1
|
Delabays R, De Pasquale G, Dörfler F, Zhang Y. Hypergraph reconstruction from dynamics. Nat Commun 2025; 16:2691. [PMID: 40108121 PMCID: PMC11923283 DOI: 10.1038/s41467-025-57664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/27/2025] [Indexed: 03/22/2025] Open
Abstract
A plethora of methods have been developed in the past two decades to infer the underlying network structure of an interconnected system from its collective dynamics. However, methods capable of inferring nonpairwise interactions are only starting to appear. Here, we develop an inference algorithm based on sparse identification of nonlinear dynamics (SINDy) to reconstruct hypergraphs and simplicial complexes from time-series data. Our model-free method does not require information about node dynamics or coupling functions, making it applicable to complex systems that do not have a reliable mathematical description. We first benchmark the new method on synthetic data generated from Kuramoto and Lorenz dynamics. We then use it to infer the effective connectivity in the brain from resting-state EEG data, which reveals significant contributions from non-pairwise interactions in shaping the macroscopic brain dynamics.
Collapse
Affiliation(s)
- Robin Delabays
- School of Engineering, University of Applied Sciences of Western Switzerland HES-SO, Sion, Switzerland
| | - Giulia De Pasquale
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Florian Dörfler
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
2
|
Leibovich N. Determining interaction directionality in complex biochemical networks from stationary measurements. Sci Rep 2025; 15:3004. [PMID: 39849082 PMCID: PMC11758029 DOI: 10.1038/s41598-025-86332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025] Open
Abstract
Revealing interactions in complex systems from observed collective dynamics constitutes a fundamental inverse problem in science. Some methods may reveal undirected network topology, e.g., using node-node correlation. Yet, the direction of the interaction, thus a causal inference, remains to be determined - especially in steady-state observations. We introduce a method to infer the directionality within this network only from a "snapshot" of the abundances of the relevant molecules. We examine the validity of the approach for different properties of the system and the data recorded, such as the molecule's level variability, the effect of sampling and measurement errors. Simulations suggest that the given approach successfully infer the reaction rates in various cases.
Collapse
Affiliation(s)
- N Leibovich
- National Research Council of Canada, NRC-Fields Mathematical Sciences Collaboration Centre, 222 College st., Toronto, ON, M5T 3J1, Canada.
| |
Collapse
|
3
|
Zheng Y, Zhang HT, Yue Z, Wang J. Sparse Bayesian Learning for Switching Network Identification. IEEE TRANSACTIONS ON CYBERNETICS 2024; 54:7642-7655. [PMID: 39163189 DOI: 10.1109/tcyb.2024.3440933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Learning dynamical networks based on time series of nodal states is of significant interest in systems science, computer science, and control engineering. Despite recent progress in network identification, most research focuses on static structures rather than switching ones. Therefore, this article develops a method for identifying the structures of switching networks by exploring and leveraging both temporal and spatial structural information that characterizes the switching process. The proposed method employs a new sparse Bayesian learning algorithm based on coupled hyperblocks to estimate unknown switching instants. Experimental results on benchmark artificial and real networks are elaborated to demonstrate the effectiveness and superiority of the proposed method.
Collapse
|
4
|
Molla G, Bitew M. Revolutionizing Personalized Medicine: Synergy with Multi-Omics Data Generation, Main Hurdles, and Future Perspectives. Biomedicines 2024; 12:2750. [PMID: 39767657 PMCID: PMC11673561 DOI: 10.3390/biomedicines12122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 01/11/2025] Open
Abstract
The field of personalized medicine is undergoing a transformative shift through the integration of multi-omics data, which mainly encompasses genomics, transcriptomics, proteomics, and metabolomics. This synergy allows for a comprehensive understanding of individual health by analyzing genetic, molecular, and biochemical profiles. The generation and integration of multi-omics data enable more precise and tailored therapeutic strategies, improving the efficacy of treatments and reducing adverse effects. However, several challenges hinder the full realization of personalized medicine. Key hurdles include the complexity of data integration across different omics layers, the need for advanced computational tools, and the high cost of comprehensive data generation. Additionally, issues related to data privacy, standardization, and the need for robust validation in diverse populations remain significant obstacles. Looking ahead, the future of personalized medicine promises advancements in technology and methodologies that will address these challenges. Emerging innovations in data analytics, machine learning, and high-throughput sequencing are expected to enhance the integration of multi-omics data, making personalized medicine more accessible and effective. Collaborative efforts among researchers, clinicians, and industry stakeholders are crucial to overcoming these hurdles and fully harnessing the potential of multi-omics for individualized healthcare.
Collapse
Affiliation(s)
- Getnet Molla
- College of Veterinary Medicine, Jigjiga University, Jigjiga P.O. Box 1020, Ethiopia
- Bio and Emerging Technology Institute (BETin), Addis Ababa P.O. Box 5954, Ethiopia;
| | - Molalegne Bitew
- Bio and Emerging Technology Institute (BETin), Addis Ababa P.O. Box 5954, Ethiopia;
| |
Collapse
|
5
|
Qian L, Sun R, Aebersold R, Bühlmann P, Sander C, Guo T. AI-empowered perturbation proteomics for complex biological systems. CELL GENOMICS 2024; 4:100691. [PMID: 39488205 PMCID: PMC11605689 DOI: 10.1016/j.xgen.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/02/2024] [Accepted: 10/06/2024] [Indexed: 11/04/2024]
Abstract
The insufficient availability of comprehensive protein-level perturbation data is impeding the widespread adoption of systems biology. In this perspective, we introduce the rationale, essentiality, and practicality of perturbation proteomics. Biological systems are perturbed with diverse biological, chemical, and/or physical factors, followed by proteomic measurements at various levels, including changes in protein expression and turnover, post-translational modifications, protein interactions, transport, and localization, along with phenotypic data. Computational models, employing traditional machine learning or deep learning, identify or predict perturbation responses, mechanisms of action, and protein functions, aiding in therapy selection, compound design, and efficient experiment design. We propose to outline a generic PMMP (perturbation, measurement, modeling to prediction) pipeline and build foundation models or other suitable mathematical models based on large-scale perturbation proteomic data. Finally, we contrast modeling between artificially and naturally perturbed systems and highlight the importance of perturbation proteomics for advancing our understanding and predictive modeling of biological systems.
Collapse
Affiliation(s)
- Liujia Qian
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Rui Sun
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | | | - Chris Sander
- Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Boston, MA, USA; Ludwig Center at Harvard, Boston, MA, USA.
| | - Tiannan Guo
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
6
|
Singh V, Singh V. Inferring Interaction Networks from Transcriptomic Data: Methods and Applications. Methods Mol Biol 2024; 2812:11-37. [PMID: 39068355 DOI: 10.1007/978-1-0716-3886-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Transcriptomic data is a treasure trove in modern molecular biology, as it offers a comprehensive viewpoint into the intricate nuances of gene expression dynamics underlying biological systems. This genetic information must be utilized to infer biomolecular interaction networks that can provide insights into the complex regulatory mechanisms underpinning the dynamic cellular processes. Gene regulatory networks and protein-protein interaction networks are two major classes of such networks. This chapter thoroughly investigates the wide range of methodologies used for distilling insightful revelations from transcriptomic data that include association-based methods (based on correlation among expression vectors), probabilistic models (using Bayesian and Gaussian models), and interologous methods. We reviewed different approaches for evaluating the significance of interactions based on the network topology and biological functions of the interacting molecules and discuss various strategies for the identification of functional modules. The chapter concludes with highlighting network-based techniques of prioritizing key genes, outlining the centrality-based, diffusion- based, and subgraph-based methods. The chapter provides a meticulous framework for investigating transcriptomic data to uncover assembly of complex molecular networks for their adaptable analyses across a broad spectrum of biological domains.
Collapse
Affiliation(s)
- Vikram Singh
- Centre for Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, India.
| |
Collapse
|
7
|
Ma C, Lai YC, Li X, Zhang HF. General optimization framework for accurate and efficient reconstruction of symmetric complex networks from dynamical data. Phys Rev E 2023; 108:034304. [PMID: 37849195 DOI: 10.1103/physreve.108.034304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 08/18/2023] [Indexed: 10/19/2023]
Abstract
The challenging problem of network reconstruction from dynamical data can in general be formulated as an optimization task of solving multiple linear equations. Existing approaches are of the two types: Point-by-point (PBP) and global methods. The local PBP method is computationally efficient, but the accuracies of its solutions are somehow low, while a global method has the opposite traits: High accuracy and high computational cost. Taking advantage of the network symmetry, we develop a novel framework integrating the advantages of both the PBP and global methods while avoiding their shortcomings: i.e., high reconstruction accuracy is guaranteed, but the computational cost is orders of magnitude lower than that of the global methods in the literature. The mathematical principle underlying our framework is block coordinate descent (BCD) for solving optimization problems, where the various blocks are determined by the network symmetry. The reconstruction framework is validated by numerical examples with a variety of network structures (i.e., sparse and dense networks) and dynamical processes. Our success is a demonstration that the general principle of exploiting symmetry can be extended to tackling the challenging inverse problem or reverse engineering of complex networks. Since solving a large number of linear equations is key to a plethora of problems in science and engineering, our BCD-based network reconstruction framework will find broader applications.
