1
|
Garncarzová M, Veselý L, Kim B, Kim K, Heger D. Spectroscopic characterization of phenol in frozen aqueous solution and on the ice surface. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:125948. [PMID: 40068314 DOI: 10.1016/j.saa.2025.125948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/13/2025] [Accepted: 02/21/2025] [Indexed: 03/24/2025]
Abstract
Phenol is one of the omnipresent pollutants in the environment, frequently detected in ambient air, water, soil, snow, and ice. Due to its low aqueous reactivity and inability to undergo direct photolysis under typical tropospheric conditions, phenol can be widely distributed and accumulated in the environment for an extended period of time. However, the reactivity of phenol can be influenced by a number of factors, including temperature, pH, and phase transitions. The present study examines the impact of the ice matrix and ice surface on the photophysical properties of phenol via UV-VIS, fluorescence, and Raman spectroscopies. We demonstrate that the freezing of an aqueous solution results in the vitrification or crystallization of the freeze-concentrated solution. The latter case is accompanied by a bathochromic shift of the absorption spectrum above 290 nm. The most pronounced red-shifts were obtained for deprotonated and crystalline samples, which suggests that direct photolysis under tropospheric conditions would be significantly enhanced in these cases. The study further demonstrates the difference in the molecular arrangement in freeze-concentrated solutions as compared to the surface of Ih ice.
Collapse
Affiliation(s)
- Marie Garncarzová
- Masaryk University, Faculty of Science, Department of Chemistry, Czech Republic
| | - Lukáš Veselý
- Masaryk University, Faculty of Science, Department of Chemistry, Czech Republic
| | - Bomi Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Science, University of Science of Technology (UST), Incheon 21990, Republic of Korea
| | - Dominik Heger
- Masaryk University, Faculty of Science, Department of Chemistry, Czech Republic.
| |
Collapse
|
2
|
Frassati S, Carena L, Barbaro E, Roman M, Feltracco M, Minella M, Sordello F, Minero C, Spolaor A, Scalabrin E, Barbante C, Gambaro A. Photodegradation of bisphenol A and identification of photoproducts in artificial snow under UVA radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:126503. [PMID: 40403920 DOI: 10.1016/j.envpol.2025.126503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/18/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Bisphenol A (BPA) is an organic micropollutant detected in various environments, from urban to remote areas, including Arctic snow. As a known endocrine disruptor, it is essential to investigate its environmental fate and potential impact on ecosystems. Previous studies have explored BPA photodegradation and its transformation products in different aqueous environments (freshwater, seawater, and ice), by using photosensitizers to trigger specific reactions. However, there is still a significant gap in understanding the photodegradation processes in snow, which, although similar to ice, has distinct chemical and physical characteristics. In this work, we investigated the direct and indirect photodegradation of BPA in artificial snow and identified its degradation products through HPLC-HRMS. Nitrite and benzophenone-4-carboxylate, the latter used as a surrogate of chromophoric dissolved organic matter, induced significant BPA photodegradation under UVA irradiation. The photoproducts found in snow were partly similar to those previously observed in liquid water and ice. Their toxicity towards aquatic organisms was predicted with ECOSAR software as well. Finally, BPA photolysis and formation of photoproducts were investigated in two Alpine snow samples collected above and below the tree line, with a different organic matter content. Oxidation and nitration products of BPA were detected in these samples, suggesting that BPA photodegradation may indeed occur in natural snow. It was also noted that the aquatic toxicity of several identified photoproducts would be similar to that of BPA, but others may be even more toxic than the parent contaminant.
Collapse
Affiliation(s)
- Stefano Frassati
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Venice Mestre, Italy; Institute of Polar Sciences - National Research Council (CNR-ISP), Venice Mestre, Italy.
| | - Luca Carena
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy.
| | - Elena Barbaro
- Institute of Polar Sciences - National Research Council (CNR-ISP), Venice Mestre, Italy; Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Venice Mestre, Italy
| | - Marco Roman
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Venice Mestre, Italy
| | - Matteo Feltracco
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Venice Mestre, Italy
| | - Marco Minella
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Fabrizio Sordello
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Claudio Minero
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Andrea Spolaor
- Institute of Polar Sciences - National Research Council (CNR-ISP), Venice Mestre, Italy; Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Venice Mestre, Italy
| | - Elisa Scalabrin
- Institute of Polar Sciences - National Research Council (CNR-ISP), Venice Mestre, Italy; Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Venice Mestre, Italy
| | - Carlo Barbante
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Venice Mestre, Italy; Institute of Polar Sciences - National Research Council (CNR-ISP), Venice Mestre, Italy
| | - Andrea Gambaro
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Venice Mestre, Italy; Institute of Polar Sciences - National Research Council (CNR-ISP), Venice Mestre, Italy
| |
Collapse
|
3
|
Ammann M. Concluding remarks: Atmospheric chemistry in cold environments. Faraday Discuss 2025. [PMID: 40331293 PMCID: PMC12056704 DOI: 10.1039/d5fd00042d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025]
Abstract
Atmospheric chemistry in cold environments refers to key chemical processes occurring in Earth's atmosphere in locations relevant for society including the polar areas, the free and upper troposphere, and the stratosphere. Atmospheric chemistry in these areas is relevant for local air quality, ecosystem health, regional and global climate. This Faraday Discussion comprised excellent coverage of these areas in terms of longitude and latitude, altitude and temperature. It also featured a broad coverage of disciplines between physical, analytical and theoretical chemistry and also the related fields covering aspects of biology, health, meteorology, social sciences and even including policy and economic aspects. A core aspect of the discussions was rooted in interfacing the related diverse competences. Because traditional atmospheric chemistry has evolved around knowledge of mechanisms and kinetics of chemical reactions first in the gas phase and later including condensed phases of aerosol particles and ground surfaces centering around room temperature, the speciality of relevance in this Faraday Discussion was the recent progress in better understanding the evolution of multiphase chemistry at low temperatures, where many relevant properties such as solubility and volatility change dramatically. This was embedded in discussions of the results and challenges of the most recent measurements from a range of campaigns and long-term observations at research stations. The discussion evolved around the chemical cycles of important trace constituents, the formation and evolution of particulate matter under cold conditions, the link between cloud glaciation and air-mass characteristics, air-quality in cold urban environments, biosphere-atmosphere interactions in a warming Arctic, but also the role of interfacial chemistry and reactivity as they are involved in multiphase chemistry processes. Future threats for the cold part of our atmosphere come from increasing human activities in both polar regions with their impacts on ecosystems, air quality and broader scale atmospheric composition as well as from discussions of geoengineering via solar radiation modification by stratospheric aerosol injection.
Collapse
Affiliation(s)
- Markus Ammann
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland.
| |
Collapse
|
4
|
Kuhn J, Stutz J, Bartels-Rausch T, Thomas JL, Cesler-Maloney M, Simpson WR, Dibb JE, Heinlein LMD, Anastasio C. The interplay between snow and polluted air masses in cold urban environments. Faraday Discuss 2025. [PMID: 40033996 DOI: 10.1039/d4fd00176a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The role of persistent snow covers in wintertime urban air pollution chemistry remains largely unexplored. The interactions of chemistry and transport processes are complex and the physicochemical structure of snow is uncertain. For instance, it is still unclear to what extent uptake and chemistry occur on ice, a disordered interface layer on the ice, or in brine pockets at grain boundaries. We use a process-based one-dimensional coupled atmosphere-snow model to gain initial insight into the interaction of snow with high concentrations of SO2 and NO2 in polluted wintertime Fairbanks, AK, USA. Snow can act as a reservoir for both gases, allowing for fluxes into the snow (during polluted periods) and out of the snow (during cleaner periods). The geometrical distribution of liquid on ice is varied to approximate the conceptual difference between the disordered ice interface and brine in localized pockets. The behavior of SO2 is more sensitive to these differences, mostly due to its greater stickiness on ice and solubility in water compared to NO2, which remains mostly in the snow interstitial air. Liquid-phase chemical processing of both compounds is almost insensitive to the distribution of the liquid phase in the snow and mostly determined by the volume of liquid. Our study highlights the value of comprehensive process-based modeling to further our understanding of snow chemistry. Our model platform can serve as a tool to inform and support future research efforts on improving our understanding of the liquid content of snow, chemical processing on ice surfaces, and, in general, the influence of snow on atmospheric chemistry.
Collapse
Affiliation(s)
- Jonas Kuhn
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, USA.
| | - Jochen Stutz
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, USA.
| | | | - Jennie L Thomas
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP (Institute of Engineering and Management Univ. Grenoble Alpes), IGE, 38000 Grenoble, France
| | | | | | - Jack E Dibb
- University of New Hampshire, Earth Systems Research Center/EOS, Durham, New Hampshire, USA
| | - Laura M D Heinlein
- Department of Land, Air, and Water Resources, University of California, Davis, USA
| | - Cort Anastasio
- Department of Land, Air, and Water Resources, University of California, Davis, USA
| |
Collapse
|
5
|
Maurais J, Wespiser C, Robidas R, Legault CY, Ayotte P. Trapping intermediates of the NO 2 hydrolysis reaction on ice. Faraday Discuss 2025. [PMID: 40013729 DOI: 10.1039/d4fd00161c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Using molecular beam methods, a mixture of stable NO2, O2NNO2, and up to 30% relative abundance of metastable t-ONONO2, a potential heterogeneous hydrolysis reaction intermediate, was prepared by heating the quasi-effusive molecular beam nozzle to 600 K. The chemical speciation of hot nitrogen dioxide vapours was established using reflection-absorption IR spectroscopy (RAIRS) at very high (i.e., 1 : 1000) dilution by exploiting selective enhancement in absorbance features due to electric field standing waves (EFSW). Mode-selective shifts in the NO stretching vibrational frequencies of these species are observed upon their adsorption to the surface of amorphous solid water (ASW) at 40 K compared to their value in a crystalline solid argon matrix. Their sensitivities to hydration were assessed by computational chemistry methods using clusters of up to ten water molecules. This revealed that the shifts in the vibrational frequency of the terminal NO stretching mode and of the asymmetric ONO stretching mode of the terminal -NO2 group of t-ONONO2 upon its adsorption onto the surface of ASW signal that its ON-ONO2 bond is significantly polarized. Upon thermal annealing of the sample to 130 K, spectral signatures attributed to adsorbed nitrate anions can be observed suggesting that the activation barrier to heterogenous hydrolysis of the ON+·-ONO2 zwitterionic reaction intermediate is sufficiently small to be overcome at cryogenic temperatures. Facile NO2 hydrolysis on aqueous interfaces could contribute to their acidification and to elevated nitrous acid emission fluxes to the lower troposphere.
