1
|
Emery A, Swanstrom R. HIV-1: To Splice or Not to Splice, That Is the Question. Viruses 2021; 13:181. [PMID: 33530363 PMCID: PMC7912102 DOI: 10.3390/v13020181] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/05/2023] Open
Abstract
The transcription of the HIV-1 provirus results in only one type of transcript-full length genomic RNA. To make the mRNA transcripts for the accessory proteins Tat and Rev, the genomic RNA must completely splice. The mRNA transcripts for Vif, Vpr, and Env must undergo splicing but not completely. Genomic RNA (which also functions as mRNA for the Gag and Gag/Pro/Pol precursor polyproteins) must not splice at all. HIV-1 can tolerate a surprising range in the relative abundance of individual transcript types, and a surprising amount of aberrant and even odd splicing; however, it must not over-splice, which results in the loss of full-length genomic RNA and has a dramatic fitness cost. Cells typically do not tolerate unspliced/incompletely spliced transcripts, so HIV-1 must circumvent this cell policing mechanism to allow some splicing while suppressing most. Splicing is controlled by RNA secondary structure, cis-acting regulatory sequences which bind splicing factors, and the viral protein Rev. There is still much work to be done to clarify the combinatorial effects of these splicing regulators. These control mechanisms represent attractive targets to induce over-splicing as an antiviral strategy. Finally, splicing has been implicated in latency, but to date there is little supporting evidence for such a mechanism. In this review we apply what is known of cellular splicing to understand splicing in HIV-1, and present data from our newer and more sensitive deep sequencing assays quantifying the different HIV-1 transcript types.
Collapse
MESH Headings
- Alternative Splicing
- Exons
- Gene Expression Regulation, Viral
- HIV-1/genetics
- Nucleic Acid Conformation
- RNA Splicing
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Regulatory Sequences, Nucleic Acid
- Virus Latency/genetics
- rev Gene Products, Human Immunodeficiency Virus/genetics
- rev Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Ann Emery
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA;
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
- Center for AIDS Research, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Seymen F, Park JC, Lee KE, Lee HK, Lee DS, Koruyucu M, Gencay K, Bayram M, Tuna EB, Lee ZH, Kim YJ, Kim JW. Novel MMP20 and KLK4 Mutations in Amelogenesis Imperfecta. J Dent Res 2015; 94:1063-9. [PMID: 26124219 DOI: 10.1177/0022034515590569] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In order to achieve highly mineralized tooth enamel, enamel proteinases serve the important function of removing the remaining organic matrix in the mineralization and maturation of the enamel matrix. Mutations in the kallikrein 4 (KLK4), enamelysin (MMP20), and WDR72 genes have been identified as causing hypomaturation enamel defects in an autosomal-recessive hereditary pattern. In this report, 2 consanguineous families with a hypomaturation-type enamel defect were recruited, and mutational analysis was performed to determine the molecular genetic etiology of the disease. Whole exome sequencing and autozygosity mapping identified novel homozygous mutations in the KLK4 (c.620_621delCT, p.Ser207Trpfs*38) and MMP20 (c.1054G>A, p.Glu352Lys) genes. Further analysis on the effect of the mutations on the translation, secretion, and function of KLK4 and MMP20 revealed that mutant KLK4 was degraded intracellularly and became inactive while mutant MMP20 was expressed at a normal level but secreted only minimally with proteolytic function.
Collapse
Affiliation(s)
- F Seymen
- Department of Pedodontics, Istanbul University, Istanbul, Turkey
| | - J-C Park
- Department of Cell and Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - K-E Lee
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - H-K Lee
- Department of Cell and Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - D-S Lee
- Department of Cell and Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - M Koruyucu
- Department of Pedodontics, Istanbul University, Istanbul, Turkey
| | - K Gencay
- Department of Pedodontics, Istanbul University, Istanbul, Turkey
| | - M Bayram
- Department of Pedodontics, Istanbul University, Istanbul, Turkey
| | - E B Tuna
- Department of Pedodontics, Istanbul University, Istanbul, Turkey
| | - Z H Lee
- Department of Cell and Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Y-J Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - J-W Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
3
|
Kawaguchi M, Nakagawa M, Noda T, Yoshizaki N, Hiroi J, Nishida M, Iuchi I, Yasumasu S. Hatching enzyme of the ovoviviparous black rockfish Sebastes schlegelii- environmental adaptation of the hatching enzyme and evolutionary aspects of formation of the pseudogene. FEBS J 2008; 275:2884-98. [DOI: 10.1111/j.1742-4658.2008.06427.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Abstract
Variations in new splicing regulatory elements are difficult to identify exclusively by sequence inspection and may result in deleterious effects on precursor (pre) mRNA splicing. These mutations can result in either complete skipping of the exon, retention of the intron, or the introduction of a new splice site within an exon or intron. Sometimes mutations that do not disrupt or create a splice site activate pre-existing pseudo splice sites, consistent with the proposal that introns contain splicing inhibitory sequences. These variants can also affect the fine balance of isoforms produced by alternatively spliced exons and in consequence cause disease. Available genomic pathology data reveal that we are still partly ignorant of the basic mechanisms that underlie the pre-mRNA splicing process. The fact that human pathology can provide pointers to new modulatory elements of splicing should be exploited.
