1
|
Thongpon P, Intuyod K, Pongking T, Priprem A, Chomwong S, Tanasuka P, Mahalapbutr P, Suriya U, Vaeteewoottacharn K, Pinlaor P, Pinlaor S. Curcumin-Loaded Maltodextrin-Based Proniosomes Potentially Effective against Gemcitabine-Resistant Cholangiocarcinoma. ACS APPLIED BIO MATERIALS 2025; 8:913-930. [PMID: 39772434 PMCID: PMC11752495 DOI: 10.1021/acsabm.4c01832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
Cholangiocarcinoma (CCA) or bile-duct cancer is most prevalent in Southeast Asian counties including Thailand. Patients present at an advanced stage when the cancer is often drug resistant, leading to chemotherapy failure. Curcumin has therapeutic potential with various anticancer properties. However, its effectiveness is limited by its low bioavailability, poor solubility, and instability. This study aimed to synthesize, characterize and evaluate the efficacy of curcumin-loaded maltodextrin-based proniosomes (CMPNs) to overcome the limitations of curcumin for treating gemcitabine-resistant CCA cells (KKU-213BGemR) in vitro and in vivo. Various proniosome formulations were developed and tested for their efficacy against KKU-213BGemR cells using cytotoxicity, clonogenic, migration, and invasion assays. The potential mechanism involving in cell cycle arrest, apoptosis, expression of C/EBP homologous protein (CHOP), a pro-apoptotic transcription factor, and other apoptotic markers were investigated. The results showed that nanoscale CMPNs exhibited a good curcumin loading capacity and an entrapment efficiency of over 97%, as well as good stability and permeability through porcine esophageal mucosa. CMPNs inhibited proliferation, colony formation, migration/invasion and induced apoptosis in KKU-213BGemR cells. Western blot analysis revealed CMPNs significantly increased CHOP, the cleavage products of poly(ADP-ribose) polymerase-1 (PARP-1), apoptosis-inducing factor, and caspase-3 expression in KKU-213BGemR cells. A xenograft model revealed that 62.5 mg/kg BW CMPNs significantly suppressed proliferating cell nuclear antigen and increased CHOP-mediated apoptosis, leading to significantly reduced tumor volume. In conclusion, CMPNs effectively overcome limitations of curcumin and offer an effective strategy against gemcitabine-resistant CCA via CHOP-mediated pathways. These proniosomes are promising as an alternative treatment approach for CCA.
Collapse
Affiliation(s)
- Phonpilas Thongpon
- Department
of Parasitology, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kitti Intuyod
- Department
of Pathology, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thatsanapong Pongking
- Biomedical
Sciences Program, Graduate School, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Aroonsri Priprem
- Faculty
of Pharmacy, Mahasarakham University, Khamriang Sub-District, Kantarawichai
District, Mahasarakham 44150, Thailand
| | - Sasitorn Chomwong
- Department
of Parasitology, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pakornkiat Tanasuka
- Department
of Pathology, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Panupong Mahalapbutr
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Utid Suriya
- Department
of Biochemistry, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| | - Kulthida Vaeteewoottacharn
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Porntip Pinlaor
- Centre
for Research and Development in Medical Diagnostic Laboratory, Faculty
of Associated Medical Sciences, Khon Kaen
University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Department
of Parasitology, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Krishnan Muthaiah VP, Kaliyappan K, Thiayagarajan R, Mahajan S, Gunasekaran K. Blast-Overpressure Induced Modulation of PARP-SIRT-NRF2 Axis in Stress Signaling of Astrocytes and Microglia. Immun Inflamm Dis 2025; 13:e70106. [PMID: 39868960 PMCID: PMC11770890 DOI: 10.1002/iid3.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 10/10/2024] [Accepted: 12/05/2024] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND The pathomechanism of blast traumatic brain injury (TBI) and blunt TBI is different. In blast injury, evidence indicates that a single blast exposure can often manifest long-term neurological impairments. However, its pathomechanism is still elusive, and treatments have been symptomatic. Poly adenosine diphosphate (ADP) ribose polymerase-1 (PARP1) is implicated in the parthanatos and secondary neuroinflammation. Animal studies indicate the over-activation of PARP1 as a significant downstream event underlying the neurological sequelae of several traumatic and neurodegenerative disorders, irrespective of the mode of cell death. PARP over-activation forms ADP polymers on several nuclear proteins, known as trans-PARylation, by consuming nicotinamide adenine dinucleotide (NAD+) and ATP. As NAD+ is a substrate for sirtuins, ithas also been implicated in the oxidative stress underlying TBI pathology. HYPOTHESIS We recently established the implication of PARP1 following blast overpressure (BOP) and its differential response on astrocytes and microglial cells. We found that the inhibition of PARP is proven beneficial by attenuating oxidative stress. In this study, we hypothesized the involvement of the PARP1-SIRT-NRF2 axis following induced blast-induced PARP over-activation in glial cells for the manifestation of oxidative stress in BOP insults. OBJECTIVE The objective is to determine the downstream modulation of the PARP-SIRT-NRF2 axis and changes in ATP levels following blast exposure in astrocytes and microglia cell lines. RESULTS As a result of NAD+ being a common substrate for PARP1 and Sirtuins, we found the decreased expression of SIRT1, SIRT3, and NRF2, a central transcriptional regulator for the expression of antioxidant genes. We found that ATP levels were elevated post-BOP from both glycolysis and oxidative phosphorylation (OXPHOS), an increase of ATP by glycolysis more significant than OXPHOS source, indicating the proinflammation post-BOP. CONCLUSION This result shows that blast-induced PARP1 over-activation impacts the deacetylation activity of sirtuins and consequently impacts the regulation of antioxidant levels in astrocytes and microglia.
Collapse
Affiliation(s)
| | - Kathiravan Kaliyappan
- Department of Rehabilitation Sciences, School of Public Health and Health ProfessionsUniversity at BuffaloBuffaloNew YorkUSA
| | - Ramkumar Thiayagarajan
- Department of Geriatric Medicine, Kansas University Medical CenterThe University of KansasKansas CityKansasUSA
| | - Supriya Mahajan
- Department of Medicine, Division of Allergy, Immunology & RheumatologySUNY University at BuffaloBuffaloNew YorkUSA
| | | |
Collapse
|
3
|
Tyler AL, Mahoney JM, Keller MP, Baker CN, Gaca M, Srivastava A, Gerdes Gyuricza I, Braun MJ, Rosenthal NA, Attie AD, Churchill GA, Carter GW. Transcripts with high distal heritability mediate genetic effects on complex metabolic traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.613931. [PMID: 39386475 PMCID: PMC11463413 DOI: 10.1101/2024.09.26.613931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Although many genes are subject to local regulation, recent evidence suggests that complex distal regulation may be more important in mediating phenotypic variability. To assess the role of distal gene regulation in complex traits, we combined multi-tissue transcriptomes with physiological outcomes to model diet-induced obesity and metabolic disease in a population of Diversity Outbred mice. Using a novel high-dimensional mediation analysis, we identified a composite transcriptome signature that summarized genetic effects on gene expression and explained 30% of the variation across all metabolic traits. The signature was heritable, interpretable in biological terms, and predicted obesity status from gene expression in an independently derived mouse cohort and multiple human studies. Transcripts contributing most strongly to this composite mediator frequently had complex, distal regulation distributed throughout the genome. These results suggest that trait-relevant variation in transcription is largely distally regulated, but is nonetheless identifiable, interpretable, and translatable across species.
Collapse
|
4
|
Marinaro C, Marino A, Bianchi AR, Berman B, Trifuoggi M, Marano A, Palumbo G, Chianese T, Scudiero R, Rosati L, De Maio A, Lettieri G, Piscopo M. Molecular and toxicological mechanisms behind the effects of chromium (VI) on the male reproductive system of Mytilus galloprovincialis: First evidence for poly-ADP-ribosylation of protamine-like II. Chem Biol Interact 2024; 401:111186. [PMID: 39116916 DOI: 10.1016/j.cbi.2024.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Studies on the molecular mechanisms of heavy metal toxicity in invertebrate reproduction are limited. Given that PARP-catalysed ADP-ribosylation is also involved in counteracting heavy metal toxicity and maintaining genomic integrity, and that PARylation is implicated in chromatin remodelling but its role in sperm chromatin remains to be elucidated, we investigated the effects of chromium(VI) at 1, 10 and 100 nM on the reproductive health of Mytilus galloprovincialis. The damage to the gonads was assessed by morphological analyses and the damage indices PARP and ɣH2A.X were measured. Changes in the binding of protamine-like (PL) to DNA and the possibility of poly(ADP-ribosyl)ation of PL proteins were also investigated. Gonadal chromium accumulation and morphological damage were found, especially when the mussels were exposed to the highest dose of chromium(VI). In addition, the maximum expression of gonadal ɣH2A.X and PARP were obtained at 100 and 10 nM Cr(VI), respectively. Interestingly, for the first time in all exposed conditions, poly(ADP)-ribosylation was detected on PL-II, which, together with PL-III and PL-IV, are the major nuclear basic proteins of Mytilus galloprovincialis sperm chromatin. Since PL-II is involved in the final high level of sperm chromatin compaction, this post-translational modification altered the binding of the PL protein to DNA, favouring the action of micrococcal nuclease on sperm chromatin. This study provides new insights into the effects of chromium(VI) on Mytilus galloprovincialis reproductive system and proposes a molecular mechanism hypothesis describing the toxic effects of this metal on PL-DNA binding, sperm chromatin and gonads.
Collapse
Affiliation(s)
- Carmela Marinaro
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Alberto Marino
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Anna Rita Bianchi
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Bruno Berman
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, 21,80126, Naples, Italy
| | - Alessandra Marano
- Department of Chemical Sciences, University of Naples Federico II, 21,80126, Naples, Italy
| | - Giancarlo Palumbo
- Commodity Science Laboratory, Department of Economics, Management and Institutions, University of Naples Federico II, 80126, Naples, Italy
| | - Teresa Chianese
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Rosaria Scudiero
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy; CIRAM, Centro Interdipartimentale di Ricerca "Ambiente", University Federico II, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Anna De Maio
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy.
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy.
