1
|
Xu X, Chen Q, Huang Q, Cox TC, Zhu H, Hu J, Han X, Meng Z, Wang B, Liao Z, Xu W, Xiao B, Lang R, Liu J, Huang J, Tang X, Wang J, Li Q, Liu T, Zhang Q, Antonarakis SE, Zhang J, Fan X, Liu H, Zhang YB. Auricular malformations are driven by copy number variations in a hierarchical enhancer cluster and a dominant enhancer recapitulates human pathogenesis. Nat Commun 2025; 16:4598. [PMID: 40382324 DOI: 10.1038/s41467-025-59735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/02/2025] [Indexed: 05/20/2025] Open
Abstract
Enhancers, through the combinatorial action of transcription factors (TFs), dictate both the spatial specificity and the levels of gene expression, and their aberrations can result in diseases. While a HMX1 downstream enhancer is associated with ear malformations, the mechanisms underlying bilateral constricted ear (BCE) remain unclear. Here, we identify a copy number variation (CNV) containing three enhancers-collectively termed the positional identity hierarchical enhancer cluster (PI-HEC)-that drives BCE by coordinately regulating HMX1 expression. Each enhancer exhibits distinct activity-location-structure features, and the dominant enhancer with high mobility group (HMG)-box combined with Coordinator and homeodomain TF motifs modulating its activity and specificity, respectively. Mouse models demonstrate that neural crest-derived fibroblasts with aberrant Hmx1 expression in the basal pinna, along with ectopic distal pinna expression, disrupt outer ear development, affecting cartilage, muscle, and epidermis. Our findings elucidate mammalian ear morphogenesis and underscore the complexity of synergistic regulation among enhancers and between enhancers and transcription factors.
Collapse
Affiliation(s)
- Xiaopeng Xu
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
- School of Bioengineering Medicine, Beihang University, Beijing, 100191, China
- Bioland Laboratory, Guangzhou, 510320, Guangdong, China
| | - Qi Chen
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, 100144, China
| | - Qingpei Huang
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Timothy C Cox
- Departments of Oral & Craniofacial Sciences, School of Dentistry, and Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, USA
| | - Hao Zhu
- School of Bioengineering Medicine, Beihang University, Beijing, 100191, China
| | - Jintian Hu
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, 100144, China
| | - Xi Han
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Ziqiu Meng
- School of Bioengineering Medicine, Beihang University, Beijing, 100191, China
| | - Bingqing Wang
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, 100144, China
| | - Zhiying Liao
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Wenxin Xu
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
- Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230000, China
| | - Baichuan Xiao
- School of Bioengineering Medicine, Beihang University, Beijing, 100191, China
| | - Ruirui Lang
- School of Bioengineering Medicine, Beihang University, Beijing, 100191, China
| | - Jiqiang Liu
- School of Bioengineering Medicine, Beihang University, Beijing, 100191, China
| | - Jian Huang
- School of Bioengineering Medicine, Beihang University, Beijing, 100191, China
| | - Xiaokai Tang
- School of Bioengineering Medicine, Beihang University, Beijing, 100191, China
| | - Jinmo Wang
- School of Bioengineering Medicine, Beihang University, Beijing, 100191, China
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Ting Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qingguo Zhang
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, 100144, China
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva, 1211, Switzerland
- Medigenome, Swiss Institute of Genomic Medicine, 1207, Geneva, Switzerland
- iGE3 Institute of Genetics and Genomes in Geneva, Geneva, Switzerland
| | - Jiao Zhang
- Shandong collaborative innovation research institute of traditional Chinese medicine industry, Jinan, 250000, Shandong, China.
| | - Xiaoying Fan
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China.
- Bioland Laboratory, Guangzhou, 510320, Guangdong, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510320, Guangdong, China.
- GMU-GIBH Joint School of Life Sciences, Guangzhou, 510320, Guangdong, China.
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510320, Guangdong, China.
| | - Huisheng Liu
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China.
- Bioland Laboratory, Guangzhou, 510320, Guangdong, China.
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510320, Guangdong, China.
| | - Yong-Biao Zhang
- School of Bioengineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, 100191, China.
| |
Collapse
|
2
|
Gonzalez P, Hauck QC, Baxevanis AD. Conserved Noncoding Elements Evolve Around the Same Genes Throughout Metazoan Evolution. Genome Biol Evol 2024; 16:evae052. [PMID: 38502060 PMCID: PMC10988421 DOI: 10.1093/gbe/evae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
Conserved noncoding elements (CNEs) are DNA sequences located outside of protein-coding genes that can remain under purifying selection for up to hundreds of millions of years. Studies in vertebrate genomes have revealed that most CNEs carry out regulatory functions. Notably, many of them are enhancers that control the expression of homeodomain transcription factors and other genes that play crucial roles in embryonic development. To further our knowledge of CNEs in other parts of the animal tree, we conducted a large-scale characterization of CNEs in more than 50 genomes from three of the main branches of the metazoan tree: Cnidaria, Mollusca, and Arthropoda. We identified hundreds of thousands of CNEs and reconstructed the temporal dynamics of their appearance in each lineage, as well as determining their spatial distribution across genomes. We show that CNEs evolve repeatedly around the same genes across the Metazoa, including around homeodomain genes and other transcription factors; they also evolve repeatedly around genes involved in neural development. We also show that transposons are a major source of CNEs, confirming previous observations from vertebrates and suggesting that they have played a major role in wiring developmental gene regulatory mechanisms since the dawn of animal evolution.
Collapse
Affiliation(s)
- Paul Gonzalez
- Center for Genomics and Data Science Research, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Quinn C Hauck
- Center for Genomics and Data Science Research, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andreas D Baxevanis
- Center for Genomics and Data Science Research, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Van Dam MH, Henderson JB, Esposito L, Trautwein M. Genomic Characterization and Curation of UCEs Improves Species Tree Reconstruction. Syst Biol 2020; 70:307-321. [PMID: 32750133 PMCID: PMC7875437 DOI: 10.1093/sysbio/syaa063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Ultraconserved genomic elements (UCEs) are generally treated as independent loci in phylogenetic analyses. The identification pipeline for UCE probes does not require prior knowledge of genetic identity, only selecting loci that are highly conserved, single copy, without repeats, and of a particular length. Here, we characterized UCEs from 11 phylogenomic studies across the animal tree of life, from birds to marine invertebrates. We found that within vertebrate lineages, UCEs are mostly intronic and intergenic, while in invertebrates, the majority are in exons. We then curated four different sets of UCE markers by genomic category from five different studies including: birds, mammals, fish, Hymenoptera (ants, wasps, and bees), and Coleoptera (beetles). Of genes captured by UCEs, we find that many are represented by two or more UCEs, corresponding to nonoverlapping segments of a single gene. We considered these UCEs to be nonindependent, merged all UCEs that belonged to a particular gene, constructed gene and species trees, and then evaluated the subsequent effect of merging cogenic UCEs on gene and species tree reconstruction. Average bootstrap support for merged UCE gene trees was significantly improved across all data sets apparently driven by the increase in loci length. Additionally, we conducted simulations and found that gene trees generated from merged UCEs were more accurate than those generated by unmerged UCEs. As loci length improves gene tree accuracy, this modest degree of UCE characterization and curation impacts downstream analyses and demonstrates the advantages of incorporating basic genomic characterizations into phylogenomic analyses. [Anchored hybrid enrichment; ants; ASTRAL; bait capture; carangimorph; Coleoptera; conserved nonexonic elements; exon capture; gene tree; Hymenoptera; mammal; phylogenomic markers; songbird; species tree; ultraconserved elements; weevils.]
Collapse
Affiliation(s)
- Matthew H Van Dam
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA.,Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA
| | - James B Henderson
- Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA
| | - Lauren Esposito
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA.,Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA
| | - Michelle Trautwein
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA.,Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA
| |
Collapse
|
4
|
|
5
|
Lenzini L, Di Patti F, Livi R, Fondi M, Fani R, Mengoni A. A Method for the Structure-Based, Genome-Wide Analysis of Bacterial Intergenic Sequences Identifies Shared Compositional and Functional Features. Genes (Basel) 2019; 10:genes10100834. [PMID: 31652625 PMCID: PMC6826451 DOI: 10.3390/genes10100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 11/16/2022] Open
Abstract
In this paper, we propose a computational strategy for performing genome-wide analyses of intergenic sequences in bacterial genomes. Following similar directions of a previous paper, where a method for genome-wide analysis of eucaryotic Intergenic sequences was proposed, here we developed a tool for implementing similar concepts in bacteria genomes. This allows us to (i) classify intergenic sequences into clusters, characterized by specific global structural features and (ii) draw possible relations with their functional features.
Collapse
Affiliation(s)
- Leonardo Lenzini
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino, 50019, Italy.
- Istituto Nazionale di Fisica Nucleare, Sesto Fiorentino, 50019, Italy.
| | - Francesca Di Patti
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino, 50019, Italy.
- Centro Interdipartimentale per lo Studio delle Dinamiche Complesse, Sesto Fiorentino, 50019, Italy.
| | - Roberto Livi
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino, 50019, Italy.
- Istituto Nazionale di Fisica Nucleare, Sesto Fiorentino, 50019, Italy.
- Centro Interdipartimentale per lo Studio delle Dinamiche Complesse, Sesto Fiorentino, 50019, Italy.
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, 50019, Italy.
| | - Marco Fondi
- Dipartimento di Biologia, Università degli Studi di Firenze, Sesto Fiorentino, 50019, Italy.
| | - Renato Fani
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, 50019, Italy.