Collapse
Affiliation(s)
- Chuang Ma
- School of Internet, Anhui University, Hefei 230601, China
| | - Ying-Cheng Lai
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Xiang Li
- The Institute of Complex Networks and Intelligent Systems, Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai 201210, China
| | - Hai-Feng Zhang
- School of Mathematical Science, Anhui University, Hefei 230601, China
| |
Collapse
|
8
|
Li R, Rozum JC, Quail MM, Qasim MN, Sindi SS, Nobile CJ, Albert R, Hernday AD. Inferring gene regulatory networks using transcriptional profiles as dynamical attractors. PLoS Comput Biol 2023; 19:e1010991. [PMID: 37607190 PMCID: PMC10473541 DOI: 10.1371/journal.pcbi.1010991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/01/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023] Open
Abstract
Genetic regulatory networks (GRNs) regulate the flow of genetic information from the genome to expressed messenger RNAs (mRNAs) and thus are critical to controlling the phenotypic characteristics of cells. Numerous methods exist for profiling mRNA transcript levels and identifying protein-DNA binding interactions at the genome-wide scale. These enable researchers to determine the structure and output of transcriptional regulatory networks, but uncovering the complete structure and regulatory logic of GRNs remains a challenge. The field of GRN inference aims to meet this challenge using computational modeling to derive the structure and logic of GRNs from experimental data and to encode this knowledge in Boolean networks, Bayesian networks, ordinary differential equation (ODE) models, or other modeling frameworks. However, most existing models do not incorporate dynamic transcriptional data since it has historically been less widely available in comparison to "static" transcriptional data. We report the development of an evolutionary algorithm-based ODE modeling approach (named EA) that integrates kinetic transcription data and the theory of attractor matching to infer GRN architecture and regulatory logic. Our method outperformed six leading GRN inference methods, none of which incorporate kinetic transcriptional data, in predicting regulatory connections among TFs when applied to a small-scale engineered synthetic GRN in Saccharomyces cerevisiae. Moreover, we demonstrate the potential of our method to predict unknown transcriptional profiles that would be produced upon genetic perturbation of the GRN governing a two-state cellular phenotypic switch in Candida albicans. We established an iterative refinement strategy to facilitate candidate selection for experimentation; the experimental results in turn provide validation or improvement for the model. In this way, our GRN inference approach can expedite the development of a sophisticated mathematical model that can accurately describe the structure and dynamics of the in vivo GRN.
Collapse
Affiliation(s)
- Ruihao Li
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, California, United States of America
| | - Jordan C. Rozum
- Department of Systems Science and Industrial Engineering, Binghamton University (State University of New York), Binghamton, New York, United States of America
| | - Morgan M. Quail
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, California, United States of America
| | - Mohammad N. Qasim
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, California, United States of America
| | - Suzanne S. Sindi
- Department of Applied Mathematics, University of California, Merced, Merced, California, United States of America
| | - Clarissa J. Nobile
- Department of Molecular Cell Biology, University of California, Merced, Merced, California, United States of America
- Health Sciences Research Institute, University of California, Merced, Merced, California, United States of America
| | - Réka Albert
- Department of Physics, Pennsylvania State University, University Park, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, University Park, Pennsylvania, United States of America
| | - Aaron D. Hernday
- Department of Molecular Cell Biology, University of California, Merced, Merced, California, United States of America
- Health Sciences Research Institute, University of California, Merced, Merced, California, United States of America
| |
Collapse
|
9
|
Hasnain A, Balakrishnan S, Joshy DM, Smith J, Haase SB, Yeung E. Learning perturbation-inducible cell states from observability analysis of transcriptome dynamics. Nat Commun 2023; 14:3148. [PMID: 37253722 PMCID: PMC10229592 DOI: 10.1038/s41467-023-37897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/21/2023] [Indexed: 06/01/2023] Open
Abstract
A major challenge in biotechnology and biomanufacturing is the identification of a set of biomarkers for perturbations and metabolites of interest. Here, we develop a data-driven, transcriptome-wide approach to rank perturbation-inducible genes from time-series RNA sequencing data for the discovery of analyte-responsive promoters. This provides a set of biomarkers that act as a proxy for the transcriptional state referred to as cell state. We construct low-dimensional models of gene expression dynamics and rank genes by their ability to capture the perturbation-specific cell state using a novel observability analysis. Using this ranking, we extract 15 analyte-responsive promoters for the organophosphate malathion in the underutilized host organism Pseudomonas fluorescens SBW25. We develop synthetic genetic reporters from each analyte-responsive promoter and characterize their response to malathion. Furthermore, we enhance malathion reporting through the aggregation of the response of individual reporters with a synthetic consortium approach, and we exemplify the library's ability to be useful outside the lab by detecting malathion in the environment. The engineered host cell, a living malathion sensor, can be optimized for use in environmental diagnostics while the developed machine learning tool can be applied to discover perturbation-inducible gene expression systems in the compendium of host organisms.
Collapse
Affiliation(s)
- Aqib Hasnain
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Shara Balakrishnan
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Dennis M Joshy
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Jen Smith
- California Nanosystems Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - Enoch Yeung
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
10
|
Ying C, Liu J, Wu K, Wang C. A Multiobjective Evolutionary Approach for Solving Large-Scale Network Reconstruction Problems via Logistic Principal Component Analysis. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:2137-2150. [PMID: 34520385 DOI: 10.1109/tcyb.2021.3109914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Currently, the problem of uncovering complex network structure and dynamics from time series is prominent in many fields. Despite the recent progress in this area, reconstructing large-scale networks from limited data remains a tough problem. Existing works treat connections of nodes as continuous values, leaving a challenge of setting a proper cut-off value to distinguish whether the connections exist or not. Besides, their performances on large-scale networks are far from satisfactory. Considering the reconstruction error and sparsity as two objectives, this article proposes a subspace learning-based evolutionary multiobjective network reconstruction algorithm, called SLEMO-NR, to solve the aforementioned problems. In the evolutionary process, we assume that binary-coded individuals obey the Bernoulli distribution and can use the probability and natural parameter as alternative representations. Moreover, our approach utilizes the logistic principal component analysis (LPCA) to learn a subspace containing the features of the network structure. The offspring solutions are generated in the learned subspace and then can be mapped back to the original space via LPCA. Benefitting from the alternative representations, a preference-based local search operator (PLSO) is proposed to concentrate on finding solutions approximate to the true sparsity. The experimental results on synthetic networks and six real-world networks demonstrate that, due to the well-learned network structure subspace and the preference-based strategy, our approach is effective in reconstructing large-scale networks compared to six existing methods.
Collapse
|
11
|
Ito Y, Uda S, Kokaji T, Hirayama A, Soga T, Suzuki Y, Kuroda S, Kubota H. Comparison of hepatic responses to glucose perturbation between healthy and obese mice based on the edge type of network structures. Sci Rep 2023; 13:4758. [PMID: 36959243 PMCID: PMC10036622 DOI: 10.1038/s41598-023-31547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
Interactions between various molecular species in biological phenomena give rise to numerous networks. The investigation of these networks, including their statistical and biochemical interactions, supports a deeper understanding of biological phenomena. The clustering of nodes associated with molecular species and enrichment analysis is frequently applied to examine the biological significance of such network structures. However, these methods focus on delineating the function of a node. As such, in-depth investigations of the edges, which are the connections between the nodes, are rarely explored. In the current study, we aimed to investigate the functions of the edges rather than the nodes. To accomplish this, for each network, we categorized the edges and defined the edge type based on their biological annotations. Subsequently, we used the edge type to compare the network structures of the metabolome and transcriptome in the livers of healthy (wild-type) and obese (ob/ob) mice following oral glucose administration (OGTT). The findings demonstrate that the edge type can facilitate the characterization of the state of a network structure, thereby reducing the information available through datasets containing the OGTT response in the metabolome and transcriptome.
Collapse
Affiliation(s)
- Yuki Ito
- Division of Integrated Omics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Shinsuke Uda
- Division of Integrated Omics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Toshiya Kokaji
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916-5, Takayamacho, Ikoma, Nara, 630-0192, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Shinya Kuroda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki Kubota
- Division of Integrated Omics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
12
|
Topal I, Eroglu D. Reconstructing Network Dynamics of Coupled Discrete Chaotic Units from Data. PHYSICAL REVIEW LETTERS 2023; 130:117401. [PMID: 37001085 DOI: 10.1103/physrevlett.130.117401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/19/2023]
Abstract
Reconstructing network dynamics from data is crucial for predicting the changes in the dynamics of complex systems such as neuron networks; however, previous research has shown that the reconstruction is possible under strong constraints such as the need for lengthy data or small system size. Here, we present a recovery scheme blending theoretical model reduction and sparse recovery to identify the governing equations and the interactions of weakly coupled chaotic maps on complex networks, easing unrealistic constraints for real-world applications. Learning dynamics and connectivity lead to detecting critical transitions for parameter changes. We apply our technique to realistic neuronal systems with and without noise on a real mouse neocortex and artificial networks.
