1
|
Wang S, Feng D, Zheng Y, Lu Y, Shi K, Yang R, Ma W, Li N, Liu M, Wang Y, Hong Y, McClung CR, Zhao J. EARLY FLOWERING 3 alleles affect the temperature responsiveness of the circadian clock in Chinese cabbage. PLANT PHYSIOLOGY 2025; 197:kiae505. [PMID: 39545809 DOI: 10.1093/plphys/kiae505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 11/17/2024]
Abstract
Temperature is an environmental cue that entrains the circadian clock, adapting it to local thermal and photoperiodic conditions that characterize different geographic regions. Circadian clock thermal adaptation in leafy vegetables such as Chinese cabbage (Brassica rapa ssp. pekinensis) is poorly understood but essential to sustain and increase vegetable production under changing climates. We investigated circadian rhythmicity in natural Chinese cabbage accessions grown at 14, 20, and 28 °C. The circadian period was significantly shorter at 20 °C than at either 14 or 28 °C, and the responses to increasing temperature and temperature compensation (Q10) were associated with population structure. Genome-wide association studies mapping identified variation responsible for temperature compensation as measured by Q10 value for temperature increase from 20 to 28 °C. Haplotype analysis indicated that B. rapa EARLY FLOWERING 3 H1 Allele (BrELF3H1) conferred a significantly higher Q10 value at 20 to 28 °C than BrELF3H2. Co-segregation analyses of an F2 population derived from a BrELF3H1 × BrELF3H2 cross revealed that variation among BrELF3 alleles determined variation in the circadian period of Chinese cabbage at 20 °C. However, their differential impact on circadian oscillation was attenuated at 28 °C. Transgenic complementation in Arabidopsis thaliana elf3-8 mutants validated the involvement of BrELF3 in the circadian clock response to thermal cues, with BrELF3H1 conferring a higher Q10 value than BrELF3 H2 at 20 to 28 °C. Thus, BrELF3 is critical to the circadian clock response to ambient temperature in Chinese cabbage. These findings have clear implications for breeding new varieties with enhanced resilience to extreme temperatures.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Daling Feng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yakun Zheng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yin Lu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Kailin Shi
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Rui Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Na Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Mengyang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yiguo Hong
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
2
|
Long EM, Stitzer MC, Monier B, Schulz AJ, Romay MC, Robbins KR, Buckler ES. Evolutionary signatures of the erosion of sexual reproduction genes in domesticated cassava (Manihot esculenta). G3 (BETHESDA, MD.) 2025; 15:jkae282. [PMID: 39673428 PMCID: PMC11797036 DOI: 10.1093/g3journal/jkae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024]
Abstract
Centuries of clonal propagation in cassava (Manihot esculenta) have reduced sexual recombination, leading to the accumulation of deleterious mutations. This has resulted in both inbreeding depression affecting yield and a significant decrease in reproductive performance, creating hurdles for contemporary breeding programs. Cassava is a member of the Euphorbiaceae family, including notable species such as rubber tree (Hevea brasiliensis) and poinsettia (Euphorbia pulcherrima). Expanding upon preliminary draft genomes, we annotated 7 long-read genome assemblies and aligned a total of 52 genomes, to analyze selection across the genome and the phylogeny. Through this comparative genomic approach, we identified 48 genes under relaxed selection in cassava. Notably, we discovered an overrepresentation of floral expressed genes, especially focused at 6 pollen-related genes. Our results indicate that domestication and a transition to clonal propagation have reduced selection pressures on sexually reproductive functions in cassava leading to an accumulation of mutations in pollen-related genes. This relaxed selection and the genome-wide deleterious mutations responsible for inbreeding depression are potential targets for improving cassava breeding, where the generation of new varieties relies on recombining favorable alleles through sexual reproduction.
Collapse
Affiliation(s)
- Evan M Long
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | - Michelle C Stitzer
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA
| | - Brandon Monier
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA
| | - Aimee J Schulz
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Maria Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA
| | - Kelly R Robbins
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Edward S Buckler
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley, Center for Agriculture and Health, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Michael TP. Can a plant biologist fix a thermostat? THE NEW PHYTOLOGIST 2025; 245:1403-1410. [PMID: 39748179 PMCID: PMC11754934 DOI: 10.1111/nph.20382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/23/2024] [Indexed: 01/04/2025]
Abstract
The shift to reductionist biology at the dawn of the genome era yielded a 'parts list' of plant genes and a nascent understanding of complex biological processes. Today, with the genomics era in full swing, advances in high-definition genomics enabled precise temporal and spatial analyses of biological systems down to the single-cell level. These insights, coupled with artificial intelligence-driven in silico design, are propelling the development of the first synthetic plants. By integrating reductionist and systems approaches, researchers are not only reimagining plants as sources of food, fiber, and fuel but also as 'environmental thermostats' capable of mitigating the impacts of a changing climate.
Collapse
Affiliation(s)
- Todd P. Michael
- Plant Molecular and Cellular Biology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037‐100210USA
| |
Collapse
|
4
|
Rees H, Rzechorzek NM, Hughes RB, Dodd AN, Hodge JJL, Stevenson TJ, von Schantz M, Lucas RJ, Reece SE, Kyriacou CP, Millar AJ. BioClocks UK: driving robust cycles of discovery to impact. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230345. [PMID: 39842476 PMCID: PMC11753888 DOI: 10.1098/rstb.2023.0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 01/24/2025] Open
Abstract
Chronobiology is a multidisciplinary field that extends across the tree of life, transcends all scales of biological organization, and has huge translational potential. For the UK to harness the opportunities presented within applied chronobiology, we need to build our network outwards to reach stakeholders that can directly benefit from our discoveries. In this article, we discuss the importance of biological rhythms to our health, society, economy and environment, with a particular focus on circadian rhythms. We subsequently introduce the vision and objectives of BioClocks UK, a newly formed research network, whose mission is to stimulate researcher interactions and sustain discovery-impact cycles between chronobiologists, wider research communities and multiple industry sectors.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Hannah Rees
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, AberystwythSY23 3EE, UK
| | - Nina M. Rzechorzek
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, CambridgeCB2 0QH, UK
| | - Rebecca B. Hughes
- Centre for Biological Timing and Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, ManchesterM13 9PT, UK
| | - Antony N. Dodd
- John Innes Centre, Norwich Research Park, NorwichNR4 7RU, UK
| | - James J. L. Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences building, University Walk, BristolBS8 1TD, UK
| | - Tyler J. Stevenson
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Bearsden Road, GlasgowG61 1QH, UK
| | - Malcolm von Schantz
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon TyneNE1 8ST, UK
| | - Robert J. Lucas
- Centre for Biological Timing and Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, ManchesterM13 9PT, UK
| | - Sarah E. Reece
- Institute of Ecology and Evolution & Institute of Immunology and Infection Research, School of Biological Sciences, University of EdinburghEH9 3FL, UK
| | - Charalambos P. Kyriacou
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, LeicesterLE1 7RH, UK
| | - Andrew J. Millar
- School of Biological Sciences and Centre for Engineering Biology, University of Edinburgh, Max Born Crescent, EdinburghEH9 3BF, UK
| |
Collapse
|
5
|
Gage JL, Romay MC, Buckler ES. Maize inbreds show allelic variation for diel transcription patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628400. [PMID: 39763849 PMCID: PMC11702552 DOI: 10.1101/2024.12.16.628400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Circadian entrainment and external cues can cause gene transcript abundance to oscillate throughout the day, and these patterns of diel transcript oscillation vary across genes and plant species. Less is known about within-species allelic variation for diel patterns of transcript oscillation, or about how regulatory sequence variation influences diel transcription patterns. In this study, we evaluated diel transcript abundance for 24 diverse maize inbred lines. We observed extensive natural variation in diel transcription patterns, with two-fold variation in the number of genes that oscillate over the course of the day. A convolutional neural network trained to predict oscillation from promoter sequence identified sequences previously reported as binding motifs for known circadian clock genes in other plant systems. Genes showing diel transcription patterns that cosegregate with promoter sequence haplotypes are enriched for associations with photoperiod sensitivity and may have been indirect targets of selection as maize was adapted to longer day lengths at higher latitudes. These findings support the idea that cis-regulatory sequence variation influences patterns of gene expression, which in turn can have effects on phenotypic plasticity and local adaptation.
Collapse
Affiliation(s)
- Joseph L. Gage
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695
- NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, 27606
| | - M. Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853
| | - Edward S. Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853
- USDA-ARS, Ithaca, NY 14850
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca NY 14853
| |
Collapse
|
6
|
Porco S, Yu S, Liang T, Snoeck C, Hermans C, Kay SA. The clock-associated LUX ARRHYTHMO regulates high-affinity nitrate transport in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1786-1797. [PMID: 39413246 PMCID: PMC11629737 DOI: 10.1111/tpj.17080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
The circadian clock organizes physiological processes in plants to occur at specific times of the day, optimizing efficient use of resources. Nitrate is a crucial inorganic nitrogen source for agricultural systems to sustain crop productivity. However, because nitrate fertilization has a negative impact on the environment, it is important to carefully manage nitrate levels. Understanding crop biological rhythms can lead to more ecologically friendly agricultural practices. Gating responses through the circadian clock could be a strategy to enhance root nitrate uptake and to limit nitrate runoff. In Arabidopsis, the NITRATE TRANSPORTER 2.1 (NRT2.1) gene encodes a key component of the high-affinity nitrate transporter system. Our study reveals that NRT2.1 exhibits a rhythmic expression pattern, with daytime increases and nighttime decreases. The NRT2.1 promoter activity remains rhythmic under constant light, indicating a circadian regulation. The clock-associated transcription factor LUX ARRHYTHMO (LUX) binds to the NRT2.1 promoter in vivo. Loss-of-function of LUX leads to increased NRT2.1 transcript levels and root nitrate uptake at dusk. This supports LUX acting as a transcriptional repressor and modulating NRT2.1 expression in a time-dependent manner. Furthermore, applying nitrate at different times of the day results in varying magnitudes of the transcriptional response in nitrate-regulated genes. We also demonstrate that a defect in the high-affinity nitrate transport system feeds back to the central oscillator by modifying the LUX promoter activity. In conclusion, this study uncovers a molecular pathway connecting the root nitrate uptake and circadian clock, with potential agro-chronobiological applications.