- Dipartimento di Biologia, Università degli Studi di Firenze, Sesto Fiorentino, 50019, Italy.
| | - Alessio Mengoni
- Dipartimento di Biologia, Università degli Studi di Firenze, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
6
|
Rubio K, Dobersch S, Barreto G. Functional interactions between scaffold proteins, noncoding RNAs, and genome loci induce liquid-liquid phase separation as organizing principle for 3-dimensional nuclear architecture: implications in cancer. FASEB J 2019; 33:5814-5822. [PMID: 30742773 DOI: 10.1096/fj.201802715r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The eukaryotic cell nucleus consists of functionally specialized subcompartments. These nuclear subcompartments are biomolecular aggregates built of proteins, transcripts, and specific genome loci. The structure and function of each nuclear subcompartment are defined by the composition and dynamic interaction between these 3 components. The spatio-temporal localization of biochemical reactions into membraneless nuclear subcompartments can be achieved through liquid-liquid phase separation. Based on this organizing principle, nuclear subcompartments are droplet-like structures that adopt spherical shapes, flow, and fuse like liquids or gels. In the present review, we bring into the spotlight seminal works elucidating the functional interactions between scaffold proteins, noncoding RNAs, and genomic loci, thereby inducing liquid-liquid phase separation as an organizing principle for 3-dimensional nuclear architecture. We also discuss the implications in different cancer types as well as the potential use of this knowledge to develop novel therapeutic strategies against cancer.-Rubio, K., Dobersch, S., Barreto, G. Functional interactions between scaffold proteins, noncoding RNAs, and genome loci induce liquid-liquid phase separation as organizing principle for 3-dimensional nuclear architecture: implications in cancer.
Collapse
Affiliation(s)
- Karla Rubio
- Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stephanie Dobersch
- Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Guillermo Barreto
- Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Laboratoire Croissance, Réparation, et Régénération Tissulaires (CRRET), Centre National de la Recherche Scientifique (CNRS) Équipe de Recherche Labellisée (ERL) 9215, Université Paris Est Créteil, Créteil, France.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation.,Excellence Cluster Cardio Pulmonary System (ECCPS), Universities of Giessen-Marburg Lung Center (UGMLC), Giessen, Germany.,German Center of Lung Research, Giessen, Germany
| |
Collapse
|
7
|
|
8
|
Abstract
As a species, we possess unique biological features that distinguish us from other primates. Here, we review recent efforts to identify changes in gene regulation that drove the evolution of novel human phenotypes. We discuss genotype-directed comparisons of human and nonhuman primate genomes to identify human-specific genetic changes that may encode new regulatory functions. We also review phenotype-directed approaches, which use comparisons of gene expression or regulatory function in homologous human and nonhuman primate cells and tissues to identify changes in expression levels or regulatory activity that may be due to genetic changes in humans. Together, these studies are beginning to reveal the landscape of regulatory innovation in human evolution and point to specific regulatory changes for further study. Finally, we highlight two novel strategies to model human-specific regulatory functions in vivo: primate induced pluripotent stem cells and the generation of humanized mice by genome editing.
Collapse
Affiliation(s)
- Steven K Reilly
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510;
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510; .,Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511.,Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
9
|
Lee HE, Ayarpadikannan S, Kim HS. Role of transposable elements in genomic rearrangement, evolution, gene regulation and epigenetics in primates. Genes Genet Syst 2015; 90:245-57. [DOI: 10.1266/ggs.15-00016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Hee-Eun Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University
- Genetic Engineering Institute, Pusan National University
| | - Selvam Ayarpadikannan
- Department of Biological Sciences, College of Natural Sciences, Pusan National University
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University
- Genetic Engineering Institute, Pusan National University
| |
Collapse
|
10
|
Classification of selectively constrained DNA elements using feature vectors and rule-based classifiers. Genomics 2014; 104:79-86. [PMID: 25058025 DOI: 10.1016/j.ygeno.2014.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/15/2014] [Indexed: 12/29/2022]
Abstract
Scarce work has been done in the analysis of the composition of conserved non-coding elements (CNEs) that are identified by comparisons of two or more genomes and are found to exist in all metazoan genomes. Here we present the analysis of CNEs with a methodology that takes into account word occurrence at various lengths scales in the form of feature vector representation and rule based classifiers. We implement our approach on both protein-coding exons and CNEs, originating from human, insect (Drosophila melanogaster) and worm (Caenorhabditis elegans) genomes, that are either identified in the present study or obtained from the literature. Alignment free feature vector representation of sequences combined with rule-based classification methods leads to successful classification of the different CNEs classes. Biologically meaningful results are derived by comparison with the genomic signatures approach, and classification rates for a variety of functional elements of the genomes along with surrogates are presented.
Collapse
|
11
|
Genome-wide analysis of promoters: clustering by alignment and analysis of regular patterns. PLoS One 2014; 9:e85260. [PMID: 24465517 PMCID: PMC3898993 DOI: 10.1371/journal.pone.0085260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/26/2013] [Indexed: 01/08/2023] Open
Abstract
In this paper we perform a genome-wide analysis of H. sapiens promoters. To this aim, we developed and combined two mathematical methods that allow us to (i) classify promoters into groups characterized by specific global structural features, and (ii) recover, in full generality, any regular sequence in the different classes of promoters. One of the main findings of this analysis is that H. sapiens promoters can be classified into three main groups. Two of them are distinguished by the prevalence of weak or strong nucleotides and are characterized by short compositionally biased sequences, while the most frequent regular sequences in the third group are strongly correlated with transposons. Taking advantage of the generality of these mathematical procedures, we have compared the promoter database of H. sapiens with those of other species. We have found that the above-mentioned features characterize also the evolutionary content appearing in mammalian promoters, at variance with ancestral species in the phylogenetic tree, that exhibit a definitely lower level of differentiation among promoters.
Collapse
|
12
|
Abstract
As more and more systems biology approaches are used to investigate the different types of biological macromolecules, increasing numbers of whole genomic studies are now available for a large array of organisms. Whether it is genomics, transcriptomics, proteomics, interactomics or metabolomics, the full complement of genomic information on all different levels can be juxtaposed between different organisms to reveal similarities or differences, and even to provide consensus models. At the intersection of comparative genomics and systems biology lies great possibility for discovery, analysis and prediction. This paper explores this nexus and the relationship from four general levels: DNA, RNA, protein and extragenomic. For each level, we provide an overview of the methods, discuss the potential challenges and survey the current research. Finally, we suggest some organizing principles and make proposals for new areas that will be important for future research.
Collapse
Affiliation(s)
- Jimmy Lin
- Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|
13
|
Makunin IV, Shloma VV, Stephen SJ, Pheasant M, Belyakin SN. Comparison of ultra-conserved elements in drosophilids and vertebrates. PLoS One 2013; 8:e82362. [PMID: 24349264 PMCID: PMC3862641 DOI: 10.1371/journal.pone.0082362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/24/2013] [Indexed: 11/18/2022] Open
Abstract
Metazoan genomes contain many ultra-conserved elements (UCEs), long sequences identical between distant species. In this study we identified UCEs in drosophilid and vertebrate species with a similar level of phylogenetic divergence measured at protein-coding regions, and demonstrated that both the length and number of UCEs are larger in vertebrates. The proportion of non-exonic UCEs declines in distant drosophilids whilst an opposite trend was observed in vertebrates. We generated a set of 2,126 Sophophora UCEs by merging elements identified in several drosophila species and compared these to the eutherian UCEs identified in placental mammals. In contrast to vertebrates, the Sophophora UCEs are depleted around transcription start sites. Analysis of 52,954 P-element, piggyBac and Minos insertions in the D. melanogaster genome revealed depletion of the P-element and piggyBac insertions in and around the Sophophora UCEs. We examined eleven fly strains with transposon insertions into the intergenic UCEs and identified associated phenotypes in five strains. Four insertions behave as recessive lethals, and in one case we observed a suppression of the marker gene within the transgene, presumably by silenced chromatin around the integration site. To confirm the lethality is caused by integration of transposons we performed a phenotype rescue experiment for two stocks and demonstrated that the excision of the transposons from the intergenic UCEs restores viability. Sequencing of DNA after the transposon excision in one fly strain with the restored viability revealed a 47 bp insertion at the original transposon integration site suggesting that the nature of the mutation is important for the appearance of the phenotype. Our results suggest that the UCEs in flies and vertebrates have both common and distinct features, and demonstrate that a significant proportion of intergenic drosophila UCEs are sensitive to disruption.