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy.
| |
Collapse
|
5
|
Li T, Liu Y, Zhu H, Cao L, Zhou Y, Liu D, Shen Q. Cellular ATP redistribution achieved by deleting Tgparp improves lignocellulose utilization of Trichoderma under heat stress. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:54. [PMID: 38637859 PMCID: PMC11027231 DOI: 10.1186/s13068-024-02502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Thermotolerance is widely acknowledged as a pivotal factor for fungal survival across diverse habitats. Heat stress induces a cascade of disruptions in various life processes, especially in the acquisition of carbon sources, while the mechanisms by which filamentous fungi adapt to heat stress and maintain carbon sources are still not fully understood. RESULTS Using Trichoderma guizhouense, a representative beneficial microorganism for plants, we discover that heat stress severely inhibits the lignocellulases secretion, affecting carbon source utilization efficiency. Proteomic results at different temperatures suggest that proteins involved in the poly ADP-ribosylation pathway (TgPARP and TgADPRase) may play pivotal roles in thermal adaptation and lignocellulose utilization. TgPARP is induced by heat stress, while the deletion of Tgparp significantly improves the lignocellulose utilization capacity and lignocellulases secretion in T. guizhouense. Simultaneously, the absence of Tgparp prevents the excessive depletion of ATP and NAD+, enhances the protective role of mitochondrial membrane potential (MMP), and elevates the expression levels of the unfolded protein response (UPR)-related regulatory factor Tgire. Further investigations reveal that a stable MMP can establish energy homeostasis, allocating more ATP within the endoplasmic reticulum (ER) to reduce protein accumulation in the ER, thereby enhancing the lignocellulases secretion in T. guizhouense under heat stress. CONCLUSIONS Overall, these findings underscored the significance of Tgparp as pivotal regulators in lignocellulose utilization under heat stress and provided further insights into the molecular mechanism of filamentous fungi in utilizing lignocellulose.
Collapse
Affiliation(s)
- Tuo Li
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Han Zhu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Linhua Cao
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yihao Zhou
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Dongyang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China.
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
6
|
Chen B, Ojha DP, Toyonaga T, Tong J, Pracitto R, Thomas MA, Liu M, Kapinos M, Zhang L, Zheng MQ, Holden D, Fowles K, Ropchan J, Nabulsi N, De Feyter H, Carson RE, Huang Y, Cai Z. Preclinical evaluation of a brain penetrant PARP PET imaging probe in rat glioblastoma and nonhuman primates. Eur J Nucl Med Mol Imaging 2023; 50:2081-2099. [PMID: 36849748 DOI: 10.1007/s00259-023-06162-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/18/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE Currently, there are multiple active clinical trials involving poly(ADP-ribose) polymerase (PARP) inhibitors in the treatment of glioblastoma. The noninvasive quantification of baseline PARP expression using positron emission tomography (PET) may provide prognostic information and lead to more precise treatment. Due to the lack of brain-penetrant PARP imaging agents, the reliable and accurate in vivo quantification of PARP in the brain remains elusive. Herein, we report the synthesis of a brain-penetrant PARP PET tracer, (R)-2-(2-methyl-1-(methyl-11C)pyrrolidin-2-yl)-1H-benzo[d]imidazole-4-carboxamide ([11C]PyBic), and its preclinical evaluations in a syngeneic RG2 rat glioblastoma model and healthy nonhuman primates. METHODS We synthesized [11C]PyBic using veliparib as the labeling precursor, performed dynamic PET scans on RG2 tumor-bearing rats and calculated the distribution volume ratio (DVR) using simplified reference region method 2 (SRTM2) with the contralateral nontumor brain region as the reference region. We performed biodistribution studies, western blot, and immunostaining studies to validate the in vivo PET quantification results. We characterized the brain kinetics and binding specificity of [11C]PyBic in nonhuman primates on FOCUS220 scanner and calculated the volume of distribution (VT), nondisplaceable volume of distribution (VND), and nondisplaceable binding potential (BPND) in selected brain regions. RESULTS [11C]PyBic was synthesized efficiently in one step, with greater than 97% radiochemical and chemical purity and molar activity of 148 ± 85 MBq/nmol (n = 6). [11C]PyBic demonstrated PARP-specific binding in RG2 tumors, with 74% of tracer binding in tumors blocked by preinjected veliparib (i.v., 5 mg/kg). The in vivo PET imaging results were corroborated by ex vivo biodistribution, PARP1 immunohistochemistry and immunoblotting data. Furthermore, brain penetration of [11C]PyBic was confirmed by quantitative monkey brain PET, which showed high specific uptake (BPND > 3) and low nonspecific uptake (VND < 3 mL/cm3) in the monkey brain. CONCLUSION [11C]PyBic is the first brain-penetrant PARP PET tracer validated in a rat glioblastoma model and healthy nonhuman primates. The brain kinetics of [11C]PyBic are suitable for noninvasive quantification of available PARP binding in the brain, which posits [11C]PyBic to have broad applications in oncology and neuroimaging.
Collapse
Affiliation(s)
- Baosheng Chen
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Devi Prasan Ojha
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Takuya Toyonaga
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Jie Tong
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Richard Pracitto
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Monique A Thomas
- Magnetic Resonance Research Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Michael Liu
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Michael Kapinos
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Li Zhang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Ming-Qiang Zheng
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Daniel Holden
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Krista Fowles
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Jim Ropchan
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Nabeel Nabulsi
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Henk De Feyter
- Magnetic Resonance Research Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Richard E Carson
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA.
| |
Collapse
|
7
|
Gogola-Mruk J, Tworzydło W, Krawczyk K, Marynowicz W, Ptak A. Visfatin induces ovarian cancer resistance to anoikis by regulating mitochondrial activity. Endocrine 2023; 80:448-458. [PMID: 36658296 PMCID: PMC10140008 DOI: 10.1007/s12020-023-03305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
PURPOSE Ovarian cancer is characterized by recurrent peritoneal and distant metastasis. To survive in a non-adherent state, floating ovarian cancer spheroids develop mechanisms to resist anoikis. Moreover, ascitic fluid from ovarian cancer patients contains high levels of visfatin with anti-apoptotic properties. However, the mechanism by which visfatin induces anoikis resistance in ovarian cancer spheroids remains unknown. Here, we aimed to assess wheather visfatin which possess anti-apoptotic properties can induce resistance of anoikis in ovarian cancer spheroids. METHODS Visfatin synthesis were examined using a commercial human visfatin ELISA Kit. Spheroid were exposed to visfatin and cell viability and caspase 3/7 activity were measured using CellTiter-Glo 3D cell viability assay and Caspase-Glo® 3/7 Assay System. mRNA and protein expression were analyzed by Real-time PCR and Western Blot analysis, respectively. Analysis of mitochondrial activity was estimated by JC-1 staining. RESULTS First, our results suggested higher expression and secretion of visfatin by epithelial than by granulosa ovarian cells, and in non-cancer tissues versus cancer tissues. Interestingly, visfatin increased the proliferation/apoptosis ratio in ovarian cancer spheroids. Specifically, both the intrinsic and extrinsic pathways of anoikis were regulated by visfatin. Moreover, the effect of the visfatin inhibitor (FK866) was opposite to that of visfatin. Furthermore, both NAMPT and FK866 affected mitochondrial activity in ovarian cancer cells. CONCLUSION In conclusion, visfatin acts as an anti-apoptotic factor by regulating mitochondrial activity, leading to anoikis resistance in ovarian cancer spheroids. The finding suggest visfatin as a potential novel therapeutic target for the treatment of ovarian carcinoma with peritoneal dissemination.
Collapse
Affiliation(s)
- Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| | - Wacław Tworzydło
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Kinga Krawczyk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Weronika Marynowicz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
8
|
Kafkova A, Tilokani L, Trčka F, Šrámková V, Vancová M, Bílý T, Nebesářová J, Prudent J, Trnka J. Selective and reversible disruption of mitochondrial inner membrane protein complexes by lipophilic cations. Mitochondrion 2023; 68:60-71. [PMID: 36402364 DOI: 10.1016/j.mito.2022.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
Triphenylphosphonium (TPP) derivatives are commonly used to target chemical into mitochondria. We show that alkyl-TPP cause reversible, dose- and hydrophobicity-dependent alterations of mitochondrial morphology and function and a selective decrease of mitochondrial inner membrane proteins including subunits of the respiratory chain complexes, as well as components of the mitochondrial calcium uniporter complex. The treatment with alkyl-TPP resulted in the cleavage of the pro-fusion and cristae organisation regulator Optic atrophy-1. The structural and functional effects of alkyl-TPP were found to be reversible and not merely due to loss of membrane potential. A similar effect was observed with the mitochondria-targeted antioxidant MitoQ.
Collapse
Affiliation(s)
- Anezka Kafkova
- Laboratory for Metabolism and Bioenergetics, Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Czech Republic
| | - Lisa Tilokani
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Filip Trčka
- Laboratory for Metabolism and Bioenergetics, Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Czech Republic
| | - Veronika Šrámková
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Tomáš Bílý
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Jana Nebesářová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Laboratory of Electron Microscopy, Faculty of Science, Charles University, Prague, Czech Republic
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Jan Trnka
- Laboratory for Metabolism and Bioenergetics, Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Czech Republic.
| |
Collapse
|
9
|
Cruz-Hernandez A, Roney A, Goswami DG, Tewari-Singh N, Brown JM. A review of chemical warfare agents linked to respiratory and neurological effects experienced in Gulf War Illness. Inhal Toxicol 2022; 34:412-432. [PMID: 36394251 PMCID: PMC9832991 DOI: 10.1080/08958378.2022.2147257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Over 40% of veterans from the Persian Gulf War (GW) (1990-1991) suffer from Gulf War Illness (GWI). Thirty years since the GW, the exposure and mechanism contributing to GWI remain unclear. One possible exposure that has been attributed to GWI are chemical warfare agents (CWAs). While there are treatments for isolated symptoms of GWI, the number of respiratory and cognitive/neurological issues continues to rise with minimum treatment options. This issue does not only affect veterans of the GW, importantly these chronic multisymptom illnesses (CMIs) are also growing amongst veterans who have served in the Afghanistan-Iraq war. What both wars have in common are their regions and inhaled exposures. In this review, we will describe the CWA exposures, such as sarin, cyclosarin, and mustard gas in both wars and discuss the various respiratory and neurocognitive issues experienced by veterans. We will bridge the respiratory and neurological symptoms experienced to the various potential mechanisms described for each CWA provided with the most up-to-date models and hypotheses.