Collapse
Affiliation(s)
- Silvana Porco
- Department of Neurology, Keck School of MedicineUniversity of Southern CaliforniaLos Angeles90089CaliforniaUSA
- Crop Production and Biostimulation Laboratory, Brussels Bioengineering SchoolUniversité libre de BruxellesBrussels1050Belgium
| | - Shi Yu
- Department of Neurology, Keck School of MedicineUniversity of Southern CaliforniaLos Angeles90089CaliforniaUSA
| | - Tong Liang
- Department of Neurology, Keck School of MedicineUniversity of Southern CaliforniaLos Angeles90089CaliforniaUSA
| | - Christophe Snoeck
- Archaeology, Environmental Changes and Geo‐Chemistry, Department of ChemistryVrije Universiteit Brussel1050BrusselsBelgium
| | - Christian Hermans
- Crop Production and Biostimulation Laboratory, Brussels Bioengineering SchoolUniversité libre de BruxellesBrussels1050Belgium
| | - Steve A. Kay
- Department of Neurology, Keck School of MedicineUniversity of Southern CaliforniaLos Angeles90089CaliforniaUSA
| |
Collapse
|
7
|
Tomotani BM, Strauß AFT, Kishkinev D, van de Haar H, Helm B. Circadian clock period length is not consistently linked to chronotype in a wild songbird. Eur J Neurosci 2024; 60:5522-5536. [PMID: 39256897 DOI: 10.1111/ejn.16535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Circadian clock properties vary between individuals and relate to variation in entrained timing in captivity. How this variation translates into behavioural differences in natural settings, however, is poorly understood. Here, we tested in great tits whether variation in the free-running period length (tau) under constant dim light (LL) was linked to the phase angle of the entrained rhythm ("chronotype") in captivity and in the wild, as recently indicated in our study species. We also assessed links between tau and the timing of first activity onset and offset under LL relative to the last experienced light-dark (LD) cycle. We kept 66 great tits, caught in two winters, in LL for 14 days and subsequently released them with a radio transmitter back to the wild, where their activity and body temperature rhythms were tracked for 1 to 22 days. For a subset of birds, chronotype was also recorded in the lab before release. Neither wild nor lab chronotypes were related to tau. We also found no correlation between lab and wild chronotypes. However, the first onset in LL had a positive relationship with tau, but only in males. Our results demonstrate that links between tau and phase of entrainment, postulated on theoretical grounds, may not consistently hold under natural conditions, possibly due to strong masking. This calls for more holistic research on how the many components of the circadian system interact with the environment to shape timing in the wild. Wild birds showed chronotypes in the field that were unlinked to their circadian period length tau measured in captivity. In males only, the first onset of activity after exposure to constant dim light did correlate with tau. Our study emphasises the need to investigate clocks in the real world, including a need to better understand masking.
Collapse
Affiliation(s)
- Barbara M Tomotani
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, AB, The Netherlands
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Aurelia F T Strauß
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, AB, The Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | | | - Huib van de Haar
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, AB, The Netherlands
| | - Barbara Helm
- Swiss Ornithological Institute, Sempach, Switzerland
| |
Collapse
|
8
|
Denyer T, Wu PJ, Colt K, Abramson BW, Pang Z, Solansky P, Mamerto A, Nobori T, Ecker JR, Lam E, Michael TP, Timmermans MCP. Streamlined spatial and environmental expression signatures characterize the minimalist duckweed Wolffia australiana. Genome Res 2024; 34:1106-1120. [PMID: 38951025 PMCID: PMC11368201 DOI: 10.1101/gr.279091.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Single-cell genomics permits a new resolution in the examination of molecular and cellular dynamics, allowing global, parallel assessments of cell types and cellular behaviors through development and in response to environmental circumstances, such as interaction with water and the light-dark cycle of the Earth. Here, we leverage the smallest, and possibly most structurally reduced, plant, the semiaquatic Wolffia australiana, to understand dynamics of cell expression in these contexts at the whole-plant level. We examined single-cell-resolution RNA-sequencing data and found Wolffia cells divide into four principal clusters representing the above- and below-water-situated parenchyma and epidermis. Although these tissues share transcriptomic similarity with model plants, they display distinct adaptations that Wolffia has made for the aquatic environment. Within this broad classification, discrete subspecializations are evident, with select cells showing unique transcriptomic signatures associated with developmental maturation and specialized physiologies. Assessing this simplified biological system temporally at two key time-of-day (TOD) transitions, we identify additional TOD-responsive genes previously overlooked in whole-plant transcriptomic approaches and demonstrate that the core circadian clock machinery and its downstream responses can vary in cell-specific manners, even in this simplified system. Distinctions between cell types and their responses to submergence and/or TOD are driven by expression changes of unexpectedly few genes, characterizing Wolffia as a highly streamlined organism with the majority of genes dedicated to fundamental cellular processes. Wolffia provides a unique opportunity to apply reductionist biology to elucidate signaling functions at the organismal level, for which this work provides a powerful resource.
Collapse
Affiliation(s)
- Tom Denyer
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Pin-Jou Wu
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Kelly Colt
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Bradley W Abramson
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Applied Sciences and Life Sciences Laboratory, Noblis, Reston, Virginia 20191, USA
| | - Zhili Pang
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Pavel Solansky
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Allen Mamerto
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Tatsuya Nobori
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Joseph R Ecker
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA;
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| | - Marja C P Timmermans
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany;
| |
Collapse
|
9
|
de Los Reyes P, Serrano-Bueno G, Romero-Campero FJ, Gao H, Romero JM, Valverde F. CONSTANS alters the circadian clock in Arabidopsis thaliana. MOLECULAR PLANT 2024; 17:1204-1220. [PMID: 38894538 DOI: 10.1016/j.molp.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/23/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Plants are sessile organisms that have acquired highly plastic developmental strategies to adapt to the environment. Among these processes, the floral transition is essential to ensure reproductive success and is finely regulated by several internal and external genetic networks. The photoperiodic pathway, which controls plant response to day length, is one of the most important pathways controlling flowering. In Arabidopsis photoperiodic flowering, CONSTANS (CO) is the central gene activating the expression of the florigen FLOWERING LOCUS T (FT) in the leaves at the end of a long day. The circadian clock strongly regulates CO expression. However, to date, no evidence has been reported regarding a feedback loop from the photoperiod pathway back to the circadian clock. Using transcriptional networks, we have identified relevant network motifs regulating the interplay between the circadian clock and the photoperiod pathway. Gene expression, chromatin immunoprecipitation experiments, and phenotypic analysis allowed us to elucidate the role of CO over the circadian clock. Plants with altered CO expression showed a different internal clock period, measured by daily leaf rhythmic movements. We showed that CO upregulates the expression of key genes related to the circadian clock, such as CCA1, LHY, PRR5, and GI, at the end of a long day by binding to specific sites on their promoters. Moreover, a high number of PRR5-repressed target genes are upregulated by CO, and this could explain the phase transition promoted by CO. The CO-PRR5 complex interacts with the bZIP transcription factor HY5 and helps to localize the complex in the promoters of clock genes. Taken together, our results indicate that there may be a feedback loop in which CO communicates back to the circadian clock, providing seasonal information to the circadian system.
Collapse
Affiliation(s)
- Pedro de Los Reyes
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | - Gloria Serrano-Bueno
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain; Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, Seville, Spain
| | - Francisco J Romero-Campero
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain; Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| | - He Gao
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jose M Romero
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain; Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, Seville, Spain
| | - Federico Valverde
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
10
|
Makni S, Acket S, Guenin S, Afensiss S, Guellier A, Martins-Noguerol R, Moreno-Perez AJ, Thomasset B, Martinez-Force E, Gutierrez L, Ruelland E, Troncoso-Ponce A. Arabidopsis seeds altered in the circadian clock protein TOC1 are characterized by higher level of linolenic acid. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112087. [PMID: 38599247 DOI: 10.1016/j.plantsci.2024.112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/04/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024]
Abstract
The circadian clock plays a critical role in regulating plant physiology and metabolism. However, the way in which the clock impacts the regulation of lipid biosynthesis in seeds is partially understood. In the present study, we characterized the seed fatty acid (FA) and glycerolipid (GL) compositions of pseudo-response regulator mutants. Among these mutants, toc1 (timing of cab expression 1) exhibited the most significant differences compared to control plants. These included an increase in total FA content, characterized by elevated levels of linolenic acid (18:3) along with a reduction in linoleic acid (18:2). Furthermore, our findings revealed that toc1 developing seeds showed increased expression of genes related to FA metabolism. Our results show a connection between TOC1 and lipid metabolism in Arabidopsis seeds.
Collapse
Affiliation(s)
- Salim Makni
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne 60203, France
| | - Sébastien Acket
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne 60203, France
| | - Stéphanie Guenin
- Centre Régional de Ressources en Biologie Moléculaire (CRRBM), Université Picardie Jules Verne, 33 rue Saint-Leu, Amiens 80039, France
| | - Sana Afensiss
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne 60203, France
| | - Adeline Guellier
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne 60203, France
| | - Raquel Martins-Noguerol
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Sevilla, Spain
| | | | - Brigitte Thomasset
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne 60203, France
| | | | - Laurent Gutierrez
- Centre Régional de Ressources en Biologie Moléculaire (CRRBM), Université Picardie Jules Verne, 33 rue Saint-Leu, Amiens 80039, France
| | - Eric Ruelland
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne 60203, France
| | - Adrian Troncoso-Ponce
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne 60203, France.
| |
Collapse
|
11
|
Caré O, Chano V, Erley M, Rogge M, Gailing O. Circadian rhythm and redox homeostasis candidate genes showed association with shallow elevation in Norway spruce. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:508-520. [PMID: 38568928 DOI: 10.1111/plb.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
The analysis of genetic variation underlying local adaptation in natural populations, together with the response to different external stimuli, is currently a hot topic in forest sciences, with the aim of identifying genetic markers controlling key phenotypic traits of interest for their inclusion in restoration and breeding programs. In Europe, one of the main tree species is Norway spruce (Picea abies (L.) H.Karst.). Using the MassARRAY® platform, 568 trees from North Rhine-Westphalia (Germany) were genotyped with 94 single nucleotide polymorphisms (SNPs) related to circadian and growth rhythms, and to stress response. The association analysis of the selected markers with health status and elevation was performed using three different methods, and those identified by at least two of these were considered as high confidence associated SNPs. While just five markers showed a weak association with health condition, 32 SNPs were correlated with elevation, six of which were considered as high confidence associated SNPs, as indicated by at least two different association methods. Among these genes, thioredoxin and pseudo response regulator 1 (PRR1) are involved in redox homeostasis and ROS detoxification, APETALA2-like 3 (AP2L3), a transcription factor, is involved in seasonal apical growth, and a RPS2-like is a disease resistance gene. The function of some of these genes in controlling light-dependent reactions and metabolic processes suggests signatures of adaptation to local photoperiod and the synchronization of the circadian rhythm. This work provides new insights into the genetic basis of local adaptation over a shallow elevation gradient in Norway spruce.
Collapse
Affiliation(s)
- O Caré
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, Göttingen, Germany
| | - V Chano
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, Göttingen, Germany
| | - M Erley
- Landesbetrieb Wald und Holz Nordrhein-Westfalen, Arnsberg, Germany
| | - M Rogge
- Landesbetrieb Wald und Holz Nordrhein-Westfalen, Arnsberg, Germany
| | - O Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Rovira A, Veciana N, Basté-Miquel A, Quevedo M, Locascio A, Yenush L, Toledo-Ortiz G, Leivar P, Monte E. PIF transcriptional regulators are required for rhythmic stomatal movements. Nat Commun 2024; 15:4540. [PMID: 38811542 PMCID: PMC11137129 DOI: 10.1038/s41467-024-48669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Stomata govern the gaseous exchange between the leaf and the external atmosphere, and their function is essential for photosynthesis and the global carbon and oxygen cycles. Rhythmic stomata movements in daily dark/light cycles prevent water loss at night and allow CO2 uptake during the day. How the actors involved are transcriptionally regulated and how this might contribute to rhythmicity is largely unknown. Here, we show that morning stomata opening depends on the previous night period. The transcription factors PHYTOCHROME-INTERACTING FACTORS (PIFs) accumulate at the end of the night and directly induce the guard cell-specific K+ channel KAT1. Remarkably, PIFs and KAT1 are required for blue light-induced stomata opening. Together, our data establish a molecular framework for daily rhythmic stomatal movements under well-watered conditions, whereby PIFs are required for accumulation of KAT1 at night, which upon activation by blue light in the morning leads to the K+ intake driving stomata opening.