Collapse
Affiliation(s)
- Igor V. Makunin
- Research Computing Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute of Molecular and Cellular Biology SD RAS, Novosibirsk, Russia
- * E-mail:
| | - Viktor V. Shloma
- Institute of Molecular and Cellular Biology SD RAS, Novosibirsk, Russia
| | - Stuart J. Stephen
- Computational Biology Group, CSIRO Plant Industry, Canberra, Australian Capital Territory, Australia
| | - Michael Pheasant
- Research Computing Centre, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
14
|
Vakhrusheva OA, Bazykin GA, Kondrashov AS. Genome-Level Analysis of Selective Constraint without Apparent Sequence Conservation. Genome Biol Evol 2013; 5:532-41. [PMID: 23418180 PMCID: PMC3622294 DOI: 10.1093/gbe/evt023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Conservation of function can be accompanied by obvious similarity of homologous sequences which may persist for billions of years (Iyer LM, Leipe DD, Koonin EV, Aravind L. 2004. Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol. 146:11–31.). However, presumably homologous segments of noncoding DNA can also retain their ancestral function even after their sequences diverge beyond recognition (Fisher S, Grice EA, Vinton RM, Bessling SL, McCallion AS. 2006. Conservation of RET regulatory function from human to zebrafish without sequence similarity. Science 312:276–279.). To investigate this phenomenon at the genomic scale, we studied homologous introns in a quartet of insect species, and in a quartet of vertebrate species. Each quartet consisted of two pairs of moderately distant genomes, with a much larger evolutionary distance between the pairs. In both quartets, we found that introns that carry a regulatory segment or a conserved segment in the first pair tend to carry a conserved segment in the second pair, even though no similarity of these segments could be detected between the two pairs. Furthermore, introns from one pair that are preserved in the other pair tend to carry a conserved segment within the first pair, and be longer in the first pair, compared with the introns that were lost between pairs, even though no similarity between pairs could be detected in such preserved introns. These results indicate that selective constraint, presumably caused by conservation of the ancestral function, often persists even after the homologous DNA segments become unalignable.
Collapse
Affiliation(s)
- Olga A Vakhrusheva
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | | | | |
Collapse
|
15
|
Micale L, Loviglio MN, Manzoni M, Fusco C, Augello B, Migliavacca E, Cotugno G, Monti E, Borsani G, Reymond A, Merla G. A fish-specific transposable element shapes the repertoire of p53 target genes in zebrafish. PLoS One 2012; 7:e46642. [PMID: 23118857 PMCID: PMC3485254 DOI: 10.1371/journal.pone.0046642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 09/03/2012] [Indexed: 12/04/2022] Open
Abstract
Transposable elements, as major components of most eukaryotic organisms' genomes, define their structural organization and plasticity. They supply host genomes with functional elements, for example, binding sites of the pleiotropic master transcription factor p53 were identified in LINE1, Alu and LTR repeats in the human genome. Similarly, in this report we reveal the role of zebrafish (Danio rerio) EnSpmN6_DR non-autonomous DNA transposon in shaping the repertoire of the p53 target genes. The multiple copies of EnSpmN6_DR and their embedded p53 responsive elements drive in several instances p53-dependent transcriptional modulation of the adjacent gene, whose human orthologs were frequently previously annotated as p53 targets. These transposons define predominantly a set of target genes whose human orthologs contribute to neuronal morphogenesis, axonogenesis, synaptic transmission and the regulation of programmed cell death. Consistent with these biological functions the orthologs of the EnSpmN6_DR-colonized loci are enriched for genes expressed in the amygdala, the hippocampus and the brain cortex. Our data pinpoint a remarkable example of convergent evolution: the exaptation of lineage-specific transposons to shape p53-regulated neuronal morphogenesis-related pathways in both a hominid and a teleost fish.
Collapse
Affiliation(s)
- Lucia Micale
- Medical Genetics Unit, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Maria Nicla Loviglio
- Medical Genetics Unit, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Marta Manzoni
- Department of Biomedical Science and Biotechnology, University of Brescia, Brescia, Italy
| | - Carmela Fusco
- Medical Genetics Unit, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Bartolomeo Augello
- Medical Genetics Unit, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Eugenia Migliavacca
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Grazia Cotugno
- Medical Genetics Unit, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Eugenio Monti
- Department of Biomedical Science and Biotechnology, University of Brescia, Brescia, Italy
| | - Giuseppe Borsani
- Department of Biomedical Science and Biotechnology, University of Brescia, Brescia, Italy
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Merla
- Medical Genetics Unit, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| |
Collapse
|
16
|
A SINE-derived element constitutes a unique modular enhancer for mammalian diencephalic Fgf8. PLoS One 2012; 7:e43785. [PMID: 22937095 PMCID: PMC3427154 DOI: 10.1371/journal.pone.0043785] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 07/25/2012] [Indexed: 01/04/2023] Open
Abstract
Transposable elements, including short interspersed repetitive elements (SINEs), comprise nearly half the mammalian genome. Moreover, they are a major source of conserved non-coding elements (CNEs), which play important functional roles in regulating development-related genes, such as enhancing and silencing, serving for the diversification of morphological and physiological features among species. We previously reported a novel SINE family, AmnSINE1, as part of mammalian-specific CNEs. One AmnSINE1 locus, named AS071, showed an enhancer property in the developing mouse diencephalon. Indeed, AS071 appears to recapitulate the expression of diencephalic fibroblast growth factor 8 (Fgf8). Here we established three independent lines of AS071-transgenic mice and performed detailed expression profiling of AS071-enhanced lacZ in comparison with that of Fgf8 across embryonic stages. We demonstrate that AS071 is a distal enhancer that directs Fgf8 expression in the developing diencephalon. Furthermore, enhancer assays with constructs encoding partially deleted AS071 sequence revealed a unique modular organization in which AS071 contains at least three functionally distinct sub-elements that cooperatively direct the enhancer activity in three diencephalic domains, namely the dorsal midline and the lateral wall of the diencephalon, and the ventral midline of the hypothalamus. Interestingly, the AmnSINE1-derived sub-element was found to specify the enhancer activity to the ventral midline of the hypothalamus. To our knowledge, this is the first discovery of an enhancer element that could be separated into respective sub-elements that determine regional specificity and/or the core enhancing activity. These results potentiate our understanding of the evolution of retroposon-derived cis-regulatory elements as well as the basis for future studies of the molecular mechanism underlying the determination of domain-specificity of an enhancer.
Collapse
|
17
|
Predicting nucleosome binding motif set and analyzing their distributions around functional sites of human genes. Chromosome Res 2012; 20:685-98. [DOI: 10.1007/s10577-012-9305-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 01/30/2023]
|
18
|
Abstract
During the past decade, widespread use of microarray-based technologies, including oligonucleotide array comparative genomic hybridization (aCGH) and single nucleotide polymorphism (SNP) genotyping arrays have dramatically changed our perspective on genome-wide structural variation. Submicroscopic genomic rearrangements or copy-number variation (CNV) have proven to be an important factor responsible for primate evolution, phenotypic differences between individuals and populations, and susceptibility to many diseases. The number of diseases caused by chromosomal microdeletions and microduplications, also referred to as genomic disorders, has been increasing at a rapid pace. Microdeletions and microduplications are found in patients with a wide variety of phenotypes, including Mendelian diseases as well as common complex traits, such as developmental delay/intellectual disability, autism, schizophrenia, obesity, and epilepsy. This chapter provides an overview of common microdeletion and microduplication syndromes and their clinical phenotypes, and discusses the genomic structures and molecular mechanisms of formation. In addition, an explanation for how these genomic rearrangements convey abnormal phenotypes is provided.
Collapse
Affiliation(s)
- Lisenka E L M Vissers
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
19
|
Schanze D, Ekici AB, Pfuhlmann B, Reis A, Stöber G. Evaluation of conserved and ultra-conserved non-genic sequences in chromosome 15q15-linked periodic catatonia. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:77-86. [PMID: 22162401 DOI: 10.1002/ajmg.b.32004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/03/2011] [Indexed: 01/14/2023]
Abstract
Conserved and ultra-conserved non-genic sequence elements (CNGs, UCEs) between human and other mammalian genomes seem to constitute a heterogeneous group of functional sequences which likely have important biological function. To determine whether variation in CNGs and UCEs contributes to risk for the schizophrenic subphenotype of periodic catatonia (according to K. Leonhard; OMIM 605419), we evaluated non-coding elements at a critical 7.35 Mb interval on chromosome 15q15 in 8 unrelated cases with periodic catatonia (derived from pedigrees compatible with linkage to chromosome 15q15) and 8 controls, followed by association studies in a cohort of 510 cases and controls. Among 65 CNGs (≥100 bp, 100% identity; human-mouse comparison), 7 CNGs matched criteria for UCE (≥200 bp, 100% identity). A hot spot of 62/65 CNGs (95%) appeared at the MEIS2 locus, which implicates functional importance of associated (ultra-)conserved elements to this early developmental gene, which is present in the human fetal neocortex and associated with metabolic side effects to antipsychotic drugs. Further CNGs were identified at the PLCB2 and DLL4 locus or located intergenic between TYRO3 and MAPKBP1. Automated sequencing revealed genetic variation in 12.3% of CNGs, but frequencies were low (MAF: 0.06-0.4) in cases. Three variants located inside CNGs/UCEs were found in cases only. In a case-control association study we could not confirm a significant association of these three CNG-variants with periodic catatonia. Our results suggest genetic variation in (ultra-)conserved non-genic sequence elements which might alter functional properties. The identified variants are genetically not associated with the phenotype of periodic catatonia.