Collapse
Affiliation(s)
- Irem Topal
- Faculty of Engineering and Natural Sciences, Kadir Has University, 34083 Istanbul, Turkey
| | - Deniz Eroglu
- Faculty of Engineering and Natural Sciences, Kadir Has University, 34083 Istanbul, Turkey
| |
Collapse
|
13
|
Muteeb G, Aatif M, Farhan M, Alsultan A, Alshoaibi A, Alam MW. Leaves of Moringa oleifera Are Potential Source of Bioactive Compound β-Carotene: Evidence from In Silico and Quantitative Gene Expression Analysis. Molecules 2023; 28:1578. [PMID: 36838566 PMCID: PMC9966589 DOI: 10.3390/molecules28041578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Moringa oleifera is rich in bioactive compounds such as beta-carotene, which have high nutritional values and antimicrobial applications. Several studies have confirmed that bioactive-compound-based herbal medicines extracted from the leaves, seeds, fruits and shoots of M. oleifera are vital to cure many diseases and infections, and for the healing of wounds. The β-carotene is a naturally occurring bioactive compound encoded by zeta-carotene desaturase (ZDS) and phytoene synthase (PSY) genes. In the current study, computational analyses were performed to identify and characterize ZDS and PSY genes retrieved from Arabidopsis thaliana (as reference) and these were compared with the corresponding genes in M. oleifera, Brassica napus, Brassica rapa, Brassica oleracea and Bixa orellana. The BLAST results revealed that all the plant species considered in this study encode β-carotene genes with 80-100% similarity. The Pfam analysis on β-carotene genes of all the investigated plants confirmed that they belong to the same protein family and domain. Similarly, phylogenetic analysis revealed that β-carotene genes of M. oleifera belong to the same ancestral class. Using the ZDS and PSY genes of Arabidopsis thaliana as a reference, we conducted qRT-PCR analysis on RNA extracted from the leaves of M. oleifera, Brassica napus, Brassica rapa and Bixa orellana. It was noted that the most significant gene expression occurred in the leaves of the studied medicinal plants. We concluded that not only are the leaves of M. oleifera an effective source of bioactive compounds including beta carotene, but also the leaves of Brassica napus, Brassica rapa and Bixa orellana can be employed as antibiotics and antioxidants against bacterial or microbial infections.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Abdulrahman Alsultan
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Adil Alshoaibi
- Department of Physics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
14
|
Jia Z, Zhang X. Accurate determination of causalities in gene regulatory networks by dissecting downstream target genes. Front Genet 2022; 13:923339. [PMID: 36568360 PMCID: PMC9768335 DOI: 10.3389/fgene.2022.923339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Accurate determination of causalities between genes is a challenge in the inference of gene regulatory networks (GRNs) from the gene expression profile. Although many methods have been developed for the reconstruction of GRNs, most of them are insufficient in determining causalities or regulatory directions. In this work, we present a novel method, namely, DDTG, to improve the accuracy of causality determination in GRN inference by dissecting downstream target genes. In the proposed method, the topology and hierarchy of GRNs are determined by mutual information and conditional mutual information, and the regulatory directions of GRNs are determined by Taylor formula-based regression. In addition, indirect interactions are removed with the sparseness of the network topology to improve the accuracy of network inference. The method is validated on the benchmark GRNs from DREAM3 and DREAM4 challenges. The results demonstrate the superior performance of the DDTG method on causality determination of GRNs compared to some popular GRN inference methods. This work provides a useful tool to infer the causal gene regulatory network.
Collapse
Affiliation(s)
- Zhigang Jia
- School of Mathematics and Statistics, Xinyang Normal University, Xinyang, China,Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Xiujun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China,*Correspondence: Xiujun Zhang,
| |
Collapse
|
15
|
Wang Q, Dong A, Zhao J, Wang C, Griffin C, Gragnoli C, Xue F, Wu R. Vaginal microbiota networks as a mechanistic predictor of aerobic vaginitis. Front Microbiol 2022; 13:998813. [PMID: 36338093 PMCID: PMC9631484 DOI: 10.3389/fmicb.2022.998813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/09/2022] [Indexed: 09/07/2024] Open
Abstract
Aerobic vaginitis (AV) is a complex vaginal dysbiosis that is thought to be caused by the micro-ecological change of the vaginal microbiota. While most studies have focused on how changes in the abundance of individual microbes are associated with the emergence of AV, we still do not have a complete mechanistic atlas of the microbe-AV link. Network modeling is central to understanding the structure and function of any microbial community assembly. By encapsulating the abundance of microbes as nodes and ecological interactions among microbes as edges, microbial networks can reveal how each microbe functions and how one microbe cooperate or compete with other microbes to mediate the dynamics of microbial communities. However, existing approaches can only estimate either the strength of microbe-microbe link or the direction of this link, failing to capture full topological characteristics of a network, especially from high-dimensional microbial data. We combine allometry scaling law and evolutionary game theory to derive a functional graph theory that can characterize bidirectional, signed, and weighted interaction networks from any data domain. We apply our theory to characterize the causal interdependence between microbial interactions and AV. From functional networks arising from different functional modules, we find that, as the only favorable genus from Firmicutes among all identified genera, the role of Lactobacillus in maintaining vaginal microbial symbiosis is enabled by upregulation from other microbes, rather than through any intrinsic capacity. Among Lactobacillus species, the proportion of L. crispatus to L. iners is positively associated with more healthy acid vaginal ecosystems. In a less healthy alkaline ecosystem, L. crispatus establishes a contradictory relationship with other microbes, leading to population decrease relative to L. iners. We identify topological changes of vaginal microbiota networks when the menstrual cycle of women changes from the follicular to luteal phases. Our network tool provides a mechanistic approach to disentangle the internal workings of the microbiota assembly and predict its causal relationships with human diseases including AV.
Collapse
Affiliation(s)
- Qian Wang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Ang Dong
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jinshuai Zhao
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chen Wang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Christipher Griffin
- Applied Research Laboratory, The Pennsylvania State University, State College, PA, United States
| | - Claudia Gragnoli
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, United States
- Division of Endocrinology, Department of Medicine, Creighton University School of Medicine, Omaha, NE, United States
- Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome, Italy
| | - Fengxia Xue
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Rongling Wu
- Center for Statistical Genetics, Department of Public Health Sciences and Statistics, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
16
|
Ajmal HB, Madden MG. Dynamic Bayesian Network Learning to Infer Sparse Models From Time Series Gene Expression Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2794-2805. [PMID: 34181549 DOI: 10.1109/tcbb.2021.3092879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the key challenges in systems biology is to derive gene regulatory networks (GRNs) from complex high-dimensional sparse data. Bayesian networks (BNs) and dynamic Bayesian networks (DBNs) have been widely applied to infer GRNs from gene expression data. GRNs are typically sparse but traditional approaches of BN structure learning to elucidate GRNs often produce many spurious (false positive) edges. We present two new BN scoring functions, which are extensions to the Bayesian Information Criterion (BIC) score, with additional penalty terms and use them in conjunction with DBN structure search methods to find a graph structure that maximises the proposed scores. Our BN scoring functions offer better solutions for inferring networks with fewer spurious edges compared to the BIC score. The proposed methods are evaluated extensively on auto regressive and DREAM4 benchmarks. We found that they significantly improve the precision of the learned graphs, relative to the BIC score. The proposed methods are also evaluated on three real time series gene expression datasets. The results demonstrate that our algorithms are able to learn sparse graphs from high-dimensional time series data. The implementation of these algorithms is open source and is available in form of an R package on GitHub at https://github.com/HamdaBinteAjmal/DBN4GRN, along with the documentation and tutorials.
Collapse
|
17
|
Chowdhury S, Wang R, Yu Q, Huntoon CJ, Karnitz LM, Kaufmann SH, Gygi SP, Birrer MJ, Paulovich AG, Peng J, Wang P. DAGBagM: learning directed acyclic graphs of mixed variables with an application to identify protein biomarkers for treatment response in ovarian cancer. BMC Bioinformatics 2022; 23:321. [PMID: 35931981 PMCID: PMC9354326 DOI: 10.1186/s12859-022-04864-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements. RESULTS In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges. CONCLUSIONS Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at https://github.com/jie108/dagbagM .
Collapse
Affiliation(s)
- Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ru Wang
- Department of Statistics, University of California, Davis, CA, 95616, USA
| | - Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Catherine J Huntoon
- Division of Oncology Research and Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Larry M Karnitz
- Division of Oncology Research and Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Scott H Kaufmann
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael J Birrer
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jie Peng
- Department of Statistics, University of California, Davis, CA, 95616, USA.
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
18
|
Wang X, Mi Y, Zhang Z, Chen Y, Hu G, Li H. Reconstructing distant interactions of multiple paths between perceptible nodes in dark networks. Phys Rev E 2022; 106:014302. [PMID: 35974494 DOI: 10.1103/physreve.106.014302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Quantitative research of interdisciplinary fields, including biological and social systems, has attracted great attention in recent years. Complex networks are popular and important tools for the investigations. Explosively increasing data are created by practical networks, from which useful information about dynamic networks can be extracted. From data to network structure, i.e., network reconstruction, is a crucial task. There are many difficulties in fulfilling network reconstruction, including data shortage (existence of hidden nodes) and time delay for signal propagation between adjacent nodes. In this paper a deep network reconstruction method is proposed, which can work in the conditions that even only two nodes (say A and B) are perceptible and all other network nodes are hidden. With a well-designed stochastic driving on node A, this method can reconstruct multiple interaction paths from A to B based on measured data. The distance, effective intensity, and transmission time delay of each path can be inferred accurately.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yuanyuan Mi
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China and AI Research Center, Peng Cheng Laboratory, Shenzhen 518005, China
| | - Zhaoyang Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yang Chen
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Gang Hu
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Haihong Li
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
19
|
Expanding the search for small-molecule antibacterials by multidimensional profiling. Nat Chem Biol 2022; 18:584-595. [PMID: 35606559 DOI: 10.1038/s41589-022-01040-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 04/15/2022] [Indexed: 11/08/2022]
Abstract
New techniques for systematic profiling of small-molecule effects can enhance traditional growth inhibition screens for antibiotic discovery and change how we search for new antibacterial agents. Computational models that integrate physicochemical compound properties with their phenotypic and molecular downstream effects can not only predict efficacy of molecules yet to be tested, but also reveal unprecedented insights on compound modes of action (MoAs). The unbiased characterization of compounds that themselves are not growth inhibitory but exhibit diverse MoAs, can expand antibacterial strategies beyond direct inhibition of core essential functions. Early and systematic functional annotation of compound libraries thus paves the way to new models in the selection of lead antimicrobial compounds. In this Review, we discuss how multidimensional small-molecule profiling and the ever-increasing computing power are accelerating the discovery of unconventional antibacterials capable of bypassing resistance and exploiting synergies with established antibacterial treatments and with protective host mechanisms.