Collapse
Affiliation(s)
- Arnau Rovira
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Nil Veciana
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Aina Basté-Miquel
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Martí Quevedo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
- Department of biomedical science, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, Alfara del Patriarca (Valencia), Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Gabriela Toledo-Ortiz
- James Hutton Institute, Cell and Molecular Sciences, Errol Road Invergowrie, Dundee, UK
| | - Pablo Leivar
- Laboratory of Biochemistry, Institut Químic de Sarrià (IQS), Universitat Ramon Llull, Barcelona, Spain
| | - Elena Monte
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
13
|
Jabbur ML, Dani C, Spoelstra K, Dodd AN, Johnson CH. Evaluating the Adaptive Fitness of Circadian Clocks and their Evolution. J Biol Rhythms 2024; 39:115-134. [PMID: 38185853 PMCID: PMC10994774 DOI: 10.1177/07487304231219206] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Surely most chronobiologists believe circadian clocks are an adaptation of organisms that enhances fitness, but are we certain that this focus of our research effort really confers a fitness advantage? What is the evidence, and how do we evaluate it? What are the best criteria? These questions are the topic of this review. In addition, we will discuss selective pressures that might have led to the historical evolution of circadian systems while considering the intriguing question of whether the ongoing climate change is modulating these selective pressures so that the clock is still evolving.
Collapse
Affiliation(s)
- Maria Luísa Jabbur
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Chitrang Dani
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | |
Collapse
|
14
|
Dwivedi SL, Quiroz LF, Spillane C, Wu R, Mattoo AK, Ortiz R. Unlocking allelic variation in circadian clock genes to develop environmentally robust and productive crops. PLANTA 2024; 259:72. [PMID: 38386103 PMCID: PMC10884192 DOI: 10.1007/s00425-023-04324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/24/2023] [Indexed: 02/23/2024]
Abstract
MAIN CONCLUSION Molecular mechanisms of biological rhythms provide opportunities to harness functional allelic diversity in core (and trait- or stress-responsive) oscillator networks to develop more climate-resilient and productive germplasm. The circadian clock senses light and temperature in day-night cycles to drive biological rhythms. The clock integrates endogenous signals and exogenous stimuli to coordinate diverse physiological processes. Advances in high-throughput non-invasive assays, use of forward- and inverse-genetic approaches, and powerful algorithms are allowing quantitation of variation and detection of genes associated with circadian dynamics. Circadian rhythms and phytohormone pathways in response to endogenous and exogenous cues have been well documented the model plant Arabidopsis. Novel allelic variation associated with circadian rhythms facilitates adaptation and range expansion, and may provide additional opportunity to tailor climate-resilient crops. The circadian phase and period can determine adaptation to environments, while the robustness in the circadian amplitude can enhance resilience to environmental changes. Circadian rhythms in plants are tightly controlled by multiple and interlocked transcriptional-translational feedback loops involving morning (CCA1, LHY), mid-day (PRR9, PRR7, PRR5), and evening (TOC1, ELF3, ELF4, LUX) genes that maintain the plant circadian clock ticking. Significant progress has been made to unravel the functions of circadian rhythms and clock genes that regulate traits, via interaction with phytohormones and trait-responsive genes, in diverse crops. Altered circadian rhythms and clock genes may contribute to hybrid vigor as shown in Arabidopsis, maize, and rice. Modifying circadian rhythms via transgenesis or genome-editing may provide additional opportunities to develop crops with better buffering capacity to environmental stresses. Models that involve clock gene‒phytohormone‒trait interactions can provide novel insights to orchestrate circadian rhythms and modulate clock genes to facilitate breeding of all season crops.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland.
| | - Rongling Wu
- Beijing Yanqi Lake Institute of Mathematical Sciences and Applications, Beijing, 101408, China
| | - Autar K Mattoo
- USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville, MD, 20705-2350, USA
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundsvagen, 10, Box 190, SE 23422, Lomma, Sweden.
| |
Collapse
|
15
|
Liang T, Yu S, Pan Y, Wang J, Kay SA. The interplay between the circadian clock and abiotic stress responses mediated by ABF3 and CCA1/LHY. Proc Natl Acad Sci U S A 2024; 121:e2316825121. [PMID: 38319968 PMCID: PMC10873597 DOI: 10.1073/pnas.2316825121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Climate change is a global concern for all life on our planet, including humans and plants. Plants' growth and development are significantly affected by abiotic stresses, including adverse temperature, inadequate or excess water availability, nutrient deficiency, and salinity. The circadian clock is a master regulator of numerous developmental and metabolic processes in plants. In an effort to identify new clock-related genes and outputs through bioinformatic analysis, we have revealed that CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) play a crucial role in regulating a wide range of abiotic stress responses and target ABSCISIC ACID RESPONSIVE ELEMENTS-BINDING FACTOR3 (ABF3), a key transcription factor in the plant hormone Abscisic acid (ABA)-signaling pathway. Specifically, we found that CCA1 and LHY regulate the expression of ABF3 under diel conditions, as well as seed germination under salinity. Conversely, ABF3 controls the expression of core clock genes and orchestrates the circadian period in a stress-responsive manner. ABF3 delivers the stress signal to the central oscillator by binding to the promoter of CCA1 and LHY. Overall, our study uncovers the reciprocal regulation between ABF3 and CCA1/LHY and molecular mechanisms underlying the interaction between the circadian clock and abiotic stress. This finding may aid in developing molecular and genetic solutions for plants to survive and thrive in the face of climate change.
Collapse
Affiliation(s)
- Tong Liang
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Shi Yu
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Yuanzhong Pan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Jiarui Wang
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Steve A. Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
16
|
Valim HF, Grande FD, Wong ELY, Schmitt I. Circadian clock- and temperature-associated genes contribute to overall genomic differentiation along elevation in lichenized fungi. Mol Ecol 2024; 33:e17252. [PMID: 38146927 DOI: 10.1111/mec.17252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
Circadian regulation is linked to local environmental adaptation, and many species with broad climatic niches display variation in circadian genes. Here, we hypothesize that lichenizing fungi occupying different climate zones tune their metabolism to local environmental conditions with the help of their circadian systems. We study two species of the genus Umbilicaria occupying similar climatic niches (Mediterranean and the cold temperate) in different continents. Using homology to Neurospora crassa genes, we identify gene sets associated with circadian rhythms (11 core, 39 peripheral genes) as well as temperature response (37 genes). Nucleotide diversity of these genes is significantly correlated with mean annual temperature, minimum temperature of the coldest month and mean temperature of the coldest quarter. Furthermore, we identify altitudinal clines in allele frequencies in several non-synonymous substitutions in core clock components, for example, white collar-like, frh-like and various ccg-like genes. A dN/dS approach revealed a few significant peripheral clock- and temperature-associated genes (e.g. ras-1-like, gna-1-like) that may play a role in fine-tuning the circadian clock and temperature-response machinery. An analysis of allele frequency changes demonstrated the strongest evidence for differentiation above the genomic background in the clock-associated genes in U. pustulata. These results highlight the likely relevance of the circadian clock in environmental adaptation, particularly frost tolerance, of lichens. Whether or not the fungal clock modulates the symbiotic interaction within the lichen consortium remains to be investigated. We corroborate the finding of genetic variation in clock components along altitude-not only latitude-as has been reported in other species.
Collapse
Affiliation(s)
- Henrique F Valim
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Department of Biology, University of Padova, Padua, Italy
| | - Edgar L Y Wong
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Kim H, Kang HW, Hwang DY, Lee N, Kubota A, Imaizumi T, Song YH. Low temperature-mediated repression and far-red light-mediated induction determine morning FLOWERING LOCUS T expression levels. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:103-120. [PMID: 38088490 PMCID: PMC10829767 DOI: 10.1111/jipb.13595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
In order to flower in the appropriate season, plants monitor light and temperature changes and alter downstream pathways that regulate florigen genes such as Arabidopsis (Arabidopsis thaliana) FLOWERING LOCUS T (FT). In Arabidopsis, FT messenger RNA levels peak in the morning and evening under natural long-day conditions (LDs). However, the regulatory mechanisms governing morning FT induction remain poorly understood. The morning FT peak is absent in typical laboratory LDs characterized by high red:far-red light (R:FR) ratios and constant temperatures. Here, we demonstrate that ZEITLUPE (ZTL) interacts with the FT repressors TARGET OF EATs (TOEs), thereby repressing morning FT expression in natural environments. Under LDs with simulated sunlight (R:FR = 1.0) and daily temperature cycles, which are natural LD-mimicking environmental conditions, FT transcript levels in the ztl mutant were high specifically in the morning, a pattern that was mirrored in the toe1 toe2 double mutant. Low night-to-morning temperatures increased the inhibitory effect of ZTL on morning FT expression by increasing ZTL protein levels early in the morning. Far-red light counteracted ZTL activity by decreasing its abundance (possibly via phytochrome A (phyA)) while increasing GIGANTEA (GI) levels and negatively affecting the formation of the ZTL-GI complex in the morning. Therefore, the phyA-mediated high-irradiance response and GI play pivotal roles in morning FT induction. Our findings suggest that the delicate balance between low temperature-mediated ZTL activity and the far-red light-mediated functions of phyA and GI offers plants flexibility in fine-tuning their flowering time by controlling FT expression in the morning.
Collapse
Affiliation(s)
- Hayeon Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Hye Won Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Dae Yeon Hwang
- Department of Biology, Ajou University, Suwon, 16499, Korea
| | - Nayoung Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Akane Kubota
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Young Hun Song
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
- Institute of Agricultural Life Sciences, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
18
|
Velazquez-Arcelay K, Colbran LL, McArthur E, Brand CM, Rinker DC, Siemann JK, McMahon DG, Capra JA. Archaic Introgression Shaped Human Circadian Traits. Genome Biol Evol 2023; 15:evad203. [PMID: 38095367 PMCID: PMC10719892 DOI: 10.1093/gbe/evad203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
When the ancestors of modern Eurasians migrated out of Africa and interbred with Eurasian archaic hominins, namely, Neanderthals and Denisovans, DNA of archaic ancestry integrated into the genomes of anatomically modern humans. This process potentially accelerated adaptation to Eurasian environmental factors, including reduced ultraviolet radiation and increased variation in seasonal dynamics. However, whether these groups differed substantially in circadian biology and whether archaic introgression adaptively contributed to human chronotypes remain unknown. Here, we traced the evolution of chronotype based on genomes from archaic hominins and present-day humans. First, we inferred differences in circadian gene sequences, splicing, and regulation between archaic hominins and modern humans. We identified 28 circadian genes containing variants with potential to alter splicing in archaics (e.g., CLOCK, PER2, RORB, and RORC) and 16 circadian genes likely divergently regulated between present-day humans and archaic hominins, including RORA. These differences suggest the potential for introgression to modify circadian gene expression. Testing this hypothesis, we found that introgressed variants are enriched among expression quantitative trait loci for circadian genes. Supporting the functional relevance of these regulatory effects, we found that many introgressed alleles have associations with chronotype. Strikingly, the strongest introgressed effects on chronotype increase morningness, consistent with adaptations to high latitude in other species. Finally, we identified several circadian loci with evidence of adaptive introgression or latitudinal clines in allele frequency. These findings identify differences in circadian gene regulation between modern humans and archaic hominins and support the contribution of introgression via coordinated effects on variation in human chronotype.