Collapse
Affiliation(s)
- Denny Schanze
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
20
|
Tashiro K, Teissier A, Kobayashi N, Nakanishi A, Sasaki T, Yan K, Tarabykin V, Vigier L, Sumiyama K, Hirakawa M, Nishihara H, Pierani A, Okada N. A mammalian conserved element derived from SINE displays enhancer properties recapitulating Satb2 expression in early-born callosal projection neurons. PLoS One 2011; 6:e28497. [PMID: 22174821 PMCID: PMC3234267 DOI: 10.1371/journal.pone.0028497] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/09/2011] [Indexed: 02/04/2023] Open
Abstract
Short interspersed repetitive elements (SINEs) are highly repeated sequences that account for a significant proportion of many eukaryotic genomes and are usually considered "junk DNA". However, we previously discovered that many AmnSINE1 loci are evolutionarily conserved across mammalian genomes, suggesting that they may have acquired significant functions involved in controlling mammalian-specific traits. Notably, we identified the AS021 SINE locus, located 390 kbp upstream of Satb2. Using transgenic mice, we showed that this SINE displays specific enhancer activity in the developing cerebral cortex. The transcription factor Satb2 is expressed by cortical neurons extending axons through the corpus callosum and is a determinant of callosal versus subcortical projection. Mouse mutants reveal a crucial function for Sabt2 in corpus callosum formation. In this study, we compared the enhancer activity of the AS021 locus with Satb2 expression during telencephalic development in the mouse. First, we showed that the AS021 enhancer is specifically activated in early-born Satb2(+) neurons. Second, we demonstrated that the activity of the AS021 enhancer recapitulates the expression of Satb2 at later embryonic and postnatal stages in deep-layer but not superficial-layer neurons, suggesting the possibility that the expression of Satb2 in these two subpopulations of cortical neurons is under genetically distinct transcriptional control. Third, we showed that the AS021 enhancer is activated in neurons projecting through the corpus callosum, as described for Satb2(+) neurons. Notably, AS021 drives specific expression in axons crossing through the ventral (TAG1(-)/NPY(+)) portion of the corpus callosum, confirming that it is active in a subpopulation of callosal neurons. These data suggest that exaptation of the AS021 SINE locus might be involved in enhancement of Satb2 expression, leading to the establishment of interhemispheric communication via the corpus callosum, a eutherian-specific brain structure.
Collapse
Affiliation(s)
- Kensuke Tashiro
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Anne Teissier
- Centre National de la Recherche Scientifique–Unité Mixte de Recherche 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Naoki Kobayashi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Akiko Nakanishi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Takeshi Sasaki
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Kuo Yan
- Department of Molecular Biology of Neuronal Signals, Max-Plank-Institute for Experimental Medicine, Göttingen, Germany
| | - Victor Tarabykin
- Department of Molecular Biology of Neuronal Signals, Max-Plank-Institute for Experimental Medicine, Göttingen, Germany
| | - Lisa Vigier
- Centre National de la Recherche Scientifique–Unité Mixte de Recherche 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Kenta Sumiyama
- National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Mika Hirakawa
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Hidenori Nishihara
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Alessandra Pierani
- Centre National de la Recherche Scientifique–Unité Mixte de Recherche 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail: (NO); (AP)
| | - Norihiro Okada
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
- * E-mail: (NO); (AP)
| |
Collapse
|
21
|
Künstner A, Nabholz B, Ellegren H. Evolutionary constraint in flanking regions of avian genes. Mol Biol Evol 2011; 28:2481-9. [PMID: 21393603 DOI: 10.1093/molbev/msr066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An important comprehension from comparative genomic analysis is that sequence conservation beyond neutral expectations is frequently found outside protein-coding regions, indicating important functional roles of noncoding DNA. Understanding the causes of constraint on noncoding sequence evolution forms an important area of research, not least in light of the importance for understanding the evolution of gene expression. We aligned all orthologous genes of chicken and zebra finch together with 5 kb of their upstream and downstream noncoding sequences, to study the evolution of gene flanking sequences in the avian genome. Using ancestral repeats as a neutral reference, we detected significant evolutionary constraint in the 3' flanking region, highest directly after termination (60%) and then gradually decreasing to about 20% 5 kb downstream. Constraint was higher in annotated 3' untranslated regions (UTRs) than in non-UTRs at the same distance from the stop codon and higher in sequences annotated as microRNA (miRNA)-binding sites than in non-miRNA-binding sites within 3' UTRs. Constraint was also higher when estimated for a smaller data set of genes from more closely related songbird species, indicating turnover of functional elements during avian evolution. On the 5' flanking side constraint was readily seen within the first 125 bp immediately upstream of the start codon (34%) and was about 10% for remaining sequence within 5 kb upstream. Analysis of chicken polymorphism data gave further support for the highest constraint directly before and after the translated region. Finally, we found that genes evolving under the highest constraint measured by d(N)/d(S) also had the highest level of constraint in the 3' flanking region. This study broadens the insights into gene flanking sequence evolution by adding new findings from a vertebrate lineage other than mammals.
Collapse
Affiliation(s)
- Axel Künstner
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
22
|
Ouyang LM, Zhang HZ. [Course system and teaching practice of genomics]. YI CHUAN = HEREDITAS 2011; 33:278-282. [PMID: 21402537 DOI: 10.3724/sp.j.1005.2011.00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Genomics is the core subject of "omics" theories and research methods in modern life science. Teaching of genomics has characteristics such as more content, more difficult points, higher demands on English and comprehensive expertise etc. We proposed the course system established for Genomics and summarized some experiences based on our teaching practice that emphasizes on increasing the study autonomy and course interactivity by group study on stimulating questions, innovative experiment, multi-media materials, and bilingual exercises etc.
Collapse
Affiliation(s)
- Li-Ming Ouyang
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | | |
Collapse
|
23
|
A systematic enhancer screen using lentivector transgenesis identifies conserved and non-conserved functional elements at the Olig1 and Olig2 locus. PLoS One 2010; 5:e15741. [PMID: 21206754 PMCID: PMC3012086 DOI: 10.1371/journal.pone.0015741] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 11/23/2010] [Indexed: 01/22/2023] Open
Abstract
Finding sequences that control expression of genes is central to understanding genome function. Previous studies have used evolutionary conservation as an indicator of regulatory potential. Here, we present a method for the unbiased in vivo screen of putative enhancers in large DNA regions, using the mouse as a model. We cloned a library of 142 overlapping fragments from a 200 kb-long murine BAC in a lentiviral vector expressing LacZ from a minimal promoter, and used the resulting vectors to infect fertilized murine oocytes. LacZ staining of E11 embryos obtained by first using the vectors in pools and then testing individual candidates led to the identification of 3 enhancers, only one of which shows significant evolutionary conservation. In situ hybridization and 3C/4C experiments suggest that this enhancer, which is active in the neural tube and posterior diencephalon, influences the expression of the Olig1 and/or Olig2 genes. This work provides a new approach for the large-scale in vivo screening of transcriptional regulatory sequences, and further demonstrates that evolutionary conservation alone seems too limiting a criterion for the identification of enhancers.
Collapse
|
24
|
Janes DE, Chapus C, Gondo Y, Clayton DF, Sinha S, Blatti CA, Organ CL, Fujita MK, Balakrishnan CN, Edwards SV. Reptiles and mammals have differentially retained long conserved noncoding sequences from the amniote ancestor. Genome Biol Evol 2010; 3:102-13. [PMID: 21183607 PMCID: PMC3035132 DOI: 10.1093/gbe/evq087] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2010] [Indexed: 12/14/2022] Open
Abstract
Many noncoding regions of genomes appear to be essential to genome function. Conservation of large numbers of noncoding sequences has been reported repeatedly among mammals but not thus far among birds and reptiles. By searching genomes of chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and green anole (Anolis carolinensis), we quantified the conservation among birds and reptiles and across amniotes of long, conserved noncoding sequences (LCNS), which we define as sequences ≥500 bp in length and exhibiting ≥95% similarity between species. We found 4,294 LCNS shared between chicken and zebra finch and 574 LCNS shared by the two birds and Anolis. The percent of genomes comprised by LCNS in the two birds (0.0024%) is notably higher than the percent in mammals (<0.0003% to <0.001%), differences that we show may be explained in part by differences in genome-wide substitution rates. We reconstruct a large number of LCNS for the amniote ancestor (ca. 8,630) and hypothesize differential loss and substantial turnover of these sites in descendent lineages. By contrast, we estimated a small role for recruitment of LCNS via acquisition of novel functions over time. Across amniotes, LCNS are significantly enriched with transcription factor binding sites for many developmental genes, and 2.9% of LCNS shared between the two birds show evidence of expression in brain expressed sequence tag databases. These results show that the rate of retention of LCNS from the amniote ancestor differs between mammals and Reptilia (including birds) and that this may reflect differing roles and constraints in gene regulation.
Collapse
Affiliation(s)
- D E Janes
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
When needles look like hay: how to find tissue-specific enhancers in model organism genomes. Dev Biol 2010; 350:239-54. [PMID: 21130761 DOI: 10.1016/j.ydbio.2010.11.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 11/11/2010] [Accepted: 11/22/2010] [Indexed: 01/22/2023]
Abstract
A major prerequisite for the investigation of tissue-specific processes is the identification of cis-regulatory elements. No generally applicable technique is available to distinguish them from any other type of genomic non-coding sequence. Therefore, researchers often have to identify these elements by elaborate in vivo screens, testing individual regions until the right one is found. Here, based on many examples from the literature, we summarize how functional enhancers have been isolated from other elements in the genome and how they have been characterized in transgenic animals. Covering computational and experimental studies, we provide an overview of the global properties of cis-regulatory elements, like their specific interactions with promoters and target gene distances. We describe conserved non-coding elements (CNEs) and their internal structure, nucleotide composition, binding site clustering and overlap, with a special focus on developmental enhancers. Conflicting data and unresolved questions on the nature of these elements are highlighted. Our comprehensive overview of the experimental shortcuts that have been found in the different model organism communities and the new field of high-throughput assays should help during the preparation phase of a screen for enhancers. The review is accompanied by a list of general guidelines for such a project.