Collapse
Affiliation(s)
- D Baralle
- Department of Medical Genetics, Box 134, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK.
| | | |
Collapse
|
5
|
Imbert Y, Darling DS, Jumblatt MM, Foulks GN, Couzin EG, Steele PS, Young WW. MUC1 splice variants in human ocular surface tissues: possible differences between dry eye patients and normal controls. Exp Eye Res 2006; 83:493-501. [PMID: 16631167 DOI: 10.1016/j.exer.2006.01.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/16/2006] [Accepted: 01/23/2006] [Indexed: 11/28/2022]
Abstract
Mucins are highly glycosylated proteins that are vital to the maintenance of healthy epithelial surfaces including the ocular surface. Mucins act as lubricants, protectants, and mediators of signal transduction. The majority of the O-glycosylation sites on the transmembrane mucin MUC1 are found in a highly polymorphic core region containing a variable number of tandem repeats (VNTR). MUC1 alleles can be divided into size classes that contain small (30-45) or large (60-90) numbers of repeats. Although at least 12 splice variants of MUC1 have been found in other tissues, no splice variants have been reported in human ocular surface tissues. We have used RT-PCR to identify MUC1 splice variants that were then confirmed by sequencing. We here report the presence in some samples of human cornea, conjunctiva, and lacrimal gland of MUC1/B which features canonical splicing between exons 1 and 2 and MUC1/A, a transcript that retains 27bp from the 3' end of intron 1 and is predicted to add 9 amino acids to the MUC1 sequence upstream of the tandem repeat region. Cornea and conjunctiva both contain the MUC1/SEC splice variant that lacks the transmembrane domain and, therefore, results in a soluble, secreted form of MUC1. Cornea and conjunctiva also contain MUC1/Y and MUC1/Z(X) variants that lack the tandem repeat region. Cornea, conjunctiva, and lacrimal gland also contain a previously undescribed MUC1 variant transcript, termed MUC1/YI, that retains 99bp from the 5' end and 27bp from the 3' end of the first intron, resulting in a frame shift and premature stop codon. This transcript is predicted to produce a novel 27 amino acid peptide after signal peptidase cleavage. Analysis of brush cytology samples revealed that the percentage of dry eye patients expressing the MUC1/A variant in the conjunctival epithelium is lower than in normal control donors. Western blotting confirmed that MUC1/A is associated with alleles containing the large size class of tandem repeats. Therefore, we propose that one factor in susceptibility to dry eye disease may be the lengths of the MUC1 VNTR in conjunctival epithelium based on the rationale that longer VNTR provide better lubrication and greater protection of the ocular surface against inflammation.
Collapse
Affiliation(s)
- Yoannis Imbert
- Department of Molecular, Cellular & Craniofacial Biology, School of Dentistry, University of Louisville, 501 S. Preston St., Louisville, KY 40292, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Nonsense-mediated mRNA decay is a surveillance pathway that reduces errors in gene expression by eliminating aberrant mRNAs that encode incomplete polypeptides. Recent experiments suggest a working model whereby premature and normal translation termination events are distinct as a consequence of the spatial relationship between the termination codon and mRNA binding proteins, a relationship partially established by nuclear pre-mRNA processing. Aberrant termination then leads to both translational repression and an increased susceptibility of the mRNA to multiple ribonucleases.
Collapse
Affiliation(s)
- Kristian E Baker
- Howard Hughes Medical Institute, University of Arizona, 1007 East Lowell Street, Tucson, Arizona 85721, USA
| | | |
Collapse
|
7
|
Kim JW, Seymen F, Lin BPJ, Kiziltan B, Gencay K, Simmer JP, Hu JCC. ENAM mutations in autosomal-dominant amelogenesis imperfecta. J Dent Res 2005; 84:278-82. [PMID: 15723871 DOI: 10.1177/154405910508400314] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To date, 4 unique enamelin gene (ENAM) defects have been identified in kindreds with amelogenesis imperfecta. To improve our understanding of the roles of enamelin in normal enamel formation, and to gain information related to possible genotype/phenotype correlations, we have identified 2 ENAM mutations in kindreds with hypoplastic ADAI, 1 novel (g.4806A>C, IVS6-2A>C) and 1 previously identified (g.8344delG), and have characterized the resulting enamel phenotypes. The IVS6-2A>C mutation caused a severe enamel phenotype in the proband, exhibiting horizontal grooves of severely hypoplastic enamel. The affected mother had several shallow hypoplastic horizontal grooves in the lower anterior teeth. In the case of the g.8344delG mutation, the phenotype was generalized hypoplastic enamel with shallow horizontal grooves in the middle 1/3 of the anterior teeth. In general, mutations in the human enamelin gene cause hypoplastic enamel, often with horizontal grooves, but the severity of the enamel defects is variable, even among individuals with the same mutation.