Collapse
|
20
|
Passemiers A, Moreau Y, Raimondi D. Fast and accurate inference of gene regulatory networks through robust precision matrix estimation. Bioinformatics 2022; 38:2802-2809. [PMID: 35561176 PMCID: PMC9113237 DOI: 10.1093/bioinformatics/btac178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Transcriptional regulation mechanisms allow cells to adapt and respond to external stimuli by altering gene expression. The possible cell transcriptional states are determined by the underlying gene regulatory network (GRN), and reliably inferring such network would be invaluable to understand biological processes and disease progression. RESULTS In this article, we present a novel method for the inference of GRNs, called PORTIA, which is based on robust precision matrix estimation, and we show that it positively compares with state-of-the-art methods while being orders of magnitude faster. We extensively validated PORTIA using the DREAM and MERLIN+P datasets as benchmarks. In addition, we propose a novel scoring metric that builds on graph-theoretical concepts. AVAILABILITY AND IMPLEMENTATION The code and instructions for data acquisition and full reproduction of our results are available at https://github.com/AntoinePassemiers/PORTIA-Manuscript. PORTIA is available on PyPI as a Python package (portia-grn). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|
21
|
Zhong F, Wu X, Yang R, Li X, Wang D, Fu Z, Liu X, Wan X, Yang T, Fan Z, Zhang Y, Luo X, Chen K, Zhang S, Jiang H, Zheng M. Drug target inference by mining transcriptional data using a novel graph convolutional network framework. Protein Cell 2022; 13:281-301. [PMID: 34677780 PMCID: PMC8532448 DOI: 10.1007/s13238-021-00885-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
A fundamental challenge that arises in biomedicine is the need to characterize compounds in a relevant cellular context in order to reveal potential on-target or off-target effects. Recently, the fast accumulation of gene transcriptional profiling data provides us an unprecedented opportunity to explore the protein targets of chemical compounds from the perspective of cell transcriptomics and RNA biology. Here, we propose a novel Siamese spectral-based graph convolutional network (SSGCN) model for inferring the protein targets of chemical compounds from gene transcriptional profiles. Although the gene signature of a compound perturbation only provides indirect clues of the interacting targets, and the biological networks under different experiment conditions further complicate the situation, the SSGCN model was successfully trained to learn from known compound-target pairs by uncovering the hidden correlations between compound perturbation profiles and gene knockdown profiles. On a benchmark set and a large time-split validation dataset, the model achieved higher target inference accuracy as compared to previous methods such as Connectivity Map. Further experimental validations of prediction results highlight the practical usefulness of SSGCN in either inferring the interacting targets of compound, or reversely, in finding novel inhibitors of a given target of interest.
Collapse
Affiliation(s)
- Feisheng Zhong
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolong Wu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ruirui Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Xutong Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dingyan Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zunyun Fu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaohong Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - XiaoZhe Wan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianbiao Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zisheng Fan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yinghui Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaixian Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
22
|
Sun C, Lin KC, Yeung CY, Ching ESC, Huang YT, Lai PY, Chan CK. Revealing directed effective connectivity of cortical neuronal networks from measurements. Phys Rev E 2022; 105:044406. [PMID: 35590680 DOI: 10.1103/physreve.105.044406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
In the study of biological networks, one of the major challenges is to understand the relationships between network structure and dynamics. In this paper, we model in vitro cortical neuronal cultures as stochastic dynamical systems and apply a method that reconstructs directed networks from dynamics [Ching and Tam, Phys. Rev. E 95, 010301(R) (2017)2470-004510.1103/PhysRevE.95.010301] to reveal directed effective connectivity, namely, the directed links and synaptic weights, of the neuronal cultures from voltage measurements recorded by a multielectrode array. The effective connectivity so obtained reproduces several features of cortical regions in rats and monkeys and has similar network properties as the synaptic network of the nematode Caenorhabditis elegans, whose entire nervous system has been mapped out. The distribution of the incoming degree is bimodal and the distributions of the average incoming and outgoing synaptic strength are non-Gaussian with long tails. The effective connectivity captures different information from the commonly studied functional connectivity, estimated using statistical correlation between spiking activities. The average synaptic strengths of excitatory incoming and outgoing links are found to increase with the spiking activity in the estimated effective connectivity but not in the functional connectivity estimated using the same sets of voltage measurements. These results thus demonstrate that the reconstructed effective connectivity can capture the general properties of synaptic connections and better reveal relationships between network structure and dynamics.
Collapse
Affiliation(s)
- Chumin Sun
- Institute of Theoretical Physics and Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - K C Lin
- Institute of Theoretical Physics and Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - C Y Yeung
- Institute of Theoretical Physics and Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Emily S C Ching
- Institute of Theoretical Physics and Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yu-Ting Huang
- Department of Physics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, ROC
- Institute of Physics, Academia Sinica, Taipei, Taiwan 115, ROC
| | - Pik-Yin Lai
- Department of Physics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, ROC
| | - C K Chan
- Institute of Physics, Academia Sinica, Taipei, Taiwan 115, ROC
| |
Collapse
|
23
|
The identifiability of gene regulatory networks: the role of observation data. J Biol Phys 2022; 48:93-110. [PMID: 34988715 PMCID: PMC8866611 DOI: 10.1007/s10867-021-09595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/07/2021] [Indexed: 10/19/2022] Open
Abstract
Identifying gene regulatory networks (GRN) from observation data is significant to understand biological systems. Conventional studies focus on improving the performance of identification algorithms. However, besides algorithm performance, the GRN identification is strongly depended on the observation data. In this work, for three GRN S-system models, three observation data collection schemes are used to perform the identifiability test procedure. A modified genetic algorithm-particle swarm optimization algorithm is proposed to implement this task, including the multi-level mutation operation and velocity limitation strategy. The results show that, in scheme 1 (starting from a special initial condition), the GRN systems are of identifiability using the sufficient transient observation data. In scheme 2, the observation data are short of sufficient system dynamic. The GRN systems are not of identifiability even though the state trajectories can be reproduced. As a special case of scheme 2, i.e., the steady-state observation data, the equilibrium point analysis is given to explain why it is infeasible for GRN identification. In schemes 1 and 2, the observation data are obtained from zero-input GRN systems, which will evolve to the steady state at last. The sufficient transient observation data in scheme 1 can be obtained by changing the experimental conditions. Additionally, the valid observation data can be also obtained by means of adding impulse excitation signal into GRN systems (scheme 3). Consequently, the GRN systems are identifiable using scheme 3. Owing to its universality and simplicity, these results provide a guide for biologists to collect valid observation data for identifying GRNs and to further understand GRN dynamics.
Collapse
|
24
|
Liu Y, Li L, Wang X. A nonlinear sparse neural ordinary differential equation model for multiple functional processes. CAN J STAT 2022; 50:59-85. [PMID: 35530428 PMCID: PMC9075179 DOI: 10.1002/cjs.11666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 07/06/2021] [Indexed: 11/06/2022]
Abstract
In this article, we propose a new sparse neural ordinary differential equation (ODE) model to characterize flexible relations among multiple functional processes. We characterize the latent states of the functions via a set of ordinary differential equations. We then model the dynamic changes of the latent states using a deep neural network (DNN) with a specially designed architecture and a sparsity-inducing regularization. The new model is able to capture both nonlinear and sparse dependent relations among multivariate functions. We develop an efficient optimization algorithm to estimate the unknown weights for the DNN under the sparsity constraint. We establish both the algorithmic convergence and selection consistency, which constitute the theoretical guarantees of the proposed method. We illustrate the efficacy of the method through simulations and a gene regulatory network example.
Collapse
Affiliation(s)
- Yijia Liu
- Department of Statistics, Purdue University
| | - Lexin Li
- Department of Biostatistics and Epidemiology, University of California at Berkeley
| | - Xiao Wang
- Department of Statistics, Purdue University
| |
Collapse
|
25
|
Yang JH. CRISP(e)R drug discovery. Nat Chem Biol 2022; 18:435-436. [PMID: 35197625 DOI: 10.1038/s41589-022-00979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jason H Yang
- Center for Emerging and Re-Emerging Pathogens and Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
26
|
Combining CRISPRi and metabolomics for functional annotation of compound libraries. Nat Chem Biol 2022; 18:482-491. [PMID: 35194207 PMCID: PMC7612681 DOI: 10.1038/s41589-022-00970-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Molecular profiling of small-molecules offers invaluable insights into the function of compounds and allows for hypothesis generation about small molecule direct targets and secondary effects. However, current profiling methods are either limited in the number of measurable parameters or throughput. Here, we developed a multiplexed, unbiased framework that, by linking genetic to drug-induced changes in nearly a thousand metabolites, allows for high-throughput functional annotation of compound libraries in Escherichia coli. First, we generated a reference map of metabolic changes from (CRISPR) interference with 352 genes in all major essential biological processes. Next, based on the comparison of genetic with 1342 drug-induced metabolic changes we made de novo predictions of compound functionality and revealed antibacterials with unconventional Modes of Action. We show that our framework, combining dynamic gene silencing with metabolomics, can be adapted as a general strategy for comprehensive high-throughput analysis of compound functionality, from bacteria to human cell lines.