Collapse
Affiliation(s)
| | - Laura L Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Colin M Brand
- Department of Epidemiology and Biostatistics, University of California, SanFrancisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, SanFrancisco, California, USA
| | - David C Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - John A Capra
- Department of Epidemiology and Biostatistics, University of California, SanFrancisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, SanFrancisco, California, USA
| |
Collapse
|
19
|
Wang X, Zhang J, Liu X, Kong Y, Han L. The Roles of the PSEUDO-RESPONSE REGULATORs in Circadian Clock and Flowering Time in Medicago truncatula. Int J Mol Sci 2023; 24:16834. [PMID: 38069157 PMCID: PMC10706769 DOI: 10.3390/ijms242316834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
PSEUDO-RESPONSE REGULATORs (PRRs) play key roles in the circadian rhythms and flowering in plants. Here, we identified the four members of the PRR family in Medicago truncatula, including MtPRR9a, MtPRR9b, MtPRR7 and MtPRR5, and isolated their Tnt1 retrotransposon-tagged mutants. They were expressed in different organs and were nuclear-localized. The four MtPRRs genes played important roles in normal clock rhythmicity maintenance by negatively regulating the expression of MtGI and MtLHY. Surprisingly, the four MtPRRs functioned redundantly in regulating flowering time under long-day conditions, and the quadruple mutant flowered earlier. Moreover, MtPRR can recruit the MtTPL/MtTPR corepressors and the other MtPRRs to form heterodimers to constitute the core mechanism of the circadian oscillator.
Collapse
Affiliation(s)
- Xiao Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (X.W.); (J.Z.); (X.L.); (Y.K.)
| | - Juanjuan Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (X.W.); (J.Z.); (X.L.); (Y.K.)
| | - Xiu Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (X.W.); (J.Z.); (X.L.); (Y.K.)
| | - Yiming Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (X.W.); (J.Z.); (X.L.); (Y.K.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (X.W.); (J.Z.); (X.L.); (Y.K.)
| |
Collapse
|
20
|
Faehn C, Reichelt M, Mithöfer A, Hytönen T, Mølmann J, Jaakola L. Acclimation of circadian rhythms in woodland strawberries (Fragaria vesca L.) to Arctic and mid-latitude photoperiods. BMC PLANT BIOLOGY 2023; 23:483. [PMID: 37817085 PMCID: PMC10563271 DOI: 10.1186/s12870-023-04491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Though many abiotic factors are constantly changing, the photoperiod is a predictable factor that enables plants to time many physiological responses. This timing is regulated by the circadian clock, yet little is known about how the clock adapts to the differences in photoperiod between mid-latitudes and high latitudes. The primary objective of this study was to compare how clock gene expression is modified in four woodland strawberry (Fragaria vesca L.) accessions originating from two different populations in Italy (IT1: Tenno, Italy, 45°N, IT4: Salorno, Italy, 46°N) and two in Northern Norway (NOR2: Alta, Norway, 69°N, NOR13: Indre Nordnes, Norway 69°N) when grown under simulated daylength conditions of an Arctic or mid-latitude photoperiod. The second objective was to investigate whether population origin or the difference in photoperiod influenced phytohormone accumulation. RESULTS The Arctic photoperiod induced lower expression in IT4 and NOR13 for six clock genes (FvLHY, FvRVE8, FvPRR9, FvPRR7, FvPRR5, and FvLUX), in IT1 for three genes (FvLHY, FvPRR9, and FvPRR5) and in NOR2 for one gene (FvPRR9). Free-running rhythms for FvLHY in IT1 and IT4 were higher after the Arctic photoperiod, while the free-running rhythm for FvLUX in IT4 was higher after the mid-latitude photoperiod. IT1 showed significantly higher expression of FvLHY and FvPRR9 than all other accessions, as well as significantly higher expression of the circadian regulated phytohormone, abscisic acid (ABA), but low levels of salicylic acid (SA). NOR13 had significantly higher expression of FvRVE8, FvTOC1, and FvLUX than all other accessions. NOR2 had extremely low levels of auxin (IAA) and high levels of the jasmonate catabolite, hydroxyjasmonic acid (OH-JA). CONCLUSIONS Our study shows that circadian rhythms in Fragaria vesca are driven by both the experienced photoperiod and genetic factors, while phytohormone levels are primarily determined by specific accessions' genetic factors rather than the experienced photoperiod.
Collapse
Affiliation(s)
- Corine Faehn
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, 9037, Norway.
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00790, Finland
| | - Jørgen Mølmann
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, Ås, 1431, Norway
| | - Laura Jaakola
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, 9037, Norway
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, Ås, 1431, Norway
| |
Collapse
|
21
|
Hughes CL, Harmer SL. Myb-like transcription factors have epistatic effects on circadian clock function but additive effects on plant growth. PLANT DIRECT 2023; 7:e533. [PMID: 37811362 PMCID: PMC10557472 DOI: 10.1002/pld3.533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
The functions of closely related Myb-like repressor and Myb-like activator proteins within the plant circadian oscillator have been well-studied as separate groups, but the genetic interactions between them are less clear. We hypothesized that these repressors and activators would interact additively to regulate both circadian and growth phenotypes. We used CRISPR-Cas9 to generate new mutant alleles and performed physiological and molecular characterization of plant mutants for five of these core Myb-like clock factors compared with a repressor mutant and an activator mutant. We first examined circadian clock function in plants likely null for both the repressor proteins, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), and the activator proteins, REVEILLE 4 (RVE4), REVEILLE (RVE6), and REVEILLE (RVE8). The rve468 triple mutant has a long period and flowers late, while cca1 lhy rve468 quintuple mutants, similarly to cca1 lhy mutants, have poor circadian rhythms and flower early. This suggests that CCA1 and LHY are epistatic to RVE4, RVE6, and RVE8 for circadian clock and flowering time function. We next examined hypocotyl elongation and rosette leaf size in these mutants. The cca1 lhy rve468 mutants have growth phenotypes intermediate between cca1 lhy and rve468 mutants, suggesting that CCA1, LHY, RVE4, RVE6, and RVE8 interact additively to regulate growth. Together, our data suggest that these five Myb-like factors interact differently in regulation of the circadian clock versus growth. More generally, the near-norm al seedling phenotypes observed in the largely arrhythmic quintuple mutant demonstrate that circadian-regulated output processes, like control of hypocotyl elongation, do not always depend upon rhythmic oscillator function.
Collapse
Affiliation(s)
| | - Stacey L. Harmer
- Department of Plant BiologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
22
|
Velazquez-Arcelay K, Colbran LL, McArthur E, Brand C, Rinker D, Siemann J, McMahon D, Capra JA. Archaic Introgression Shaped Human Circadian Traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527061. [PMID: 36778254 PMCID: PMC9915721 DOI: 10.1101/2023.02.03.527061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Introduction When the ancestors of modern Eurasians migrated out of Africa and interbred with Eurasian archaic hominins, namely Neanderthals and Denisovans, DNA of archaic ancestry integrated into the genomes of anatomically modern humans. This process potentially accelerated adaptation to Eurasian environmental factors, including reduced ultra-violet radiation and increased variation in seasonal dynamics. However, whether these groups differed substantially in circadian biology, and whether archaic introgression adaptively contributed to human chronotypes remains unknown. Results Here we traced the evolution of chronotype based on genomes from archaic hominins and present-day humans. First, we inferred differences in circadian gene sequences, splicing, and regulation between archaic hominins and modern humans. We identified 28 circadian genes containing variants with potential to alter splicing in archaics (e.g., CLOCK, PER2, RORB, RORC), and 16 circadian genes likely divergently regulated between present-day humans and archaic hominins, including RORA. These differences suggest the potential for introgression to modify circadian gene expression. Testing this hypothesis, we found that introgressed variants are enriched among eQTLs for circadian genes. Supporting the functional relevance of these regulatory effects, we found that many introgressed alleles have associations with chronotype. Strikingly, the strongest introgressed effects on chronotype increase morningness, consistent with adaptations to high latitude in other species. Finally, we identified several circadian loci with evidence of adaptive introgression or latitudinal clines in allele frequency. Conclusions These findings identify differences in circadian gene regulation between modern humans and archaic hominins and support the contribution of introgression via coordinated effects on variation in human chronotype.
Collapse
Affiliation(s)
| | - Laura L. Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | | | - Colin Brand
- Department of Epidemiology and Biostatistics, University of California, San Francisco
- Bakar Computational Health Sciences Institute, University of California, San Francisco
| | - David Rinker
- Department of Biological Sciences, Vanderbilt University
| | - Justin Siemann
- Department of Biological Sciences, Vanderbilt University
| | | | - John A. Capra
- Department of Epidemiology and Biostatistics, University of California, San Francisco
- Bakar Computational Health Sciences Institute, University of California, San Francisco
| |
Collapse
|
23
|
Li Z, Gao F, Liu Y, Abou-Elwafa SF, Qi J, Pan H, Hu X, Ren Z, Zeng H, Liu Z, Zhang D, Xi Z, Liu T, Chen Y, Su H, Xiong S, Ku L. ZmGI2 regulates flowering time through multiple flower development pathways in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111701. [PMID: 37030327 DOI: 10.1016/j.plantsci.2023.111701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023]
Abstract
GIGANTEA (GI) encodes a component of the circadian clock core oscillator and has been identified as a regulatory pathway of the circadian rhythm and photoperiodic flowering in model plants. However, the regulatory pathway of GI affecting flowering time is unknown in maize. Here, we identified that the zmgi2 mutant flowered earlier than the wild type under long day (LD) conditions, whereas the difference in flowering time was not apparent under short day (SD) conditions. The 24 h optimal expression of the gene in the stem apex meristems (SAM) appeared at 9 h after dawn under LD conditions and at 11 h after dawn under SD conditions. DAP-Seq and RNA-Seq further revealed that ZmGI2 delays flowering by directly binding to the upstream regions of ZmVOZs, ZmZCN8 and ZmFPF1 to repress the expression of these genes and by directly binding to the upstream regions of ZmARR11, ZmDOF and ZmUBC11 to promote the expression of these genes. The genetic and biochemical evidence suggests a model for the potential role of ZmGI2 in regulating the flowering time-dependent photoperiodic pathway. This study provides novel insights into the function of ZmGIs in maize and further demonstrates their potential importance for floral transition. These results contribute to a comprehensive understanding of the molecular mechanisms and regulatory networks of GI transcription factors in regulating flowering time in maize.
Collapse
Affiliation(s)
- Zhimin Li
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Fengran Gao
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Yajing Liu
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | | | - Junlong Qi
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Haibo Pan
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Xiaomeng Hu
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Zhenzhen Ren
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Haixia Zeng
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Zhixue Liu
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Dongling Zhang
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Zhangying Xi
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Tianxue Liu
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Yanhui Chen
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China
| | - Huihui Su
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China.
| | - Shuping Xiong
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China.
| | - Lixia Ku
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, No. 15 Longzihu University Park, Zhengdong New Area, Zhengzhou, Henan 450046, China.
| |
Collapse
|
24
|
Baumgarten L, Pieper B, Song B, Mane S, Lempe J, Lamb J, Cooke EL, Srivastava R, Strütt S, Žanko D, Casimiro PGP, Hallab A, Cartolano M, Tattersall AD, Huettel B, Filatov DA, Pavlidis P, Neuffer B, Bazakos C, Schaefer H, Mott R, Gan X, Alonso-Blanco C, Laurent S, Tsiantis M. Pan-European study of genotypes and phenotypes in the Arabidopsis relative Cardamine hirsuta reveals how adaptation, demography, and development shape diversity patterns. PLoS Biol 2023; 21:e3002191. [PMID: 37463141 PMCID: PMC10353826 DOI: 10.1371/journal.pbio.3002191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/10/2023] [Indexed: 07/20/2023] Open
Abstract
We study natural DNA polymorphisms and associated phenotypes in the Arabidopsis relative Cardamine hirsuta. We observed strong genetic differentiation among several ancestry groups and broader distribution of Iberian relict strains in European C. hirsuta compared to Arabidopsis. We found synchronization between vegetative and reproductive development and a pervasive role for heterochronic pathways in shaping C. hirsuta natural variation. A single, fast-cycling ChFRIGIDA allele evolved adaptively allowing range expansion from glacial refugia, unlike Arabidopsis where multiple FRIGIDA haplotypes were involved. The Azores islands, where Arabidopsis is scarce, are a hotspot for C. hirsuta diversity. We identified a quantitative trait locus (QTL) in the heterochronic SPL9 transcription factor as a determinant of an Azorean morphotype. This QTL shows evidence for positive selection, and its distribution mirrors a climate gradient that broadly shaped the Azorean flora. Overall, we establish a framework to explore how the interplay of adaptation, demography, and development shaped diversity patterns of 2 related plant species.