Collapse
Affiliation(s)
- J-W Kim
- Department of Orthodontics and Pediatric Dentistry, University of Michigan Dental Research Lab, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Eukaryotic mRNAs are primarily degraded by removal of the 3' poly(A) tail, followed either by cleavage of the 5' cap structure (decapping) and 5'->3' exonucleolytic digestion, or by 3' to 5' degradation. mRNA decapping represents a critical step in turnover because this permits the degradation of the mRNA and is a site of numerous control inputs. Recent analyses suggest decapping of an mRNA consists of four central and related events. These include removal, or inactivation, of the poly(A) tail as an inhibitor of decapping, exit from active translation, assembly of a decapping complex on the mRNA, and sequestration of the mRNA into discrete cytoplasmic foci where decapping can occur. Each of these steps is a demonstrated, or potential, site for the regulation of mRNA decay. We discuss the decapping process in the light of these central properties, which also suggest fundamental aspects of cytoplasmic mRNA physiology that connect decapping, translation, and storage of mRNA.
Collapse
Affiliation(s)
- Jeff Coller
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
9
|
Alonso CR, Akam M. A Hox gene mutation that triggers nonsense-mediated RNA decay and affects alternative splicing during Drosophila development. Nucleic Acids Res 2003; 31:3873-80. [PMID: 12853602 PMCID: PMC167643 DOI: 10.1093/nar/gkg482] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Accepted: 05/07/2003] [Indexed: 11/14/2022] Open
Abstract
Nonsense mutations are usually assumed to affect protein function by generating truncated protein products. Nonetheless, it is now clear that these mutations affect not just protein synthesis but also messenger RNA stability. The surveillance mechanism responsible for the detection and degradation of 'nonsense' RNA messages is termed nonsense-mediated RNA decay (NMD). Essential biochemical components of the NMD machinery have been defined in several species. Here we identify the Drosophila orthologue of one of these factors, Upf1, and document its expression during embryogenesis. To test whether NMD acts during Drosophila development, we make use of a mutation that introduces a stop codon into a variably spliced exon of the Hox gene Ultrabithorax (Ubx). Using real-time quantitative RT-PCR we demonstrate that Ubx transcripts containing the premature stop codon are expressed at lower levels than their wild type counterpart. Unexpectedly, we also find that the same mutation significantly increases the levels of a Ubx splicing isoform that lacks the exon containing the premature termination codon. These findings indicate that NMD is operational during Drosophila development and suggest that nonsense mutations may affect development by altering the spectrum of splicing products formed, as well as by reducing or eliminating protein synthesis.
Collapse
Affiliation(s)
- Claudio R Alonso
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|
10
|
Abstract
Messenger RNAs with premature translation termination codons (PTCs) are degraded by nonsense-mediated mRNA decay (NMD). In mammals, PTCs are discriminated from physiological stop codons by a process thought to involve the splicing-dependent deposition of an exon junction complex (EJC), EJC-mediated recruitment of Upf3, and Upf2 binding to the N terminus of Upf3. Here, we identify a conserved domain of hUpf3b that mediates an interaction with the EJC protein Y14. Tethered function analysis shows that the Y14/hUpf3b interaction is essential for NMD, while surprisingly the interaction between hUpf3b and hUpf2 is not. Nonetheless, hUpf2 is necessary for NMD mediated by tethered Y14. RNAi-induced knockdown and Y14 repletion of siRNA-treated cells implicates Y14 in the degradation of beta-globin NS39 mRNA and demonstrates that Y14 is required for NMD induced by tethered hUpf3b. These results uncover a direct role of Y14 in NMD and suggest an unexpected hierarchy in the assembly of NMD complexes.
Collapse
Affiliation(s)
- Niels H Gehring
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
11
|
Eystathioy T, Chan EKL, Mahler M, Luft LM, Fritzler ML, Fritzler MJ. A panel of monoclonal antibodies to cytoplasmic GW bodies and the mRNA binding protein GW182. HYBRIDOMA AND HYBRIDOMICS 2003; 22:79-86. [PMID: 12831532 DOI: 10.1089/153685903321947996] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
GW182 is a mRNA binding protein characterized by 60 repeats of glycine (G):tryptophan (W) motifs and is localized in cytoplasmic structures referred to as GW bodies (GWBs). Current evidence suggests that this unique protein plays a role in mRNA processing. To enable a more detailed study of GW182 and GWBs in cells and tissues, including their role in mRNA processing, we developed four monoclonal antibodies (MAbs) that bind the human recombinant GW182 protein. These MAbs can be used for Western blot analysis and indirect immunofluorescence (IIF) on cultured cells and tissues. Of special interest, one of the MAbs, 2D6, can be used to identify GW182 and GWBs in formalin-fixed and paraffin-embedded tissues after using an antigen retrieval method (ARM). All the MAbs described in this study immunoprecipitate the GW182 protein. Epitope mapping using overlapping 15-mer peptides representing the full-length GW182 showed that the major antibody-binding domains of these MAbs are distinct. These MAbs are valuable tools for cell biologists and pathologists to study the location and function of the novel GW182 protein in tissue culture cells, as well as cryopreserved or archived tissues.
Collapse
Affiliation(s)
- Theophany Eystathioy
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|