Collapse
Affiliation(s)
- Josée Maurais
- Département de chimie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| | - Clément Wespiser
- Département de chimie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| | - Raphaël Robidas
- Département de chimie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| | - Claude Y Legault
- Département de chimie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| | - Patrick Ayotte
- Département de chimie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| |
Collapse
|
6
|
Kumar A, Kumar P. Dissociation of H 2O 2 on water surfaces (ice and water droplets). Phys Chem Chem Phys 2024; 26:11331-11339. [PMID: 38563356 DOI: 10.1039/d3cp04107g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
OH radicals are an important constituent of the atmosphere. Therefore, all reactions that act as a source of OH radicals are important. It is known that photo-dissociation of H2O2 is an important source of OH radicals in the atmosphere. In the present study, using Born-Oppenheimer molecular dynamics simulations, we have shown that the H2O2 molecule can dissociate thermally on water droplets, as well as on the surface of ice, to form OH radicals. Furthermore, the dissociation of H2O2 was found to be very fast (less than 50 fs) on the ice surface compared with on the water droplets. We believe this route for the formation of OH radicals could be more critical than photo-dissociation, as it can take place both during the day and at night, but further studies with more sophisticated theoretical approaches or experiments are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| | - Pradeep Kumar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| |
Collapse
|
7
|
Xu Y, Stanko AM, Cerione CS, Lohrey TD, McLeod E, Stoltz BM, Su J. Low Part-Per-Trillion, Humidity Resistant Detection of Nitric Oxide Using Microtoroid Optical Resonators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5120-5128. [PMID: 38240231 DOI: 10.1021/acsami.3c16012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The nitric oxide radical plays pivotal roles in physiological as well as atmospheric contexts. Although the detection of dissolved nitric oxide in vivo has been widely explored, highly sensitive (i.e., low part-per-trillion level), selective, and humidity-resistant detection of gaseous nitric oxide in air remains challenging. In the field, humidity can have dramatic effects on the accuracy and selectivity of gas sensors, confounding data, and leading to overestimation of gas concentration. Highly selective and humidity-resistant gaseous NO sensors based on laser-induced graphene were recently reported, displaying a limit of detection (LOD) of 8.3 ppb. Although highly sensitive (LOD = 590 ppq) single-wall carbon nanotube NO sensors have been reported, these sensors lack selectivity and humidity resistance. In this report, we disclose a highly sensitive (LOD = 2.34 ppt), selective, and humidity-resistant nitric oxide sensor based on a whispering-gallery mode microtoroid optical resonator. Excellent analyte selectivity was enabled via novel ferrocene-containing polymeric coatings synthesized via reversible addition-fragmentation chain-transfer polymerization. Utilizing a frequency locked optical whispering evanescent resonator system, the microtoroid's real-time resonance frequency shift response to nitric oxide was tracked with subfemtometer resolution. The lowest concentration experimentally detected was 6.4 ppt, which is the lowest reported to date. Additionally, the performance of the sensor remained consistent across different humidity environments. Lastly, the impact of the chemical composition and molecular weight of the novel ferrocene-containing polymeric coatings on sensing performance was evaluated. We anticipate that our results will have impact on a wide variety of fields where NO sensing is important such as medical diagnostics through exhaled breath, determination of planetary habitability, climate change, air quality monitoring, and treating cardiovascular and neurological disorders.
Collapse
Affiliation(s)
- Yinchao Xu
- Wyant College of Optical Sciences, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Allison M Stanko
- The Warren and Catherine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Chloe S Cerione
- The Warren and Catherine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Trevor D Lohrey
- The Warren and Catherine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Euan McLeod
- Wyant College of Optical Sciences, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Brian M Stoltz
- The Warren and Catherine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Judith Su
- Wyant College of Optical Sciences, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
8
|
Korejwo E, Panasiuk A, Wawrzynek-Borejko J, Jędruch A, Bełdowski J, Paturej A, Bełdowska M. Mercury concentrations in Antarctic zooplankton with a focus on the krill species, Euphausia superba. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167239. [PMID: 37742970 DOI: 10.1016/j.scitotenv.2023.167239] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
The Antarctic is the most isolated region in the world; nevertheless, it has not avoided the negative impact of human activity, including the inflow of toxic mercury (Hg). Hg deposited in the Antarctic marine environment can be bioavailable and accumulate in the food web, reaching elevated concentrations in high-trophic-level biota, especially if methylated. Zooplankton, together with phytoplankton, are critical for the transport of pollutants, including Hg to higher trophic levels. For the Southern Ocean ecosystem, one of the key zooplankton components is the Antarctic krill Euphausia superba, the smaller euphausiid Thysanoessa macrura, and the amphipod Themisto gaudichaudii - a crucial food source for most predatory fish, birds, and mammals. The main goal of this study was to determine the Hg burden, as well as the distribution of different Hg forms, in these dominant Antarctic planktonic crustaceans. The results showed that the highest concentrations of Hg were found in T. gaudichaudii, a typically predatory taxon. Most of the Hg in the tested crustaceans was labile and potentially bioavailable for planktivorous organisms, with the most dangerous methylmercury (MeHg) accounting for an average of 16 % of the total mercury. Elevated Hg concentrations were observed close to the land, which is influenced by the proximity to penguin and pinniped colonies. In areas near the shore, volcanic activity might be a possible cause of the increase in mercury sulfide (HgS) content. The total Hg concentration increased with the trophic position and ontogenetic stage of predation, specific to adult organisms. In contrast, the proportion of MeHg decreased with age, indicating more efficient demethylation or elimination. The Hg magnification kinetics in the study area were relatively high, which may be related to climate-change induced alterations of the Antarctic ecosystem: additional food sources and reshaped trophic structure.
Collapse
Affiliation(s)
- Ewa Korejwo
- Polish Academy of Sciences, Institute of Oceanology, Department of Marine Chemistry, and Biochemistry, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Anna Panasiuk
- University of Gdansk, Faculty of Oceanography and Geography Laboratory of Marine Plankton Biology, Division of Marine Biology and Biotechnology, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Justyna Wawrzynek-Borejko
- University of Gdansk, Faculty of Oceanography and Geography, Division of Marine Ecosystems Functioning, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Agnieszka Jędruch
- Polish Academy of Sciences, Institute of Oceanology, Department of Marine Chemistry, and Biochemistry, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Jacek Bełdowski
- Polish Academy of Sciences, Institute of Oceanology, Department of Marine Chemistry, and Biochemistry, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Alicja Paturej
- University of Gdansk, Faculty of Oceanography and Geography, Division of Chemical Oceanography and Marine Geology, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Magdalena Bełdowska
- University of Gdansk, Faculty of Oceanography and Geography, Division of Chemical Oceanography and Marine Geology, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
9
|
Moreno J, Ramos AM, Raposeiro PM, Santos RN, Rodrigues T, Naughton F, Moreno F, Trigo RM, Ibañez-Insa J, Ludwig P, Shi X, Hernández A. Identifying imprints of externally derived dust and halogens in the sedimentary record of an Iberian alpine lake for the past ∼13,500 years - Lake Peixão, Serra da Estrela (Central Portugal). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166179. [PMID: 37572895 DOI: 10.1016/j.scitotenv.2023.166179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Iberian lacustrine sediments are a valuable archive to document environmental changes since the last glacial termination, seen as key for anticipating future climate/environmental changes and their far-reaching implications for generations to come. Herein, multi-proxy-based indicators of a mountain lake record from Serra da Estrela were used to reconstruct atmospheric (in)fluxes and associated climatic/environmental changes over the last ∼13.5 ka. Depositions of long-range transported dust (likely from the Sahara) and halogens (primarily derived from seawater) were higher for the pre-Holocene, particularly in the late Bølling-Allerød-Younger Dryas period, compared to the Holocene. This synchronous increase could be related to a recognized dust-laden atmosphere, along with the combined effect of (i) an earlier proposed effective transport of Sahara dust for higher latitudes during cold periods and (ii) the progressive Polar Front expansion southwards, with the amplification of halogen activation reactions in lower latitudes due to greater closeness to snow/sea ice (halide-laden) surfaces. Additionally, the orographic blocking of Serra da Estrela may have played a critical role in increasing precipitation of Atlantic origin at higher altitudes, with the presence of snow prompting physical and chemical processes involving halogen species. In the Late Holocene, the dust proxy records highlighted two periods of enhanced input to Lake Peixão, the first (∼3.5-2.7 ka BP) after the end of the last African Humid Period and the second, from the 19th century onwards, agreeing with the advent of commercial agriculture, and human contribution to land degradation and dust emission in the Sahara/Sahel region. The oceanic imprints throughout the Holocene matched well with North Atlantic rapid climatic changes that, in turn, coincided with ice-rafted debris or Bond events and other records of increased storminess for the European coasts. Positive parallel peaks in halogens were found in recent times, probably connected to fire extinction by halogenated alkanes and roadway de-icing.
Collapse
Affiliation(s)
- J Moreno
- Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, 1749-016 Lisboa, Portugal.
| | - A M Ramos
- Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, 1749-016 Lisboa, Portugal; Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - P M Raposeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Rua da Mãe de Deus, 9500-321 Ponta Delgada, Portugal; Faculdade de Ciências e Tecnologia, Universidade dos Açores, Rua da Mãe de Deus, 9500-321 Ponta Delgada, Portugal
| | - R N Santos
- Instituto Português do Mar e da Atmosfera (IPMA), Rua C do Aeroporto, 1749-077 Lisboa, Portugal
| | - T Rodrigues
- Instituto Português do Mar e da Atmosfera (IPMA), Rua C do Aeroporto, 1749-077 Lisboa, Portugal; Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Estrada da Penha, 8005-139 Faro, Portugal
| | - F Naughton
- Instituto Português do Mar e da Atmosfera (IPMA), Rua C do Aeroporto, 1749-077 Lisboa, Portugal; Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Estrada da Penha, 8005-139 Faro, Portugal
| | - F Moreno
- Independent Researcher, Caminho da Portela, n. ° 97, Cascalha, 4940-061 Bico PCR, Portugal
| | - R M Trigo
- Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, 1749-016 Lisboa, Portugal; Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-919, Brazil
| | - J Ibañez-Insa
- Geosciences Barcelona (GEO3BCN-CSIC), Lluís Solé i Sabarís s/n, E-08028 Barcelona, Spain
| | - P Ludwig
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - X Shi
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China
| | - A Hernández
- Universidade da Coruña, GRICA Group, Centro Interdisciplinar de Química e Bioloxía (CICA), Rúa As Carballeiras, 15071 A Coruña, Spain
| |
Collapse
|
10
|
Joliat J, Picaud S, Jedlovszky P. Competitive Adsorption of Trace Gases on Ice at Tropospheric Temperatures: A Grand Canonical Monte Carlo Simulation Study. J Phys Chem A 2023; 127:10223-10232. [PMID: 38000079 DOI: 10.1021/acs.jpca.3c04789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
The coadsorption of two atmospheric trace gases on ice is characterized by using, for the first time, grand canonical Monte Carlo (GCMC) simulations performed in conditions similar to those of the corresponding experiments. Adsorption isotherms are simulated at tropospheric temperatures by considering two different gas mixtures of 1-butanol and acetic acid molecules, and selectivity of the ice surface with respect to these species is interpreted at the molecular scale as resulting from a competition process between these molecules for being adsorbed at the ice surface. It is thus shown that the trapping of acetic acid molecules on ice is always favored with respect to that of 1-butanol at low pressures, corresponding to low coverage of the surface, whereas the adsorption of the acid species is significantly modified by the presence of the alcohol molecules in the saturated portion of the adsorption isotherm, in accordance with the experimental observations. The present GCMC simulations thus confirm that competitive adsorption effects have to be taken into consideration in real situations when gas mixtures present in the troposphere interact with the surface of ice particles.