Collapse
Affiliation(s)
- Lukas Baumgarten
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bjorn Pieper
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Baoxing Song
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sébastien Mane
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Janne Lempe
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jonathan Lamb
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Elizabeth L. Cooke
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rachita Srivastava
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Stefan Strütt
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Danijela Žanko
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Asis Hallab
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Maria Cartolano
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Pavlos Pavlidis
- Institute of Computer Science, Foundation for Research and Technology, Crete, Greece
| | - Barbara Neuffer
- Department of Botany, University of Osnabrück, Osnabrück, Germany
| | - Christos Bazakos
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hanno Schaefer
- Department Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Richard Mott
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Carlos Alonso-Blanco
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
25
|
Dalle Carbonare L, Basile A, Rindi L, Bulleri F, Hamedeh H, Iacopino S, Shukla V, Weits DA, Lombardi L, Sbrana A, Benedetti-Cecchi L, Giuntoli B, Licausi F, Maggi E. Dim artificial light at night alters gene expression rhythms and growth in a key seagrass species (Posidonia oceanica). Sci Rep 2023; 13:10620. [PMID: 37391536 PMCID: PMC10313690 DOI: 10.1038/s41598-023-37261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
Artificial light at night (ALAN) is a globally spreading anthropogenic stressor, affecting more than 20% of coastal habitats. The alteration of the natural light/darkness cycle is expected to impact the physiology of organisms by acting on the complex circuits termed as circadian rhythms. Our understanding of the impact of ALAN on marine organisms is lagging behind that of terrestrial ones, and effects on marine primary producers are almost unexplored. Here, we investigated the molecular and physiological response of the Mediterranean seagrass, Posidonia oceanica (L.) Delile, as model to evaluate the effect of ALAN on seagrass populations established in shallow waters, by taking advantage of a decreasing gradient of dim nocturnal light intensity (from < 0.01 to 4 lx) along the NW Mediterranean coastline. We first monitored the fluctuations of putative circadian-clock genes over a period of 24 h along the ALAN gradient. We then investigated whether key physiological processes, known to be synchronized with day length by the circadian rhythm, were also affected by ALAN. ALAN influenced the light signalling at dusk/night in P. oceanica, including that of shorter blue wavelengths, through the ELF3-LUX1-ZTL regulatory network, and suggested that the daily perturbation of internal clock orthologs in seagrass might have caused the recruitment of PoSEND33 and PoPSBS genes to mitigate the repercussions of a nocturnal stress on photosynthesis during the day. A long-lasting impairment of gene fluctuations in sites characterised by ALAN could explain the reduced growth of the seagrass leaves when these were transferred into controlled conditions and without lighting during the night. Our results highlight the potential contribution of ALAN to the global loss of seagrass meadows, posing questions about key interactions with a variety of other human-related stressors in urban areas, in order to develop more efficient strategies to globally preserve these coastal foundation species.
Collapse
Affiliation(s)
- L Dalle Carbonare
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy.
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
| | - A Basile
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy
| | - L Rindi
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - F Bulleri
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - H Hamedeh
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy
| | - S Iacopino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy
| | - V Shukla
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy
| | - D A Weits
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy
| | - L Lombardi
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - A Sbrana
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - L Benedetti-Cecchi
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - B Giuntoli
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - F Licausi
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - E Maggi
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy.
| |
Collapse
|
26
|
Khatib L, Subasi BS, Fishman B, Kapun M, Tauber E. Unveiling Subtle Geographical Clines: Phenotypic Effects and Dynamics of Circadian Clock Gene Polymorphisms. BIOLOGY 2023; 12:858. [PMID: 37372143 DOI: 10.3390/biology12060858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Our understanding of the gene regulatory network that constitutes the circadian clock has greatly increased in recent decades, notably due to the use of Drosophila as a model system. In contrast, the analysis of natural genetic variation that enables the robust function of the clock under a broad range of environments has developed more slowly. In the current study, we analyzed comprehensive genome sequencing data from wild European populations of Drosophila, which were densely sampled through time and space. We identified hundreds of single nucleotide polymorphisms (SNPs) in nine genes associated with the clock, 276 of which exhibited a latitudinal cline in their allele frequencies. While the effect sizes of these clinal patterns were small, indicating subtle adaptations driven by natural selection, they provided important insights into the genetic dynamics of circadian rhythms in natural populations. We selected nine SNPs in different genes and assessed their impact on circadian and seasonal phenotypes by reconstructing outbred populations fixed for either of the SNP alleles, from inbred DGRP strains. The circadian free-running period of the locomotor activity rhythm was affected by an SNP in doubletime (dbt) and eyes absent (Eya). The SNPs in Clock (Clk), Shaggy (Sgg), period (per), and timeless (tim) affected the acrophase. The alleles of the SNP in Eya conferred different levels of diapause and the chill coma recovery response.
Collapse
Affiliation(s)
- Loren Khatib
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Bengisu Sezen Subasi
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Bettina Fishman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Martin Kapun
- Natural History Museum Vienna, 1010 Vienna, Austria
- Department of Cell and Developmental Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
27
|
Aros-Mualin D, Guadagno CR, Silvestro D, Kessler M. Light, rather than circadian rhythm, regulates gas exchange in ferns and lycophytes. PLANT PHYSIOLOGY 2023; 191:1634-1647. [PMID: 36691320 PMCID: PMC10022864 DOI: 10.1093/plphys/kiad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Circadian regulation plays a vital role in optimizing plant responses to the environment. However, while circadian regulation has been extensively studied in angiosperms, very little is known for lycophytes and ferns, leaving a gap in our understanding of the evolution of circadian rhythms across the plant kingdom. Here, we investigated circadian regulation in gas exchange through stomatal conductance and photosynthetic efficiency in a phylogenetically broad panel of 21 species of lycophytes and ferns over a 46 h period under constant light and a selected few under more natural conditions with day-night cycles. No rhythm was detected under constant light for either lycophytes or ferns, except for two semi-aquatic species of the family Marsileaceae (Marsilea azorica and Regnellidium diphyllum), which showed rhythms in stomatal conductance. Furthermore, these results indicated the presence of a light-driven stomatal control for ferns and lycophytes, with a possible passive fine-tuning through leaf water status adjustments. These findings support previous evidence for the fundamentally different regulation of gas exchange in lycophytes and ferns compared to angiosperms, and they suggest the presence of alternative stomatal regulations in Marsileaceae, an aquatic family already well known for numerous other distinctive physiological traits. Overall, our study provides evidence for heterogeneous circadian regulation across plant lineages, highlighting the importance of broad taxonomic scope in comparative plant physiology studies.
Collapse
Affiliation(s)
| | | | - Daniele Silvestro
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
- Department of Biological and Environmental Sciences and Global Gothenburg Biodiversity Centre, University of Gothenburg, Gothenburg SE-405 30, Sweden
- Swiss Institute of Bioinformatics, Fribourg 1700, Switzerland
| | - Michael Kessler
- Department of Systematics and Evolutionary Botany, University of Zurich, Zurich 8008, Switzerland
| |
Collapse
|
28
|
Zhang L, Zhang Y, Liu J, Li H, Liu B, Zhao T. N6-methyladenosine mRNA methylation is important for the light response in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1153840. [PMID: 37082338 PMCID: PMC10110966 DOI: 10.3389/fpls.2023.1153840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
N6-methyladenosine (m6A) modification of messenger RNA (mRNA) is the most prevalent and abundant modification in eukaryotic mRNA and posttranscriptionally modulates the transcriptome at almost all stages of mRNA metabolism. In plants, m6A is crucial for embryonic-phase growth, flowering time control, microspore generation and fruit maturation. However, the role of m6A in plant responses to light, the most important environmental stimulus, remains unexplored. Here, we profile the m6A transcriptome of Williams 82, a soybean cultivar, and reveal that m6A is highly conserved and plays an important role in the response to light stimuli in soybean. Similar to the case in Arabidopsis, m6A in soybean is enriched not only around the stop codon and within the 3'UTR but also around the start codon. Moreover, genes with methylation occurring in the 3'UTR have higher expression levels and are more prone to alternative splicing. The core genes in the light signaling pathway, GmSPA1a, GmPRR5e and GmBIC2b, undergo changes in methylation modification and transcription levels in response to light. KEGG pathway analysis revealed that differentially expressed genes with differential m6A peaks were involved in the "photosynthesis" and "circadian rhythm" pathways. Our results highlight the important role played by epitranscriptomic mRNA methylation in the light response in soybean and provide a solid basis for determining the functional role of light on RNA m6A modification in this plant.
Collapse
|
29
|
Michael TP. Time of Day Analysis over a Field Grown Developmental Time Course in Rice. PLANTS (BASEL, SWITZERLAND) 2022; 12:166. [PMID: 36616295 PMCID: PMC9823482 DOI: 10.3390/plants12010166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Plants integrate time of day (TOD) information over an entire season to ensure optimal growth, flowering time, and grain fill. However, most TOD expression studies have focused on a limited number of combinations of daylength and temperature under laboratory conditions. Here, an Oryza sativa (rice) expression study that followed TOD expression in the field over an entire growing season was re-analyzed. Similar to Arabidopsis thaliana, almost all rice genes have a TOD-specific expression over the developmental time course. As has been suggested in other grasses, thermocycles were a stronger cue for TOD expression than the photocycles over the growing season. All the core circadian clock genes display consistent TOD expression over the season with the interesting exception that the two grass paralogs of EARLY FLOWERING 3 (ELF3) display a distinct phasing based on the interaction between thermo- and photo-cycles. The dataset also revealed how specific pathways are modulated to distinct TOD over the season consistent with the changing biology. The data presented here provide a resource for researchers to study how TOD expression changes under natural conditions over a developmental time course, which will guide approaches to engineer more resilient and prolific crops.