Collapse
Affiliation(s)
- Angela Cruz-Hernandez
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Roney
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Dinesh G Goswami
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
10
|
Zhang D, Lai W, Liu Y, Wan R, Shen Y. Chaperone-mediated autophagy attenuates H 2 O 2 -induced cardiomyocyte apoptosis by targeting poly (ADP-ribose) polymerase 1 (PARP1) for lysosomal degradation. Cell Biol Int 2022; 46:1915-1926. [PMID: 35924992 DOI: 10.1002/cbin.11871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/14/2022] [Indexed: 11/07/2022]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a typical representative of the PARP enzyme family and is mainly related to DNA repair, gene transcription regulation, inflammation, and oxidative stress. Studies have found that PARP1 is involved in the pathophysiological processes of a variety of cardiovascular diseases. Chaperone-mediated autophagy (CMA) is involved in the molecular regulation of various diseases, including cardiovascular diseases, and plays a critical role in maintaining intracellular metabolism balance. However, the link between PARP1 and CMA in cardiomyocytes remains unclear. Therefore, the aims of this study were to investigate whether CMA is involved in PARP1 regulation and to further clarify the specific molecular mechanisms. Earle's balanced salt solution (EBSS)-induced activation of autophagy reduced PARP1 expression, whereas the autophagy lysosomal inhibitor CQ had the opposite effect. Correspondingly, treatment with the autophagy inhibitor 3-methyladenine did not abolish the autophagy-inducing effects of EBSS. Additionally, PARP1 binds to heat shock cognate protein 70 and lysosome-associated membrane protein 2A (LAMP2A). Moreover, adenovirus-mediated LAMP2A overexpression to activate the CMA signaling pathway in cardiomyocytes reduces PARP1 (cleaved) expression and further decreases cardiomyocyte apoptosis caused by oxidative stress. In contrast, downregulation of LAMP2A increased PARP1 (cleaved) expression and the degree of apoptosis. More importantly, we report that appropriate concentrations of H2 O2 triggered the nuclear translocation of PARP1, which subsequently promoted the degradation of PARP1 through the CMA pathway. In summary, our data are the first to reveal that CMA targeted PARP1 for lysosomal degradation in cardiomyocytes, which ultimately inhibited apoptosis by promoting the degradation of the PARP1 protein.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Lai
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Shen
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Genetic Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Endogenous Hydrogen Sulfide Persulfidates Caspase-3 at Cysteine 163 to Inhibit Doxorubicin-Induced Cardiomyocyte Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6153772. [PMID: 35571249 PMCID: PMC9095366 DOI: 10.1155/2022/6153772] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Doxorubicin (DOX) is an efficient antitumor anthracycline drug, but its cardiotoxicity adversely affects the prognosis of the patients. In this study, we explored whether endogenous gasotransmitter hydrogen sulfide (H2S) could protect against DOX-induced cardiomyocyte apoptosis and its mechanisms. The results indicated that DOX significantly downregulated endogenous H2S production and endogenous synthetase cystathionine γ-lyase (CSE) expression and obviously stimulated the apoptosis in H9C2 cells. The supplement of H2S donor sodium hydrosulfide (NaHS) or overexpression of CSE inhibited DOX-induced H9C2 cell apoptosis. DOX enhanced the activities of caspase family members in cardiomyocytes, while NaHS attenuated DOX-enhanced caspase-3, caspase-2, and caspase-9 activities by 223.1%, 73.94%, and 52.29%, respectively. Therefore, taking caspase-3 as a main target, we demonstrated that NaHS or CSE overexpression alleviated the cleavage of caspase-3, suppressed caspase-3 activity, and inhibited the cleavage of poly ADP-ribose polymerase (PARP). Mechanistically, we found that H2S persulfidated caspase-3 in H9C2 cells and human recombinant caspase-3 protein, while the thiol-reducing agent dithiothreitol (DTT) abolished H2S-induced persulfidation of caspase-3 and thereby prevented the antiapoptotic effect of H2S on caspase-3 in H9C2 cells. The mutation of caspase-3 C148S and C170S failed to block caspase-3 persulfidation by H2S in H9C2 cells. However, caspase-3 C163S mutation successfully abolished the effect of H2S on caspase-3 persulfidation and the corresponding protection of H9C2 cells. Collectively, these findings indicate that endogenous H2S persulfidates caspase-3 at cysteine 163, inhibiting its activity and cardiomyocyte apoptosis. Sufficient endogenous H2S might be necessary for the protection against myocardial cell apoptosis induced by DOX. The results of the study might open new avenues with respect to the therapy of DOX-stimulated cardiomyopathy.
Collapse
|
12
|
Neuroprotective Effects of Nicotinamide (Vitamin B3) on Neurodegeneration in Diabetic Rat Retinas. Nutrients 2022; 14:nu14061162. [PMID: 35334819 PMCID: PMC8950738 DOI: 10.3390/nu14061162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 01/27/2023] Open
Abstract
The loss of inner retinal neurons is an initial event in diabetic retinopathy. In diabetic retinas, oxidative stress is increased, which could lead to increased oxidative DNA damage. Nicotinamide is a precursor to nicotinamide adenine dinucleotide, which contributes to the DNA damage response. We investigated whether nicotinamide plays a neuroprotective role in diabetic retinal neurodegeneration in terms of DNA repair. Male Sprague Dawley rats with streptozotocin-induced diabetes were orally administered nicotinamide (500 mg/kg/day) for 4 or 12 weeks. Oxidative stress exhibited by dihydroethidium was upregulated at 4 and 12 weeks after onset of diabetes, and nicotinamide treatment reduced oxidative stress at 4 weeks after induction of diabetes. Oxidative DNA damage measured by 8-hydroxy-2′-deoxyguanosine (8-OHdG) increased at 4 and 12 weeks after induction of diabetes and decreased following nicotinamide treatment. The elevated expression of glial fibrillary acidic protein (GFAP) induced by diabetes was attenuated by nicotinamide treatment. In Western blot analysis, the increased expression of cleaved PARP-1 in diabetes was attenuated by nicotinamide treatment at 12 weeks after induction of diabetes. The diabetes-induced apoptosis of inner retinal cells detected by the TUNEL assay was reduced by nicotinamide treatment. In conclusion, nicotinamide attenuated retinal neurodegeneration in diabetes, probably by reducing oxidative DNA damage and supporting DNA repair.
Collapse
|
13
|
Yang T, Guo R, Ofengeim D, Hwang JY, Zukin RS, Chen J, Zhang F. Molecular and Cellular Mechanisms of Ischemia-Induced Neuronal Death. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Erdem Guzel E, Kaya Tektemur N. Hesperetin may alleviate the development of doxorubicin-induced pulmonary toxicity by decreasing oxidative stress and apoptosis in male rats. Tissue Cell 2021; 73:101667. [PMID: 34653889 DOI: 10.1016/j.tice.2021.101667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022]
Abstract
Doxorubicin (DOX) is one of the most widely used chemotherapeutic agents. However, it causes pulmonary toxicity which decreases its clinical use in human cancer therapy. The present study was undertaken to obtain an insight into the potential protective effect of hesperetin (HES) against doxorubicin-induced pulmonary toxicity in rats. The animals were divided into 4 groups with 7 rats per group. The experimental treatments were as follows: Control, DOX, DOX + HES, and HES groups. DOX was administered at the dosage of 15 mg/kg i.p for a single dose. HES was administered at the dosage of 50 mg/kg by oral gavage every other day. After 28 days, biochemical parameters, oxidative stress status, histopathological changes, apoptosis-related genes and apoptotic index (AI) were examined of lung tissue. Histopathological changes, Poly [ADP-ribose] polymerase 1 (PARP-1), Caspase-3 (Casp3), Cytochrome c (Cytc), apoptosis-related genes, and AI significantly increased in the DOX group relative to the control group. Malondialdehyde (MDA) significantly increased, while superoxide dismutase (SOD) and glutathione peroxidase (GPx) decreased in the DOX group relative to the control group. However, histopathological findings, MDA, AI, and PAPR1, Casp3 protein expression, mRNA expression of Cytc significantly decreased, while SOD, GPx increased in the DOX + HES group relative to the DOX group. These results attested HES might be a potential agent for the treatment of DOX-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Elif Erdem Guzel
- Department of Midwifery, Faculty of Health Sciences, Mardin Artuklu University, Mardin, 47200, Turkey.
| | - Nalan Kaya Tektemur
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, 23000, Turkey
| |
Collapse
|
15
|
Szántó M, Gupte R, Kraus WL, Pacher P, Bai P. PARPs in lipid metabolism and related diseases. Prog Lipid Res 2021; 84:101117. [PMID: 34450194 DOI: 10.1016/j.plipres.2021.101117] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
PARPs and tankyrases (TNKS) represent a family of 17 proteins. PARPs and tankyrases were originally identified as DNA repair factors, nevertheless, recent advances have shed light on their role in lipid metabolism. To date, PARP1, PARP2, PARP3, tankyrases, PARP9, PARP10, PARP14 were reported to have multi-pronged connections to lipid metabolism. The activity of PARP enzymes is fine-tuned by a set of cholesterol-based compounds as oxidized cholesterol derivatives, steroid hormones or bile acids. In turn, PARPs modulate several key processes of lipid homeostasis (lipotoxicity, fatty acid and steroid biosynthesis, lipoprotein homeostasis, fatty acid oxidation, etc.). PARPs are also cofactors of lipid-responsive nuclear receptors and transcription factors through which PARPs regulate lipid metabolism and lipid homeostasis. PARP activation often represents a disruptive signal to (lipid) metabolism, and PARP-dependent changes to lipid metabolism have pathophysiological role in the development of hyperlipidemia, obesity, alcoholic and non-alcoholic fatty liver disease, type II diabetes and its complications, atherosclerosis, cardiovascular aging and skin pathologies, just to name a few. In this synopsis we will review the evidence supporting the beneficial effects of pharmacological PARP inhibitors in these diseases/pathologies and propose repurposing PARP inhibitors already available for the treatment of various malignancies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary
| | - Rebecca Gupte
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Peter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary; Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032, Hungary.
| |
Collapse
|
16
|
Trehalose Augments Neuron Survival and Improves Recovery from Spinal Cord Injury via mTOR-Independent Activation of Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8898996. [PMID: 34336117 PMCID: PMC8289614 DOI: 10.1155/2021/8898996] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 06/08/2021] [Indexed: 01/11/2023]
Abstract
Spinal cord injury (SCI) is a major cause of irreversible nerve injury and leads to serious tissue loss and neurological dysfunction. Thorough investigation of cellular mechanisms, such as autophagy, is crucial for developing novel and effective therapeutics. We administered trehalose, an mTOR-independent autophagy agonist, in SCI rats suffering from moderate compression injury to elucidate the relationship between autophagy and SCI and evaluate trehalose's therapeutic potential. 60 rats were divided into 4 groups and were treated with either control vehicle, trehalose, chloroquine, or trehalose + chloroquine 2 weeks prior to administration of moderate spinal cord crush injury. 20 additional sham rats were treated with control vehicle. H&E staining, Nissl staining, western blot, and immunofluorescence studies were conducted to examine nerve morphology and quantify autophagy and mitochondrial-dependent apoptosis at various time points after surgery. Functional recovery was assessed over a period of 4 weeks after surgery. Trehalose promotes autophagosome recruitment via an mTOR-independent pathway, enhances autophagy flux in neurons, inhibits apoptosis via the intrinsic mitochondria-dependent pathway, reduces lesion cavity expansion, decreases neuron loss, and ultimately improves functional recovery following SCI (all p < 0.05). Furthermore, these effects were diminished upon administration of chloroquine, an autophagy flux inhibitor, indicating that trehalose's beneficial effects were due largely to activation of autophagy. This study presents new evidence that autophagy plays a critical neuroprotective and neuroregenerative role in SCI, and that mTOR-independent activation of autophagy with trehalose leads to improved outcomes. Thus, trehalose has great translational potential as a novel therapeutic agent after SCI.