Collapse
Affiliation(s)
- Julien Joliat
- Institut UTINAM─UMR 6213, CNRS/Université de Franche-Comté, 25000 Besançon, France
| | - Sylvain Picaud
- Institut UTINAM─UMR 6213, CNRS/Université de Franche-Comté, 25000 Besançon, France
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly Catholic University, Leányka U. 6, H-3300 Eger, Hungary
| |
Collapse
|
11
|
Ye C, Zhou X, Zhang Y, Wang Y, Wang J, Zhang C, Woodward-Massey R, Cantrell C, Mauldin RL, Campos T, Hornbrook RS, Ortega J, Apel EC, Haggerty J, Hall S, Ullmann K, Weinheimer A, Stutz J, Karl T, Smith JN, Guenther A, Song S. Synthesizing evidence for the external cycling of NO x in high- to low-NO x atmospheres. Nat Commun 2023; 14:7995. [PMID: 38042847 PMCID: PMC10693570 DOI: 10.1038/s41467-023-43866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023] Open
Abstract
External cycling regenerating nitrogen oxides (NOx ≡ NO + NO2) from their oxidative reservoir, NOz, is proposed to reshape the temporal-spatial distribution of NOx and consequently hydroxyl radical (OH), the most important oxidant in the atmosphere. Here we verify the in situ external cycling of NOx in various environments with nitrous acid (HONO) as an intermediate based on synthesized field evidence collected onboard aircraft platform at daytime. External cycling helps to reconcile stubborn underestimation on observed ratios of HONO/NO2 and NO2/NOz by current chemical model schemes and rationalize atypical diurnal concentration profiles of HONO and NO2 lacking noontime valleys specially observed in low-NOx atmospheres. Perturbation on the budget of HONO and NOx by external cycling is also found to increase as NOx concentration decreases. Consequently, model underestimation of OH observations by up to 41% in low NOx atmospheres is attributed to the omission of external cycling in models.
Collapse
Affiliation(s)
- Chunxiang Ye
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKL-ESPC), College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Xianliang Zhou
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Environmental Health Sciences, State University of New York, Albany, NY, USA
| | - Yingjie Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKL-ESPC), College of Environmental Sciences and Engineering, Peking University, Beijing, China
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Youfeng Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKL-ESPC), College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Jianshu Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKL-ESPC), College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Chong Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKL-ESPC), College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Robert Woodward-Massey
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKL-ESPC), College of Environmental Sciences and Engineering, Peking University, Beijing, China
- Department of Chemistry, University of Leeds, Leeds, UK
| | - Christopher Cantrell
- Université Paris-est Créteil, LISA (Laboratoire Interuniversitaire des Systèmes Atmosphériques), Paris, France
| | - Roy L Mauldin
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Teresa Campos
- National Center for Atmospheric Research, Boulder, CO, USA
| | | | - John Ortega
- National Center for Atmospheric Research, Boulder, CO, USA
| | - Eric C Apel
- National Center for Atmospheric Research, Boulder, CO, USA
| | - Julie Haggerty
- National Center for Atmospheric Research, Boulder, CO, USA
| | - Samuel Hall
- National Center for Atmospheric Research, Boulder, CO, USA
| | - Kirk Ullmann
- National Center for Atmospheric Research, Boulder, CO, USA
| | | | - Jochen Stutz
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA
| | - Thomas Karl
- Institute for Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria
| | - James N Smith
- Earth System Science, University of California, Irvine, CA, USA
| | - Alex Guenther
- Earth System Science, University of California, Irvine, CA, USA
| | - Shaojie Song
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Weatherly S, Lyons R. The photolytic conversion of 4-nonylphenol to 4-nonylcatechol within snowpack of the Palisade Glacier, Sierra Nevada, CA, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162835. [PMID: 36924957 DOI: 10.1016/j.scitotenv.2023.162835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
4-Nonylphenol (4-NP), an environmental pollutant with potent ecotoxicological effects, has been discovered in significant quantities in glacial ice and snow of the Sierra Nevada Mountain Range, CA. Photolysis of 4-NP is suspected to be a major, if not the sole, breakdown pathway in snow. However, the photolysis process has yet to be characterized in detail for this unique environment. This study therefore seeks to (1) confirm the presence of the major photolysis product within snowpack and snowmelt samples from the Palisade Glacier, CA, (2) determine key photolysis parameters through laboratory assays in snow analogs, and (3) compute environmentally relevant photolysis rates in snowpack via a spectral solar irradiance model parameterized for the Palisade Glacier. The primary photooxidation product of 4-NP, 4-nonylcatechol (4-NC), was synthesized and characterized by NMR and GC-MS for use as a reference standard in the detection of 4-NC in environmental samples. 4-NP was detected in all snowpack (n = 4) and snowmelt (n = 5) samples, with concentrations of 1.05 (± 0.11) μg L-1 and 1.28 (± 0.12) μg L-1, respectively. 4-NC was detected in all snowmelt outflow samples and all but one snow samples (88 % detection frequency) but was below the limit of quantification for the given method. All samples were collected during a sampling regime at the Palisade Glacier in August of 2021. Quantum yields of photolysis at the 277 nm absorption band were determined to be 0.36 (±0.06) and 0.21 (±0.06) in ultrapure water and liquid snow, respectively. Under clear sky conditions at the Palisade Glacier, half-lives for 4-NP are estimated to range from 235 to 251 h (9.8-10.5 days) based on assays conducted in liquid snowmelt and irradiance modeling. These results suggest that the photolysis of 4-NP, and hence the production of 4-NC, is occurring at significant rates within the snowpack where 4-NC is inevitably released to downstream catchment areas via snowmelt. 4-NC is significantly more toxic than its precursor, thereby raising amplified concerns for downstream human and wildlife populations. Furthermore, the ubiquity of 4-NP among the Earth's environments presents this as an issue of potentially global concern.
Collapse
Affiliation(s)
- Shaun Weatherly
- University of Redlands, 1200 E Colton Ave., Redlands, CA 92373, United States of America.
| | - Rebecca Lyons
- University of Redlands, 1200 E Colton Ave., Redlands, CA 92373, United States of America
| |
Collapse
|
13
|
Sivells T, Viswanathan P, Cyran JD. Quantification of anion and cation uptake in ice Ih crystals. J Chem Phys 2023; 158:134507. [PMID: 37031133 DOI: 10.1063/5.0141057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
While ice has very low solubility for salts compared to water, small amounts of ions are doped into ice crystals. These small ion dopants can alter the fundamental physical and chemical properties of ice, such as its structure and electrical conductivity. Therefore, these results could have a direct impact on the chemical reactivity of ice and ice surfaces. Here, we examine the influence of the uptake of three salts—ammonium chloride (NH4Cl), sodium chloride (NaCl), and ammonium sulfate [(NH4)2SO4]—on ice Ih formation using capillary electrophoresis. Using both cation and anion modes, we observed and quantified the uptake of individual ions into the ice. Our results indicate that anions have a higher propensity for uptake into ice Ih crystals.
Collapse
Affiliation(s)
- Tiara Sivells
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, USA
| | - Pranav Viswanathan
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, USA
| | - Jenée D. Cyran
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, USA
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, USA
| |
Collapse
|
14
|
Keuschnig C, Vogel TM, Barbaro E, Spolaor A, Koziol K, Björkman MP, Zdanowicz C, Gallet JC, Luks B, Layton R, Larose C. Selection processes of Arctic seasonal glacier snowpack bacterial communities. MICROBIOME 2023; 11:35. [PMID: 36864462 PMCID: PMC9979512 DOI: 10.1186/s40168-023-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Arctic snowpack microbial communities are continually subject to dynamic chemical and microbial input from the atmosphere. As such, the factors that contribute to structuring their microbial communities are complex and have yet to be completely resolved. These snowpack communities can be used to evaluate whether they fit niche-based or neutral assembly theories. METHODS We sampled snow from 22 glacier sites on 7 glaciers across Svalbard in April during the maximum snow accumulation period and prior to the melt period to evaluate the factors that drive snowpack metataxonomy. These snowpacks were seasonal, accumulating in early winter on bare ice and firn and completely melting out in autumn. Using a Bayesian fitting strategy to evaluate Hubbell's Unified Neutral Theory of Biodiversity at multiple sites, we tested for neutrality and defined immigration rates at different taxonomic levels. Bacterial abundance and diversity were measured and the amount of potential ice-nucleating bacteria was calculated. The chemical composition (anions, cations, organic acids) and particulate impurity load (elemental and organic carbon) of the winter and spring snowpack were also characterized. We used these data in addition to geographical information to assess possible niche-based effects on snow microbial communities using multivariate and variable partitioning analysis. RESULTS While certain taxonomic signals were found to fit the neutral assembly model, clear evidence of niche-based selection was observed at most sites. Inorganic chemistry was not linked directly to diversity, but helped to identify predominant colonization sources and predict microbial abundance, which was tightly linked to sea spray. Organic acids were the most significant predictors of microbial diversity. At low organic acid concentrations, the snow microbial structure represented the seeding community closely, and evolved away from it at higher organic acid concentrations, with concomitant increases in bacterial numbers. CONCLUSIONS These results indicate that environmental selection plays a significant role in structuring snow microbial communities and that future studies should focus on activity and growth. Video Abstract.