Collapse
Affiliation(s)
- Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
30
|
Light triggers a network switch between circadian morning and evening oscillators controlling behaviour during daily temperature cycles. PLoS Genet 2022; 18:e1010487. [PMID: 36367867 PMCID: PMC9683589 DOI: 10.1371/journal.pgen.1010487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/23/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
Proper timing of rhythmic locomotor behavior is the consequence of integrating environmental conditions and internal time dictated by the circadian clock. Rhythmic environmental input like daily light and temperature changes (called Zeitgeber) reset the molecular clock and entrain it to the environmental time zone the organism lives in. Furthermore, depending on the absolute temperature or light intensity, flies exhibit their main locomotor activity at different times of day, i.e., environmental input not only entrains the circadian clock but also determines the phase of a certain behavior. To understand how the brain clock can distinguish between (or integrate) an entraining Zeitgeber and environmental effects on activity phase, we attempted to entrain the clock with a Zeitgeber different from the environmental input used for phasing the behavior. 150 clock neurons in the Drosophila melanogaster brain control different aspects of the daily activity rhythms and are organized in various clusters. During regular 12 h light: 12 h dark cycles at constant mild temperature (LD 25°C, LD being the Zeitgeber), so called morning oscillator (MO) neurons control the increase of locomotor activity just before lights-on, while evening oscillator (EO) neurons regulate the activity increase at the end of the day, a few hours before lights-off. Here, using 12 h: 12 h 25°C:16°C temperature cycles as Zeitgeber, we attempted to look at the impact of light on phasing locomotor behavior. While in constant light and 25°C:16°C temperature cycles (LLTC), flies show an unimodal locomotor activity peak in the evening, during the same temperature cycle, but in the absence of light (DDTC), the phase of the activity peak is shifted to the morning. Here, we show that the EO is necessary for synchronized behavior in LLTC but not for entraining the molecular clock of the other clock neuronal groups, while the MO controls synchronized morning activity in DDTC. Interestingly, our data suggest that the influence of the EO on the synchronization increases depending on the length of the photoperiod (constant light vs 12 h of light). Hence, our results show that effects of different environmental cues on clock entrainment and activity phase can be separated, allowing to decipher their integration by the circadian clock. “If a clock is to provide information involved in controlling important functions, then clearly it must be reasonably reliable” said Colin Pittendrigh, one of the chronobiology pioneers in 1954. The circadian clock allows organisms to synchronize with their ecological niche. For this, the circadian clock uses rhythmic environmental parameters (Zeitgeber), the main ones being light and temperature. Hence, Colin Pittendrigh posted a still unresolved enigma in chronobiology. How can a clock be reliable when its resetting depends on environmental fluctuations that are not so reliable? Both, light and temperature vary a lot on a day-to-day basis, and animals respond to these variations depending on the time of day. Here, we propose a new model where the molecular clock resets to environmental cycles in a robust and independent manner, while the underlying neuronal oscillatory network switches its balance towards specific oscillators depending on the environmental condition thereby leading to distinct behavioral adaptation. To proof this proposed dogma in fruit flies, using temperature cycles as Zeitgeber, we demonstrate a light-induced switch of the network balance. Hence, we supply a foundation that in the future will help to understand how animals use their circadian clock to adapt their behavior to environmental changes.
Collapse
|
31
|
He Y, Yu Y, Wang X, Qin Y, Su C, Wang L. Aschoff's rule on circadian rhythms orchestrated by blue light sensor CRY2 and clock component PRR9. Nat Commun 2022; 13:5869. [PMID: 36198686 PMCID: PMC9535003 DOI: 10.1038/s41467-022-33568-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Circadian pace is modulated by light intensity, known as the Aschoff’s rule, with largely unrevealed mechanisms. Here we report that photoreceptor CRY2 mediates blue light input to the circadian clock by directly interacting with clock core component PRR9 in blue light dependent manner. This physical interaction dually blocks the accessibility of PRR9 protein to its co-repressor TPL/TPRs and the resulting kinase PPKs. Notably, phosphorylation of PRR9 by PPKs is critical for its DNA binding and repressive activity, hence to ensure proper circadian speed. Given the labile nature of CRY2 in strong blue light, our findings provide a mechanistic explanation for Aschoff’s rule in plants, i.e., blue light triggers CRY2 turnover in proportional to its intensity, which accordingly releasing PRR9 to fine tune circadian speed. Our findings not only reveal a network mediating light input into the circadian clock, but also unmask a mechanism by which the Arabidopsis circadian clock senses light intensity. Circadian pace is modulated by light intensity. Here the authors show that CRY2 interacts with PRR9 to mediate blue light input to the circadian clock and is degraded at higher light intensity offering a mechanistic explanation as to how intensity can modify clock place.
Collapse
Affiliation(s)
- Yuqing He
- Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingjun Yu
- Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiling Wang
- Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yumei Qin
- Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Su
- Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
32
|
Rees H, Rusholme-Pilcher R, Bailey P, Colmer J, White B, Reynolds C, Ward SJ, Coombes B, Graham CA, de Barros Dantas LL, Dodd AN, Hall A. Circadian regulation of the transcriptome in a complex polyploid crop. PLoS Biol 2022; 20:e3001802. [PMID: 36227835 PMCID: PMC9560141 DOI: 10.1371/journal.pbio.3001802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/18/2022] [Indexed: 11/07/2022] Open
Abstract
The circadian clock is a finely balanced timekeeping mechanism that coordinates programmes of gene expression. It is currently unknown how the clock regulates expression of homoeologous genes in polyploids. Here, we generate a high-resolution time-course dataset to investigate the circadian balance between sets of 3 homoeologous genes (triads) from hexaploid bread wheat. We find a large proportion of circadian triads exhibit imbalanced rhythmic expression patterns, with no specific subgenome favoured. In wheat, period lengths of rhythmic transcripts are found to be longer and have a higher level of variance than in other plant species. Expression of transcripts associated with circadian controlled biological processes is largely conserved between wheat and Arabidopsis; however, striking differences are seen in agriculturally critical processes such as starch metabolism. Together, this work highlights the ongoing selection for balance versus diversification in circadian homoeologs and identifies clock-controlled pathways that might provide important targets for future wheat breeding.
Collapse
Affiliation(s)
- Hannah Rees
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Paul Bailey
- Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom
| | - Joshua Colmer
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Benjamen White
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Connor Reynolds
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Benedict Coombes
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Calum A. Graham
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Antony N. Dodd
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Michael TP. Core circadian clock and light signaling genes brought into genetic linkage across the green lineage. PLANT PHYSIOLOGY 2022; 190:1037-1056. [PMID: 35674369 PMCID: PMC9516744 DOI: 10.1093/plphys/kiac276] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The circadian clock is conserved at both the level of transcriptional networks as well as core genes in plants, ensuring that biological processes are phased to the correct time of day. In the model plant Arabidopsis (Arabidopsis thaliana), the core circadian SHAQKYF-type-MYB (sMYB) genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and REVEILLE (RVE4) show genetic linkage with PSEUDO-RESPONSE REGULATOR 9 (PRR9) and PRR7, respectively. Leveraging chromosome-resolved plant genomes and syntenic ortholog analysis enabled tracing this genetic linkage back to Amborella trichopoda, a sister lineage to the angiosperm, and identifying an additional evolutionarily conserved genetic linkage in light signaling genes. The LHY/CCA1-PRR5/9, RVE4/8-PRR3/7, and PIF3-PHYA genetic linkages emerged in the bryophyte lineage and progressively moved within several genes of each other across an array of angiosperm families representing distinct whole-genome duplication and fractionation events. Soybean (Glycine max) maintained all but two genetic linkages, and expression analysis revealed the PIF3-PHYA linkage overlapping with the E4 maturity group locus was the only pair to robustly cycle with an evening phase, in contrast to the sMYB-PRR morning and midday phase. While most monocots maintain the genetic linkages, they have been lost in the economically important grasses (Poaceae), such as maize (Zea mays), where the genes have been fractionated to separate chromosomes and presence/absence variation results in the segregation of PRR7 paralogs across heterotic groups. The environmental robustness model is put forward, suggesting that evolutionarily conserved genetic linkages ensure superior microhabitat pollinator synchrony, while wide-hybrids or unlinking the genes, as seen in the grasses, result in heterosis, adaptation, and colonization of new ecological niches.
Collapse
Affiliation(s)
- Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
34
|
Oravec MW, Greenham K. The adaptive nature of the plant circadian clock in natural environments. PLANT PHYSIOLOGY 2022; 190:968-980. [PMID: 35894658 PMCID: PMC9516730 DOI: 10.1093/plphys/kiac337] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/27/2022] [Indexed: 05/10/2023]
Abstract
The plant circadian clock coordinates developmental, physiological, and metabolic processes with diel changes in light and temperature throughout the year. The balance between the persistence and plasticity of the clock in response to predictable and unpredictable environmental changes may be key to the clock's adaptive nature across temporal and spatial scales. Studies under controlled conditions have uncovered critical signaling pathways involved in light and temperature perception by the clock; however, they don't account for the natural lag of temperature behind photoperiod. Studies in natural environments provide key insights into the clock's adaptive advantage under more complex natural settings. Here, we discuss the role of the circadian clock in light and temperature perception and signaling, how the clock integrates these signals for a coordinated and adaptive response, and the adaptive advantage conferred by the clock across time and space in natural environments.
Collapse
Affiliation(s)
- Madeline W Oravec
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | |
Collapse
|
35
|
Hotta CT. The evolution and function of the PSEUDO RESPONSE REGULATOR gene family in the plant circadian clock. Genet Mol Biol 2022; 45:e20220137. [PMID: 36125163 PMCID: PMC9486492 DOI: 10.1590/1678-4685-gmb-2022-0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022] Open
Abstract
PSEUDO-RESPONSE PROTEINS (PRRs) are a gene
family vital for the generation of rhythms by the circadian clock. Plants have
circadian clocks, or circadian oscillators, to adapt to a rhythmic environment.
The circadian clock system can be divided into three parts: the core oscillator,
the input pathways, and the output pathways. The PRRs have a role in all three
parts. These nuclear proteins have an N-terminal pseudo receiver domain and a
C-terminal CONSTANS, CONSTANS-LIKE, and TOC1 (CCT) domain. The PRRs can be
identified from green algae to monocots, ranging from one to >5 genes per
species. Arabidopsis thaliana, for example, has five genes:
PRR9, PRR7, PRR5,
PRR3 and TOC1/PRR1. The
PRR genes can be divided into three clades using protein
homology: TOC1/PRR1, PRR7/3, and PRR9/5 expanded independently in eudicots and
monocots. The PRRs can make protein complexes and bind to DNA, and the wide
variety of protein-protein interactions are essential for the multiple roles in
the circadian clock. In this review, the history of PRR research is briefly
recapitulated, and the diversity of PRR genes in green and recent works about
their role in the circadian clock are discussed.
Collapse
Affiliation(s)
- Carlos Takeshi Hotta
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brazil
| |
Collapse
|
36
|
McMinn R, Salmela MJ, Weinig C. Naturally segregating genetic variation in circadian period exhibits a regional elevational and climatic cline. PLANT, CELL & ENVIRONMENT 2022; 45:2696-2707. [PMID: 35686466 DOI: 10.1111/pce.14377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/15/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Circadian clocks confer adaptation to predictable 24-h fluctuations in the exogenous environment, but it has yet to be determined what ecological factors maintain natural genetic variation in endogenous circadian period outside of the hypothesized optimum of 24 h. We estimated quantitative genetic variation in circadian period in leaf movement in 30 natural populations of the Arabidopsis relative Boechera stricta sampled within only 1° of latitude but across an elevation gradient spanning 2460-3300 m in the Rocky Mountains. Measuring ~3800 plants from 473 maternal families (7-20 per population), we found that genetic variation was of similar magnitude among versus within populations, with population means varying between 21.9 and 24.9 h and maternal family means within populations varying by up to ~6 h. After statistically accounting for spatial autocorrelation at a habitat extreme, we found that elevation explained a significant proportion of genetic variation in the circadian period, such that higher-elevation populations had shorter mean period lengths and reduced intrapopulation ranges. Environmental data indicate that these spatial trends could be related to steep regional climatic gradients in temperature, precipitation, and their intra-annual variability. Our findings suggest that spatially fine-grained environmental heterogeneity contributes to naturally occurring genetic variation in circadian traits in wild populations.