Collapse
|
17
|
Yan L, Wang P, Zhao C, Fan S, Lin H, Guo Y, Ma Z, Qiu L. Toxic responses of liver in Lateolabrax maculatus during hypoxia and re-oxygenation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105841. [PMID: 34022694 DOI: 10.1016/j.aquatox.2021.105841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Estuarine environmental have been reported to undergo significant fluctuations in oxygen concentrations with hypoxic conditions and subsequent re-oxygenation events being of significant concern for resident fish populations. In this study we assessed the toxicological effects of hypoxia and re-oxygenation on the liver of hypoxia-sensitive spotted sea bass (Lateolabrax maculatus) that were exposed to hypoxia (1.17 mg/L dissolved oxygen) for 12 h and then re-oxygenated for 12 h. The activities of glutamic-pyruvic transaminase and glutamic-oxalacetic transaminase in serum significantly increased under hypoxia (p < 0.05) and continued to increase during re-oxygenation (p < 0.05), indicating that normal liver function might be disrupted by hypoxia and might become worse during re-oxygenation for 12h. Total protein, albumin, and globulin levels in serum decreased under hypoxia but began to return to normal during re-oxygenation, showing that protein synthesis in the liver decreased during hypoxia but could be restored by re-oxygenation. We also used RNA-Seq technology to identify changes in gene expression in the liver during hypoxia and re-oxygenation. Transcriptome sequencing revealed that the hypoxia-inducible factor (HIF-1) signaling pathway, apoptosis, and purine metabolism transcripts were significantly enriched under hypoxia and re-oxygenation conditions. A total of 15 and 16 apoptosis-related genes were induced by hypoxia and re-oxygenation stress, respectively. The apoptosis index increased from the normal to the hypoxic condition and was highest under re-oxygenation. Additionally, 19 and 29 genes, that are involved in purine metabolism in the liver of L. maculatus during hypoxia and re-oxygenation, respectively, were dysregulated. Unexpectedly, the serum uric acid level significantly increased during hypoxia and significantly decreased under re-oxygenation, indicating the presence of purine metabolic disorder in the liver of L. maculatus. These results illustrate that hypoxia poses a pronounced threat to hepatocyte function in L. maculatus and that liver damage is difficult to reverse with 12 h of re-oxygenation, and it may actually become worse when re-oxygenation is established.
Collapse
Affiliation(s)
- Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510220, PR China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510220, PR China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510220, PR China
| | - Sigang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510220, PR China
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510220, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518000, PR China
| | - Yihui Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510220, PR China
| | - Zhenhua Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510220, PR China; Sanya Tropical Fisheries Research Institute, Sanya 572018, P.R. China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510220, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, 510000, P.R. China.
| |
Collapse
|
18
|
Arslan I, Akgul H, Kara M. Saporin, a Polynucleotide-Adenosine Nucleosidase, May Be an Efficacious Therapeutic Agent for SARS-CoV-2 Infection. SLAS DISCOVERY 2020; 26:330-335. [PMID: 33155515 PMCID: PMC8940857 DOI: 10.1177/2472555220970911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Saporin, a type I ribosome-inactivating protein from soapwort plant, is a potent protein synthesis inhibitor. Catalytically, saporin is a characteristic N-glycosidase, and it depurinates a specific adenine residue from a universally conserved loop of the major ribosomal RNA (rRNA) of eukaryotic cells. It is well-known that saporin induces apoptosis through different pathways, including ribotoxic stress response, cell signal transduction, genomic DNA fragmentation and RNA abasic lyase (RAlyase) activity, and NAD+ depletion by poly-(ADP)-ribose polymerase hyperactivation. Saporin's high enzymatic activity, high stability, and resistance to conjugation procedures make it a well-suited tool for immunotherapy approaches.In the present study, we focus on saporin-based targeted toxins that may be efficacious therapeutic agents for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our discussed points suggest that saporin may be a strategic molecule for therapeutic knockout treatments and a powerful candidate for novel drugs in the struggle against coronavirus 2019 (COVID-19).
Collapse
Affiliation(s)
- Idris Arslan
- Biomedical Engineeing, Bulent Ecevit University, Incivez, Zonguldak, Turkey
| | - Hafize Akgul
- Graduate School of Natural and Applied Sciences, Nanotechnology Engineeing, Bulent Ecevit University, Incivez, Zonguldak, Turkey
| | - Murat Kara
- Graduate School of Natural and Applied Sciences, Nanotechnology Engineeing, Bulent Ecevit University, Incivez, Zonguldak, Turkey
| |
Collapse
|
19
|
Qian H, Zhang N, Wu B, Wu S, You S, Zhang Y, Sun Y. The E3 ubiquitin ligase Smurf2 regulates PARP1 stability to alleviate oxidative stress-induced injury in human umbilical vein endothelial cells. J Cell Mol Med 2020; 24:4600-4611. [PMID: 32167680 PMCID: PMC7176845 DOI: 10.1111/jcmm.15121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress injury is involved in many cardiovascular diseases, like hypertension and myocardial infarction. Ubiquitination is a ubiquitous protein post-translational modification that controls a wide range of biological functions and plays a crucial role in maintaining the homeostasis of cells in physiology and disease. Many studies have shown that oxidative stress damage is inextricably linked to ubiquitination. We demonstrate that Smurf2, an E3 ubiquitinated ligase, is involved in HUVEC apoptosis induced by oxidative stress to alleviate H2 O2 -induced reactive oxygen species (ROS) production and the apoptosis of human umbilical vein endothelial cells (HUVECs). At the same time, we found that Smurf2 can bind the poly(ADP-ribose) polymerase-1(PARP1), and the interaction is enhanced under the stimulation of oxidative stress. We further study and prove that Smurf2 can promote PARP1 ubiquitination and degradation. Collectively, we demonstrate Smurf2 degradation of overactivated PARP1 by ubiquitin-proteasome pathway to protect HUVEC and alleviate oxidative stress injury.
Collapse
Affiliation(s)
- Hao Qian
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, China
| | - Boquan Wu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, China
| | - Shaojun Wu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, China
| | - Shilong You
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, China
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, China
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Lv S, Ju C, Peng J, Liang M, Zhu F, Wang C, Huang K, Cheng M, Zhang F. 25-Hydroxycholesterol protects against myocardial ischemia-reperfusion injury via inhibiting PARP activity. Int J Biol Sci 2020; 16:298-308. [PMID: 31929757 PMCID: PMC6949155 DOI: 10.7150/ijbs.35075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022] Open
Abstract
Myocardial ischemia-reperfusion (IR) injury occurs when occlusive coronary artery restores blood supply after events such as myocardial infarction, stroke, cardiac arrest and resuscitation, and organ transplantation. However, the mechanisms involved are poorly understood, and effective pharmacological interventions are still lacking. A previous study demonstrated that 25-hydroxycholesterol (25-HC) contributed to lipid metabolism and cholesterol metabolism as an oxysterol molecule. We herein explored whether 25-hydroxycholesterol (25-HC) has cardioprotective properties against IR injury and explored its underlying mechanisms. 25-HC was administered before reperfusion procedure in IR injury model mice. We found that 25-HC significantly reduced the IR-induced infarct size and improved cardiac function, and this protective effect was associated with reduced phosphorylation of p38-MAPK and JNK1/2. Besides, 25-HC also inhibited the Bax/Bcl-2 ratio and the relative expression of cleaved caspase-3. Furthermore, 25-HC decreased the PARP activity, indicating that 25-HC ameliorates IR injury via the PARP pathway. The 25-HC group abolished cardioprotection in the presence of little PARP activity, suggesting that the PARP activity is essential for 25-HC to exert its effect during IR injury. Our primary study indicates that 25-HC ameliorated IR injury by inhibiting the PARP activity and decreasing myocardial apoptosis, which makes it a potential therapeutic drug in IR injury of the heart.
Collapse
Affiliation(s)
- Suying Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Chenhui Ju
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Jiangtong Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Minglu Liang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Fengxiao Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Zhang T, Liang Y, Zuo P, Jing S, Li T, Wang Y, Lv C, Li D, Zhang J, Wei Z. 20(S)-Protopanaxadiol blocks cell cycle progression by targeting epidermal growth factor receptor. Food Chem Toxicol 2020; 135:111017. [DOI: 10.1016/j.fct.2019.111017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022]
|
22
|
Arabipour I, Amani J, Mirhosseini SA, Salimian J. The study of genes and signal transduction pathways involved in mustard lung injury: A gene therapy approach. Gene 2019; 714:143968. [PMID: 31323308 DOI: 10.1016/j.gene.2019.143968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Sulfur mustard (SM) is a destructive and harmful chemical agent for the eyes, skin and lungs that causes short-term and long-term lesions and was widely used in Iraq war against Iran (1980-1988). SM causes DNA damages, oxidative stress, and Inflammation. Considering the similarities between SM and COPD (Chronic Obstructive Pulmonary Disease) pathogens and limited available treatments, a novel therapeutic approach is not developed. Gene therapy is a novel therapeutic approach that uses genetic engineering science in treatment of most diseases including chronic obstructive pulmonary disease. In this review, attempts to presenting a comprehensive study of mustard lung and introducing the genes therapy involved in chronic obstructive pulmonary disease and emphasizing the pathways and genes involved in the pathology and pathogenesis of sulfur Mustard. It seems that, given the high potential of gene therapy and the fact that this experimental technique is a candidate for the treatment of pulmonary diseases, further study of genes, vectors and gene transfer systems can draw a very positive perspective of gene therapy in near future.
Collapse
Affiliation(s)
- Iman Arabipour
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Yang H, Li P, Wang D, Liu Y, Wei W, Zhang Y, Liu S. Quartz Crystal Microbalance Detection of Poly(ADP-ribose) Polymerase-1 Based on Gold Nanorods Signal Amplification. Anal Chem 2019; 91:11038-11044. [PMID: 31257855 DOI: 10.1021/acs.analchem.9b01366] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent findings have thrust poly(ADP-ribose) polymerase-1 (PARP-1) into the limelight as a potential biomarker and chemotherapeutic target for cancer. Thus, a sensitive method for detection of PARP-1 is necessary for early diagnosis of cancer and drug development. However, the poor electrochemical and optical activity of PARP-1 and its product poly(ADP-ribose) (PAR) prompted researchers to develop more methods. Here, we developed an efficient method for the determination of PARP-1 by using quartz crystal microbalance (QCM) because it is mass-sensitive. Once activated by the specific DNA, PARP-1 cleaves nicotinamideadenine dinucleotide (NAD+) into nicotinamide and ADP-ribose to synthesize a hyperbranched poly(ADP-ribose) polymer. Although QCM is mass-sensitive, it is not sensitive enough to discern PAR effectively. So, positively charged cetyltrimethylammonium bromide (CTAB)-coated gold nanorods (GNRs) were introduced to increase the frequency change significantly because of the strong electrostatic interaction between them with negatively charged PAR. PARP-1 ranging from 0.06 to 3 nM can be facilely detected with a low detection limit of 0.04 nM. The strategy has been used to evaluate PARP-1 inhibitors and to detect PARP-1 activity in real cancer cells lysate with satisfactory results, indicating that it was a promising candidate for clinical diagnosis and drug screening in the future.