Collapse
Affiliation(s)
- Christoph Keuschnig
- Formerly at Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
- Currently at Interface Geochemistry, German Research Center for Geosciences, GFZ, Potsdam, Germany
| | - Timothy M Vogel
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
| | - Elena Barbaro
- Institute of Polar Sciences, ISP-CNR, Via Torino 155, 30170, Venice Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Andrea Spolaor
- Institute of Polar Sciences, ISP-CNR, Via Torino 155, 30170, Venice Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Krystyna Koziol
- Department of Environmental Change and Geochemistry, Faculty of Geographical Sciences, the Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
| | - Mats P Björkman
- Department of Earth Sciences, University of Gothenburg, Box 460, SE-40530, Gothenburg, Sweden
| | - Christian Zdanowicz
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-75236, Uppsala, Sweden
| | | | - Bartłomiej Luks
- Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452, Warsaw, Poland
| | - Rose Layton
- Formerly at Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
| | - Catherine Larose
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France.
| |
Collapse
|
15
|
Zhang S, Zhang C, Fu Y, Li L, Huang C, Lin Y, Zhu C, Francisco JS, He Z, Zhou X, Wang J. Role of an Ice Surface in the Photoreaction of Coumarins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11346-11353. [PMID: 36066243 DOI: 10.1021/acs.langmuir.2c01637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ice affects many chemical reactions in nature, which greatly influences the atmosphere, climate, and life. However, the exact mechanism of ice in these chemical reactions remains elusive. For example, it is still an open question as to whether ice can act as a catalyst to greatly enhance the reactivity and selectivity, which is essential for the production of some natural compounds in our planet. Here, we discover that ice can lead to high efficiency and stereoselectivity of the [2 + 2] photodimerization of coumarin and its derivatives. The conversion of the [2 + 2] photodimerization of coumarins enhanced by ice is dozens of times higher than that in the unfrozen saturated solution, and the reaction displays a high syn-head-head stereoselectivity (>95%) in comparison with those in the absence of the ice. Note that almost no reaction occurs in the crystal powder and melt of the coumarins, indicating that the role of ice in the photodimerization reaction is not simply due to the usual mechanisms found in the freezing concentration. We further reveal that the reaction rate is found to be proportional to the total area of the ice surface and follows Michaelis-Menten-like kinetics, indicating that the ice surface catalyzes the reaction. Molecular dynamics simulations demonstrate that ice surfaces can induce reactants to form a two-dimensional liquid-crystal-ordered layer with a suitable intermolecular distance and unique side-by-side packing, facilitating stereoselective photodimerization for syn-head-head dimers. These findings give evidence that ice-surface-induced molecular assembly may play an important role in atmospheric heterogeneous photoreaction processes.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chuanbiao Zhang
- College of Physics and Electronic Engineering, Heze University, Heze 274015, P. R. China
| | - Yang Fu
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Linhai Li
- Key Laboratory for Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chuanbing Huang
- Key Laboratory for Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yang Lin
- Key Laboratory for Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100190, P. R. China
- Department of Earth & Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joseph S Francisco
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100190, P. R. China
| | - Zhiyuan He
- Key Laboratory for Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | | | - Jianjun Wang
- Key Laboratory for Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
16
|
Kim B, Do H, Kim BM, Lee JH, Kim S, Kim EJ, Lee J, Cho SM, Kim K. Freezing-enhanced oxidation of iodide by hydrogen peroxide in the presence of antifreeze proteins from the Arctic yeast Leucosporidium sp.AY30. ENVIRONMENTAL RESEARCH 2022; 212:113233. [PMID: 35390302 DOI: 10.1016/j.envres.2022.113233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Ice-binding proteins (IBPs), originating from Arctic or Antarctic microorganisms, have freeze-inhibiting characteristics, allowing these organisms to survive in polar regions. Despite their significance in polar environments, the mechanism through which IBPs affect the chemical reactions in ice by controlling ice crystal formation has not yet been reported. In this study, a new mechanism for iodide (I-) activation into triiodide (I3-), which is the abundant iodine species in seawater, by using hydrogen peroxide (H2O2) in a frozen solution with IBPs was developed. A significant enhancement of I- activation into I3- was observed in the presence of Arctic-yeast-originating extracellular ice-binding glycoprotein (LeIBP) isolated from Leucosporidium sp. AY30, and a further increase in the I3- concentration was observed with the introduction of H2O2 to the frozen solution (25 times higher than in the aqueous solution after 24 h of reaction). The reaction in the ice increased with an increase in LeIBP concentration. The in-situ pH measurement in ice using cresol red (CR) revealed protons accumulated in the ice grain boundaries by LeIBP. However, the presence of LeIBP did not influence the acidity of the ice. The enhanced freeze concentration effect of H2O2 by LeIBP indicated that larger ice granules were formed in the presence of LeIBP. The results suggest that LeIBP affects the formation and morphology of ice granules, which reduces the total volume of ice boundaries throughout the ice. This leads to an increased local concentration of I- and H2O2 within the ice grain boundaries. IBP-assisted production of gaseous iodine in a frozen environment provides a previously unrecognized formation mechanism of active iodine species in the polar regions.
Collapse
Affiliation(s)
- Bomi Kim
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon, 21990, Republic of Korea
| | - Hackwon Do
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon, 21990, Republic of Korea
| | - Bo Mi Kim
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jun Hyuck Lee
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon, 21990, Republic of Korea
| | - Sanghee Kim
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Eun Jae Kim
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jungeun Lee
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Sung Mi Cho
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon, 21990, Republic of Korea.
| |
Collapse
|
17
|
Chen Z, Bononi FC, Sievers CA, Kong WY, Donadio D. UV-Visible Absorption Spectra of Solvated Molecules by Quantum Chemical Machine Learning. J Chem Theory Comput 2022; 18:4891-4902. [PMID: 35913220 DOI: 10.1021/acs.jctc.1c01181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Predicting UV-visible absorption spectra is essential to understand photochemical processes and design energy materials. Quantum chemical methods can deliver accurate calculations of UV-visible absorption spectra, but they are computationally expensive, especially for large systems or when one computes line shapes from thermal averages. Here, we present an approach to predict UV-visible absorption spectra of solvated aromatic molecules by quantum chemistry (QC) and machine learning (ML). We show that a ML model, trained on the high-level QC calculation of the excitation energy of a set of aromatic molecules, can accurately predict the line shape of the lowest-energy UV-visible absorption band of several related molecules with less than 0.1 eV deviation with respect to reference experimental spectra. Applying linear decomposition analysis on the excitation energies, we unveil that our ML models probe vertical excitations of these aromatic molecules primarily by learning the atomic environment of their phenyl rings, which align with the physical origin of the π →π* electronic transition. Our study provides an effective workflow that combines ML with quantum chemical methods to accelerate the calculations of UV-visible absorption spectra for various molecular systems.
Collapse
Affiliation(s)
- Zekun Chen
- Department of Chemistry, University of California Davis 95616, California, United States
| | - Fernanda C Bononi
- Department of Chemistry, University of California Davis 95616, California, United States
| | - Charles A Sievers
- Department of Chemistry, University of California Davis 95616, California, United States
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California Davis 95616, California, United States
| | - Davide Donadio
- Department of Chemistry, University of California Davis 95616, California, United States
| |
Collapse
|
18
|
Niu H, Lu X, Zhang G, Sarangi C. Investigation of water-soluble organic constituents and their spatio-temporal heterogeneity over the Tibetan Plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119093. [PMID: 35245621 DOI: 10.1016/j.envpol.2022.119093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Investigating the migration and transformation of carbonaceous and nitrogenous matter in the cryosphere areas is crucial for understanding global biogeochemical cycle and earth's climate system. However, water-soluble organic constituents and their transformation in multiple water bodies are barely investigated. Water-soluble organic carbon (WSOC) and organic nitrogen (WSON), and particulate black carbon (PBC) in multiple types of water bodies in eastern Tibetan Plateau (TP) cryosphere for the first time have been systematically investigated. Statistical results exhibited that from south to north and from east to west of this region, WSOC concentrations in alpine river runoff were gradually elevated. WSOC and nitrogenous matter in the alpine river runoff and precipitation in the glacier region presented distinct seasonal variations. WSON was the dominant component (63.4%) of water-soluble total nitrogen in precipitation over high-altitude southeastern TP cryosphere. Water-soluble carbonaceous matter dominated the carbon cycle in the TP cryosphere, but particulate carbonaceous matter in the alpine river runoff had a small fraction of the cryospheric carbon cycle. Analysis of optical properties illustrated that PBC had a much stronger light absorption ability (MAC-PBC: 2.28 ± 0.37 m2 g-1) than WSOC in the alpine river runoff (0.41 ± 0.26 m2 g-1). Ionic composition was dominated by SO42-, NO3-, and NH4+ (average: 45.13 ± 3.75%) in the snow of glaciers, implying important contribution of (fossil fuel) combustion sources over this region. The results of this study have essential implications for understanding the carbon and nitrogen cycles in high altitude cryosphere regions of the world. Future work should be performed based on more robust in-situ observations and measurements from multiple environmental medium over the cryosphere areas, to ensure ecological protection and high-quality development of the high mountain Asia.
Collapse
Affiliation(s)
- Hewen Niu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Xixi Lu
- Department of Geography, National University of Singapore, 1 Arts Link, 117570, Singapore
| | - Guotao Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chandan Sarangi
- Department of Civil Engineering, Indian Institute of Technology, Madras, Chennai, India; Laboratory for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
19
|
Zhou Y, West CP, Hettiyadura APS, Pu W, Shi T, Niu X, Wen H, Cui J, Wang X, Laskin A. Molecular Characterization of Water-Soluble Brown Carbon Chromophores in Snowpack from Northern Xinjiang, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4173-4186. [PMID: 35287433 DOI: 10.1021/acs.est.1c07972] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study reports molecular-level characterization of brown carbon (BrC) attributed to water-soluble organic carbon in six snowpack samples collected from northern Xinjiang, China. The molecular composition and light-absorbing properties of BrC chromophores were unraveled by application of high-performance liquid chromatography (HPLC) coupled to a photodiode array (PDA) detector and high-resolution mass spectrometry. The chromophores were classified into five major types, that is, (1) phenolic/lignin-derivedcompounds, (2) flavonoids, (3) nitroaromatics, (4) oxygenated aromatics, and (5) other chromophores. Identified chromophores account for ∼23-64% of the total light absorption measured by the PDA detector in the wavelength range of 300-370 nm. In the representative samples from urban and remote areas, oxygenated aromatics and nitroaromatics dominate the absorption in the wavelengths below and above 320 nm, respectively. The highly polluted urban sample shows the most complex HPLC-PDA chromatogram, and more other chromophores contribute to the bulk absorption. Phenolic/lignin-derived compounds are the most light-absorbing species in the soil-influenced sample. Chromophores in two remote samples exhibit ultraviolet-visible features distinct from other samples, which are attributed to flavonoids. Identification of individual chromophores and quantitative analysis of their optical properties are helpful for elucidating the roles of BrC in snow radiative balance and photochemistry.