Collapse
|
27
|
Pio G, Mignone P, Magazzù G, Zampieri G, Ceci M, Angione C. Integrating genome-scale metabolic modelling and transfer learning for human gene regulatory network reconstruction. Bioinformatics 2022; 38:487-493. [PMID: 34499112 DOI: 10.1093/bioinformatics/btab647] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/23/2021] [Accepted: 09/06/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Gene regulation is responsible for controlling numerous physiological functions and dynamically responding to environmental fluctuations. Reconstructing the human network of gene regulatory interactions is thus paramount to understanding the cell functional organization across cell types, as well as to elucidating pathogenic processes and identifying molecular drug targets. Although significant effort has been devoted towards this direction, existing computational methods mainly rely on gene expression levels, possibly ignoring the information conveyed by mechanistic biochemical knowledge. Moreover, except for a few recent attempts, most of the existing approaches only consider the information of the organism under analysis, without exploiting the information of related model organisms. RESULTS We propose a novel method for the reconstruction of the human gene regulatory network, based on a transfer learning strategy that synergically exploits information from human and mouse, conveyed by gene-related metabolic features generated in silico from gene expression data. Specifically, we learn a predictive model from metabolic activity inferred via tissue-specific metabolic modelling of artificial gene knockouts. Our experiments show that the combination of our transfer learning approach with the constructed metabolic features provides a significant advantage in terms of reconstruction accuracy, as well as additional clues on the contribution of each constructed metabolic feature. AVAILABILITY AND IMPLEMENTATION The method, the datasets and all the results obtained in this study are available at: https://doi.org/10.6084/m9.figshare.c.5237687. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gianvito Pio
- Department of Computer Science, University of Bari Aldo Moro, Bari 70125, Italy.,Big Data Lab, National Interuniversity Consortium for Informatics (CINI), Rome 00185, Italy
| | - Paolo Mignone
- Department of Computer Science, University of Bari Aldo Moro, Bari 70125, Italy.,Big Data Lab, National Interuniversity Consortium for Informatics (CINI), Rome 00185, Italy
| | - Giuseppe Magazzù
- School of Computing, Engineering & Digital Technologies, Teesside University, Tees Valley TS1 3BA, UK
| | - Guido Zampieri
- School of Computing, Engineering & Digital Technologies, Teesside University, Tees Valley TS1 3BA, UK.,Department of Biology, University of Padova, Padova 35121, Italy
| | - Michelangelo Ceci
- Department of Computer Science, University of Bari Aldo Moro, Bari 70125, Italy.,Big Data Lab, National Interuniversity Consortium for Informatics (CINI), Rome 00185, Italy.,Department of Knowledge Technologies, Jozef Stefan Institute, Ljubljana 1000, Slovenia
| | - Claudio Angione
- School of Computing, Engineering & Digital Technologies, Teesside University, Tees Valley TS1 3BA, UK.,Centre for Digital Innovation, Teesside University, Campus Heart, Tees Valley TS1 3BX, UK.,Healthcare Innovation Centre, Teesside University, Campus Heart, Tees Valley TS1 3BX, UK
| |
Collapse
|
28
|
Tyloo M, Delabays R, Jacquod P. Reconstructing network structures from partial measurements. CHAOS (WOODBURY, N.Y.) 2021; 31:103117. [PMID: 34717331 DOI: 10.1063/5.0058739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The dynamics of systems of interacting agents is determined by the structure of their coupling network. The knowledge of the latter is, therefore, highly desirable, for instance, to develop efficient control schemes, to accurately predict the dynamics, or to better understand inter-agent processes. In many important and interesting situations, the network structure is not known, however, and previous investigations have shown how it may be inferred from complete measurement time series on each and every agent. These methods implicitly presuppose that, even though the network is not known, all its nodes are. Here, we investigate the different problem of inferring network structures within the observed/measured agents. For symmetrically coupled dynamical systems close to a stable equilibrium, we establish analytically and illustrate numerically that velocity signal correlators encode not only direct couplings, but also geodesic distances in the coupling network within the subset of measurable agents. When dynamical data are accessible for all agents, our method is furthermore algorithmically more efficient than the traditional ones because it does not rely on matrix inversion.
Collapse
Affiliation(s)
- Melvyn Tyloo
- Department of Quantum Matter Physics, University of Geneva, CH-1211 Geneva, Switzerland
| | - Robin Delabays
- Automatic Control Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Philippe Jacquod
- Department of Quantum Matter Physics, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
29
|
Saint-André V. Computational biology approaches for mapping transcriptional regulatory networks. Comput Struct Biotechnol J 2021; 19:4884-4895. [PMID: 34522292 PMCID: PMC8426465 DOI: 10.1016/j.csbj.2021.08.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Transcriptional Regulatory Networks (TRNs) are mainly responsible for the cell-type- or cell-state-specific expression of gene sets from the same DNA sequence. However, so far there are no precise maps of TRNs available for each cell-type or cell-state, and no ideal tool to map those networks clearly and in full from biological samples. In this review, major approaches and tools to map TRNs from high-throughput data are presented, depending on the type of methods or data used to infer them, and their advantages and limitations are discussed. After summarizing the main principles defining the topology and structure–function relationships in TRNs, an overview of the extensive work done to map TRNs from bulk transcriptomic data will be presented by type of methodological approach. Most recent modellings of TRNs using other types of molecular data or integrating different data types, including single-cell RNA-sequencing and chromatin information, will then be discussed, before briefly concluding with improvements expected to come in the field.
Collapse
Affiliation(s)
- Violaine Saint-André
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| |
Collapse
|
30
|
Ghosh Roy G, Geard N, Verspoor K, He S. PoLoBag: Polynomial Lasso Bagging for signed gene regulatory network inference from expression data. Bioinformatics 2021; 36:5187-5193. [PMID: 32697830 DOI: 10.1093/bioinformatics/btaa651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/06/2020] [Accepted: 07/16/2020] [Indexed: 02/01/2023] Open
Abstract
MOTIVATION Inferring gene regulatory networks (GRNs) from expression data is a significant systems biology problem. A useful inference algorithm should not only unveil the global structure of the regulatory mechanisms but also the details of regulatory interactions such as edge direction (from regulator to target) and sign (activation/inhibition). Many popular GRN inference algorithms cannot infer edge signs, and those that can infer signed GRNs cannot simultaneously infer edge directions or network cycles. RESULTS To address these limitations of existing algorithms, we propose Polynomial Lasso Bagging (PoLoBag) for signed GRN inference with both edge directions and network cycles. PoLoBag is an ensemble regression algorithm in a bagging framework where Lasso weights estimated on bootstrap samples are averaged. These bootstrap samples incorporate polynomial features to capture higher-order interactions. Results demonstrate that PoLoBag is consistently more accurate for signed inference than state-of-the-art algorithms on simulated and real-world expression datasets. AVAILABILITY AND IMPLEMENTATION Algorithm and data are freely available at https://github.com/gourabghoshroy/PoLoBag. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gourab Ghosh Roy
- School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK.,School of Computing and Information Systems, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Nicholas Geard
- School of Computing and Information Systems, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Karin Verspoor
- School of Computing and Information Systems, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Shan He
- School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
31
|
Gakii C, Bwana BK, Mugambi GG, Mukoya E, Mireji PO, Rimiru R. In silico-driven analysis of the Glossina morsitans morsitans antennae transcriptome in response to repellent or attractant compounds. PeerJ 2021; 9:e11691. [PMID: 34249514 PMCID: PMC8255069 DOI: 10.7717/peerj.11691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND High-throughput sequencing generates large volumes of biological data that must be interpreted to make meaningful inference on the biological function. Problems arise due to the large number of characteristics p (dimensions) that describe each record [n] in the database. Feature selection using a subset of variables extracted from the large datasets is one of the approaches towards solving this problem. METHODOLOGY In this study we analyzed the transcriptome of Glossina morsitans morsitans (Tsetsefly) antennae after exposure to either a repellant (δ-nonalactone) or an attractant (ε-nonalactone). We identified 308 genes that were upregulated or downregulated due to exposure to a repellant (δ-nonalactone) or an attractant (ε-nonalactone) respectively. Weighted gene coexpression network analysis was used to cluster the genes into 12 modules and filter unconnected genes. Discretized and association rule mining was used to find association between genes thereby predicting the putative function of unannotated genes. RESULTS AND DISCUSSION Among the significantly expressed chemosensory genes (FDR < 0.05) in response to Ɛ-nonalactone were gustatory receptors (GrIA and Gr28b), ionotrophic receptors (Ir41a and Ir75a), odorant binding proteins (Obp99b, Obp99d, Obp59a and Obp28a) and the odorant receptor (Or67d). Several non-chemosensory genes with no assigned function in the NCBI database were co-expressed with the chemosensory genes. Exposure to a repellent (δ-nonalactone) did not show any significant change between the treatment and control samples. We generated a coexpression network with 276 edges and 130 nodes. Genes CAH3, Ahcy, Ir64a, Or67c, Ir8a and Or67a had node degree values above 11 and therefore could be regarded as the top hub genes in the network. Association rule mining showed a relation between various genes based on their appearance in the same itemsets as consequent and antecedent.