Collapse
Affiliation(s)
- Haitang Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Peng Li
- Zhengzhou Tobacco Research Institute of CNTC , Zhengzhou 450001 , China
| | - Dingzhong Wang
- Zhengzhou Tobacco Research Institute of CNTC , Zhengzhou 450001 , China
| | - Yong Liu
- College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , P.R. China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| |
Collapse
|
24
|
Srivastava A, Ravi K, Fatima K, Maheshwari M, Ashraf R, Hasanain M, Yadav P, Iqbal H, Kumar Y, Luqman S, Chanda D, Khan F, Shanker K, Sarkar J, Negi AS. 3-Arylindanones and related compounds as antiproliferative agents against colorectal cancer. Chem Biol Drug Des 2019; 94:1694-1705. [PMID: 31152581 DOI: 10.1111/cbdd.13574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 11/30/2022]
Abstract
Diverse benzylidene indanones and their derivatives were synthesized as anticancer agents. Two of the analogues, that is 7 and 22, exhibited significant antiproliferative activity against several human cancer cell lines. Both the compounds possessed antimitotic activity and induced apoptosis in DLD1 colorectal adenocarcinoma cells through activation of caspase pathways. In cell cycle analysis, both the compounds induced predominantly G2/M phase arrest in DLD1 cells. Molecular docking studies revealed that compound 7 occupies colchicine binding pocket of β-tubulin. Both the compounds were safe in acute oral toxicity in rodents. Both the compounds are further being optimized for better efficacy.
Collapse
Affiliation(s)
- Ankita Srivastava
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Kusumoori Ravi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Kaneez Fatima
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | | | - Raghib Ashraf
- CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Pankaj Yadav
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Hina Iqbal
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Yogesh Kumar
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Suaib Luqman
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Debabrata Chanda
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Feroz Khan
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Karuna Shanker
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Jayanta Sarkar
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,CSIR-Central Drug Research Institute, Lucknow, India
| | - Arvind Singh Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
25
|
Cul4a as a New Interaction Protein of PARP1 Inhibits Oxidative Stress-Induced H9c2 Cell Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4273261. [PMID: 31178959 PMCID: PMC6501127 DOI: 10.1155/2019/4273261] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/10/2019] [Indexed: 12/19/2022]
Abstract
Oxidative stress plays a major part in myocardial reperfusion injury. Cul4a is the core protein of CRLs E3 ubiquitin ligase complex; while it is known that Cul4a is responsible for various cancers, its role in cardiac function remains unclear. Hence, we have shown the protective function of Cul4a and its protection mechanism in oxidative stress-induced H9c2 cardiomyocyte apoptosis. Here, oxidative stress was induced by hydrogen peroxide (H2O2), CCK-8 assay and flow cytometry were used to analyze cell viability and apoptosis rate, western blot and immunofluorescence were used to quantitatively analyze the expression of protein, ROS fluorescence kit was used to detect reactive oxygen species (ROS) formation, and coimmunoprecipitation was used to identify protein interaction. In the results, it was found that Cul4a was involved in oxidative stress-induced H9c2 cell apoptosis and could inhibit H2O2-induced ROS generation and H9c2 cell apoptosis. Furthermore, we identified that when combining with PARP1, Cul4a could reduce its expression, and the interaction was enhanced under oxidative stress. In conclusion, our results indicate that Cul4a is a new protective factor involved in oxidative stress-induced cardiomyocyte injury and functions by tying and decreasing overactivated PARP1.
Collapse
|
26
|
Liu Y, Xu X, Yang H, Xu E, Wu S, Wei W, Chen J. Analysis of poly(ADP-ribose) polymerase-1 by enzyme-initiated auto-PARylation-controlled aggregation of hemin-graphene nanocomposites. Analyst 2019; 143:2501-2507. [PMID: 29664094 DOI: 10.1039/c8an00009c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a highly conserved nuclear enzyme, which binds tightly to damaged DNA and plays a key role in DNA repair, recombination, proliferation, and genomic stability. However, due to the poor electrochemical and optical activity of PARP-1 and its product PAR, only a few studies on its activity detection method have been reported. Herein, we report a simple and sensitive colorimetric strategy to monitor PARP-1 activity based on enzyme-initiated auto-PARylation-controlled aggregation of hemin-graphene nanocomposites (H-GNs). PARP, activated by dsDNA, catalyzed its substrate nicotinamide adenine dinucleotide (NAD+) to polymerize as a poly(ADP-ribose) polymer (PAR). PAR possesses several negative charges, and its charge density is twice that of a single-stranded DNA, which greatly impacts the dispersibility of H-GNs; due to their peroxidase-like catalytic activities, H-GNs can catalyze the chromogenic reaction of TMB and H2O2. As a result, in the presence of different PARP-1 activities, the supernatant of the corresponding solution contained different amounts of dispersed H-GNs and showed different colors after the chromogenic reaction that could be discerned easily by the absorbance or the color changes of the solution. The method was simple, sensitive, and reliable. The proposed method displays a linear range from 0.05 to 1 U with a detection limit of 0.03 U. In addition, this new method has been successfully applied to detect PARP-1 activity in human serum and different cancer cells and evaluate PARP-1 inhibitors.
Collapse
Affiliation(s)
- Yong Liu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China
| | | | | | | | | | | | | |
Collapse
|
27
|
Sedoheptulose-1,7-bisphospate Accumulation and Metabolic Anomalies in Hepatoma Cells Exposed to Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5913635. [PMID: 30755786 PMCID: PMC6348915 DOI: 10.1155/2019/5913635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
Abstract
We have previously shown that GSH depletion alters global metabolism of cells. In the present study, we applied a metabolomic approach for studying the early changes in metabolism in hydrogen peroxide- (H2O2-) treated hepatoma cells which were destined to die. Levels of fructose 1,6-bisphosphate and an unusual metabolite, sedoheptulose 1,7-bisphosphate (S-1,7-BP), were elevated in hepatoma Hep G2 cells. Deficiency in G6PD activity significantly reduced S-1,7-BP formation, suggesting that S-1,7-BP is formed in the pentose phosphate pathway as a response to oxidative stress. Additionally, H2O2 treatment significantly increased the level of nicotinamide adenine dinucleotide phosphate (NADP+) and reduced the levels of ATP and NAD+. Severe depletion of ATP and NAD+ in H2O2-treated Hep G2 cells was associated with cell death. Inhibition of PARP-mediated NAD+ depletion partially protected cells from death. Comparison of metabolite profiles of G6PD-deficient cells and their normal counterparts revealed that changes in GSH and GSSG per se do not cause cell death. These findings suggest that the failure of hepatoma cells to maintain energy metabolism in the midst of oxidative stress may cause cell death.
Collapse
|
28
|
Hu Y, Guo Z, Lu J, Wang P, Sun S, Zhang Y, Li J, Zheng Q, Guo K, Wang J, Jiang J, Liu P. sFRP1 has a biphasic effect on doxorubicin-induced cardiotoxicity in a cellular location-dependent manner in NRCMs and Rats. Arch Toxicol 2018; 93:533-546. [PMID: 30377735 DOI: 10.1007/s00204-018-2342-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022]
Abstract
Doxorubicin (Dox) is an effective anticancer drug, however, its clinical application is restricted by the life-threatening cardiotoxic effects. Secreted Frizzled-related protein 1 (sFRP1) has been reported to participate in both the cancer and cardiovascular diseases and was one of the differential expression genes in normal hearts compared with Dox-treated hearts. Thus, it is important to reveal the potential role of sFRP1 in Dox-induced cardiotoxicity. Here, we show that sFRP1 has a biphasic effect on Dox-induced cardiotoxicity in a location-dependent manner. The secretion of sFRP1 was significantly increased in Dox-treated neonatal rat cardiomyocytes (NRCMs) (1 µM) and SD rats (5 mg/kg/injection at day 1, 5, and 9, i.p.). Adding the anti-sFRP1 antibody (0.5 µg/ml) and inhibiting sFRP1 secretion by caffeine (5 mM) both relieved Dox-induced cardiotoxicity through activating Wnt/β-catenin signaling, whereas increasing the secretion of sFRP1 by heparin (100 µg/ml) had the opposite effect. The intracellular level of sFRP1 was significantly decreased after Dox treatment both in vitro and in vivo. Knockdown of sFRP1 by sgRNA aggravated Dox-induced cardiotoxicity, while moderate overexpression of sFRP1 by Ad-sFRP1 exhibited protective effect. Besides, poly(ADP-ribosyl) polymerase-1 (PARP1) was screened as an interacting partner of sFRP1 in NRCMs by mass spectrometry. Our results suggested that the intracellular sFRP1 protected NRCMs from Dox-induced cardiotoxicity by interacting with PARP1. Thus, our results provide a novel evidence that sFRP1 has a biphasic effect on Dox-induced cardiotoxicity. In addition, the oversecretion of sFRP1 might be used as a biomarker to indicate the occurrence of cardiotoxicity induced by Dox treatment.
Collapse
Affiliation(s)
- Yuehuai Hu
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Zhen Guo
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Jing Lu
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China.
| | - Panxia Wang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Shuya Sun
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yiqiang Zhang
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Jingyan Li
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Qiyao Zheng
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Kaiteng Guo
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Junjian Wang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China
| | - Jianmin Jiang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China.