Collapse
Affiliation(s)
- Yue Zhou
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christopher P West
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anusha P S Hettiyadura
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wei Pu
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tenglong Shi
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoying Niu
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hui Wen
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiecan Cui
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xin Wang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
20
|
Chakraborty S, Stubbs AD, Kahan TF. Direct Observation of Anthracene Clusters at Ice Surfaces. J Am Chem Soc 2022; 144:751-756. [PMID: 34982936 DOI: 10.1021/jacs.1c09220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heterogeneous processes can control atmospheric composition. Snow and ice present important, but poorly understood, reaction media that can greatly alter the composition of air in the cryosphere in polar and temperate regions. Atmospheric scientists struggle to reconcile model predictions with field observations in snow-covered regions due in part to experimental challenges associated with monitoring reactions at air-ice interfaces, and debate regarding reaction kinetics and mechanisms has persisted for over a decade. In this work, we use wavelength-resolved fluorescence microscopy to determine the distribution and chemical speciation of the pollutant anthracene at environmentally relevant frozen surfaces. Our results indicate that anthracene adsorbs to frozen surfaces in monomeric form, but that following lateral diffusion, molecules ultimately reside within brine channels at saltwater ice surfaces, and in micron-sized clusters at freshwater ice surfaces; emission profiles indicate extensive self-association. We also measure anthracene photodegradation kinetics in aqueous solution and artificial snow prepared from frozen freshwater and saltwater solutions. Our results suggest that anthracene─and likely other aromatic pollutants─undergo bimolecular photodegradation at the surface of freshwater ice and sea ice, but not at the surface of frozen organic matter. These results will improve predictions of pollutant fate and exposure risk in the cryosphere. The techniques used can be applied to numerous surfaces within and beyond the atmospheric sciences.
Collapse
Affiliation(s)
- Subha Chakraborty
- Dept. of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Annastacia D Stubbs
- Dept. of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada.,Dept. of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, New York 13244, United States
| | - Tara F Kahan
- Dept. of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada.,Dept. of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, New York 13244, United States
| |
Collapse
|
21
|
Sršeň Š, Slavíček P. Optimal Representation of the Nuclear Ensemble: Application to Electronic Spectroscopy. J Chem Theory Comput 2021; 17:6395-6404. [PMID: 34542278 DOI: 10.1021/acs.jctc.1c00749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nuclear densities are frequently represented by an ensemble of nuclear configurations or points in the phase space in various contexts of molecular simulations. The size of the ensemble directly affects the accuracy and computational cost of subsequent calculations of observable quantities. In the present work, we address the question of how many configurations do we need and how to select them most efficiently. We focus on the nuclear ensemble method in the context of electronic spectroscopy, where thousands of sampled configurations are usually needed for sufficiently converged spectra. The proposed representative sampling technique allows for a dramatic reduction of the sample size. By using an exploratory method, we model the density from a large sample in the space of transition properties. The representative subset of nuclear configurations is optimized by minimizing its Kullback-Leibler divergence to the full density with simulated annealing. High-level calculations are then performed only for the selected subset of configurations. We tested the algorithm on electronic absorption spectra of three molecules: (E)-azobenzene, the simplest Criegee intermediate, and hydrated nitrate anion. Typically, dozens of nuclear configurations provided sufficiently accurate spectra. A strongly forbidden transition of the nitrate anion presented the most challenging case due to rare geometries with disproportionately high transition intensities. This problematic case was easily diagnosed within the present approach. We also discuss various exploratory methods and a possible extension to dynamical simulations.
Collapse
Affiliation(s)
- Štěpán Sršeň
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 16628, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 16628, Czech Republic
| |
Collapse
|
22
|
Noro K, Yabuki Y. Photolysis of polycyclic aromatic hydrocarbons adsorbed on polyethylene microplastics. MARINE POLLUTION BULLETIN 2021; 169:112561. [PMID: 34089963 DOI: 10.1016/j.marpolbul.2021.112561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 05/27/2023]
Abstract
Contaminants adsorbed on microplastics (MPs) are a potential risk to aquatic environments. Several studies have demonstrated that polycyclic aromatic hydrocarbons (PAHs), which adsorb on MPs, can be photolyzed in aqueous solutions. We investigated photolysis of PAHs on MPs under sunlight conditions to estimate their environmental fate for the first time. The PAHs (25 ng each) were added to polyethylene powder, which was used as the MP sample. The MP sample was agitated in water with sunlight irradiation; thereafter, the concentration of the PAHs on the MP sample was determined by high-pressure liquid chromatography with a fluorescence detector. The half-life values of the PAHs were estimated between 3.4 × 102 (pyrene) and 3.2 × 104 min (benz[j]fluoranthene). These values are 0.5 (fluoranthene) to 25 (benzo[a]pyrene) times larger than those in the aqueous phase. Additionally, the degradation of PAHs by OH radicals produced by the photolysis of nitrate was observed.
Collapse
Affiliation(s)
- Kazushi Noro
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Habikino, Osaka 583-0862, Japan.
| | - Yoshinori Yabuki
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Habikino, Osaka 583-0862, Japan
| |
Collapse
|
23
|
Xiong Y, Zhou J, Xing Z, Du K. Cancer risk assessment for exposure to hazardous volatile organic compounds in Calgary, Canada. CHEMOSPHERE 2021; 272:129650. [PMID: 33486452 DOI: 10.1016/j.chemosphere.2021.129650] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Oil and natural gas (O&G) extraction operations emit hazardous volatile organic compounds (VOCs) in quantities that have adverse effects on human health. Our current understanding of the exposure risks associated with upstream O&G exploitations remains limited, and very few quantitative on-site remediation strategies have been proposed. To this end, we assessed the health risks associated with the emission of hazardous VOCs and presented a set of remediation goals for the city of Calgary, which is a major center of the Canadian oil industry. Results from probabilistic risk assessment (PRA) suggested that although VOCs had a negligible impact on chronic non-cancer-associated risk, inhalation-associated cancer risk remained a significant concern. Carbon tetrachloride, benzene, and 1,3-butadiene were the dominant VOCs, representing 88% of the integrated inhalation cancer risk (= 7.8 × 10-5); background, solid fuel combustion, and O&G extraction were among the primary sources that posed the greatest threat to human health. Results of a Monte Carlo simulation revealed that the probability of developing cancer due to inhalation of hazardous VOCs was ∼13.1% on clean air days and 45.9% on days with significant levels of air pollution. Preliminary remediation goals (PRGs) included reductions of 24.2-65.1% and 11.4-50.9% targeting priority VOCs and their sources, respectively. Taken together, our findings suggest that stringent control of the sources of VOCs, particularly fossil fuel combustion, is an urgent priority. PRA coupled with PRGs provides informative risk assessments and suggests quantitative remediation strategies that can be applied toward improved management of hazardous pollutants.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| | - Jiabin Zhou
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
| | - Zhenyu Xing
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| | - Ke Du
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
24
|
Joliat J, Patt A, Simon JM, Picaud S. Adsorption of organic compounds at the surface of Enceladus’ ice grains. A grand canonical Monte Carlo simulation study. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1900571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Julien Joliat
- Institut UTINAM, UMR 6213, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| | - Antoine Patt
- Institut UTINAM, UMR 6213, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| | - Jean Marc Simon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS, Université de Bourgogne Franche-Comté, Cedex Dijon, France
| | - Sylvain Picaud
- Institut UTINAM, UMR 6213, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
25
|
Niblett SP, Limmer DT. Ion Dissociation Dynamics in an Aqueous Premelting Layer. J Phys Chem B 2021; 125:2174-2181. [DOI: 10.1021/acs.jpcb.0c11286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Samuel P. Niblett
- Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, California 94720, United States
| | - David T. Limmer
- Chemistry Department, University of California, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanosciences Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Kaipara R, Rajakumar B. Kinetic Studies on the Photo-oxidation Reactions of Methyl-2-methyl Butanoate and Methyl-3-methyl Butanoate with OH Radicals. J Phys Chem A 2020; 124:10923-10936. [DOI: 10.1021/acs.jpca.0c07715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Revathy Kaipara
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Balla Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
27
|
Zhu C, Miller M, Lusskin N, Bergk Pinto B, Maccario L, Häggblom M, Vogel T, Larose C, Bromberg Y. Snow microbiome functional analyses reveal novel aspects of microbial metabolism of complex organic compounds. Microbiologyopen 2020; 9:e1100. [PMID: 32762019 PMCID: PMC7520998 DOI: 10.1002/mbo3.1100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Microbes active in extreme cold are not as well explored as those of other extreme environments. Studies have revealed a substantial microbial diversity and identified cold-specific microbiome molecular functions. We analyzed the metagenomes and metatranscriptomes of 20 snow samples collected in early and late spring in Svalbard, Norway using mi-faser, our read-based computational microbiome function annotation tool. Our results reveal a more diverse microbiome functional capacity and activity in the early- vs. late-spring samples. We also find that functional dissimilarity between the same-sample metagenomes and metatranscriptomes is significantly higher in early than late spring samples. These findings suggest that early spring samples may contain a larger fraction of DNA of dormant (or dead) organisms, while late spring samples reflect a new, metabolically active community. We further show that the abundance of sequencing reads mapping to the fatty acid synthesis-related microbial pathways in late spring metagenomes and metatranscriptomes is significantly correlated with the organic acid levels measured in these samples. Similarly, the organic acid levels correlate with the pathway read abundances of geraniol degradation and inversely correlate with those of styrene degradation, suggesting a possible nutrient change. Our study thus highlights the activity of microbial degradation pathways of complex organic compounds previously unreported at low temperatures.
Collapse
Affiliation(s)
- Chengsheng Zhu
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNJUSA
| | - Maximilian Miller
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNJUSA
| | - Nicholas Lusskin
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNJUSA
| | - Benoît Bergk Pinto
- Environmental Microbial GenomicsLaboratoire AmpereEcole Centrale de LyonCNRS UMR 5005Université de LyonEcullyFrance
| | - Lorrie Maccario
- Environmental Microbial GenomicsLaboratoire AmpereEcole Centrale de LyonCNRS UMR 5005Université de LyonEcullyFrance
- Section of MicrobiologyCopenhagen UniversityCopenhagen ØDenmark
| | - Max Häggblom
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNJUSA
| | - Timothy Vogel
- Environmental Microbial GenomicsLaboratoire AmpereEcole Centrale de LyonCNRS UMR 5005Université de LyonEcullyFrance
| | - Catherine Larose
- Environmental Microbial GenomicsLaboratoire AmpereEcole Centrale de LyonCNRS UMR 5005Université de LyonEcullyFrance
| | - Yana Bromberg
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNJUSA
- Department of GeneticsHuman Genetics InstituteRutgers UniversityPiscatawayNJUSA
| |
Collapse
|
28
|
Hermanson MH, Isaksson E, Hann R, Teixeira C, Muir DCG. Atmospheric Deposition of Organochlorine Pesticides and Industrial Compounds to Seasonal Surface Snow at Four Glacier Sites on Svalbard, 2013-2014. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9265-9273. [PMID: 32635725 DOI: 10.1021/acs.est.0c01537] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Winter snow from four glacial sites on Svalbard was analyzed for atmospheric deposition of 36 organochlorine pesticides (OCPs) and 7 industrial compounds (OCICs) by GC-high-resolution MS. Thirteen of the OCPs and all OCICs were detected at all sites. Sampling sites are 230 km apart from west to east, but are at varying elevations, ranging from 700 to 1202 m a.s.l. Total OCP flux was greater than total OCIC at all sites and was 5 times greater at Lomonosovfonna, and 3 times greater at Austfonna, the most easterly site. Chlorpyrifos dominated OCP flux at Lomonosovfonna (81.7 pg cm-2 yr-1) and Kongsvegen (60.6 pg cm-2 yr-1), and at Austfonna, but not at Holtedahlfonna where dieldrin dominated. trans-chlordane was a major contributor to OCPs. These three pesticides comprised at least 50% of total OCP at each site. OCIC flux was dominated by pentachloroanisole (PCA) at Lomonosovfonna (23.5 pg cm-2 yr-1) and Kongsvegen (14.1 pg cm-2 yr-1). PCA and hexachlorobenzene comprised at least 63% of all OCICs at each site. Air mass frequency from likely source areas showed that Austfonna had the most frequent long-distance air flow, but showed lower amounts of chlorpyrifos and PCA, suggesting local sources of these compounds to other sites.
