlook any serendipitous observations. In the first part of this article, I describe personal experiences during my studies of the Sec pathway, which have centered on the SecY translocon. In the second part, I summarize my views of the recent revival of translation studies, which has given rise to the concept that nonuniform polypeptide chain elongation is relevant for the subsequent fates of newly synthesized proteins. Our studies of a class of regulatory nascent polypeptides advance this concept by showing that the dynamic behaviors of the extraribosomal part of the nascent chain affect the ongoing translation process. Vibrant and regulated molecular interactions involving the ribosome, mRNA, and nascent polypeptidyl-tRNA are based, at least partly, on their autonomously interacting properties.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan;
| |
Collapse
|
49
|
Collinson I, Corey RA, Allen WJ. Channel crossing: how are proteins shipped across the bacterial plasma membrane? Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0025. [PMID: 26370937 PMCID: PMC4632601 DOI: 10.1098/rstb.2015.0025] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structure of the first protein-conducting channel was determined more than a decade ago. Today, we are still puzzled by the outstanding problem of protein translocation—the dynamic mechanism underlying the consignment of proteins across and into membranes. This review is an attempt to summarize and understand the energy transducing capabilities of protein-translocating machines, with emphasis on bacterial systems: how polypeptides make headway against the lipid bilayer and how the process is coupled to the free energy associated with ATP hydrolysis and the transmembrane protein motive force. In order to explore how cargo is driven across the membrane, the known structures of the protein-translocation machines are set out against the background of the historic literature, and in the light of experiments conducted in their wake. The paper will focus on the bacterial general secretory (Sec) pathway (SecY-complex), and its eukaryotic counterpart (Sec61-complex), which ferry proteins across the membrane in an unfolded state, as well as the unrelated Tat system that assembles bespoke channels for the export of folded proteins.
Collapse
Affiliation(s)
- Ian Collinson
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Robin A Corey
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - William J Allen
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
50
|
Allen WJ, Corey RA, Oatley P, Sessions RB, Baldwin SA, Radford SE, Tuma R, Collinson I. Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation. eLife 2016; 5. [PMID: 27183269 PMCID: PMC4907695 DOI: 10.7554/elife.15598] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/14/2016] [Indexed: 01/25/2023] Open
Abstract
The essential process of protein secretion is achieved by the ubiquitous Sec machinery. In prokaryotes, the drive for translocation comes from ATP hydrolysis by the cytosolic motor-protein SecA, in concert with the proton motive force (PMF). However, the mechanism through which ATP hydrolysis by SecA is coupled to directional movement through SecYEG is unclear. Here, we combine all-atom molecular dynamics (MD) simulations with single molecule FRET and biochemical assays. We show that ATP binding by SecA causes opening of the SecY-channel at long range, while substrates at the SecY-channel entrance feed back to regulate nucleotide exchange by SecA. This two-way communication suggests a new, unifying 'Brownian ratchet' mechanism, whereby ATP binding and hydrolysis bias the direction of polypeptide diffusion. The model represents a solution to the problem of transporting inherently variable substrates such as polypeptides, and may underlie mechanisms of other motors that translocate proteins and nucleic acids.
Collapse
Affiliation(s)
| | - Robin Adam Corey
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Peter Oatley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Steve A Baldwin
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|