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, 132 East Waihuan Road, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
29
|
Lee CM, Park SH, Nam MJ. Anticarcinogenic effect of indole-3-carbinol (I3C) on human hepatocellular carcinoma SNU449 cells. Hum Exp Toxicol 2018; 38:136-147. [DOI: 10.1177/0960327118785235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many cruciferous vegetables, including cabbage, contain indole-3-carbinol (I3C), which is a known anticarcinogen. However, the anticarcinogenic effects of I3C on liver cancer have not been investigated. Therefore, this study was conducted to evaluate the anticarcinogenic effects of I3C in human hepatocellular carcinoma (HCC) SNU449 cells. The results of MTT and WST-1 assays indicated that treatment of SNU449 cells with I3C decreased viability in dose- and time-dependent manners, while colony formation assays indicated that I3C also inhibited proliferation of SNU449 cells. Moreover, fluorescence-activated cell sorter analysis showed that I3C induced apoptosis in SNU449 cells in dose- and time-dependent manners. Furthermore, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling revealed that I3C induced DNA fragmentation in SNU449 cells in a time-dependent manner, while Western blotting showed that apoptotic proteins such as p53, cleaved PARP, caspase-3, and caspase-7 were activated in SNU449 cells following treatment with I3C. Finally, reactive oxygen species-related protein peroxiredoxin-1 and thioredoxin-1 expression decreased in I3C-treated SNU449 cells. The aim of our study is to investigate the unknown mechanisms responsible for the apoptotic effects of I3C on human HCC SNU449 cells, and the results suggest that I3C may be useful for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- CM Lee
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| | - S-H Park
- Department of Biological and Chemical Engineering, Hongik University, Seoul, Republic of Korea
| | - MJ Nam
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
30
|
Huang Z, Lin S, Long C, Zhou X, Fan Y, Kuang X, He J, Ning J, Zhang H, Zhang Q, Shen H. Notch signaling pathway mediates Doxorubicin-driven apoptosis in cancers. Cancer Manag Res 2018; 10:1439-1448. [PMID: 29922088 PMCID: PMC5997178 DOI: 10.2147/cmar.s160315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Doxorubicin is a widely used chemotherapy drug for the treatment of a variety of cancers, however it also has serious side effects such as anaphylaxis and heart damage. Therefore, it's very important to understand the downstream molecular pathways that are essential for Doxorubicin function in cancer treatment. Methods HeLa S3 cells were treated with different concentrations of Doxorubicin for 24 hours. Then, the mRNA levels of Notch pathway components in the Doxorubicin treated cells were determined by Real-Time qRT-PCR. Lentiviral transfection was used to up-regulate and down-regulate HES1 expression. Cell proliferation and apoptosis were measured with MTT assay and flow cytometry. Finally, immunofluorescence was used to detect protein subcellular location. Result Doxorubicin treatment strongly increases the expression of multiple Notch pathway components in cancer cells. The Notch target HES1 is activated by Doxorubicin and is required for the Doxorubicin driven apoptosis. In addition, over-expression of HES1 can further enhances Doxorubicin's role in promoting apoptosis. Mechanistically, HES1 activates PARP1 and regulates the subcellular location of AIF to mediate the apoptosis response under Doxorubicin treatment. Conclusion Our results provided novel insights into the downstream molecular pathways underlying Doxorubicin treatment and suggested that manipulation of Notch signaling pathway could have synergistic effect with Doxorubicin for cancer treatment.
Collapse
Affiliation(s)
- Zixin Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chongde Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuting Fan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jia He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jie Ning
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Han Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Lee HH, Kim SY, Na JC, Yoon YE, Han WK. Exogenous pentraxin-3 inhibits the reactive oxygen species-mitochondrial and apoptosis pathway in acute kidney injury. PLoS One 2018; 13:e0195758. [PMID: 29672566 PMCID: PMC5909599 DOI: 10.1371/journal.pone.0195758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/28/2018] [Indexed: 11/18/2022] Open
Abstract
Pentraxin-3 (PTX3) is a long-form member of the pentraxin family of proteins that has been studied in inflammatory diseases and in various organs. We found that PTX3 protects kidney cells during ischemia and proinflammatory acute kidney injury. The aim of this study was to develop an in vitro experimental model of acute kidney injury and to analyze the protective mechanism of exogenous recombinant PTX3. In this study, cells of the HK-2 renal tubular cell line were treated with a calcium ionophore (A23187), which induced injury by increasing intracellular calcium concentrations and inducing calpain activity and the generation of reactive oxygen species. Exposure of cells to PTX3 significantly attenuated these effects. In addition, the activity of caspase-3 and PARP-1 were decreased in ischemic cells exposed to exogenous recombinant PTX3. PTX3 stabilized the mitochondrial membrane potential and suppressed apoptosis, resulting in the protection of renal tubular cells from ischemic injury.
Collapse
Affiliation(s)
- Hyung Ho Lee
- Department of Urology, National Health Insurance Service Ilsan Hospital, Gyeonggi-do, Korea
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sook Young Kim
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Chae Na
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young Eun Yoon
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
| | - Woong Kyu Han
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
32
|
Zhang N, Zhang Y, Zhao S, Sun Y. Septin4 as a novel binding partner of PARP1 contributes to oxidative stress induced human umbilical vein endothelial cells injure. Biochem Biophys Res Commun 2018; 496:621-627. [PMID: 29366480 DOI: 10.1016/j.bbrc.2018.01.105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 01/16/2018] [Indexed: 11/17/2022]
Abstract
Oxidative stress induced vascular endothelial cell injure is one of the key and initial event in the development of atherosclerosis. Septin4, as a member of GTP binding protein family, is widely expressed in the eukaryotic cells and considered to be an essential component of the cytoskeleton which is involved in many important physiological processes. However, whether Septin4 is involved in cardiovascular diseases, such as oxidative stress inducted endothelial cell injury still unclear. PARP1 as a DNA repair enzyme can be activated by identifying DNA damaged fragments, which consumes high levels of energy and leads to vascular endothelial cell apoptosis. Here, our results first found that Septin4 is involved in oxidative stress induced endothelial cell ROS production and apoptosis through knock-down and over-expression Septin4 approaches. Furthermore, to explore how Septin4 is involved in oxidative stress induced endothelial cells injure, we first identified that Septin4 is a novel PARP1 interacting protein and the interaction is enhanced under oxidative stress. In conclusions, our founding indicates that Septin4 is a novel essential factor involved in oxidative stress induced vascular endothelial cell injury by interacting with apoptosis-related protein PARP1.
Collapse
Affiliation(s)
- Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, PR China
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, PR China
| | - Sichao Zhao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, PR China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
33
|
Ye W, Zhong Z, Zhu S, Zheng S, Xiao J, Song S, Yu H, Wu Q, Lin Z, Chen J. Advanced oxidation protein products induce chondrocyte death through a redox-dependent, poly (ADP-ribose) polymerase-1-mediated pathway. Apoptosis 2018; 22:86-97. [PMID: 27858200 DOI: 10.1007/s10495-016-1314-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate the effect of AOPPs on apoptosis in human chondrocytes. Chondrocytes were treated with AOPPs. Cell death, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, reactive oxygen species (ROS) generation, and the expression of apoptotic proteins were detected in vitro. AOPPs levels were detected by colorimetric method. The results in vitro demonstrated that AOPPs induced cell death in human chondrocyte through a redox-dependent pathway, including RAGE-mediated, NADPH oxidase-dependent ROS generation, and poly (ADP-ribose) polymerase-1 (PARP-1) activation. Targeting AOPPs-induced cellular mechanisms might emerge as a promising therapeutic option for patients with RA.
Collapse
Affiliation(s)
- Wenbin Ye
- Department of Orthopaedics, The 175th Hospital of PLA, Affiliated Dongnan Hospital of Xiamen University, Zhangzhou, Fujian, China
| | - Zhaoming Zhong
- Department of Orthopaedic Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Siyuan Zhu
- Department of Orthopaedic Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Shuai Zheng
- Department of Orthopaedic Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Jun Xiao
- Department of Orthopedic Joint Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaolian Song
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Yu
- Department of Orthopaedic Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Qian Wu
- Department of Orthopaedic Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Zhen Lin
- Department of Orthopaedic Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Jianting Chen
- Department of Orthopaedic Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China.
| |
Collapse
|
34
|
Polireddy K, Dong R, Reed G, Yu J, Chen P, Williamson S, Violet PC, Pessetto Z, Godwin AK, Fan F, Levine M, Drisko JA, Chen Q. High Dose Parenteral Ascorbate Inhibited Pancreatic Cancer Growth and Metastasis: Mechanisms and a Phase I/IIa study. Sci Rep 2017; 7:17188. [PMID: 29215048 PMCID: PMC5719364 DOI: 10.1038/s41598-017-17568-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer is among the most lethal cancers with poorly tolerated treatments. There is increasing interest in using high-dose intravenous ascorbate (IVC) in treating this disease partially because of its low toxicity. IVC bypasses bioavailability barriers of oral ingestion, provides pharmacological concentrations in tissues, and exhibits selective cytotoxic effects in cancer cells through peroxide formation. Here, we further revealed its anti-pancreatic cancer mechanisms and conducted a phase I/IIa study to investigate pharmacokinetic interaction between IVC and gemcitabine. Pharmacological ascorbate induced cell death in pancreatic cancer cells with diverse mutational backgrounds. Pharmacological ascorbate depleted cellular NAD+ preferentially in cancer cells versus normal cells, leading to depletion of ATP and robustly increased α-tubulin acetylation in cancer cells. While ATP depletion led to cell death, over-acetylated tubulin led to inhibition of motility and mitosis. Collagen was increased, and cancer cell epithelial-mesenchymal transition (EMT) was inhibited, accompanied with inhibition in metastasis. IVC was safe in patients and showed the possibility to prolong patient survival. There was no interference to gemcitabine pharmacokinetics by IVC administration. Taken together, these data revealed a multi-targeting mechanism of pharmacological ascorbate's anti-cancer action, with minimal toxicity, and provided guidance to design larger definitive trials testing efficacy of IVC in treating advanced pancreatic cancer.
Collapse
Affiliation(s)
- Kishore Polireddy
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Ruochen Dong
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Gregory Reed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jun Yu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Ping Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Stephen Williamson
- Department of Internal Medicine, Hematology and Oncology Division, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Pierre-Christian Violet
- National Institute of Diabetes, Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ziyan Pessetto
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Fang Fan
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mark Levine
- National Institute of Diabetes, Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeanne A Drisko
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
35
|
Effects of Poly(ADP-Ribose) Polymerase-1 Inhibition in a Neonatal Rodent Model of Hypoxic-Ischemic Injury. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2924848. [PMID: 28698869 PMCID: PMC5494065 DOI: 10.1155/2017/2924848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/11/2017] [Accepted: 04/26/2017] [Indexed: 12/31/2022]
Abstract
Background Hypoxia ischemia (HI) to the developing brain occurs in 1–6 in 1000 live births. Large numbers of survivors have neurological long-term sequelae. However, mechanisms of recovery after HI are not understood and preventive measures or clinical treatments are not effective. Poly(ADP-ribose) polymerase-1 is overactivated in response to ischemia. In neonatal mice HI activates PARP-1 but its role in perinatal brain injury remains uncertain. Objective Aim of this study was to explore the effect of TES448 (PARP-1-inhibitor) and hypothermia after an ischemic insult. Design and Methods 10-day-old Wistar rats underwent HI. TES448 was given 10 min, 3 hrs, and 6 hrs after hypoxia. Hypothermia was started 30 min after HI and brains were dissected at P12. Western blotting and histological staining were used to evaluate for degree of injury. Results Protein expression of PARP-1 levels was diminished after TES448 treatment. Cresyl violet and TUNEL staining revealed decreased injury in male rat pups following TES448 and combined treatment. Female rats showed increased numbers of TUNEL-positive cells after combined therapy. TES448 inhibited microglia activation after hypoxic-ischemic injury. A cellular response including NeuN, Olig2, and MBP was not affected by PARP-1-inhibition. Conclusions Inhibition of PARP-1 and hypothermia lead to an alteration of injury but this effect is sexually dimorphic.