Collapse
Affiliation(s)
- Consolata Gakii
- Department of Mathematics, Computing and Information Technology, University of Embu, Embu, Eastern, Kenya
- School of Computing and Information Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Nairobi, Kenya
| | | | - Grace Gathoni Mugambi
- School of Computing and Information Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Nairobi, Kenya
| | - Esther Mukoya
- School of Computing and Information Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Nairobi, Kenya
| | - Paul O. Mireji
- Biotechnology Research Center, Kenya Agricultural & Livestock Research Organization, Nairobi, Nairobi, Kenya
| | - Richard Rimiru
- School of Computing and Information Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Nairobi, Kenya
| |
Collapse
|
32
|
Shen F, Liu J, Wu K. Evolutionary multitasking network reconstruction from time series with online parameter estimation. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2021.107019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Seçilmiş D, Hillerton T, Nelander S, Sonnhammer ELL. Inferring the experimental design for accurate gene regulatory network inference. Bioinformatics 2021; 37:3553-3559. [PMID: 33978748 PMCID: PMC8545292 DOI: 10.1093/bioinformatics/btab367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Motivation Accurate inference of gene regulatory interactions is of importance for understanding the mechanisms of underlying biological processes. For gene expression data gathered from targeted perturbations, gene regulatory network (GRN) inference methods that use the perturbation design are the top performing methods. However, the connection between the perturbation design and gene expression can be obfuscated due to problems, such as experimental noise or off-target effects, limiting the methods’ ability to reconstruct the true GRN. Results In this study, we propose an algorithm, IDEMAX, to infer the effective perturbation design from gene expression data in order to eliminate the potential risk of fitting a disconnected perturbation design to gene expression. We applied IDEMAX to synthetic data from two different data generation tools, GeneNetWeaver and GeneSPIDER, and assessed its effect on the experiment design matrix as well as the accuracy of the GRN inference, followed by application to a real dataset. The results show that our approach consistently improves the accuracy of GRN inference compared to using the intended perturbation design when much of the signal is hidden by noise, which is often the case for real data. Availability and implementation https://bitbucket.org/sonnhammergrni/idemax. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Deniz Seçilmiş
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, Solna, 17121, Sweden
| | - Thomas Hillerton
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, Solna, 17121, Sweden
| | - Sven Nelander
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Erik L L Sonnhammer
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, Solna, 17121, Sweden
| |
Collapse
|
34
|
Yuan T, Werman JM, Sampson NS. The pursuit of mechanism of action: uncovering drug complexity in TB drug discovery. RSC Chem Biol 2021; 2:423-440. [PMID: 33928253 PMCID: PMC8081351 DOI: 10.1039/d0cb00226g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Whole cell-based phenotypic screens have become the primary mode of hit generation in tuberculosis (TB) drug discovery during the last two decades. Different drug screening models have been developed to mirror the complexity of TB disease in the laboratory. As these culture conditions are becoming more and more sophisticated, unraveling the drug target and the identification of the mechanism of action (MOA) of compounds of interest have additionally become more challenging. A good understanding of MOA is essential for the successful delivery of drug candidates for TB treatment due to the high level of complexity in the interactions between Mycobacterium tuberculosis (Mtb) and the TB drug used to treat the disease. There is no single "standard" protocol to follow and no single approach that is sufficient to fully investigate how a drug restrains Mtb. However, with the recent advancements in -omics technologies, there are multiple strategies that have been developed generally in the field of drug discovery that have been adapted to comprehensively characterize the MOAs of TB drugs in the laboratory. These approaches have led to the successful development of preclinical TB drug candidates, and to a better understanding of the pathogenesis of Mtb infection. In this review, we describe a plethora of efforts based upon genetic, metabolomic, biochemical, and computational approaches to investigate TB drug MOAs. We assess these different platforms for their strengths and limitations in TB drug MOA elucidation in the context of Mtb pathogenesis. With an emphasis on the essentiality of MOA identification, we outline the unmet needs in delivering TB drug candidates and provide direction for further TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Joshua M. Werman
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| |
Collapse
|
35
|
Ebrahimpour Gorji A, Roudbari Z, Ebrahimpour Gorji F, Sadeghi B. Computational study of zebrafish immune-targeted microarray data for prediction of preventive drug candidates. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2021; 12:87-93. [PMID: 33953878 PMCID: PMC8094140 DOI: 10.30466/vrf.2019.94179.2270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/20/2019] [Indexed: 11/04/2022]
Abstract
Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus reported to cause economic loss in fish farms. Because of the lack of adequate preventative treatments, the identification of multipath genes involved in VHS infection might be an alternative to explore the possibility of using drugs for the seasonal prevention of this fish disease. We propose labeling a category of drug molecules by further classification and interpretation of the Drug Gene Interaction Database using gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment scores. The study investigated disease networks of up-and down-regulated genes to find those with high interaction as substantial genes in pathways among the different disease networks. We prioritized these genes based on their relationship to those associated with VHS infection in the context of human protein-protein interaction networks and disease pathways. Among the 29 genes as potential drug targets, nine were selected as promising druggable genes (ERBB2, FGFR3, ITGA2B, MAP2K1, NGF, NTRK1, PDGFRA, SCN2B, and SERPINC1). PDGFRA is the most important druggable up-and down-regulated gene and is considered an important gene in the IMATINIB pathway. This study findings indicate a promising approach for drug target prediction for VHS treatment, which might be useful for disease therapeutics.
Collapse
Affiliation(s)
- Abdolvahab Ebrahimpour Gorji
- Department of Fisheries, Faculty of Animal Sciences and Fisheries, Sari Agricultural and Natural Resources University, Sari, Iran
| | - Zahra Roudbari
- Department of Animal Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
| | - Fatemeh Ebrahimpour Gorji
- Department of Cell and Molecular Biology, Faculty of Science, University of Andishesazan, Neka, Iran
| | - Balal Sadeghi
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
36
|
Noh H, Hua Z, Chrysinas P, Shoemaker JE, Gunawan R. DeltaNeTS+: elucidating the mechanism of drugs and diseases using gene expression and transcriptional regulatory networks. BMC Bioinformatics 2021; 22:108. [PMID: 33663384 PMCID: PMC7934467 DOI: 10.1186/s12859-021-04046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/23/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Knowledge on the molecular targets of diseases and drugs is crucial for elucidating disease pathogenesis and mechanism of action of drugs, and for driving drug discovery and treatment formulation. In this regard, high-throughput gene transcriptional profiling has become a leading technology, generating whole-genome data on the transcriptional alterations caused by diseases or drug compounds. However, identifying direct gene targets, especially in the background of indirect (downstream) effects, based on differential gene expressions is difficult due to the complexity of gene regulatory network governing the gene transcriptional processes. RESULTS In this work, we developed a network analysis method, called DeltaNeTS+, for inferring direct gene targets of drugs and diseases from gene transcriptional profiles. DeltaNeTS+ uses a gene regulatory network model to identify direct perturbations to the transcription of genes using gene expression data. Importantly, DeltaNeTS+ is able to combine both steady-state and time-course expression profiles, as well as leverage information on the gene network structure. We demonstrated the power of DeltaNeTS+ in predicting gene targets using gene expression data in complex organisms, including Caenorhabditis elegans and human cell lines (T-cell and Calu-3). More specifically, in an application to time-course gene expression profiles of influenza A H1N1 (swine flu) and H5N1 (avian flu) infection, DeltaNeTS+ shed light on the key differences of dynamic cellular perturbations caused by the two influenza strains. CONCLUSION DeltaNeTS+ is a powerful network analysis tool for inferring gene targets from gene expression profiles. As demonstrated in the case studies, by incorporating available information on gene network structure, DeltaNeTS+ produces accurate predictions of direct gene targets from a small sample size (~ 10 s). Integrating static and dynamic expression data with transcriptional network structure extracted from genomic information, as enabled by DeltaNeTS+, is crucial toward personalized medicine, where treatments can be tailored to individual patients. DeltaNeTS+ can be freely downloaded from http://www.github.com/cabsel/deltanetsplus .
Collapse
Affiliation(s)
- Heeju Noh
- Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Present Address: Columbia University Medical Center, New York, NY 10032 USA
| | - Ziyi Hua
- Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Panagiotis Chrysinas
- Department of Chemical and Biological Engineering, University at Buffalo – SUNY, Buffalo, NY 14260 USA
| | - Jason E. Shoemaker
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Rudiyanto Gunawan
- Department of Chemical and Biological Engineering, University at Buffalo – SUNY, Buffalo, NY 14260 USA
| |
Collapse
|
37
|
Gao Q, Gao S, Bates C, Zeng Y, Lei J, Su H, Dong Q, Qin Z, Zhao J, Zhang Q, Ning D, Huang Y, Zhou J, Yang Y. The microbial network property as a bio-indicator of antibiotic transmission in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143712. [PMID: 33277004 DOI: 10.1016/j.scitotenv.2020.143712] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/18/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Interspecies interaction is an essential mechanism for bacterial communities to develop antibiotic resistance via horizontal gene transfer. Nonetheless, how bacterial interactions vary along the environmental transmission of antibiotics and the underpinnings remain unclear. To address it, we explore potential microbial associations by analyzing bacterial networks generated from 16S rRNA gene sequences and functional networks containing a large number of antibiotic-resistance genes (ARGs). Antibiotic concentration decreased by more than 4000-fold along the environmental transmission chain from manure samples of swine farms to aerobic compost, compost-amended agricultural soils, and neighboring agricultural soils. Both bacterial and functional networks became larger in nodes and links with decreasing antibiotic concentrations, likely resulting from lower antibiotics stress. Nonetheless, bacterial networks became less clustered with decreasing antibiotic concentrations, while functional networks became more clustered. Modularity, a key topological property that enhances system resilience to antibiotic stress, remained high for functional networks, but the modularity values of bacterial networks were the lowest when antibiotic concentrations were intermediate. To explain it, we identified a clear shift from deterministic processes, particularly variable selection, to stochastic processes at intermediate antibiotic concentrations as the dominant mechanism in shaping bacterial communities. Collectively, our results revealed microbial network dynamics and suggest that the modularity value of association networks could serve as an important indicator of antibiotic concentrations in the environment.