Collapse
|
26
|
Ricard G, Molina J, Chrast J, Gu W, Gheldof N, Pradervand S, Schütz F, Young JI, Lupski JR, Reymond A, Walz K. Phenotypic consequences of copy number variation: insights from Smith-Magenis and Potocki-Lupski syndrome mouse models. PLoS Biol 2010; 8:e1000543. [PMID: 21124890 PMCID: PMC2990707 DOI: 10.1371/journal.pbio.1000543] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/04/2010] [Indexed: 02/07/2023] Open
Abstract
The characterization of mice with different number of copies of the same genomic segment shows that structural changes influence the phenotypic outcome independently of gene dosage. A large fraction of genome variation between individuals is comprised of submicroscopic copy number variation of genomic DNA segments. We assessed the relative contribution of structural changes and gene dosage alterations on phenotypic outcomes with mouse models of Smith-Magenis and Potocki-Lupski syndromes. We phenotyped mice with 1n (Deletion/+), 2n (+/+), 3n (Duplication/+), and balanced 2n compound heterozygous (Deletion/Duplication) copies of the same region. Parallel to the observations made in humans, such variation in gene copy number was sufficient to generate phenotypic consequences: in a number of cases diametrically opposing phenotypes were associated with gain versus loss of gene content. Surprisingly, some neurobehavioral traits were not rescued by restoration of the normal gene copy number. Transcriptome profiling showed that a highly significant propensity of transcriptional changes map to the engineered interval in the five assessed tissues. A statistically significant overrepresentation of the genes mapping to the entire length of the engineered chromosome was also found in the top-ranked differentially expressed genes in the mice containing rearranged chromosomes, regardless of the nature of the rearrangement, an observation robust across different cell lineages of the central nervous system. Our data indicate that a structural change at a given position of the human genome may affect not only locus and adjacent gene expression but also “genome regulation.” Furthermore, structural change can cause the same perturbation in particular pathways regardless of gene dosage. Thus, the presence of a genomic structural change, as well as gene dosage imbalance, contributes to the ultimate phenotype. Mammalian genomes contain many forms of genetic variation. For example, some genome segments were shown to vary in their number of copies between individuals of the same species, i.e. there is a range of number of copies in the normal population instead of the usual two copies (one per chromosome). These genetic differences play an important role in determining the phenotype (the observable characteristics) of each individual. We do not know, however, if such influences are brought about solely through changes in the number of copies of the genomic segments (and of the genes that map within) or if the structural modification of the genome per se also plays a role in the outcome. We use mouse models with different number of copies of the same genomic region to show that rearrangements of the genetic materials can affect the phenotype independently of the dosage of the rearranged region.
Collapse
Affiliation(s)
- Guénola Ricard
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Wenli Gu
- Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nele Gheldof
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sylvain Pradervand
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Frédéric Schütz
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Juan I. Young
- Centro de Estudios Científicos (CECS), Valdivia, Chile
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- CIN (Centro de Ingeniería de la Innovación del CECS), Valdivia, Chile
| | - James R. Lupski
- Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Hospital, Houston, Texas, United States of America
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- * E-mail: (AR); (KW)
| | - Katherina Walz
- Centro de Estudios Científicos (CECS), Valdivia, Chile
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail: (AR); (KW)
| |
Collapse
|
27
|
Merhej V, Raoult D. Rickettsial evolution in the light of comparative genomics. Biol Rev Camb Philos Soc 2010; 86:379-405. [DOI: 10.1111/j.1469-185x.2010.00151.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Larkin DM. Role of chromosomal rearrangements and conserved chromosome regions in amniote evolution. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2010. [DOI: 10.3103/s0891416810010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Loots GG, Ovcharenko I. Human variation in short regions predisposed to deep evolutionary conservation. Mol Biol Evol 2010; 27:1279-88. [PMID: 20093432 PMCID: PMC2872621 DOI: 10.1093/molbev/msq011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The landscape of the human genome consists of millions of short islands of conservation that are 100% conserved across multiple vertebrate genomes (termed “bricks”), the majority of which are located in noncoding regions. Several hundred thousand bricks are deeply conserved reaching the genomes of amphibians and fish. Deep phylogenetic conservation of noncoding DNA has been reported to be strongly associated with the presence of gene regulatory elements, introducing bricks as a proxy to the functional noncoding landscape of the human genome. Here, we report a significant overrepresentation of bricks in the promoters of transcription factors and developmental genes, where the high level of phylogenetic conservation correlates with an increase in brick overrepresentation. We also found that the presence of a brick dictates a predisposition to evolutionary constraint, with only 0.7% of the amniota brick central nucleotides being diverged within the primate lineage—an 11-fold reduction in the divergence rate compared with random expectation. Human single-nucleotide polymorphism (SNP) data explains only 3% of primate-specific variation in amniota bricks, thus arguing for a widespread fixation of brick mutations within the primate lineage and prior to human radiation. This variation, in turn, might have been utilized as a driving force for primate- and hominoid-specific adaptation. We also discovered a pronounced deviation from the evolutionary predisposition in the human lineage, with over 20-fold increase in the substitution rate at brick SNP sites over expected values. In addition, contrary to typical brick mutations, brick variation commonly encountered in the human population displays limited, if any, signatures of negative selection as measured by the minor allele frequency and population differentiation (F-statistical measure) measures. These observations argue for the plasticity of gene regulatory mechanisms in vertebrates—with evidence of strong purifying selection acting on the gene regulatory landscape of the human genome, where widespread advantageous mutations in putative regulatory elements are likely utilized in functional diversification and adaptation of species.
Collapse
Affiliation(s)
- Gabriela G Loots
- Biology and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | |
Collapse
|
30
|
Mattick JS. Deconstructing the dogma: a new view of the evolution and genetic programming of complex organisms. Ann N Y Acad Sci 2009; 1178:29-46. [PMID: 19845626 DOI: 10.1111/j.1749-6632.2009.04991.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since the birth of molecular biology it has been generally assumed that most genetic information is transacted by proteins, and that RNA plays an intermediary role. This led to the subsidiary assumption that the vast tracts of noncoding sequences in the genomes of higher organisms are largely nonfunctional, despite the fact that they are transcribed. These assumptions have since become articles of faith, but they are not necessarily correct. I propose an alternative evolutionary history whereby developmental and cognitive complexity has arisen by constructing sophisticated RNA-based regulatory networks that interact with generic effector complexes to control gene expression patterns and the epigenetic trajectories of differentiation and development. Environmental information can also be conveyed into this regulatory system via RNA editing, especially in the brain. Moreover, the observations that RNA-directed epigenetic changes can be inherited raises the intriguing question: has evolution learnt how to learn?
Collapse
Affiliation(s)
- John S Mattick
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia.
| |
Collapse
|
31
|
Abstract
While once almost synonymous, there is an increasing gap between the expanding definition of what constitutes a gene and the conservative and narrowly defined terms code or coding, which for a long time, almost exclusively constituted the open reading frame. Much confusion results from this disparity, especially in light of the plethora of noncoding RNAs (more correctly termed "non-protein-coding RNAs") that usually are encoded and transcribed by their own genes. A simple solution would be to adopt Ed Trifonov's less constrained definition of a code as any sequence pattern that can have a biological function. Such consideration favors not only a more complex view of the gene as an entity composed of many more or less conserved subgenic modules, but also a concept of modular evolution of genes and entire genomes.
Collapse
Affiliation(s)
- Jürgen Brosius
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany.
| |
Collapse
|
32
|
Milinkovitch MC, Helaers R, Tzika AC. Historical constraints on vertebrate genome evolution. Genome Biol Evol 2009; 2:13-8. [PMID: 20333219 PMCID: PMC2839353 DOI: 10.1093/gbe/evp052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2009] [Indexed: 02/01/2023] Open
Abstract
Recent analyses indicated that genes with larger effect of knockout or mutation
and with larger probability to revert to single copy after whole genome
duplication are expressed earlier in development. Here, we further investigate
whether tissue specificity of gene expression is constrained by the age of
origin of the corresponding genes. We use 38 metazoan genomes and a comparative
genomic application system to integrate inference of gene duplication with
expression data from 17,503 human genes into a strictly phylogenetic framework.
We show that the number of anatomical systems in which genes are expressed
decreases steadily with decreased age of the genes’ first appearance
in the phylogeny: the oldest genes are expressed, on average, in twice as many
anatomical systems than the genes gained recently in evolution. These results
are robust to different sources of expression data, to different levels of the
anatomical system hierarchy, and to the use of gene families rather than
duplication events. Finally, we show that the rate of increase in gene tissue
specificity correlates with the relative rate of increase in the maximum number
of cell types in the corresponding taxa. Although subfunctionalization and
increase in cell type number throughout evolution could constitute,
respectively, the proximal and ultimate causes of this correlation, the two
phenomena are intermingled. Our analyses identify a striking historical
constraint in gene expression: the number of cell types in existence at the time
of a gene appearance (through duplication or de novo origination) tends to
determine its level of tissue specificity for tens or hundreds of millions of
years.