Collapse
|
36
|
Wilch C, Talbiersky P, Berchner‐Pfannschmidt U, Schaller T, Kirsch M, Klärner F, Schrader T. Molecular Tweezers Inhibit PARP‐1 by a New Mechanism. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Constanze Wilch
- Faculty of Chemistry University of Duisburg‐Essen Universitätsstr. 7 45117 Essen Germany
| | - Peter Talbiersky
- Faculty of Chemistry University of Duisburg‐Essen Universitätsstr. 7 45117 Essen Germany
| | | | - Torsten Schaller
- Faculty of Chemistry University of Duisburg‐Essen Universitätsstr. 7 45117 Essen Germany
| | - Michael Kirsch
- Institute of Physiological Chemistry University Hospital Essen Hufelandstr. 55 45122 Essen Germany
| | - Frank‐Gerrit Klärner
- Faculty of Chemistry University of Duisburg‐Essen Universitätsstr. 7 45117 Essen Germany
| | - Thomas Schrader
- Faculty of Chemistry University of Duisburg‐Essen Universitätsstr. 7 45117 Essen Germany
| |
Collapse
|
37
|
A versatile ex vivo technique for assaying tumor angiogenesis and microglia in the brain. Oncotarget 2016; 7:1838-53. [PMID: 26673818 PMCID: PMC4811501 DOI: 10.18632/oncotarget.6550] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/20/2015] [Indexed: 11/25/2022] Open
Abstract
Primary brain tumors are hallmarked for their destructive activity on the microenvironment and vasculature. However, solely few experimental techniques exist to access the tumor microenvironment under anatomical intact conditions with remaining cellular and extracellular composition. Here, we detail an ex vivo vascular glioma impact method (VOGIM) to investigate the influence of gliomas and chemotherapeutics on the tumor microenvironment and angiogenesis under conditions that closely resemble the in vivo situation. We generated organotypic brain slice cultures from rats and transgenic mice and implanted glioma cells expressing fluorescent reporter proteins. In the VOGIM, tumor-induced vessels presented the whole range of vascular pathologies and tumor zones as found in human primary brain tumor specimens. In contrast, non-transformed cells such as primary astrocytes do not alter the vessel architecture. Vascular characteristics with vessel branching, junctions and vessel meshes are quantitatively assessable as well as the peritumoral zone. In particular, the VOGIM resembles the brain tumor microenvironment with alterations of neurons, microglia and cell survival. Hence, this method allows live cell monitoring of virtually any fluorescence-reporter expressing cell. We further analyzed the vasculature and microglia under the influence of tumor cells and chemotherapeutics such as Temozolamide (Temodal/Temcad®). Noteworthy, temozolomide normalized vasculare junctions and branches as well as microglial distribution in tumor-implanted brains. Moreover, VOGIM can be facilitated for implementing the 3Rs in experimentations. In summary, the VOGIM represents a versatile and robust technique which allows the assessment of the brain tumor microenvironment with parameters such as angiogenesis, neuronal cell death and microglial activity at the morphological and quantitative level.
Collapse
|
38
|
Isachenko V, Todorov P, Isachenko E, Rahimi G, Hanstein B, Salama M, Mallmann P, Tchorbanov A, Hardiman P, Getreu N, Merzenich M. Cryopreservation and xenografting of human ovarian fragments: medulla decreases the phosphatidylserine translocation rate. Reprod Biol Endocrinol 2016; 14:79. [PMID: 27832793 PMCID: PMC5105236 DOI: 10.1186/s12958-016-0213-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/03/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Phosphatidylserine is the phospholipid component which plays a key role in cell cycle signaling, specifically in regards to necrosis and apoptosis. When a cell affected by some negative factors, phosphatidylserine is no longer restricted to the intracellular side of membrane and can be translocated to the extracellular surface of the cell. Cryopreservation can induce translocation of phosphatidylserine in response to hypoxia, increasing intracellular Ca2+, osmotic disruption of cellular membranes, generation of reactive oxygen species and lipid peroxidation. As such the aim of this study was to test the level of phosphatidylserine translocation in frozen human medulla-contained and medulla-free ovarian tissue fragments. METHODS Ovarian fragments from twelve patients were divided into small pieces of two types, medulla-free cortex (Group 1, n = 42, 1.5-3.0 × 1.5-3.0 × 0.5-0.8 mm) and cortex with medulla (Group 2, n = 42, 1.5-3.0 × 1.5-3.0 × 1.5-2.0 mm), pre-cooled after operative removal to 5 °C for 24 h and then conventionally frozen with 6 % dimethyl sulfoxide, 6 % ethylene glycol and 0.15 M sucrose in standard 5-ml cryo-vials. After thawing at +100 °C and step-wise removal of cryoprotectants in 0.5 M sucrose, ovarian pieces were xenografted to SCID mice for 45 days. The efficacy of tissues cryopreservation, taking into account the presence or absence of medulla, was evaluated by the development of follicles (histology with hematoxylin-eosin) and through the intensity of translocation of phosphatidylserine (FACS with FITC-Annexin V and Propidium Iodide). RESULTS For Groups 1 and 2, the mean densities of follicles per 1 mm3 were 9.8, and 9.0, respectively. In these groups, 90 and 90 % preantral follicles appeared morphologically normal. However, FACS analysis showed a significantly decreased intensity of translocation of phosphatidylserine (FITC-Annexin V positive) after cryopreservation of tissue with medulla (Group 2, 59.6 %), in contrast with tissue frozen without medulla (Group 1, 78.0 %, P < 0.05). In Groups 1 and 2 it was detected that 21.6 and 40.0 % cells were viable (FITC-Annexin V negative, Propidium Iodide negative). CONCLUSION The presence of medulla in ovarian pieces is beneficial for post-thaw development of cryopreserved human ovarian tissue.
Collapse
Affiliation(s)
- Vladimir Isachenko
- Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Genecology, Cologne University, Kerpener Str. 34, 50931 Cologne, Germany
| | - Plamen Todorov
- Institute of Biology and Immunology of Reproduction, Tzarigradsko shosse 73, 1113 Sofia, Bulgaria
| | - Evgenia Isachenko
- Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Genecology, Cologne University, Kerpener Str. 34, 50931 Cologne, Germany
| | - Gohar Rahimi
- Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Genecology, Cologne University, Kerpener Str. 34, 50931 Cologne, Germany
| | - Bettina Hanstein
- Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Genecology, Cologne University, Kerpener Str. 34, 50931 Cologne, Germany
| | - Mahmoud Salama
- Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Genecology, Cologne University, Kerpener Str. 34, 50931 Cologne, Germany
| | - Peter Mallmann
- Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Genecology, Cologne University, Kerpener Str. 34, 50931 Cologne, Germany
| | - Andrey Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Acad. G. Bonchev Street, Block 26, 1113 Sofia, Bulgaria
| | - Paul Hardiman
- Institute of Women’s Health, University College London, London, UK
| | - Natalie Getreu
- Institute of Women’s Health, University College London, London, UK
| | - Markus Merzenich
- MedEvent Dr. Merzenich GmbH, Im Zollhafen 12, 50678 Cologne, Germany
| |
Collapse
|
39
|
Nourani MR, Mahmoodzadeh Hosseini H, Azimzadeh Jamalkandi S, Imani Fooladi AA. Cellular and molecular mechanisms of acute exposure to sulfur mustard: a systematic review. J Recept Signal Transduct Res 2016; 37:200-216. [DOI: 10.1080/10799893.2016.1212374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mohammad Reza Nourani
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Imani S, Salimian J, Fu J, Ghanei M, Panahi Y. Th17/Treg-related cytokine imbalance in sulfur mustard exposed and stable chronic obstructive pulmonary (COPD) patients: correlation with disease activity. Immunopharmacol Immunotoxicol 2016; 38:270-80. [DOI: 10.1080/08923973.2016.1188402] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Panahi Y, Ghanei M, Vahedi E, Mousavi SH, Imani S, Sahebkar A. Efficacy of probiotic supplementation on quality of life and pulmonary symptoms due to sulfur mustard exposure: a randomized double-blind placebo-controlled trial. Drug Chem Toxicol 2016; 40:24-29. [DOI: 10.3109/01480545.2016.1166250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Gupta N, Reja SI, Bhalla V, Gupta M, Kaur G, Kumar M. A bodipy based fluorescent probe for evaluating and identifying cancer, normal and apoptotic C6 cells on the basis of changes in intracellular viscosity. J Mater Chem B 2016; 4:1968-1977. [PMID: 32263074 DOI: 10.1039/c5tb02476e] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The applications of a bodipy based probe 1 for the identification of diseased cell population out of normal cells on the basis of changes in intracellular viscosity have been explored. Probe 1 works on the principle of restriction of rotation in viscous medium and the molecular rotor nature of probe 1 is supported by low temperature 1H NMR and variable dihedral angle DFT and TD-DFT studies. More importantly, probe 1 is the first probe which shows its practical application in monitoring micro-viscosity changes in a cell based model system of undifferentiated, differentiated and apoptotic C6 glial cells. Further, probe 1 can effectively monitor the apoptosis pathway by showing an increase in fluorescence intensity from cancerous cells to apoptotic cells via real time live-cell video imaging. Moreover, the viscosity changes in living cells were proved by fluorescence lifetime imaging (FLIM) studies, flow cytometry using Annexin-V and Bcl-xl expression by immunocytofluorescence (ICC) and western blot analysis.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-1, Guru Nanak Dev University, Amritsar, Punjab, India.
| | | | | | | | | | | |
Collapse
|
43
|
Imani S, Salimian J, Bozorgmehr M, Vahedi E, Ghazvini A, Ghanei M, Panahi Y. Assessment of Treg/Th17 axis role in immunopathogenesis of chronic injuries of mustard lung disease. J Recept Signal Transduct Res 2016; 36:531-41. [DOI: 10.3109/10799893.2016.1141953] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Saber Imani
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| | - Jafar Salimian
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| | - Mahmood Bozorgmehr
- Department of Immunology, Ebn-e-Sina Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ensieh Vahedi
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| | - Ali Ghazvini
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| | - Yunes Panahi
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| |
Collapse
|
44
|
|
45
|
Recurrent hypoinsulinemic hyperglycemia in neonatal rats increases PARP-1 and NF-κB expression and leads to microglial activation in the cerebral cortex. Pediatr Res 2015. [PMID: 26200703 DOI: 10.1038/pr.2015.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hyperglycemia is a common metabolic problem in extremely low-birth-weight preterm infants. Neonatal hyperglycemia is associated with increased mortality and brain injury. Glucose-mediated oxidative injury may be responsible. Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme involved in DNA repair and cell survival. However, PARP-1 overactivation leads to cell death. NF-κB is coactivated with PARP-1 and regulates microglial activation. The effects of recurrent hyperglycemia on PARP-1/NF-κB expression and microglial activation are not well understood. METHODS Rat pups were subjected to recurrent hypoinsulinemic hyperglycemia of 2 h duration twice daily from postnatal (P) day 3-P12 and killed on P13. mRNA and protein expression of PARP-1/NF-κB and their downstream effectors were determined in the cerebral cortex. Microgliosis was determined using CD11 immunohistochemistry. RESULTS Recurrent hyperglycemia increased PARP-1 expression confined to the nucleus and without causing PARP-1 overactivation and cell death. NF-κB mRNA expression was increased, while IκB mRNA expression was decreased. inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and neuronal nitric oxide synthase (nNOS) mRNA expressions were decreased. Hyperglycemia significantly increased the number of microglia. CONCLUSION Recurrent hyperglycemia in neonatal rats is associated with upregulation of PARP-1 and NF-κB expression and subsequent microgliosis but not neuronal cell death in the cerebral cortex.