Collapse
Affiliation(s)
- Rob McMinn
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
| | | | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
37
|
Wang P, Wang L, Zhang L, Wu T, Sun B, Zhang J, Sapey E, Yuan S, Jiang B, Chen F, Wu C, Hou W, Sun S, Bai J, Han T. Genomic Dissection and Diurnal Expression Analysis Reveal the Essential Roles of the PRR Gene Family in Geographical Adaptation of Soybean. Int J Mol Sci 2022; 23:ijms23179970. [PMID: 36077363 PMCID: PMC9456279 DOI: 10.3390/ijms23179970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudo-response regulator (PRR) family members serve as key components of the core clock of the circadian clock, and play important roles in photoperiodic flowering, stress tolerance, growth, and the development of plants. In this study, 14 soybean PRR genes were identified, and classified into three groups according to phylogenetic analysis and structural characteristics. Real-time quantitative PCR analysis revealed that 13 GmPRRs exhibited obvious rhythmic expression under long-day (LD) and short-day (SD) conditions, and the expression of 12 GmPRRs was higher under LD in leaves. To evaluate the effects of natural variations in GmPRR alleles on soybean adaptation, we examined the sequences of GmPRRs among 207 varieties collected across China and the US, investigated the flowering phenotypes in six environments, and analyzed the geographical distributions of the major haplotypes. The results showed that a majority of non-synonymous mutations in the coding region were associated with flowering time, and we found that the nonsense mutations resulting in deletion of the CCT domain were related to early flowering. Haplotype analysis demonstrated that the haplotypes associated with early flowering were mostly distributed in Northeast China, while the haplotypes associated with late flowering were mostly cultivated in the lower latitudes of China. Our study of PRR family genes in soybean provides not only an important guide for characterizing the circadian clock-controlled flowering pathway but also a theoretical basis and opportunities to breed varieties with adaptation to specific regions and farming systems.
Collapse
Affiliation(s)
- Peiguo Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Liwei Wang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Lixin Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Tingting Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Baiquan Sun
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Junquan Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Enoch Sapey
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
- Council for Scientific and Industrial Research (CSIR)-Oil Palm Research Institute, Kade P.O. Box 74, Ghana
| | - Shan Yuan
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Bingjun Jiang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Fulu Chen
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Cunxiang Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Wensheng Hou
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Shi Sun
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Jiangping Bai
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (J.B.); (T.H.)
| | - Tianfu Han
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
- Correspondence: (J.B.); (T.H.)
| |
Collapse
|
38
|
Expression Profiling and MicroRNA Regulatory Networks of Homeobox Family Genes in Sugarcane Saccharum spontaneum L. Int J Mol Sci 2022; 23:ijms23158724. [PMID: 35955858 PMCID: PMC9369071 DOI: 10.3390/ijms23158724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 01/13/2023] Open
Abstract
Homeobox (HB) genes play important roles in plant growth and development processes, particularly in the formation of lateral organs. Thus, they could influence leaf morphogenesis and biomass formation in plants. However, little is known about HBs in sugarcane, a crucial sugar crop, due to its complex genetic background. Here, 302 allelic sequences for 104 HBs were identified and divided into 13 subfamilies in sugarcane Saccharum spontaneum. Comparative genomics revealed that whole-genome duplication (WGD)/segmental duplication significantly promoted the expansion of the HB family in S. spontaneum, with SsHB26, SsHB63, SsHB64, SsHB65, SsHB67, SsHB95, and SsHB96 being retained from the evolutionary event before the divergence of dicots and monocots. Based on the analysis of transcriptome and degradome data, we speculated that SsHB15 and SsHB97 might play important roles in regulating sugarcane leaf morphogenesis, with miR166 and SsAGO10 being involved in the regulation of SsHB15 expression. Moreover, subcellular localization and transcriptional activity detection assays demonstrated that these two genes, SsHB15 and SsHB97, were functional transcription factors. This study demonstrated the evolutionary relationship and potential functions of SsHB genes and will enable the further investigation of the functional characterization and the regulatory mechanisms of SsHBs.
Collapse
|
39
|
Muranaka T, Ito S, Kudoh H, Oyama T. Circadian-period variation underlies the local adaptation of photoperiodism in the short-day plant Lemna aequinoctialis. iScience 2022; 25:104634. [PMID: 35800759 PMCID: PMC9253726 DOI: 10.1016/j.isci.2022.104634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/27/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Phenotypic variation is the basis for trait adaptation via evolutionary selection. However, the driving forces behind quantitative trait variations remain unclear owing to their complexity at the molecular level. This study focused on the natural variation of the free-running period (FRP) of the circadian clock because FRP is a determining factor of the phase phenotype of clock-dependent physiology. Lemna aequinoctialis in Japan is a paddy field duckweed that exhibits a latitudinal cline of critical day length (CDL) for short-day flowering. We collected 72 strains of L. aequinoctialis and found a significant correlation between FRPs and locally adaptive CDLs, confirming that variation in the FRP-dependent phase phenotype underlies photoperiodic adaptation. Diel transcriptome analysis revealed that the induction timing of an FT gene is key to connecting the clock phase to photoperiodism at the molecular level. This study highlights the importance of FRP as a variation resource for evolutionary adaptation. Natural variation of flowering/circadian traits in a paddy-field duckweed is studied. Critical day length for flowering of the duckweed in Japan shows a latitudinal cline. A negative correlation between critical day length and circadian period was found. An FT gene responding to lengthening of the dark period was isolated.
Collapse
|
40
|
Rhodes BM, Siddiqui H, Khan S, Devlin PF. Dual Role for FHY3 in Light Input to the Clock. FRONTIERS IN PLANT SCIENCE 2022; 13:862387. [PMID: 35755710 PMCID: PMC9218818 DOI: 10.3389/fpls.2022.862387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The red-light regulated transcription factors FHY3 and FAR1 form a key point of light input to the plant circadian clock in positively regulating expression of genes within the central clock. However, the fhy3 mutant shows an additional red light-specific disruption of rhythmicity which is inconsistent with this role. Here we demonstrate that only fhy3 and not far1 mutants show this red specific disruption of rhythmicity. We examined the differences in rhythmic transcriptome in red versus white light and reveal differences in patterns of rhythmicity among the central clock proteins suggestive of a change in emphasis within the central mechanism of the clock, changes which underlie the red specificity of the fhy3 mutant. In particular, changes in enrichment of promoter elements were consistent with a key role for the HY5 transcription factor, a known integrator of the ratio of red to blue light in regulation of the clock. Examination of differences in the rhythmic transcriptome in the fhy3 mutant in red light identified specific disruption of the CCA1-regulated ELF3 and LUX central clock genes, while the CCA1 target TBS element, TGGGCC, was enriched among genes that became arrhythmic. Coupled with the known interaction of FHY3 but not FAR1 with CCA1 we propose that the red-specific circadian phenotype of fhy3 may involve disruption of the previously demonstrated moderation of CCA1 activity by FHY3 rather than a disruption of its own transcriptional regulatory activity. Together, this evidence suggests a conditional redundancy between FHY3 and HY5 in the integration of red and blue light input to the clock in order to enable a plasticity in response to light and optimise plant adaptation. Furthermore, our evidence also suggests changes in CCA1 activity between red and white light transcriptomes. This, together with the documented interaction of HY5 with CCA1, leads us to propose a model whereby this integration of red and blue signals may at least partly occur via direct FHY3 and HY5 interaction with CCA1 leading to moderation of CCA1 activity.
Collapse
Affiliation(s)
| | | | | | - Paul F. Devlin
- Department of Biological Sciences, Royal Holloway, University of London, Egham, United Kingdom
| |
Collapse
|
41
|
Isoda M, Ito S, Oyama T. Interspecific divergence of circadian properties in duckweed plants. PLANT, CELL & ENVIRONMENT 2022; 45:1942-1953. [PMID: 35201626 DOI: 10.1111/pce.14297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
The circadian clock system is widely conserved in plants; however, divergence in circadian rhythm properties is poorly understood. We conducted a comparative analysis of the circadian properties of closely related duckweed species. Using a particle bombardment method, a circadian bioluminescent reporter was introduced into duckweed plants. We measured bioluminescence circadian rhythms of eight species of the genus Lemna and seven species of the genus Wolffiella at various temperatures (20, 25, and 30°C) and light conditions (constant light or constant dark). Wolffiella species inhabit relatively warm areas and lack some tissues/organs found in Lemna species. Lemna species tended to show robust bioluminescence circadian rhythms under all conditions, while Wolffiella species showed lower rhythm stability, especially at higher temperatures. For Lemna, two species (L. valdiviana and L. minuta) forming a clade showed relatively lower circadian stability. For Wolffiella, two species (W. hyalina and W. repanda) forming a clade showed extremely long period lengths. These analyses reveal that the circadian properties of species primarily reflect their phylogenetic positions. The relationships between geographical and morphological factors and circadian properties are also suggested.
Collapse
Affiliation(s)
- Minako Isoda
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shogo Ito
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tokitaka Oyama
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
42
|
Lam E, Michael TP. Wolffia, a minimalist plant and synthetic biology chassis. TRENDS IN PLANT SCIENCE 2022; 27:430-439. [PMID: 34920947 DOI: 10.1016/j.tplants.2021.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
A highly simplified species for genome engineering would facilitate rational design of a synthetic plant. A candidate species is the aquatic, non-grass monocot wolffia (Wolffia australiana) in the Lemnaceae family. Commonly known as watermeal, wolffia is a rootless ball of several thousand cells the size of a pinhead and the fastest growing plant known on Earth. Its extreme morphological reduction is coupled to transposon-mediated streamlining of its transcriptome, which represents a core set of nonredundant protein coding genes. Despite its body plan and transcriptome being highly specialized for continuous growth, wolffia retains cell types relevant to higher plants. Systems level studies with this species could enable the creation of a defined biological chassis for synthetic plant construction.
Collapse
Affiliation(s)
- Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
43
|
Xiang Y, Sapir T, Rouillard P, Ferrand M, Jiménez-Gómez JM. Interaction between photoperiod and variation in circadian rhythms in tomato. BMC PLANT BIOLOGY 2022; 22:187. [PMID: 35395725 PMCID: PMC8994279 DOI: 10.1186/s12870-022-03565-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Many biological processes follow circadian rhythmicity and are controlled by the circadian clock. Predictable environmental changes such as seasonal variation in photoperiod can modulate circadian rhythms, allowing organisms to adjust the timing of their biological processes to the time of the year. In some crops such as rice, barley or soybean, mutations in circadian clock genes have altered photoperiod sensitivity, enhancing their cultivability in specific seasons and latitudes. However, how changes in circadian rhythms interact with the perception of photoperiod in crops remain poorly studied. In tomato, the appearance during domestication of mutations in EMPFINDLICHER IM DUNKELROTEN LICHT 1 (EID1, Solyc09g075080) and NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED GENE 2 (LNK2, Solyc01g068560) delayed both the phase and period of its circadian rhythms. The fact that variation in period and phase are separated in tomato provides an optimal tool to study how these factors affect the perception of photoperiod. RESULTS Here we develop tomato near isogenic lines carrying combinations of wild alleles of EID1 and LNK2 and show that they recreate the changes in phase and period that occurred during its domestication. We perform transcriptomic profiling of these near isogenic lines under two different photoperiods, and observe that EID1, but not LNK2, has a large effect on how the tomato transcriptome responds to photoperiod. This large effect of EID1 is likely a consequence of the global phase shift elicited by this gene in tomato's circadian rhythms. CONCLUSIONS Our study shows that changes in phase that occurred during tomato domestication determine photoperiod perception in this species, while changes in period have little effect.