Collapse
Affiliation(s)
- Michel C. Milinkovitch
- Laboratory of Artificial and Natural Evolution,
Department of Zoology and Animal Biology, Genève, Switzerland
- Corresponding author: E-mail:
| | - Raphaël Helaers
- Department of Biology, Facultés Universitaires
Notre-Dame de la Paix, rue de Bruxelles, Belgium
| | - Athanasia C. Tzika
- Laboratory of Artificial and Natural Evolution,
Department of Zoology and Animal Biology, Genève, Switzerland
- Evolutionary Biology & Ecology,
Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
33
|
Whole-genome phylogeny of mammals: evolutionary information in genic and nongenic regions. Proc Natl Acad Sci U S A 2009; 106:17077-82. [PMID: 19805074 DOI: 10.1073/pnas.0909377106] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ten complete mammalian genome sequences were compared by using the "feature frequency profile" (FFP) method of alignment-free comparison. This comparison technique reveals that the whole nongenic portion of mammalian genomes contains evolutionary information that is similar to their genic counterparts--the intron and exon regions. We partitioned the complete genomes of mammals (such as human, chimp, horse, and mouse) into their constituent nongenic, intronic, and exonic components. Phylogenic species trees were constructed for each individual component class of genome sequence data as well as the whole genomes by using standard tree-building algorithms with FFP distances. The phylogenies of the whole genomes and each of the component classes (exonic, intronic, and nongenic regions) have similar topologies, within the optimal feature length range, and all agree well with the evolutionary phylogeny based on a recent large dataset, multispecies, and multigene-based alignment. In the strictest sense, the FFP-based trees are genome phylogenies, not species phylogenies. However, the species phylogeny is highly related to the whole-genome phylogeny. Furthermore, our results reveal that the footprints of evolutionary history are spread throughout the entire length of the whole genome of an organism and are not limited to genes, introns, or short, highly conserved, nongenic sequences that can be adversely affected by factors (such as a choice of sequences, homoplasy, and different mutation rates) resulting in inconsistent species phylogenies.
Collapse
|
34
|
Vavouri T, Lehner B. Conserved noncoding elements and the evolution of animal body plans. Bioessays 2009; 31:727-35. [PMID: 19492354 DOI: 10.1002/bies.200900014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The genomes of vertebrates, flies, and nematodes contain highly conserved noncoding elements (CNEs). CNEs cluster around genes that regulate development, and where tested, they can act as transcriptional enhancers. Within an animal group CNEs are the most conserved sequences but between groups they are normally diverged beyond recognition. Alternative CNEs are, however, associated with an overlapping set of genes that control development in all animals. Here, we discuss the evidence that CNEs are part of the core gene regulatory networks (GRNs) that specify alternative animal body plans. The major animal groups arose >550 million years ago. We propose that the cis-regulatory inputs identified by CNEs arose during the "re-wiring" of regulatory interactions that occurred during early animal evolution. Consequently, different animal groups, with different core GRNs, contain alternative sets of CNEs. Due to the subsequent stability of animal body plans, these core regulatory sequences have been evolving in parallel under strong purifying selection in different animal groups.
Collapse
Affiliation(s)
- Tanya Vavouri
- EMBL-CRG Systems Biology Research Unit, Dr. Aiguader 88, Barcelona, Spain.
| | | |
Collapse
|
35
|
Gene expression changes in normal haematopoietic cells. Best Pract Res Clin Haematol 2009; 22:249-69. [PMID: 19698932 DOI: 10.1016/j.beha.2009.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complexity of the healthy haematopoietic system is immense, and as such, one must understand the biology driving normal haematopoietic expression profiles when designing experiments and interpreting expression data that involve normal cells. This article seeks to present an organised approach to the use and interpretation of gene profiling in normal haematopoiesis and broadly illustrates the challenges of selecting appropriate controls for high-throughput expression studies.
Collapse
|
36
|
Sánchez R, Grau R. An algebraic hypothesis about the primeval genetic code architecture. Math Biosci 2009; 221:60-76. [PMID: 19607845 DOI: 10.1016/j.mbs.2009.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 06/23/2009] [Accepted: 07/09/2009] [Indexed: 11/26/2022]
Abstract
A plausible architecture of an ancient genetic code is derived from an extended base triplet vector space over the Galois field of the extended base alphabet {D,A,C,G,U}, where symbol D represents one or more hypothetical bases with unspecific pairings. We hypothesized that the high degeneration of a primeval genetic code with five bases and the gradual origin and improvement of a primeval DNA repair system could make possible the transition from ancient to modern genetic codes. Our results suggest that the Watson-Crick base pairing G identical with C and A=U and the non-specific base pairing of the hypothetical ancestral base D used to define the sum and product operations are enough features to determine the coding constraints of the primeval and the modern genetic code, as well as, the transition from the former to the latter. Geometrical and algebraic properties of this vector space reveal that the present codon assignment of the standard genetic code could be induced from a primeval codon assignment. Besides, the Fourier spectrum of the extended DNA genome sequences derived from the multiple sequence alignment suggests that the called period-3 property of the present coding DNA sequences could also exist in the ancient coding DNA sequences. The phylogenetic analyses achieved with metrics defined in the N-dimensional vector space (B(3))(N) of DNA sequences and with the new evolutionary model presented here also suggest that an ancient DNA coding sequence with five or more bases does not contradict the expected evolutionary history.
Collapse
Affiliation(s)
- Robersy Sánchez
- Research Institute of Tropical Roots, Tuber Crops and Plantains (INIVIT), Biotechnology Group, Villa Clara, Cuba
| | | |
Collapse
|
37
|
Nikolaev SI, Deutsch S, Genolet R, Borel C, Parand L, Ucla C, Schütz F, Duriaux Sail G, Dupré Y, Jaquier-Gubler P, Araud T, Conne B, Descombes P, Vassalli JD, Curran J, Antonarakis SE. Transcriptional and post-transcriptional profile of human chromosome 21. Genome Res 2009; 19:1471-9. [PMID: 19581486 DOI: 10.1101/gr.089425.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent studies have demonstrated extensive transcriptional activity across the human genome, a substantial fraction of which is not associated with any functional annotation. However, very little is known regarding the post-transcriptional processes that operate within the different classes of RNA molecules. To characterize the post-transcriptional properties of expressed sequences from human chromosome 21 (HSA21), we separated RNA molecules from three cell lines (GM06990, HeLa S3, and SK-N-AS) according to their ribosome content by sucrose gradient fractionation. Polyribosomal-associated RNA and total RNA were subsequently hybridized to genomic tiling arrays. We found that approximately 50% of the transcriptional signals were located outside of annotated exons and were considered as TARs (transcriptionally active regions). Although TARs were observed among polysome-associated RNAs, RT-PCR and RACE experiments revealed that approximately 40% were likely to represent nonspecific cross-hybridization artifacts. Bioinformatics discrimination of TARs according to conservation and sequence complexity allowed us to identify a set of high-confidence TARs. This set of TARs was significantly depleted in the polysomes, suggesting that it was not likely to be involved in translation. Analysis of polysome representation of RefSeq exons showed that at least 15% of RefSeq transcripts undergo significant post-transcriptional regulation in at least two of the three cell lines tested. Among the regulated transcripts, enrichment analysis revealed an over-representation of genes involved in Alzheimer's disease (AD), including APP and the BACE1 protease that cleaves APP to produce the pathogenic beta 42 peptide. We demonstrate that the combination of RNA fractionation and tiling arrays is a powerful method to assess the transcriptional and post-transcriptional properties of genomic regions.
Collapse
Affiliation(s)
- Sergey I Nikolaev
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Moghadam HK, Ferguson MM, Danzmann RG. Comparative genomics and evolution of conserved noncoding elements (CNE) in rainbow trout. BMC Genomics 2009; 10:278. [PMID: 19549339 PMCID: PMC2711117 DOI: 10.1186/1471-2164-10-278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 06/23/2009] [Indexed: 12/04/2022] Open
Abstract
Background Recent advances in the accumulation of genetic mapping and DNA sequence information from several salmonid species support the long standing view of an autopolyploid origin of these fishes (i.e., 4R). However, the paralogy relationships of the chromosomal segments descendent from earlier polyploidization events (i.e., 2R/3R) largely remain unknown, mainly due to an unbalanced pseudogenization of paralogous genes that were once resident on the ancient duplicated segments. Inter-specific conserved noncoding elements (CNE) might hold the key in identifying these regions, if they are associated with arrays of genes that have been highly conserved in syntenic blocks through evolution. To test this hypothesis, we investigated the chromosomal positions of subset of CNE in the rainbow trout genome using a comparative genomic framework. Results Through a genome wide analysis, we selected 41 pairs of adjacent CNE located on various chromosomes in zebrafish and obtained their intervening, less conserved, sequence information from rainbow trout. We identified 56 distinct fragments corresponding to about 150 Kbp of sequence data that were localized to 67 different chromosomal regions in the rainbow trout genome. The genomic positions of many duplicated CNE provided additional support for some previously suggested homeologies in this species. Additionally, we now propose 40 new potential paralogous affinities by analyzing the variation in the segregation patterns of some multi-copy CNE along with the synteny association comparison using several model vertebrates. Some of these regions appear to carry signatures of the 1R, 2R or 3R duplications. A subset of these CNE markers also demonstrated high utility in identifying homologous chromosomal segments in the genomes of Atlantic salmon and Arctic charr. Conclusion CNE seem to be more efficacious than coding sequences in providing insights into the ancient paralogous affinities within the vertebrate genomes. Such a feature makes these elements extremely attractive for comparative genomics studies, as they can be treated as 'anchor' markers to investigate the association of distally located candidate genes on the homologous genomic segments of closely or distantly related organisms.