Collapse
Affiliation(s)
- Mark H Hermanson
- Hermanson & Associates, LLC, 2000 W 53rd Street, Minneapolis, Minnesota 55419, United States
| | | | - Richard Hann
- Department of Engineering Cybernetics, Norwegian University of Science & Technology (NTNU), O. S. Bragstads plass 2D, NO-7034 Trondheim, Norway
| | - Camilla Teixeira
- Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario L7S 1A1, Canada
| | - Derek C G Muir
- Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario L7S 1A1, Canada
| |
Collapse
|
29
|
Hullar T, Bononi FC, Chen Z, Magadia D, Palmer O, Tran T, Rocca D, Andreussi O, Donadio D, Anastasio C. Photodecay of guaiacol is faster in ice, and even more rapid on ice, than in aqueous solution. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1666-1677. [PMID: 32671365 DOI: 10.1039/d0em00242a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Snowpacks contain a wide variety of inorganic and organic compounds, including some that absorb sunlight and undergo direct photoreactions. How the rates of these reactions in, and on, ice compare to rates in water is unclear: some studies report similar rates, while others find faster rates in/on ice. Further complicating our understanding, there is conflicting evidence whether chemicals react more quickly at the air-ice interface compared to in liquid-like regions (LLRs) within the ice. To address these questions, we measured the photodegradation rate of guaiacol (2-methoxyphenol) in various sample types, including in solution, in ice, and at the air-ice interface of nature-identical snow. Compared to aqueous solution, we find modest rate constant enhancements (increases of 3- to 6-fold) in ice LLRs, and much larger enhancements (of 17- to 77-fold) at the air-ice interface of nature-identical snow. Our computational modeling suggests the absorption spectrum for guaiacol red-shifts and increases on ice surfaces, leading to more light absorption, but these changes explain only a small portion (roughly 2 to 9%) of the observed rate constant enhancements in/on ice. This indicates that increases in the quantum yield are primarily responsible for the increased photoreactivity of guaiacol on ice; relative to solution, our results suggest that the quantum yield is larger by a factor of roughly 3-6 in liquid-like regions and 12-40 at the air-ice interface.
Collapse
Affiliation(s)
- Ted Hullar
- Department of Land, Air and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Els N, Greilinger M, Reisecker M, Tignat-Perrier R, Baumann-Stanzer K, Kasper-Giebl A, Sattler B, Larose C. Comparison of Bacterial and Fungal Composition and Their Chemical Interaction in Free Tropospheric Air and Snow Over an Entire Winter Season at Mount Sonnblick, Austria. Front Microbiol 2020; 11:980. [PMID: 32508790 PMCID: PMC7251065 DOI: 10.3389/fmicb.2020.00980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/23/2020] [Indexed: 11/24/2022] Open
Abstract
We investigated the interactions of air and snow over one entire winter accumulation period as well as the importance of chemical markers in a pristine free-tropospheric environment to explain variation in a microbiological dataset. To overcome the limitations of short term bioaerosol sampling, we sampled the atmosphere continuously onto quartzfiber air filters using a DIGITEL high volume PM10 sampler. The bacterial and fungal communities, sequenced using Illumina MiSeq, as well as the chemical components of the atmosphere were compared to those of a late season snow profile. Results reveal strong dynamics in the composition of bacterial and fungal communities in air and snow. In fall the two compartments were similar, suggesting a strong interaction between them. The overlap diminished as the season progressed due to an evolution within the snowpack throughout winter and spring. Certain bacterial and fungal genera were only detected in air samples, which implies that a distinct air microbiome might exist. These organisms are likely not incorporated in clouds and thus not precipitated or scavenged in snow. Although snow appears to be seeded by the atmosphere, both air and snow showed differing bacterial and fungal communities and chemical composition. Season and alpha diversity were major drivers for microbial variability in snow and air, and only a few chemical markers were identified as important in explaining microbial diversity. Air microbial community variation was more related to chemical markers than snow microbial composition. For air microbial communities Cl–, TC/OC, SO42–, Mg2+, and Fe/Al, all compounds related to dust or anthropogenic activities, were identified as related to bacterial variability while dust related Ca2+ was significant in snow. The only common driver for snow and air was SO42–, a tracer for anthropogenic sources. The occurrence of chemical compounds was coupled with boundary layer injections in the free troposphere (FT). Boundary layer injections also caused the observed variations in community composition and chemistry between the two compartments. Long-term monitoring is required for a more valid insight in post-depositional selection in snow.
Collapse
Affiliation(s)
- Nora Els
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Marion Greilinger
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria.,Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Vienna, Austria
| | - Michael Reisecker
- Avalanche Warning Service Tyrol, Department of Civil Protection, Federal State Government of Tyrol, Innsbruck, Austria
| | - Romie Tignat-Perrier
- Environmental Microbial Genomics Group, Laboratoire Ampère, École Centrale de Lyon, Écully, France
| | | | - Anne Kasper-Giebl
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Birgit Sattler
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Catherine Larose
- Environmental Microbial Genomics Group, Laboratoire Ampère, École Centrale de Lyon, Écully, France
| |
Collapse
|
31
|
Gladich I, Chen S, Vazdar M, Boucly A, Yang H, Ammann M, Artiglia L. Surface Propensity of Aqueous Atmospheric Bromine at the Liquid-Gas Interface. J Phys Chem Lett 2020; 11:3422-3429. [PMID: 32283032 DOI: 10.1021/acs.jpclett.0c00633] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multiphase reactions of halide ions in aqueous solutions exposed to the atmosphere initiate the formation of molecular halogen compounds in the gas phase. Their photolysis leads to halogen atoms, which are catalytic sinks for ozone, making these processes relevant for the regional and global tropospheric ozone budget. The affinity of halide ions in aqueous solution for the liquid-gas interface, which may influence their reactivity with gaseous species, has been debated. Our study focuses on the surface properties of the bromide ion and its oxidation products. In situ X-ray photoelectron spectroscopy carried out on a liquid jet combined with classical and first-principles molecular dynamics calculations was used to investigate the interfacial depth profile of bromide, hypobromite, hypobromous acid, and bromate. The simulated core electron binding energies support the experimentally observed values, which follow a correlation with bromine oxidation state for the anion series. Bromide ions are homogeneously distributed in the solution. Hypobromous acid, a key species in the multiphase cycling of bromine, is the only species showing surface propensity, which suggests a more important role of the interface in multiphase bromine chemistry than thought so far.
Collapse
Affiliation(s)
- Ivan Gladich
- Qatar Environment & Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Shuzhen Chen
- Laboratory of Environmental Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
- Institute of Atmospheric and Climate Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Mario Vazdar
- Division of Organic Chemistry and Biochemistry, Rudjer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Anthony Boucly
- Laboratory of Environmental Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Huanyu Yang
- Laboratory of Environmental Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
- Institute of Atmospheric and Climate Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Markus Ammann
- Laboratory of Environmental Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Luca Artiglia
- Laboratory of Environmental Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
- Laboratory for Sustainable Chemistry and Catalysis, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| |
Collapse
|
32
|
Kaipara R, Rajakumar B. Photooxidation Reactions of Ethyl 2-Methylpropionate (E2MP) and Ethyl 2,2-Dimethylpropionate (E22DMP) Initiated by OH Radicals: An Experimental and Computational Study. J Phys Chem A 2020; 124:2768-2784. [PMID: 32207979 DOI: 10.1021/acs.jpca.0c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The relative rate (RR) technique was used for the measurement of OH-initiated photooxidation reactions of ethyl 2-methylpropionate (E2MP) and ethyl 2,2-dimethylpropionate (E22DMP) in the temperature range of 268-363 K at 760 Torr. In addition to this, the thermodynamic and kinetic parameters for the title reactions were theoretically investigated using CCSD(T)/cc-pVTZ//M06-2X/6-311++G(2d,2p) level of theory in the temperature range of 200-400 K using canonical variational transition state theory (CVT) in combination with small curvature tunneling (SCT) method. The rate coefficients at (298 ± 2) K were measured to be kE2MP+OH = (2.71 ± 0.79) × 10-12 cm3 molecule-1 s-1 and kE22DMP+OH = (2.58 ± 0.80) × 10-12 cm3 molecule-1 s-1. The degradation mechanisms for the title reactions were investigated in the presence of O2 using gas chromatography with mass spectrometry (GC-MS) and gas chromatography with infrared spectroscopy (GC-IR). From the recognized products, the possible product degradation mechanisms were predicted. In addition to this, the atmospheric lifetimes (ALs), lifetime-corrected radiative forcing (RF), global warming potential (GWPs) and photochemical ozone creation potentials (POCPs) were calculated to further understand the environmental impact of these molecules on the Earth's troposphere.
Collapse
Affiliation(s)
- Revathy Kaipara
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India
| | - B Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
33
|
Maurais J, Ayotte P. Tailoring electric field standing waves in reflection-absorption infrared spectroscopy to enhance absorbance from adsorbates on ice surfaces. J Chem Phys 2020; 152:074202. [PMID: 32087646 DOI: 10.1063/1.5141934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The spectroscopic detection of molecules adsorbed onto ice surfaces at coverages similar to those encountered under typical environmental conditions requires high surface selectivity and sensitivity that few techniques can afford. An experimental methodology allowing a significant enhancement in the absorbance from adsorbed molecules is demonstrated herein. It exploits Electric Field Standing Wave (EFSW) effects intrinsic to grazing incidence Reflection-Absorption Infrared (RAIR) spectroscopy, where film thickness dependent optical interferences occur between the multiple reflections of the IR beam at the film-vacuum and the substrate-film interfaces. In this case study, CH4 is used as a probe molecule and is deposited on a 20 ML coverage dense amorphous solid water film adsorbed onto solid Ar underlayers of various thicknesses. We observe that, at thicknesses where destructive interferences coincide with the absorption features from the CH stretching and HCH bending vibrational modes of methane, their intensity increases by a factor ranging from 10 to 25. Simulations of the RAIR spectra of the composite stratified films using a classical optics model reproduce the Ar underlayer coverage dependent enhancements of the absorbance features from CH4 adsorbed onto the ice surface. They also reveal that the enhancements occur when the square modulus of the total electric field at the film's surface reaches its minimum value. Exploiting the EFSW effect allows the limit of detection to be reduced to a coverage of (0.2 ± 0.2) ML CH4, which opens up interesting perspectives for spectroscopic studies of heterogeneous atmospheric chemistry at coverages that are more representative of those found in the natural environment.