Collapse
Affiliation(s)
- Yanli Xiang
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, 9052, Gent, Belgium
| | - Thomas Sapir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Pauline Rouillard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Marina Ferrand
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - José M Jiménez-Gómez
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain.
| |
Collapse
|
44
|
Marie TRJG, Leonardos ED, Lanoue J, Hao X, Micallef BJ, Grodzinski B. A Perspective Emphasizing Circadian Rhythm Entrainment to Ensure Sustainable Crop Production in Controlled Environment Agriculture: Dynamic Use of LED Cues. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.856162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
World-wide, sustainable crop production is increasingly dependent on the protection of crops from adverse local climate conditions by using controlled environment agriculture (CEA) facilities. Today's greenhouses and plant factories are becoming very technologically advanced. Important breakthroughs in our understanding of the deployment of affordable artificial lighting systems that can supplement and even replace solar radiation is the subject of this perspective article. The key to improving sustainable CEA is to synchronize those environmental cues that best entrain the natural circadian rhythm of the crop. Patterns of circadian rhythms reflect the balance of daily metabolic cycles and phenological stages of development that integrate and anticipate environmental changes for all complex organisms. Within the last decade, our understanding of the use of light-emitting diodes (LEDs) as spectrally tunable tools for stimulating plant responses has expanded rapidly. This perspective proposes that extending the photoperiod in CEA is an economically sustainable goal to for year-round productivity of tomato, using dynamic LED shifts that entrain the circadian rhythm. When the photoperiod is extended too far, tomato experiences injury. To avoid yield reduction, we look to nature for clues, and how circadian rhythms evolved in general to long-photoperiods during the summer in high-latitudes. It follows that circadian rhythm traits are good targets for breeders to select new tomato cultivars suitable for CEA. Circadian rhythm entrainment, using dynamic LED cues, can be tailored to any latitude-of-origin crop, and thus expands the strategies ensuring sustainable food security including healthy diets locally in any region of the world.
Collapse
|
45
|
Hargreaves JK, Oakenfull RJ, Davis AM, Pullen F, Knight MI, Pitchford JW, Davis SJ. Multiple metals influence distinct properties of the Arabidopsis circadian clock. PLoS One 2022; 17:e0258374. [PMID: 35381003 PMCID: PMC8982871 DOI: 10.1371/journal.pone.0258374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/08/2022] [Indexed: 11/19/2022] Open
Abstract
Circadian rhythms coordinate endogenous events with external signals, and are essential to biological function. When environmental contaminants affect these rhythms, the organism may experience fitness consequences such as reduced growth or increased susceptibility to pathogens. In their natural environment plants may be exposed to a wide range of industrial and agricultural soil pollutants. Here, we investigate how the addition of various metal salts to the root-interaction environment can impact rhythms, measured via the promoter:luciferase system. The consequences of these environmental changes were found to be varied and complex. Therefore, in addition to traditional Fourier-based analyses, we additionally apply novel wavelet-based spectral hypothesis testing and clustering methodologies to organize and understand the data. We are able to classify broad sets of responses to these metal salts, including those that increase, and those that decrease, the period, or which induce a lack of precision or disrupt any meaningful periodicity. Our methods are general, and may be applied to discover common responses and hidden structures within a wide range of biological time series data.
Collapse
Affiliation(s)
- Jessica K. Hargreaves
- Department of Mathematics, University of York, York, United Kingdom
- * E-mail: (JKH); (SJD)
| | | | - Amanda M. Davis
- Department of Biology, University of York, York, United Kingdom
| | - Freya Pullen
- Department of Biology, University of York, York, United Kingdom
| | - Marina I. Knight
- Department of Mathematics, University of York, York, United Kingdom
| | - Jon W. Pitchford
- Department of Mathematics, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Seth J. Davis
- Department of Biology, University of York, York, United Kingdom
- State Key Laboratory of Crop Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- * E-mail: (JKH); (SJD)
| |
Collapse
|
46
|
Xu X, Yuan L, Yang X, Zhang X, Wang L, Xie Q. Circadian clock in plants: Linking timing to fitness. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:792-811. [PMID: 35088570 DOI: 10.1111/jipb.13230] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/25/2022] [Indexed: 05/12/2023]
Abstract
Endogenous circadian clock integrates cyclic signals of environment and daily and seasonal behaviors of organisms to achieve spatiotemporal synchronization, which greatly improves genetic diversity and fitness of species. This review addresses recent studies on the plant circadian system in the field of chronobiology, covering topics on molecular mechanisms, internal and external Zeitgebers, and hierarchical regulation of physiological outputs. The architecture of the circadian clock involves the autoregulatory transcriptional feedback loops, post-translational modifications of core oscillators, and epigenetic modifications of DNA and histones. Here, light, temperature, humidity, and internal elemental nutrients are summarized to illustrate the sensitivity of the circadian clock to timing cues. In addition, the circadian clock runs cell-autonomously, driving independent circadian rhythms in various tissues. The core oscillators responds to each other with biochemical factors including calcium ions, mineral nutrients, photosynthetic products, and hormones. We describe clock components sequentially expressed during a 24-h day that regulate rhythmic growth, aging, immune response, and resistance to biotic and abiotic stresses. Notably, more data have suggested the circadian clock links chrono-culture to key agronomic traits in crops.
Collapse
Affiliation(s)
- Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xin Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiao Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
47
|
Jabbur ML, Johnson CH. Spectres of Clock Evolution: Past, Present, and Yet to Come. Front Physiol 2022; 12:815847. [PMID: 35222066 PMCID: PMC8874327 DOI: 10.3389/fphys.2021.815847] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 01/20/2023] Open
Abstract
Circadian clocks are phylogenetically widespread biological oscillators that allow organisms to entrain to environmental cycles and use their steady-state phase relationship to anticipate predictable daily phenomena – such as the light-dark transitions of a day – and prepare accordingly. Present from cyanobacteria to mammals, circadian clocks are evolutionarily ancient and are thought to increase the fitness of the organisms that possess them by allowing for better resource usage and/or proper internal temporal order. Here, we review literature with respect to the ecology and evolution of circadian clocks, with a special focus on cyanobacteria as model organisms. We first discuss what can be inferred about future clock evolution in response to climate change, based on data from latitudinal clines and domestication. We then address our current understanding of the role that circadian clocks might be contributing to the adaptive fitness of cyanobacteria at the present time. Lastly, we discuss what is currently known about the oldest known circadian clock, and the early Earth conditions that could have led to its evolution.
Collapse
|
48
|
Chen P, Liu P, Zhang Q, Zhao L, Hao X, Liu L, Bu C, Pan Y, Zhang D, Song Y. Dynamic physiological and transcriptome changes reveal a potential relationship between the circadian clock and salt stress response in Ulmus pumila. Mol Genet Genomics 2022; 297:303-317. [PMID: 35089426 DOI: 10.1007/s00438-021-01838-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 11/13/2021] [Indexed: 11/26/2022]
Abstract
Despite the important role the circadian clock plays in numerous critical physiological responses in plants, such as hypocotyl elongation, leaf movement, stomatal opening, flowering, and stress responses, there have been no investigations into the effect of the circadian clock on physiological and transcriptional networks under salt stress. Ulmus pumila L. has been reported to tolerate 100-150 mM NaCl treatment. We measured the diurnal variation in photosynthesis and chlorophyll fluorescence parameters and performed a time-course transcriptome analysis of 2-years-old U. pumila seedlings under salt treatment to dissect the physiological regulation and potential relationship between the circadian network and the salt stress response. Seedlings in 150 mM NaCl treatment exhibited salt-induced physiological enhancement compared to the control group. A total of 7009 differentially expressed unigenes (DEGs) were identified under salt stress, of which 16 DEGs were identified as circadian rhythm-related DEGs (crDEGs). Further analysis of dynamic expression changes revealed that DEGs involved in four crucial pathways-photosynthesis, thiamine metabolism, abscisic acid synthesis and metabolism, and the hormone-MAPK signal crosstalk pathway-are closely related to the circadian clock. Finally, we constructed a co-expression network between the circadian clock and these four crucial pathways. Our results help shed light on the molecular link between the circadian network and salt stress tolerance in U. pumila.
Collapse
Affiliation(s)
- Panfei Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Peng Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Quanfeng Zhang
- Hebei Academy of Forestry Sciences, No. 75, Xuefu Road, Hebei, 050072, People's Republic of China
| | - Lei Zhao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Xuri Hao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Lei Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Chenhao Bu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Yanjun Pan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China.
| |
Collapse
|
49
|
Jurca M, Sjölander J, Ibáñez C, Matrosova A, Johansson M, Kozarewa I, Takata N, Bakó L, Webb AAR, Israelsson-Nordström M, Eriksson ME. ZEITLUPE Promotes ABA-Induced Stomatal Closure in Arabidopsis and Populus. FRONTIERS IN PLANT SCIENCE 2022; 13:829121. [PMID: 35310670 PMCID: PMC8924544 DOI: 10.3389/fpls.2022.829121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/26/2022] [Indexed: 05/22/2023]
Abstract
Plants balance water availability with gas exchange and photosynthesis by controlling stomatal aperture. This control is regulated in part by the circadian clock, but it remains unclear how signalling pathways of daily rhythms are integrated into stress responses. The serine/threonine protein kinase OPEN STOMATA 1 (OST1) contributes to the regulation of stomatal closure via activation of S-type anion channels. OST1 also mediates gene regulation in response to ABA/drought stress. We show that ZEITLUPE (ZTL), a blue light photoreceptor and clock component, also regulates ABA-induced stomatal closure in Arabidopsis thaliana, establishing a link between clock and ABA-signalling pathways. ZTL sustains expression of OST1 and ABA-signalling genes. Stomatal closure in response to ABA is reduced in ztl mutants, which maintain wider stomatal apertures and show higher rates of gas exchange and water loss than wild-type plants. Detached rosette leaf assays revealed a stronger water loss phenotype in ztl-3, ost1-3 double mutants, indicating that ZTL and OST1 contributed synergistically to the control of stomatal aperture. Experimental studies of Populus sp., revealed that ZTL regulated the circadian clock and stomata, indicating ZTL function was similar in these trees and Arabidopsis. PSEUDO-RESPONSE REGULATOR 5 (PRR5), a known target of ZTL, affects ABA-induced responses, including stomatal regulation. Like ZTL, PRR5 interacted physically with OST1 and contributed to the integration of ABA responses with circadian clock signalling. This suggests a novel mechanism whereby the PRR proteins-which are expressed from dawn to dusk-interact with OST1 to mediate ABA-dependent plant responses to reduce water loss in time of stress.
Collapse
Affiliation(s)
- Manuela Jurca
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Johan Sjölander
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Cristian Ibáñez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Departamento de Biología Universidad de La Serena, La Serena, Chile
| | - Anastasia Matrosova
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Mikael Johansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Bielefeld, Germany
| | - Iwanka Kozarewa
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Naoki Takata
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Japan
| | - Laszlo Bakó
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Alex A. R. Webb
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Maria Israelsson-Nordström
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Maria E. Eriksson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Maria E. Eriksson,
| |
Collapse
|
50
|
Evaluating the Effects of the Circadian Clock and Time of Day on Plant Gravitropic Responses. Methods Mol Biol 2022; 2368:301-319. [PMID: 34647263 DOI: 10.1007/978-1-0716-1677-2_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Circadian rhythms are regular oscillations of an organism's physiology with a period of approximately 24 h. In the model plant Arabidopsis thaliana, circadian rhythms regulate a suite of physiological processes, including transcription, photosynthesis, growth, and flowering. The circadian clock and external rhythmic factors have extensive control of the underlying biochemistry and physiology. Therefore, it is critical to consider the time of day when performing gravitropism experiments, even if the circadian clock is not a focus of study. We describe the critical factors and methods to be considered and methods to investigate the possible circadian regulation of gravitropic responses.
Collapse
|