Collapse
|
46
|
VanLinden MR, Dölle C, Pettersen IKN, Kulikova VA, Niere M, Agrimi G, Dyrstad SE, Palmieri F, Nikiforov AA, Tronstad KJ, Ziegler M. Subcellular Distribution of NAD+ between Cytosol and Mitochondria Determines the Metabolic Profile of Human Cells. J Biol Chem 2015; 290:27644-59. [PMID: 26432643 DOI: 10.1074/jbc.m115.654129] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 12/21/2022] Open
Abstract
The mitochondrial NAD pool is particularly important for the maintenance of vital cellular functions. Although at least in some fungi and plants, mitochondrial NAD is imported from the cytosol by carrier proteins, in mammals, the mechanism of how this organellar pool is generated has remained obscure. A transporter mediating NAD import into mammalian mitochondria has not been identified. In contrast, human recombinant NMNAT3 localizes to the mitochondrial matrix and is able to catalyze NAD(+) biosynthesis in vitro. However, whether the endogenous NMNAT3 protein is functionally effective at generating NAD(+) in mitochondria of intact human cells still remains to be demonstrated. To modulate mitochondrial NAD(+) content, we have expressed plant and yeast mitochondrial NAD(+) carriers in human cells and observed a profound increase in mitochondrial NAD(+). None of the closest human homologs of these carriers had any detectable effect on mitochondrial NAD(+) content. Surprisingly, constitutive redistribution of NAD(+) from the cytosol to the mitochondria by stable expression of the Arabidopsis thaliana mitochondrial NAD(+) transporter NDT2 in HEK293 cells resulted in dramatic growth retardation and a metabolic shift from oxidative phosphorylation to glycolysis, despite the elevated mitochondrial NAD(+) levels. These results suggest that a mitochondrial NAD(+) transporter, similar to the known one from A. thaliana, is likely absent and could even be harmful in human cells. We provide further support for the alternative possibility, namely intramitochondrial NAD(+) synthesis, by demonstrating the presence of endogenous NMNAT3 in the mitochondria of human cells.
Collapse
Affiliation(s)
| | | | | | - Veronika A Kulikova
- the Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Marc Niere
- From the Departments of Molecular Biology and
| | - Gennaro Agrimi
- the Department of Biosciences, Biotechnologies and Biopharmaceutics and
| | | | - Ferdinando Palmieri
- the Department of Biosciences, Biotechnologies and Biopharmaceutics and the Center of Excellence in Comparative Genomics, University of Bari, 70125 Bari, Italy, and
| | - Andrey A Nikiforov
- the Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia, the Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | | | | |
Collapse
|
47
|
Isachenko V, Todorov P, Isachenko E, Rahimi G, Tchorbanov A, Mihaylova N, Manoylov I, Mallmann P, Merzenich M. Long-Time Cooling before Cryopreservation Decreased Translocation of Phosphatidylserine (Ptd-L-Ser) in Human Ovarian Tissue. PLoS One 2015; 10:e0129108. [PMID: 26083026 PMCID: PMC4471081 DOI: 10.1371/journal.pone.0129108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/04/2015] [Indexed: 11/25/2022] Open
Abstract
Objectives To translocation (externalization) of phosphatidylserine lead at least the five negative effects observed during cells cryopreservation: hypoxia, increasing of intracellular Ca2+, osmotic disruption of cellular membranes, generation of reactive oxygen species (ROS) and lipid peroxidation. The aim of this study was to test the intensiveness of the phosphatidylserine translocation immediately after thawing and after 45 d xenografting of human ovarian tissue, which was either frozen just after operative removal from patient or cooled before cryopreservation to 5°C for 24 h and then frozen. Materials and Methods Ovarian fragments from twelve patients were divided into small pieces in form of cortex with medulla, and randomly divided into the following four groups. Pieces of Group 1 (n=30) were frozen immediately after operation, thawed and just after thawing their quality was analyzed. Group 2 pieces (n=30) after operation were cooled to 5°C for 24 h, then frozen after 24 h pre-cooling to 5°C, thawed and just after thawing their quality was analyzed. Group 3 pieces (n=30) were frozen immediately after operation without pre-cooling, thawed, transplanted to SCID mice and then, after 45 d of culture their quality was analyzed. Group 4 pieces (n=30) were frozen after 24 h pre-cooling to 5°C, thawed, transplanted to SCID mice and then, after 45 d their quality was analyzed. The effectiveness of the pre-freezing cooling of tissuewas evaluated by the development of follicles (histology) and by intensiveness of translocation of phosphatidylserine (FACS with FITC-Annexin V and Propidium Iodide). Results For groups 1, 2, 3 and 4 the mean densities of follicles per 1 mm3 was 19.0, 20.2, 12.9, and 12.2, respectively (P1-2, 3-4 >0.1). For these groups, 99%, 98%, 88% and 90% preantral follicles, respectively were morphologically normal (P1-2, 3-4 >0.1). The FACS analysis showed significantly decreased intensiveness of translocation of phosphatidylserine after pre-cooling of frozen tissue (46.3% and 33.6% in Groups 2 and 4, respectively), in contrast with tissue frozen without pre-cooling (77.1% and 60.2 % in Groups 1 and 3, respectively, P1, 3-2, 4 <0.05). Conclusions Long time (24 h) cooling of ovarian tissue to 5°C before cryopreservation decreased translocation of phosphatidylserine that evidences about increases the viability of the cells in the tissue after thawing.
Collapse
Affiliation(s)
- Vladimir Isachenko
- Research Group for Reproductive Medicine and IVF-Laboratory, CAM-Xenotransplantation Group, Department of Obstetrics and Genecology, Cologne University, Cologne, Germany
- * E-mail:
| | - Plamen Todorov
- Institute of Biology and Immunology of Reproduction, Sofia, Bulgaria
| | - Evgenia Isachenko
- Research Group for Reproductive Medicine and IVF-Laboratory, CAM-Xenotransplantation Group, Department of Obstetrics and Genecology, Cologne University, Cologne, Germany
| | - Gohar Rahimi
- Research Group for Reproductive Medicine and IVF-Laboratory, CAM-Xenotransplantation Group, Department of Obstetrics and Genecology, Cologne University, Cologne, Germany
| | | | | | | | - Peter Mallmann
- Research Group for Reproductive Medicine and IVF-Laboratory, CAM-Xenotransplantation Group, Department of Obstetrics and Genecology, Cologne University, Cologne, Germany
| | | |
Collapse
|
48
|
Qiao W, Zhang W, Shao S, Gai Y, Zhang M. Effect and mechanism of poly (ADP-ribose) polymerase-1 in aldosterone-induced apoptosis. Mol Med Rep 2015; 12:1631-8. [PMID: 25872931 PMCID: PMC4464439 DOI: 10.3892/mmr.2015.3596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 01/07/2015] [Indexed: 11/23/2022] Open
Abstract
The present study aimed to investigate the effects of aldosterone on vascular endothelial cells and the viability of poly (ADP-ribose) polymerase 1 (PARP1) in cells, and to examine the molecular mechanisms underlying the effects of aldosterone on vascular endothelial cell injury. Cultured endothelial cells were treated either with different concentrations of aldosterone for the same duration or with the same concentrations of aldosterone for different durations, and the levels of apoptosis and activity of PARP1 in the cells were detected, respectively. Aldosterone receptor antagonists or PARP1 inhibitors were added to cells during treatment with aldosterone and the levels of apoptosis and activity of PARP1 were detected. As the concentration of aldosterone increased or the treatment time increased, the number of apoptotic cells and the activity of PARP1 increased. The aldosterone receptor antagonists and PARP1 inhibitors inhibited the increase of apoptosis and PARP1 activity caused by aldosterone treatment. Aldosterone activated the activity of PARP1 via the aldosterone receptor, inhibiting cell proliferation and inducing apoptosis. Treatment with PARP1 may be used as a target for vascular diseases caused by aldosterone at high concentrations.
Collapse
Affiliation(s)
- Weiwei Qiao
- Department of Diagnostics, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Weili Zhang
- Department of Cardiology, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Shuhong Shao
- Department of Medical Psychology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yusheng Gai
- Department of Cardiology, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Mingxiang Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
49
|
Tang S, Nie Z, Li W, Li D, Huang Y, Yao S. A poly(ADP-ribose) polymerase-1 activity assay based on the FRET between a cationic conjugated polymer and supercharged green fluorescent protein. Chem Commun (Camb) 2015; 51:14389-92. [DOI: 10.1039/c5cc04170h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A label-free strategy for PARP-1 activity assay and inhibitors assessment has been developed based on the FRET between a cationic conjugated polymer (CCP) and supercharged green fluorescent protein (scGFP).
Collapse
Affiliation(s)
- Shiyun Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Wang Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Daiqi Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| |
Collapse
|
50
|
Hyperglycemia accentuates and ketonemia attenuates hypoglycemia-induced neuronal injury in the developing rat brain. Pediatr Res 2015; 77:84-90. [PMID: 25279990 DOI: 10.1038/pr.2014.146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 08/04/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND Prolonged hypoglycemia leads to brain injury, despite treatment with 10% dextrose. Whether induction of hyperglycemia or ketonemia achieves better neuroprotection is unknown. Hyperglycemia is neuroprotective in other brain injuries during development; however, it worsens hypoglycemia-induced injury in the adult brain via poly(ADP-ribose)polymerase-1 (PARP-1) overactivation. METHODS Three-week-old rats were subjected to insulin-induced hypoglycemia and treated with 10% dextrose or 50% dextrose. Neuronal injury, PARP-1, and brain-derived neurotrophic factor (BDNF) III/TrkB/p75(NTR) expressions were determined. In the second experiment, ketonemia was induced by administering β-hydroxybutyrate during hypoglycemia and its effect on neuronal injury was compared with those conventionally treated using 10% dextrose. RESULTS Both 10 and 50% dextrose administration led to hyperglycemia (50% dextrose > 10% dextrose). Compared with the 10% dextrose group, neuronal injury was greater in the 50% dextrose group and was accompanied by PARP-1 overactivation. BDNF III and p75(NTR), but not TrkBFL, mRNA expressions were upregulated. Neuronal injury was less severe in the rats subjected to ketonemia, compared with those conventionally treated using 10% dextrose. CONCLUSION Hyperglycemia accentuated hypoglycemia-induced neuronal injury, likely via PARP-1 overactivation. Although BDNF was upregulated, it was not neuroprotective and potentially exaggerated injury by binding to p75(NTR) receptor. Conversely, ketonemia during hypoglycemia attenuated neuronal injury.
Collapse
|