Collapse
Affiliation(s)
- Josée Maurais
- Département de Chimie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Patrick Ayotte
- Département de Chimie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
34
|
Appearance and Disappearance of Quasi-Liquid Layers on Ice Crystals in the Presence of Nitric Acid Gas. CRYSTALS 2020. [DOI: 10.3390/cryst10020072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The surfaces of ice crystals near the melting point are covered with thin liquid water layers, called quasi-liquid layers (QLLs), which play crucial roles in various chemical reactions in nature. So far, there have been many spectroscopic studies of such chemical reactions on ice surfaces, however, revealing the effects of atmospheric gases on ice surfaces remains an experimental challenge. In this study, we chose HNO3 as a model atmospheric gas, and directly observed the ice basal faces by advanced optical microscopy under partial pressure of HNO3 (~10−4 Pa), relevant to those found in the atmosphere. We found that droplets (HNO3-QLLs) appeared on ice surfaces at temperatures ranging from −0.9 to −0.2 °C with an increase in temperature, and that they disappeared at temperatures ranging from −0.6 to −1.3 °C with decreasing temperature. We also found that the size of the HNO3-QLLs decreased immediately after we started reducing the temperature. From the changes in size and the liquid–solid phase diagram of the HNO3-H2O binary system, we concluded that the HNO3-QLLs did not consist of pure water, but rather aqueous HNO3 solutions, and that the temperature and HNO3 concentration of the HNO3-QLLs also coincided with those along a liquidus line.
Collapse
|
35
|
Kao MH, Venkatraman RK, Ashfold MNR, Orr-Ewing AJ. Effects of ring-strain on the ultrafast photochemistry of cyclic ketones. Chem Sci 2020; 11:1991-2000. [PMID: 34123294 PMCID: PMC8148387 DOI: 10.1039/c9sc05208a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ring-strain in cyclic organic molecules is well-known to influence their chemical reactivity. Here, we examine the consequence of ring-strain for competing photochemical pathways that occur on picosecond timescales. The significance of Norrish Type-I photochemistry is explored for three cyclic ketones in cyclohexane solutions at ultraviolet (UV) excitation wavelengths from 255–312 nm, corresponding to an π* ← n excitation to the lowest excited singlet state (S1). Ultrafast transient absorption spectroscopy with broadband UV/visible probe laser pulses reveals processes common to cyclobutanone, cyclopentanone and cyclohexanone, occurring on timescales of ≤1 ps, 7–9 ps and >500 ps. These kinetic components are respectively assigned to prompt cleavage of an α C–C bond in the internally excited S1-state molecules prepared by UV absorption, vibrational cooling of these hot-S1 molecules to energies below the barrier to C–C bond cleavage on the S1 state potential energy surface (with commensurate reductions in the energy-dependent α-cleavage rate), and slower loss of thermalized S1-state population. The thermalized S1-state molecules may competitively decay by activated reaction over the barrier to α C–C bond fission on the S1-state potential energy surface, internal conversion to the ground (S0) electronic state, or intersystem crossing to the lowest lying triplet state (T1) and subsequent C–C bond breaking. The α C–C bond fission barrier height in the S1 state is significantly reduced by the ring-strain in cyclobutanone, affecting the relative contributions of the three decay time components which depend systematically on the excitation energy above the S1-state energy barrier. Transient infra-red absorption spectra obtained after UV excitation identify ring-opened ketene photoproducts of cyclobutanone and their timescales for formation. Ultrafast spectroscopy of ring-opening in three cyclic ketones reveals how ring-strain affects Norrish Type-I α-cleavage mechanisms.![]()
Collapse
Affiliation(s)
- Min-Hsien Kao
- School of Chemistry, University of Bristol, Cantock's Close Bristol BS8 1TS UK
| | | | - Michael N R Ashfold
- School of Chemistry, University of Bristol, Cantock's Close Bristol BS8 1TS UK
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
36
|
|
37
|
Domine F. Should We Not Further Study the Impact of Microbial Activity on Snow and Polar Atmospheric Chemistry? Microorganisms 2019; 7:microorganisms7080260. [PMID: 31416183 PMCID: PMC6723259 DOI: 10.3390/microorganisms7080260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 11/16/2022] Open
Abstract
Since 1999, atmospheric and snow chemists have shown that snow is a very active photochemical reactor that releases reactive gaseous species to the atmosphere including nitrogen oxides, hydrocarbons, aldehydes, halocarbons, carboxylic acids and mercury. Snow photochemistry therefore affects the formation of ozone, a potent greenhouse gas, and of aerosols, which affect the radiative budget of the planet and, therefore, its climate. In parallel, microbiologists have investigated microbes in snow, identified and quantified species, and sometimes discussed their nutrient supplies and metabolism, implicitly acknowledging that microbes could modify snow chemical composition. However, it is only in the past 10 years that a small number of studies have revealed that microbial activity in cold snow (< 0 °C, in the absence of significant amounts of liquid water) could lead to the release of nitrogen oxides, halocarbons, and mercury into the atmosphere. I argue here that microbes may have a significant effect on snow and atmospheric composition, especially during the polar night when photochemistry is shut off. Collaborative studies between microbiologists and snow and atmospheric chemists are needed to investigate this little-explored field.
Collapse
Affiliation(s)
- Florent Domine
- Takuvik Joint International Laboratory, Université Laval (Canada) and CNRS-INSU (France), Québec, QC G1V 0A6, Canada.
- Centre d'Études Nordiques (CEN), Department of Chemistry and Department of Geography, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
38
|
Chakraborty S, Kahan TF. Emerging investigator series: spatial distribution of dissolved organic matter in ice and at air-ice interfaces. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1076-1084. [PMID: 31241094 DOI: 10.1039/c9em00190e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dissolved organic matter (DOM) is a common solute in snow and ice at Earth's surface. Its effects on reaction kinetics in ice and at air-ice interfaces can be large, but are currently difficult to quantify. We used Raman microscopy to characterize the surface and bulk of frozen aqueous solutions containing humic acid, sodium dodecyl sulfate (SDS), and citric acid at a range of concentrations and temperatures. The surface-active species (humic acid and SDS) were distributed differently than citric acid. Humic acid and SDS are almost completely excluded to the air-ice interface during freezing, where they form a film that coats the surface nearly completely. A liquid layer that coats the majority of the surface was observed at all humic acid and SDS concentrations. Citric acid, which is smaller and less surface active, is excluded to liquid channels at the air-ice interface and within the ice bulk, as has previously been reported for ionic solutes such as sodium chloride. Incomplete surface wetting was observed at all citric acid concentrations and at all temperatures (up to -5 °C). Citric acid appears to be solvated in frozen samples, but SDS and humic acid do not. These results will improve our understanding of the effects of organic solutes on environmental and atmospheric chemistry within ice and at air-ice interfaces.
Collapse
Affiliation(s)
- Subha Chakraborty
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada. and Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA
| | - Tara F Kahan
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada. and Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA
| |
Collapse
|
39
|
Picaud S, Jedlovszky P. Molecular-scale simulations of organic compounds on ice: application to atmospheric and interstellar sciences. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2018.1502428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sylvain Picaud
- Institut UTINAM (CNRS UMR 6213), Université Bourgogne Franche-Comté, Besançon, France
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly University, Eger, Hungary
| |
Collapse
|
40
|
Maccario L, Carpenter SD, Deming JW, Vogel TM, Larose C. Sources and selection of snow-specific microbial communities in a Greenlandic sea ice snow cover. Sci Rep 2019; 9:2290. [PMID: 30783153 PMCID: PMC6381142 DOI: 10.1038/s41598-019-38744-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/14/2018] [Indexed: 11/09/2022] Open
Abstract
Sea ice and its snow cover are critical for global processes including climate regulation and biogeochemical cycles. Despite an increase in studies focused on snow microorganisms, the ecology of snow inhabitants remains unclear. In this study, we investigated sources and selection of a snowpack-specific microbial community by comparing metagenomes from samples collected in a Greenlandic fjord within a vertical profile including atmosphere, snowpack with four distinct layers of snow, sea ice brine and seawater. Microbial communities in all snow layers derived from mixed sources, both marine and terrestrial, and were more similar to atmospheric communities than to sea ice or seawater communities. The surface snow metagenomes were characterized by the occurrence of genes involved in photochemical stress resistance, primary production and metabolism of diverse carbon sources. The basal saline snow layer that was in direct contact with the sea ice surface harbored a higher abundance of cells than the overlying snow layers, with a predominance of Alteromonadales and a higher relative abundance of marine representatives. However, the overall taxonomic structure of the saline layer was more similar to that of other snow layers and the atmosphere than to underlying sea ice and seawater. The expulsion of relatively nutrient-rich sea ice brine into basal snow might have stimulated the growth of copiotrophic psychro- and halotolerant snow members. Our study indicates that the size, composition and function of snowpack microbial communities over sea ice were influenced primarily by atmospheric deposition and inflow of sea ice brine and that they form a snow-specific assemblage reflecting the particular environmental conditions of the snowpack habitat.
Collapse
Affiliation(s)
- Lorrie Maccario
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS, École Centrale de Lyon, Écully, France.
- Microbiology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | - Jody W Deming
- School of Oceanography, University of Washington, Seattle, USA
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS, École Centrale de Lyon, Écully, France
| | - Catherine Larose
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS, École Centrale de Lyon, Écully, France
| |
Collapse
|
41
|
Peterson PK, Hartwig M, May NW, Schwartz E, Rigor I, Ermold W, Steele M, Morison JH, Nghiem SV, Pratt KA. Snowpack measurements suggest role for multi-year sea ice regions in Arctic atmospheric bromine and chlorine chemistry. ELEMENTA (WASHINGTON, D.C.) 2019; 7:10.1525/elementa.352. [PMID: 31534978 PMCID: PMC6750228 DOI: 10.1525/elementa.352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
As sources of reactive halogens, snowpacks in sea ice regions control the oxidative capacity of the Arctic atmosphere. However, measurements of snowpack halide concentrations remain sparse, particularly in the high Arctic, limiting our understanding of and ability to parameterize snowpack participation in tropospheric halogen chemistry. To address this gap, we measured concentrations of chloride, bromide, and sodium in snow samples collected during polar spring above remote multi-year sea ice (MYI) and first-year sea ice (FYI) north of Greenland and Alaska, as well as in the central Arctic, and compared these measurements to a larger dataset collected in the Alaskan coastal Arctic by Krnavek et al. (2012). Regardless of sea ice region, these surface snow samples generally featured lower salinities, compared to coastal snow. Surface snow in FYI regions was typically enriched in bromide and chloride compared to seawater, indicating snowpack deposition of bromine and chlorine-containing trace gases and an ability of the snowpack to participate further in bromine and chlorine activation processes. In contrast, surface snow in MYI regions was more often depleted in bromide, indicating it served as a source of bromine-containing trace gases to the atmosphere prior to sampling. Measurements at various snow depths indicate that the deposition of sea salt aerosols and halogen-containing trace gases to the snowpack surface played a larger role in determining surface snow halide concentrations compared to upward brine migration from sea ice. Calculated enrichment factors for bromide and chloride, relative to sodium, in the MYI snow samples suggests that MYI regions, in addition to FYI regions, have the potential to play an active role in Arctic boundary layer bromine and chlorine chemistry. The ability of MYI regions to participate in springtime atmospheric halogen chemistry should be considered in regional modeling of halogen activation and interpretation of satellite-based tropospheric bromine monoxide column measurements.