Collapse
Affiliation(s)
- Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuhong Gao
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Colin Bates
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Yufei Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiesi Lei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hang Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qiang Dong
- Institute of Chemical Defense, Beijing 102205, China
| | - Ziyan Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianshu Zhao
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Qiuting Zhang
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Daliang Ning
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Jizhong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
38
|
Wang X, Zhang Z, Li H, Chen Y, Mi Y, Hu G. Exploring node interaction relationship in complex networks by using high-frequency signal injection. Phys Rev E 2021; 103:022317. [PMID: 33736077 DOI: 10.1103/physreve.103.022317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/03/2021] [Indexed: 11/07/2022]
Abstract
Many practical systems can be described by complex networks. These networks produce, day and night, rich data which can be used to extract information from the systems. Often, output data of some nodes in the networks can be successfully measured and collected while the structures of networks producing these data are unknown. Thus, revealing network structures by analyzing available data, referred to as network reconstruction, turns to be an important task in many realistic problems. Limitation of measurable data is a very common challenge in network reconstruction. Here we consider an extreme case, i.e., we can only measure and process the data of a pair of nodes in a large network, and the task is to explore the relationship between these two nodes while all other nodes in the network are hidden. A driving-response approach is proposed to do so. By loading a high-frequency signal to a node (defined as node A), we can measure data of the partner node (node B), and work out the connection structure, such as the distance from node A to node B and the effective intensity of interaction from A to B, with the data of node B only. A systematical smoothing technique is suggested for treating noise problem. The approach has practical significance.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Zhaoyang Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Haihong Li
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yang Chen
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuanyuan Mi
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China.,AI Research Center, Peng Cheng Laboratory, Shenzhen 518005, China
| | - Gang Hu
- Department of Physics, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
39
|
Network models of primary melanoma microenvironments identify key melanoma regulators underlying prognosis. Nat Commun 2021; 12:1214. [PMID: 33619278 PMCID: PMC7900178 DOI: 10.1038/s41467-021-21457-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/21/2021] [Indexed: 02/08/2023] Open
Abstract
Melanoma is the most lethal skin malignancy, driven by genetic and epigenetic alterations in the complex tumour microenvironment. While large-scale molecular profiling of melanoma has identified molecular signatures associated with melanoma progression, comprehensive systems-level modeling remains elusive. This study builds up predictive gene network models of molecular alterations in primary melanoma by integrating large-scale bulk-based multi-omic and single-cell transcriptomic data. Incorporating clinical, epigenetic, and proteomic data into these networks reveals key subnetworks, cell types, and regulators underlying melanoma progression. Tumors with high immune infiltrates are found to be associated with good prognosis, presumably due to induced CD8+ T-cell cytotoxicity, via MYO1F-mediated M1-polarization of macrophages. Seventeen key drivers of the gene subnetworks associated with poor prognosis, including the transcription factor ZNF180, are tested for their pro-tumorigenic effects in vitro. The anti-tumor effect of silencing ZNF180 is further validated using in vivo xenografts. Experimentally validated targets of ZNF180 are enriched in the ZNF180 centered network and the known pathways such as melanoma cell maintenance and immune cell infiltration. The transcriptional networks and their critical regulators provide insights into the molecular mechanisms of melanomagenesis and pave the way for developing therapeutic strategies for melanoma. While the molecular profiling of melanoma progression has been extensively characterised by large-scale studies, there is still need for the comprehensive integration of such datasets. Here the authors construct predictive gene network models for prognostic and therapeutic purposes.
Collapse
|
40
|
Du L, Ye X, Li M, Wang H, Zhang B, Zheng R, Wang Y. Mechanisms of traditional Chinese medicines in the treatment of allergic rhinitis using a network biology approach. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [DOI: 10.1016/j.jtcms.2016.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
Augugliaro L, Abbruzzo A, Vinciotti V. ℓ 1-Penalized censored Gaussian graphical model. Biostatistics 2020; 21:e1-e16. [PMID: 30203001 DOI: 10.1093/biostatistics/kxy043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/02/2018] [Accepted: 07/15/2018] [Indexed: 12/30/2022] Open
Abstract
Graphical lasso is one of the most used estimators for inferring genetic networks. Despite its diffusion, there are several fields in applied research where the limits of detection of modern measurement technologies make the use of this estimator theoretically unfounded, even when the assumption of a multivariate Gaussian distribution is satisfied. Typical examples are data generated by polymerase chain reactions and flow cytometer. The combination of censoring and high-dimensionality make inference of the underlying genetic networks from these data very challenging. In this article, we propose an $\ell_1$-penalized Gaussian graphical model for censored data and derive two EM-like algorithms for inference. We evaluate the computational efficiency of the proposed algorithms by an extensive simulation study and show that, when censored data are available, our proposal is superior to existing competitors both in terms of network recovery and parameter estimation. We apply the proposed method to gene expression data generated by microfluidic Reverse Transcription quantitative Polymerase Chain Reaction technology in order to make inference on the regulatory mechanisms of blood development. A software implementation of our method is available on github (https://github.com/LuigiAugugliaro/cglasso).
Collapse
Affiliation(s)
- Luigi Augugliaro
- Department of Economics, Business and Statistics, University of Palermo, Building 13, Viale delle Scienze, Palermo, Italy
| | - Antonino Abbruzzo
- Department of Economics, Business and Statistics, University of Palermo, Building 13, Viale delle Scienze, Palermo, Italy
| | - Veronica Vinciotti
- Department of Mathematics, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| |
Collapse
|
42
|
Yuan B, Shen C, Luna A, Korkut A, Marks DS, Ingraham J, Sander C. CellBox: Interpretable Machine Learning for Perturbation Biology with Application to the Design of Cancer Combination Therapy. Cell Syst 2020; 12:128-140.e4. [PMID: 33373583 DOI: 10.1016/j.cels.2020.11.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/13/2020] [Accepted: 11/25/2020] [Indexed: 01/13/2023]
Abstract
Systematic perturbation of cells followed by comprehensive measurements of molecular and phenotypic responses provides informative data resources for constructing computational models of cell biology. Models that generalize well beyond training data can be used to identify combinatorial perturbations of potential therapeutic interest. Major challenges for machine learning on large biological datasets are to find global optima in a complex multidimensional space and mechanistically interpret the solutions. To address these challenges, we introduce a hybrid approach that combines explicit mathematical models of cell dynamics with a machine-learning framework, implemented in TensorFlow. We tested the modeling framework on a perturbation-response dataset of a melanoma cell line after drug treatments. The models can be efficiently trained to describe cellular behavior accurately. Even though completely data driven and independent of prior knowledge, the resulting de novo network models recapitulate some known interactions. The approach is readily applicable to various kinetic models of cell biology. A record of this paper's Transparent Peer Review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA; cBio Center, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute, Cambridge, MA, USA.
| | - Ciyue Shen
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA; cBio Center, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute, Cambridge, MA, USA.
| | - Augustin Luna
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA; cBio Center, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute, Cambridge, MA, USA
| | - Anil Korkut
- Department of Bioinformatics & Computational Biology, the University of Texas M D Anderson Cancer Center, Houston, TX, USA
| | - Debora S Marks
- Broad Institute, Cambridge, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - John Ingraham
- MIT Computer Science & Artificial Intelligence Laboratory, Boston, MA, USA
| | - Chris Sander
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA; cBio Center, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
43
|
Ajmal HB, Madden MG. Inferring dynamic gene regulatory networks with low-order conditional independencies – an evaluation of the method. Stat Appl Genet Mol Biol 2020. [DOI: 10.1515/sagmb-2020-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractOver a decade ago, Lèbre (2009) proposed an inference method, G1DBN, to learn the structure of gene regulatory networks (GRNs) from high dimensional, sparse time-series gene expression data. Their approach is based on concept of low-order conditional independence graphs that they extend to dynamic Bayesian networks (DBNs). They present results to demonstrate that their method yields better structural accuracy compared to the related Lasso and Shrinkage methods, particularly where the data is sparse, that is, the number of time measurements n is much smaller than the number of genes p. This paper challenges these claims using a careful experimental analysis, to show that the GRNs reverse engineered from time-series data using the G1DBN approach are less accurate than claimed by Lèbre (2009). We also show that the Lasso method yields higher structural accuracy for graphs learned from the simulated data, compared to the G1DBN method, particularly when the data is sparse ($n{< }{< }p$). The Lasso method is also better than G1DBN at identifying the transcription factors (TFs) involved in the cell cycle of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Hamda B. Ajmal
- School of Computer Science, National University of Ireland, Galway, Ireland
| | - Michael G. Madden
- School of Computer Science, National University of Ireland, Galway, Ireland
| |
Collapse
|
44
|
Baek S, Ho YY, Ma Y. Using sufficient direction factor model to analyze latent activities associated with breast cancer survival. Biometrics 2020; 76:1340-1350. [PMID: 31860141 PMCID: PMC7305041 DOI: 10.1111/biom.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/20/2019] [Accepted: 12/16/2019] [Indexed: 11/27/2022]
Abstract
High-dimensional gene expression data often exhibit intricate correlation patterns as the result of coordinated genetic regulation. In practice, however, it is difficult to directly measure these coordinated underlying activities. Analysis of breast cancer survival data with gene expressions motivates us to use a two-stage latent factor approach to estimate these unobserved coordinated biological processes. Compared to existing approaches, our proposed procedure has several unique characteristics. In the first stage, an important distinction is that our procedure incorporates prior biological knowledge about gene-pathway membership into the analysis and explicitly model the effects of genetic pathways on the latent factors. Second, to characterize the molecular heterogeneity of breast cancer, our approach provides estimates specific to each cancer subtype. Finally, our proposed framework incorporates sparsity condition due to the fact that genetic networks are often sparse. In the second stage, we investigate the relationship between latent factor activity levels and survival time with censoring using a general dimension reduction model in the survival analysis context. Combining the factor model and sufficient direction model provides an efficient way of analyzing high-dimensional data and reveals some interesting relations in the breast cancer gene expression data.