Collapse
Affiliation(s)
- Hooman K Moghadam
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | | | | |
Collapse
|
39
|
D'haene B, Attanasio C, Beysen D, Dostie J, Lemire E, Bouchard P, Field M, Jones K, Lorenz B, Menten B, Buysse K, Pattyn F, Friedli M, Ucla C, Rossier C, Wyss C, Speleman F, De Paepe A, Dekker J, Antonarakis SE, De Baere E. Disease-causing 7.4 kb cis-regulatory deletion disrupting conserved non-coding sequences and their interaction with the FOXL2 promotor: implications for mutation screening. PLoS Genet 2009; 5:e1000522. [PMID: 19543368 PMCID: PMC2689649 DOI: 10.1371/journal.pgen.1000522] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/18/2009] [Indexed: 11/23/2022] Open
Abstract
To date, the contribution of disrupted potentially cis-regulatory conserved non-coding sequences (CNCs) to human disease is most likely underestimated, as no systematic screens for putative deleterious variations in CNCs have been conducted. As a model for monogenic disease we studied the involvement of genetic changes of CNCs in the cis-regulatory domain of FOXL2 in blepharophimosis syndrome (BPES). Fifty-seven molecularly unsolved BPES patients underwent high-resolution copy number screening and targeted sequencing of CNCs. Apart from three larger distant deletions, a de novo deletion as small as 7.4 kb was found at 283 kb 5' to FOXL2. The deletion appeared to be triggered by an H-DNA-induced double-stranded break (DSB). In addition, it disrupts a novel long non-coding RNA (ncRNA) PISRT1 and 8 CNCs. The regulatory potential of the deleted CNCs was substantiated by in vitro luciferase assays. Interestingly, Chromosome Conformation Capture (3C) of a 625 kb region surrounding FOXL2 in expressing cellular systems revealed physical interactions of three upstream fragments and the FOXL2 core promoter. Importantly, one of these contains the 7.4 kb deleted fragment. Overall, this study revealed the smallest distant deletion causing monogenic disease and impacts upon the concept of mutation screening in human disease and developmental disorders in particular.
Collapse
Affiliation(s)
- Barbara D'haene
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Catia Attanasio
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Diane Beysen
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Josée Dostie
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Edmond Lemire
- Division of Medical Genetics, Royal University Hospital, Saskatoon, Saskatchewan, Canada
| | | | | | - Kristie Jones
- Department of Clinical Genetics, The Children's Hospital at Westmead, Westmead, Australia
| | - Birgit Lorenz
- Department of Ophthalmology, Justus-Liebig-University Giessen, Universitaetsklinikum Giessen und Marburg GmbH Giessen Campus, Giessen, Germany
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Karen Buysse
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Filip Pattyn
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Marc Friedli
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Catherine Ucla
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Colette Rossier
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Carine Wyss
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Frank Speleman
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Anne De Paepe
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Job Dekker
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Stylianos E. Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
40
|
Abstract
The majority of the genome in animals and plants is transcribed in a developmentally regulated manner to produce large numbers of non-protein-coding RNAs (ncRNAs), whose incidence increases with developmental complexity. There is growing evidence that these transcripts are functional, particularly in the regulation of epigenetic processes, leading to the suggestion that they compose a hitherto hidden layer of genomic programming in humans and other complex organisms. However, to date, very few have been identified in genetic screens. Here I show that this is explicable by an historic emphasis, both phenotypically and technically, on mutations in protein-coding sequences, and by presumptions about the nature of regulatory mutations. Most variations in regulatory sequences produce relatively subtle phenotypic changes, in contrast to mutations in protein-coding sequences that frequently cause catastrophic component failure. Until recently, most mapping projects have focused on protein-coding sequences, and the limited number of identified regulatory mutations have been interpreted as affecting conventional cis-acting promoter and enhancer elements, although these regions are often themselves transcribed. Moreover, ncRNA-directed regulatory circuits underpin most, if not all, complex genetic phenomena in eukaryotes, including RNA interference-related processes such as transcriptional and post-transcriptional gene silencing, position effect variegation, hybrid dysgenesis, chromosome dosage compensation, parental imprinting and allelic exclusion, paramutation, and possibly transvection and transinduction. The next frontier is the identification and functional characterization of the myriad sequence variations that influence quantitative traits, disease susceptibility, and other complex characteristics, which are being shown by genome-wide association studies to lie mostly in noncoding, presumably regulatory, regions. There is every possibility that many of these variations will alter the interactions between regulatory RNAs and their targets, a prospect that should be borne in mind in future functional analyses.
Collapse
Affiliation(s)
- John S Mattick
- Australian Research Council Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia.
| |
Collapse
|
41
|
Beysen D, De Paepe A, De Baere E. FOXL2 mutations and genomic rearrangements in BPES. Hum Mutat 2009; 30:158-69. [PMID: 18726931 DOI: 10.1002/humu.20807] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The FOXL2 gene is one of 10 forkhead genes, the mutations of which lead to human developmental disorders, often with ocular manifestations. Mutations in FOXL2 are known to cause blepharophimosis syndrome (BPES), an autosomal dominant eyelid malformation associated (type I) or not (type II) with ovarian dysfunction, leading to premature ovarian failure (POF). In addition, a few mutations have been described in patients with isolated POF. Here, we review all currently described FOXL2 sequence variations and genomic rearrangements in BPES and POF. Using a combined mutation detection approach, it is possible to identify the underlying genetic defect in a major proportion (88%) of typical BPES patients. Of all genetic defects found in our BPES cohort, intragenic mutations represent 81%. They include missense changes, frameshift and nonsense mutations, in-frame deletions, and duplications, that are distributed along the single-exon gene. Genomic rearrangements comprising both deletions encompassing FOXL2 and deletions located outside its transcription unit, represent 12% and 5% of all genetic defects in our BPES cohort, respectively. One of the challenges of genetic testing in BPES is the establishment of genotype-phenotype correlations, mainly with respect to the ovarian phenotype. Genetic testing should be performed in the context of genetic counseling, however, and should be systematically complemented by a multidisciplinary clinical follow-up. Another challenge for health care professionals involved in BPES is the treatment of the eyelid phenotype and the prevention or treatment of POF.
Collapse
Affiliation(s)
- Diane Beysen
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | |
Collapse
|
42
|
Affiliation(s)
- Keyue Ding
- From the Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minn
| | - Iftikhar J. Kullo
- From the Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minn
| |
Collapse
|
43
|
Attanasio C, Reymond A, Humbert R, Lyle R, Kuehn MS, Neph S, Sabo PJ, Goldy J, Weaver M, Haydock A, Lee K, Dorschner M, Dermitzakis ET, Antonarakis SE, Stamatoyannopoulos JA. Assaying the regulatory potential of mammalian conserved non-coding sequences in human cells. Genome Biol 2008; 9:R168. [PMID: 19055709 PMCID: PMC2646272 DOI: 10.1186/gb-2008-9-12-r168] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 09/24/2008] [Accepted: 12/02/2008] [Indexed: 01/26/2023] Open
Abstract
The fraction of experimentally active conserved non-coding sequences within any given cell type is low, so classical assays are unlikely to expose their potential. Background Conserved non-coding sequences in the human genome are approximately tenfold more abundant than known genes, and have been hypothesized to mark the locations of cis-regulatory elements. However, the global contribution of conserved non-coding sequences to the transcriptional regulation of human genes is currently unknown. Deeply conserved elements shared between humans and teleost fish predominantly flank genes active during morphogenesis and are enriched for positive transcriptional regulatory elements. However, such deeply conserved elements account for <1% of the conserved non-coding sequences in the human genome, which are predominantly mammalian. Results We explored the regulatory potential of a large sample of these 'common' conserved non-coding sequences using a variety of classic assays, including chromatin remodeling, and enhancer/repressor and promoter activity. When tested across diverse human model cell types, we find that the fraction of experimentally active conserved non-coding sequences within any given cell type is low (approximately 5%), and that this proportion increases only modestly when considered collectively across cell types. Conclusions The results suggest that classic assays of cis-regulatory potential are unlikely to expose the functional potential of the substantial majority of mammalian conserved non-coding sequences in the human genome.
Collapse
Affiliation(s)
- Catia Attanasio
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1 rue Michel Servet, 1211, Geneva 4, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Xie HB, Irwin DM, Zhang YP. Evolution of conserved secondary structures and their function in transcriptional regulation networks. BMC Genomics 2008; 9:520. [PMID: 18976501 PMCID: PMC2584662 DOI: 10.1186/1471-2164-9-520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 11/02/2008] [Indexed: 12/12/2022] Open
Abstract
Background Many conserved secondary structures have been identified within conserved elements in the human genome, but only a small fraction of them are known to be functional RNAs. The evolutionary variations of these conserved secondary structures in human populations and their biological functions have not been fully studied. Results We searched for polymorphisms within conserved secondary structures and identified a number of SNPs within these elements even though they are highly conserved among species. The density of SNPs in conserved secondary structures is about 65% of that of their flanking, non-conserved, sequences. Classification of sites as stems or as loops/bulges revealed that the density of SNPs in stems is about 62% of that found in loops/bulges. Analysis of derived allele frequency data indicates that sites in stems are under stronger evolutionary constraint than sites in loops/bulges. Intergenic conserved secondary structures tend to associate with transcription factor-encoding genes with genetic distance being the measure of regulator-gene associations. A substantial fraction of intergenic conserved secondary structures overlap characterized binding sites for multiple transcription factors. Conclusion Strong purifying selection implies that secondary structures are probably important carriers of biological functions for conserved sequences. The overlap between intergenic conserved secondary structures and transcription factor binding sites further suggests that intergenic conserved secondary structures have essential roles in directing gene expression in transcriptional regulation networks.