Collapse
Affiliation(s)
- Peter K. Peterson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, US
- Now at Department of Chemistry, Whittier College, Whittier, California, US
| | - Mark Hartwig
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, US
| | - Nathaniel W. May
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, US
| | - Evan Schwartz
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, US
- Now at Department of Molecular Biosciences, University of Texas, Austin, Texas, US
| | - Ignatius Rigor
- Applied Physics Laboratory, University of Washington, Seattle, Washington, US
| | - Wendy Ermold
- Applied Physics Laboratory, University of Washington, Seattle, Washington, US
| | - Michael Steele
- Applied Physics Laboratory, University of Washington, Seattle, Washington, US
| | - James H. Morison
- Applied Physics Laboratory, University of Washington, Seattle, Washington, US
| | - Son V. Nghiem
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, US
| | - Kerri A. Pratt
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, US
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, US
| |
Collapse
|
42
|
Hullar T, Magadia D, Anastasio C. Photodegradation Rate Constants for Anthracene and Pyrene Are Similar in/on Ice and in Aqueous Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12225-12234. [PMID: 30251528 DOI: 10.1021/acs.est.8b02350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Snowpacks contain a variety of chemicals, including organic pollutants such as toxic polycyclic aromatic hydrocarbons (PAHs). While PAHs undergo photodegradation in snow and ice, the rates of these reactions remain in debate. Some studies report that photochemical reactions in snow proceed at rates similar to those expected in a supercooled aqueous solution, but other studies report faster reaction rates, particularly at the air-ice interface (i.e., the quasi-liquid layer, or QLL). In addition, one study reported a surprising nonlinear dependence on photon flux. Here we examine the photodegradation of two common PAHs, anthracene and pyrene, in/on ice and in solution. For a given PAH, rate constants are similar in aqueous solution, in internal liquid-like regions of ice, and at the air-ice interface. In addition, we find the expected linear relationship between reaction rate constant and photon flux. Our results indicate that rate constants for the photochemical loss of PAHs in, and on, snow and ice are very similar to those in aqueous solution, with no enhancement at the air-ice interface.
Collapse
Affiliation(s)
- Ted Hullar
- Department of Land, Air and Water Resources , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Danielle Magadia
- Department of Land, Air and Water Resources , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
- Now at California Department of Food and Agriculture , 3292 Meadowview , Sacramento , California 95832 , United States
| | - Cort Anastasio
- Department of Land, Air and Water Resources , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| |
Collapse
|
43
|
Mewes JM, Jerabek P, Bohle DS, Schwerdtfeger P. The Light-Driven Isomerization of Aqueous Nitrate: A Theoretical Perspective. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jan-Michael Mewes
- The New Zealand Institute for Advanced Study; Massey University (Albany); Private Bag 102904, North Shore, 0632 Auckland New Zealand
| | - Paul Jerabek
- The New Zealand Institute for Advanced Study; Massey University (Albany); Private Bag 102904, North Shore, 0632 Auckland New Zealand
| | - D. Scott Bohle
- The Department of Chemistry; McGill University; 801 Sherbrooke St. W Montreal H3A 8B0 Canada
| | - Peter Schwerdtfeger
- The New Zealand Institute for Advanced Study; Massey University (Albany); Private Bag 102904, North Shore, 0632 Auckland New Zealand
| |
Collapse
|
44
|
You C, Xu C. Review of levoglucosan in glacier snow and ice studies: Recent progress and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1533-1539. [PMID: 29055575 DOI: 10.1016/j.scitotenv.2017.10.160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Levoglucosan (LEV) in glacier snow and ice layers provides a fingerprint of fire activity, ranging from modern air pollution to ancient fire emissions. In this study, we review recent progress in our understanding and application of LEV in glaciers, including analytical methods, transport and post-depositional processes, and historical records. We firstly summarize progress in analytical methods for determination of LEV in glacier snow and ice. Then, we discuss the processes influencing the records of LEV in snow and ice layers. Finally, we make some recommendations for future work, such as assessing the stability of LEV and obtaining continuous records, to increase reliability of the reconstructed ancient fire activity. This review provides an update for researchers working with LEV and will facilitate the further use of LEV as a biomarker in paleo-fire studies based on ice core records.
Collapse
Affiliation(s)
- Chao You
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, China.
| | - Chao Xu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, China
| |
Collapse
|
45
|
Li H, Kong X, Jiang L, Liu ZF. Solvation effects on the N–O and O–H stretching modes in hydrated NO3−(H2O)n clusters. Phys Chem Chem Phys 2018; 20:26918-26925. [DOI: 10.1039/c8cp05754k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ab initio molecular dynamics simulations reveal the solvation effects on the N–O and O–H stretching modes of NO3−(H2O)n.
Collapse
Affiliation(s)
- Huiyan Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong
- Shatin
- China
| | - Xiangtao Kong
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
| | - Zhi-Feng Liu
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong
- Shatin
- China
- CUHK Shenzhen Research Institute
- Shenzhen
| |
Collapse
|
46
|
Dependence of the adsorption of halogenated methane derivatives at the ice surface on their chemical structure. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Benedict KB, Anastasio C. Quantum Yields of Nitrite (NO2–) from the Photolysis of Nitrate (NO3–) in Ice at 313 nm. J Phys Chem A 2017; 121:8474-8483. [DOI: 10.1021/acs.jpca.7b08839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katherine B. Benedict
- Department of Land, Air,
and Water Resources, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Cort Anastasio
- Department of Land, Air,
and Water Resources, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
48
|
Moberg DR, Straight SC, Knight C, Paesani F. Molecular Origin of the Vibrational Structure of Ice I h. J Phys Chem Lett 2017; 8:2579-2583. [PMID: 28541703 DOI: 10.1021/acs.jpclett.7b01106] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An unambiguous assignment of the vibrational spectra of ice Ih remains a matter of debate. This study demonstrates that an accurate representation of many-body interactions between water molecules, combined with an explicit treatment of nuclear quantum effects through many-body molecular dynamics (MB-MD), leads to a unified interpretation of the vibrational spectra of ice Ih in terms of the structure and dynamics of the underlying hydrogen-bond network. All features of the infrared and Raman spectra in the OH stretching region can be unambiguously assigned by taking into account both the symmetry and the delocalized nature of the lattice vibrations as well as the local electrostatic environment experienced by each water molecule within the crystal. The high level of agreement with experiment raises prospects for predictive MB-MD simulations that, complementing analogous measurements, will provide molecular-level insights into fundamental processes taking place in bulk ice and on ice surfaces under different thermodynamic conditions.
Collapse
Affiliation(s)
- Daniel R Moberg
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Shelby C Straight
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Christopher Knight
- Leadership Computing Facility, Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
49
|
Nazarenko Y, Fournier S, Kurien U, Rangel-Alvarado RB, Nepotchatykh O, Seers P, Ariya PA. Role of snow in the fate of gaseous and particulate exhaust pollutants from gasoline-powered vehicles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:665-675. [PMID: 28190686 DOI: 10.1016/j.envpol.2017.01.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
Little is known about pollution in urban snow and how aerosol and gaseous air pollutants interact with the urban snowpack. Here we investigate interactions of exhaust pollution with snow at low ambient temperature using fresh snow in a temperature-controlled chamber. A gasoline-powered engine from a modern light duty vehicle generated the exhaust and was operated in homogeneous and stratified engine regimes. We determined that, within a timescale of 30 min, snow takes up from the exhaust a large mass of organic pollutants and aerosol particles, which were observed by electron microscopy, mass spectrometry and aerosol sizers. Specifically, the concentration of total organic carbon in the exposed snow increased from 0.948 ± 0.009 to 1.828 ± 0.001 mg/L (homogeneous engine regime) and from 0.275 ± 0.005 to 0.514 ± 0.008 mg/L (stratified engine regime). The concentrations of benzene, toluene and 13 out of 16 measured polycyclic aromatic hydrocarbons (PAHs), particularly naphthalene, benz[a]anthracene, chrysene and benzo[a]pyrene in snow increased upon exposure from near the detection limit to 0.529 ± 0.058, 1.840 ± 0.200, 0.176 ± 0.020, 0.020 ± 0.005, 0.025 ± 0.005 and 0.028 ± 0.005 ng/kg, respectively, for the homogeneous regime. After contact with snow, 50-400 nm particles were present with higher relative abundance compared to the smaller nanoparticles (<50 nm), for the homogeneous regime. The lowering of temperature from 25 ± 1 °C to (-8) - (-10) ± 1 °C decreased the median mode diameter of the exhaust aerosol particles from 69 nm to 57 nm (p < 0.1) and addition of snow to 51 nm (p < 0.1) for the stratified regime, but increased it from 20 nm to 27 nm (p < 0.1) for the homogeneous regime. Future studies should focus on cycling of exhaust-derived pollutants between the atmosphere and cryosphere. The role of the effects we discovered should be evaluated as part of assessment of pollutant loads and exposures in regions with a defined winter season.
Collapse
Affiliation(s)
- Yevgen Nazarenko
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 0B9, Canada
| | - Sébastien Fournier
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada
| | - Uday Kurien
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 0B9, Canada
| | | | - Oleg Nepotchatykh
- PO-Laboratories, Inc., 609 McCaffrey Street, Saint-Laurent, QC H4T 1N3, Canada
| | - Patrice Seers
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.
| | - Parisa A Ariya
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 0B9, Canada; Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada.
| |
Collapse
|
50
|
Morenz KJ, Donaldson DJ. Chemical Morphology of Frozen Mixed Nitrate–Salt Solutions. J Phys Chem A 2017; 121:2166-2171. [DOI: 10.1021/acs.jpca.6b12608] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karen J. Morenz
- Department
of Chemistry and ‡Department of Physical and Environmental Sciences, University of Toronto, 27 King’s College Circle, Toronto ON M5S, Canada
| | - D. James Donaldson
- Department
of Chemistry and ‡Department of Physical and Environmental Sciences, University of Toronto, 27 King’s College Circle, Toronto ON M5S, Canada
| |
Collapse
|