Collapse
Affiliation(s)
- Seungchul Baek
- Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, Maryland, U.S.A
| | - Yen-Yi Ho
- Department of Statistics, University of South Carolina, Columbia, South Carolina, U.S.A
| | - Yanyuan Ma
- Department of Statistics, Penn State University, University Park, Pennsylvania, U.S.A
| |
Collapse
|
45
|
Wang M, Luciani LL, Noh H, Mochan E, Shoemaker JE. TREAP: A New Topological Approach to Drug Target Inference. Biophys J 2020; 119:2290-2298. [PMID: 33129831 DOI: 10.1016/j.bpj.2020.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/08/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022] Open
Abstract
Over 50% of drugs fail in stage 3 clinical trials, many because of a poor understanding of the drug's mechanisms of action (MoA). A better comprehension of drug MoA will significantly improve research and development (R&D). Current proposed algorithms, such as ProTINA and DeMAND, can be overly complex. Additionally, they are unable to predict whether the drug-induced gene expression or the topology of the networks used to model gene regulation primarily impacts accurate drug target inference. In this work, we evaluate how network and gene expression data affect ProTINA's accuracy. We find that network topology predominantly determines the accuracy of ProTINA's predictions. We further show that the size of an interaction network and/or selecting cell-specific networks has a limited effect on accuracy. We then demonstrate that a specific network topology measure, betweenness, can be used to improve drug target prediction. Based on these results, we create a new algorithm, TREAP, that combines betweenness values and adjusted p-values for target inference. TREAP offers an alternative approach to drug target inference and is advantageous because it is not computationally demanding, provides easy-to-interpret results, and is often more accurate at predicting drug targets than current state-of-the-art approaches.
Collapse
Affiliation(s)
- Muying Wang
- Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lauren L Luciani
- Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Heeju Noh
- Department of Systems Biology, Columbia University, New York, New York; Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Ericka Mochan
- Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Mathematics and Data Analytics, Carlow University, Pittsburgh, Pennsylvania
| | - Jason E Shoemaker
- Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
46
|
Single-cell network biology for resolving cellular heterogeneity in human diseases. Exp Mol Med 2020; 52:1798-1808. [PMID: 33244151 PMCID: PMC8080824 DOI: 10.1038/s12276-020-00528-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 01/10/2023] Open
Abstract
Understanding cellular heterogeneity is the holy grail of biology and medicine. Cells harboring identical genomes show a wide variety of behaviors in multicellular organisms. Genetic circuits underlying cell-type identities will facilitate the understanding of the regulatory programs for differentiation and maintenance of distinct cellular states. Such a cell-type-specific gene network can be inferred from coregulatory patterns across individual cells. Conventional methods of transcriptome profiling using tissue samples provide only average signals of diverse cell types. Therefore, reconstructing gene regulatory networks for a particular cell type is not feasible with tissue-based transcriptome data. Recently, single-cell omics technology has emerged and enabled the capture of the transcriptomic landscape of every individual cell. Although single-cell gene expression studies have already opened up new avenues, network biology using single-cell transcriptome data will further accelerate our understanding of cellular heterogeneity. In this review, we provide an overview of single-cell network biology and summarize recent progress in method development for network inference from single-cell RNA sequencing (scRNA-seq) data. Then, we describe how cell-type-specific gene networks can be utilized to study regulatory programs specific to disease-associated cell types and cellular states. Moreover, with scRNA data, modeling personal or patient-specific gene networks is feasible. Therefore, we also introduce potential applications of single-cell network biology for precision medicine. We envision a rapid paradigm shift toward single-cell network analysis for systems biology in the near future. Gene regulatory networks reconstructed from single-cell RNA sequencing datasets are allowing researchers to better understand the molecular circuits and cell states that contribute to complex human disease. Junha Cha and Insuk Lee from Yonsei University in Seoul, South Korea, review the concept of ‘single-cell network biology’, which involves using computational algorithms on genetic expression data from thousands of cells to infer functional interactions in various biological contexts. This systems biology approach to analyzing the profiles of messenger RNA in single cells is helping researchers discover new signaling pathways that could serve as disease biomarkers or therapeutic targets. In the future, patient-specific models of personal gene networks could explain why certain genetic variants affect disease risk. This research could also eventually lead to new types of individualized medical treatments.
Collapse
|
47
|
Application of Differential Network Enrichment Analysis for Deciphering Metabolic Alterations. Metabolites 2020; 10:metabo10120479. [PMID: 33255384 PMCID: PMC7761243 DOI: 10.3390/metabo10120479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Modern analytical methods allow for the simultaneous detection of hundreds of metabolites, generating increasingly large and complex data sets. The analysis of metabolomics data is a multi-step process that involves data processing and normalization, followed by statistical analysis. One of the biggest challenges in metabolomics is linking alterations in metabolite levels to specific biological processes that are disrupted, contributing to the development of disease or reflecting the disease state. A common approach to accomplishing this goal involves pathway mapping and enrichment analysis, which assesses the relative importance of predefined metabolic pathways or other biological categories. However, traditional knowledge-based enrichment analysis has limitations when it comes to the analysis of metabolomics and lipidomics data. We present a Java-based, user-friendly bioinformatics tool named Filigree that provides a primarily data-driven alternative to the existing knowledge-based enrichment analysis methods. Filigree is based on our previously published differential network enrichment analysis (DNEA) methodology. To demonstrate the utility of the tool, we applied it to previously published studies analyzing the metabolome in the context of metabolic disorders (type 1 and 2 diabetes) and the maternal and infant lipidome during pregnancy.
Collapse
|
48
|
Stepaniants G, Brunton BW, Kutz JN. Inferring causal networks of dynamical systems through transient dynamics and perturbation. Phys Rev E 2020; 102:042309. [PMID: 33212733 DOI: 10.1103/physreve.102.042309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022]
Abstract
Inferring causal relations from time series measurements is an ill-posed mathematical problem, where typically an infinite number of potential solutions can reproduce the given data. We explore in depth a strategy to disambiguate between possible underlying causal networks by perturbing the network, where the forcings are either targeted or applied at random. The resulting transient dynamics provide the critical information necessary to infer causality. Two methods are shown to provide accurate causal reconstructions: Granger causality (GC) with perturbations, and our proposed perturbation cascade inference (PCI). Perturbed GC is capable of inferring smaller networks under low coupling strength regimes. Our proposed PCI method demonstrated consistently strong performance in inferring causal relations for small (2-5 node) and large (10-20 node) networks, with both linear and nonlinear dynamics. Thus, the ability to apply a large and diverse set of perturbations to the network is critical for successfully and accurately determining causal relations and disambiguating between various viable networks.
Collapse
Affiliation(s)
- George Stepaniants
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and Department of Mathematics, University of Washington, Seattle, Washington 98195, USA
| | - Bingni W Brunton
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - J Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
49
|
Adabor ES, Acquaah-Mensah GK. DOKI: Domain knowledge-driven inference method for reverse-engineering transcriptional regulatory relationships among genes in cancer. Comput Biol Med 2020; 125:104017. [PMID: 33010618 DOI: 10.1016/j.compbiomed.2020.104017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 11/18/2022]
Abstract
Efficient reverse-engineering methods are important for identifying transcriptional regulatory relationships among genes in cancer. These methods are becoming increasingly useful in this era where huge volumes of data are generated through the use of high-throughput technologies such as next-generation sequencing technologies and microarrays. However, it is important to improve current methods because of complications involved in modelling complex biological systems. In this paper, we present a novel approach, Domain Knowledge-driven Inference (DOKI), for identification of transcriptional regulatory relationships among genes, given a biological context such as cancer. Combining data normalization, the use of a probability distribution function and Kullback-Leibler Divergence, DOKI incorporates a domain knowledge-driven criterion to make determinations of the existence of regulatory relationships between given transcription factors and given specific gene targets. Characteristics of DOKI enable it to adequately handle complexities inherent in data, and accurately unearth linear and higher-order dependent relationships among genes. DOKI performed equally well with one established high-performing method and better than three other high-performing methods on relatively small data sets. However, it remarkably outperformed these methods on larger data sets to demonstrate its utility. Furthermore, we demonstrate the relevance of such inference algorithms for identifying novel relationships among genes in breast cancer, as some of the consensus results representing novel relationships were confirmed in previously published experimental results. Thus, DOKI will facilitate current efforts to gain etiological insights and help uncover new targeted therapies for various diseases.
Collapse
Affiliation(s)
- Emmanuel S Adabor
- School of Technology, Ghana Institute of Management and Public Administration, Achimota, Accra, Ghana.
| | - George K Acquaah-Mensah
- Pharmaceutical Sciences Department, Massachusetts College of Pharmacy and Health Sciences (MCPHS University), 19 Foster Street, Worcester, MA, USA
| |
Collapse
|
50
|
Network estimation for censored time-to-event data for multiple events based on multivariate survival analysis. PLoS One 2020; 15:e0239760. [PMID: 33002010 PMCID: PMC7529251 DOI: 10.1371/journal.pone.0239760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
In general survival analysis, multiple studies have considered a single failure time corresponding to the time to the event of interest or to the occurrence of multiple events under the assumption that each event is independent. However, in real-world events, one event may impact others. Essentially, the potential structure of the occurrence of multiple events can be observed in several survival datasets. The interrelations between the times to the occurrences of events are immensely challenging to analyze because of the presence of censoring. Censoring commonly arises in longitudinal studies in which some events are often not observed for some of the subjects within the duration of research. Although this problem presents the obstacle of distortion caused by censoring, the advanced multivariate survival analysis methods that handle multiple events with censoring make it possible to measure a bivariate probability density function for a pair of events. Considering this improvement, this paper proposes a method called censored network estimation to discover partially correlated relationships and construct the corresponding network composed of edges representing non-zero partial correlations on multiple censored events. To demonstrate its superior performance compared to conventional methods, the selecting power for the partially correlated events was evaluated in two types of networks with iterative simulation experiments. Additionally, the correlation structure was investigated on the electronic health records dataset of the times to the first diagnosis for newborn babies in South Korea. The results show significantly improved performance as compared to edge measurement with competitive methods and reliability in terms of the interrelations of real-life diseases.
Collapse
|