Collapse
Affiliation(s)
- Hai-Bing Xie
- State Key Laboratory of Genetic Resource and Evolution, Kunming Institute of Zoology, Kunming 650223, PR China.
| | | | | |
Collapse
|
45
|
|
46
|
Abstract
The distribution and evolution of ultraconserved elements (UCEs, DNA stretches that are perfectly identical in primates and rodents) were examined in genomes of 3 primate species (human, chimpanzee, and rhesus macaque). It was found that the number of UCEs has decreased throughout primate evolution. At least 26% of ancestral UCEs have diverged in hominoids, whereas an additional 17% have accumulated one or more single nucleotide polymorphisms in the human genome. Sequence polymorphism analyses indicate that mutation fixation within an UCE can trigger a relaxation in the selective constraint on that element. Homogeneous mutation accumulations in UCEs served as a template by which purifying selection acted more effectively on protein-coding UCEs. Gene ontology annotation suggests that UCE sequence variation, primarily occurring in noncoding regions, might be linked to the reprogramming of the expression pattern of transcription factors and developmentally important genes. Many of these genes are expressed in the central nervous system. Finally, UCE sequence variability within human populations has been identified, including population-specific nonsynonymous changes in protein-coding regions.
Collapse
Affiliation(s)
- Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
47
|
Keith JM, Adams P, Stephen S, Mattick JS. Delineating slowly and rapidly evolving fractions of the Drosophila genome. J Comput Biol 2008; 15:407-30. [PMID: 18435570 DOI: 10.1089/cmb.2007.0173] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Evolutionary conservation is an important indicator of function and a major component of bioinformatic methods to identify non-protein-coding genes. We present a new Bayesian method for segmenting pairwise alignments of eukaryotic genomes while simultaneously classifying segments into slowly and rapidly evolving fractions. We also describe an information criterion similar to the Akaike Information Criterion (AIC) for determining the number of classes. Working with pairwise alignments enables detection of differences in conservation patterns among closely related species. We analyzed three whole-genome and three partial-genome pairwise alignments among eight Drosophila species. Three distinct classes of conservation level were detected. Sequences comprising the most slowly evolving component were consistent across a range of species pairs, and constituted approximately 62-66% of the D. melanogaster genome. Almost all (>90%) of the aligned protein-coding sequence is in this fraction, suggesting much of it (comprising the majority of the Drosophila genome, including approximately 56% of non-protein-coding sequences) is functional. The size and content of the most rapidly evolving component was species dependent, and varied from 1.6% to 4.8%. This fraction is also enriched for protein-coding sequence (while containing significant amounts of non-protein-coding sequence), suggesting it is under positive selection. We also classified segments according to conservation and GC content simultaneously. This analysis identified numerous sub-classes of those identified on the basis of conservation alone, but was nevertheless consistent with that classification. Software, data, and results available at www.maths.qut.edu.au/-keithj/. Genomic segments comprising the conservation classes available in BED format.
Collapse
Affiliation(s)
- Jonathan M Keith
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.
| | | | | | | |
Collapse
|
48
|
Walser JC, Ponger L, Furano AV. CpG dinucleotides and the mutation rate of non-CpG DNA. Genome Res 2008; 18:1403-14. [PMID: 18550801 DOI: 10.1101/gr.076455.108] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The neutral mutation rate is equal to the base substitution rate when the latter is not affected by natural selection. Differences between these rates may reveal that factors such as natural selection, linkage, or a mutator locus are affecting a given sequence. We examined the neutral base substitution rate by measuring the sequence divergence of approximately 30,000 pairs of inactive orthologous L1 retrotransposon sequences interspersed throughout the human and chimpanzee genomes. In contrast to other studies, we related ortholog divergence to the time (age) that the L1 sequences resided in the genome prior to the chimpanzee and human speciation. As expected, the younger orthologs contained more hypermutable CpGs than the older ones because of their conversion to TpGs (and CpAs). Consequently, the younger orthologs accumulated more CpG mutations than the older ones during the approximately 5 million years since the human and chimpanzee lineages separated. But during this same time, the younger orthologs also accumulated more non-CpG mutations than the older ones. In fact, non-CpG and CpG mutations showed an almost perfect (R2 = 0.98) correlation for approximately 97% of the ortholog pairs. The correlation is independent of G + C content, recombination rate, and chromosomal location. Therefore, it likely reflects an intrinsic effect of CpGs, or mutations thereof, on non-CpG DNA rather than the joint manifestation of the chromosomal environment. The CpG effect is not uniform for all regions of non-CpG DNA. Therefore, the mutation rate of non-CpG DNA is contingent to varying extents on local CpG content. Aside from their implications for mutational mechanisms, these results indicate that a precise determination of a uniform genome-wide neutral mutation rate may not be attainable.
Collapse
Affiliation(s)
- Jean-Claude Walser
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | |
Collapse
|
49
|
Rose D, Hertel J, Reiche K, Stadler PF, Hackermüller J. NcDNAlign: plausible multiple alignments of non-protein-coding genomic sequences. Genomics 2008; 92:65-74. [PMID: 18511233 DOI: 10.1016/j.ygeno.2008.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 04/09/2008] [Accepted: 04/09/2008] [Indexed: 10/22/2022]
Abstract
Genome-wide multiple sequence alignments (MSAs) are a necessary prerequisite for an increasingly diverse collection of comparative genomic approaches. Here we present a versatile method that generates high-quality MSAs for non-protein-coding sequences. The NcDNAlign pipeline combines pairwise BLAST alignments to create initial MSAs, which are then locally improved and trimmed. The program is optimized for speed and hence is particulary well-suited to pilot studies. We demonstrate the practical use of NcDNAlign in three case studies: the search for ncRNAs in gammaproteobacteria and the analysis of conserved noncoding DNA in nematodes and teleost fish, in the latter case focusing on the fate of duplicated ultra-conserved regions. Compared to the currently widely used genome-wide alignment program TBA, our program results in a 20- to 30-fold reduction of CPU time necessary to generate gammaproteobacterial alignments. A showcase application of bacterial ncRNA prediction based on alignments of both algorithms results in similar sensitivity, false discovery rates, and up to 100 putatively novel ncRNA structures. Similar findings hold for our application of NcDNAlign to the identification of ultra-conserved regions in nematodes and teleosts. Both approaches yield conserved sequences of unknown function, result in novel evolutionary insights into conservation patterns among these genomes, and manifest the benefits of an efficient and reliable genome-wide alignment package. The software is available under the GNU Public License at http://www.bioinf.uni-leipzig.de/Software/NcDNAlign/.
Collapse
Affiliation(s)
- Dominic Rose
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | | | | | | | | |
Collapse
|
50
|
Shukla SJ, Duan S, Badner JA, Wu X, Dolan ME. Susceptibility loci involved in cisplatin-induced cytotoxicity and apoptosis. Pharmacogenet Genomics 2008; 18:253-62. [PMID: 18300947 PMCID: PMC2567113 DOI: 10.1097/fpc.0b013e3282f5e605] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cisplatin is a widely used chemotherapeutic agent; however, nephrotoxicity and neuropathy are obstacles for drug efficacy. Little is known about the genes or genetic variants contributing to the risk of developing these toxicities or chemotherapeutic response. Thus, we have applied a cell-based model to identify and characterize previously unknown genes that may be involved in cellular susceptibility to cisplatin. METHODS Lymphoblastoid cell lines from 27 large Centre d'Etude du Polymorphisme Humain pedigrees were used to elucidate the genetic contribution to cisplatin-induced cytotoxicity. Phenotype was defined as cell growth inhibition following exposure of cell lines to increasing concentrations of cisplatin for 48 h. RESULTS Significant heritability, ranging from 0.32 to 0.43 (P<10), was found for the cytotoxic effects of each concentration (1, 2.5, 5, 10, and 20 micromol/l) and IC50, the concentration required for 50% cell growth inhibition. Linkage analysis revealed 11 genomic regions on six chromosomes with logarithm of odds (LOD) scores above 1.5 for cytotoxic phenotypes. The highest LOD score was found on chromosome 4q21.3-q35.2 (LOD=2.65, P=2.4x10(-4)) for 5 micromol/l cisplatin. Quantitative transmission disequilibrium tests were performed using 191973 nonredundant single nucleotide polymorphisms (SNPs) located in the 1 LOD confidence interval of these 11 regions. Twenty SNPs, with 10 SNPs located in five genes, were significantly associated with cisplatin-induced cytotoxicity (P CONCLUSIONS Our results suggest that genetic factors involved in cytotoxicity also contribute to cisplatin-induced apoptosis. These cell lines provide a paradigm to identify previously unknown pharmacogenetic variants associated with drug cytotoxicity.
Collapse
Affiliation(s)
- Sunita J. Shukla
- Department of Human Genetics, University of Chicago, Chicago Illinois, USA
| | - Shiwei Duan
- Department of Medicine, University of Chicago, Chicago Illinois, USA
| | - Judith A. Badner
- Department of Psychiatry, University of Chicago, Chicago Illinois, USA
| | - Xiaolin Wu
- Department of Medicine, University of Chicago, Chicago Illinois, USA
| | - M. Eileen Dolan
- Department of Medicine, University of Chicago, Chicago Illinois, USA
- Committee on Cancer Biology University of Chicago, Chicago Illinois, USA
- Department of Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago Illinois, USA
| |
Collapse
|