1
|
Panieri G, Argentino C, Ramalho SP, Vulcano F, Savini A, Fallati L, Brekke T, Galimberti G, Riva F, Balsa J, Eilertsen MH, Stokke R, Steen IH, Sahy D, Kalenitchenko D, Büenz S, Mattingsdal R. An Arctic natural oil seep investigated from space to the seafloor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167788. [PMID: 37865252 DOI: 10.1016/j.scitotenv.2023.167788] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Due to climate change, decreasing ice cover and increasing industrial activities, Arctic marine ecosystems are expected to face higher levels of anthropogenic stress. To sustain healthy and productive ocean ecosystems, it is imperative to build baseline data to assess future climatic and environmental changes. Herein, a natural oil seep site offshore western Svalbard (Prins Karls Forland, PKF, 80-100 m water depth), discovered using satellite radar images, was investigated using an extensive multiscale and multisource geospatial dataset collected by satellite, aerial, floating, and underwater platforms. The investigated PKF seep area covers roughly a seafloor area of 30,000 m2 and discharges oil from Tertiary or younger source rocks. Biomarker analyses confirm that the oil in the slicks on the sea surface and from the seep on the seafloor have the same origin. Uranium/Thorium dating of authigenic carbonate crusts indicated that the seep had emanated since the Late Pleistocene when ice sheet melting unlocked the hydrocarbons trapped beneath the ice. The faunal communities at the PKF seep are a mix of typical high latitude fauna and taxa adapted to reducing environments. Remarkably, the inhospitable oil-impregnated sediments were also colonized by abundant infaunal organisms. Altogether, in situ observations obtained at the site provide essential insights into the characteristics of high-latitude oil seeps and can be used as a natural laboratory for understanding the potential impacts of human oil discharge into the ocean.
Collapse
Affiliation(s)
- Giuliana Panieri
- Department of Geosciences, UiT - The Arctic University of Norway, Tromsø, Norway; EXPLORO Geoservices, Trondheim, Norway.
| | - Claudio Argentino
- Department of Geosciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Sofia P Ramalho
- Centre for Environmental and Marine Studies (CESAM) & Biology Department, University of Aveiro, Aveiro, Portugal
| | - Francesca Vulcano
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Alessandra Savini
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Milano, Italy
| | - Luca Fallati
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Milano, Italy
| | | | - Giulia Galimberti
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Milano, Italy
| | - Federica Riva
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Milano, Italy
| | - João Balsa
- Centre for Environmental and Marine Studies (CESAM) & Biology Department, University of Aveiro, Aveiro, Portugal
| | - Mari H Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway; Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Runar Stokke
- Department of Biological Sciences, University of Bergen, Bergen, Norway; Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Ida H Steen
- Department of Biological Sciences, University of Bergen, Bergen, Norway; Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Diana Sahy
- British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
| | - Dimitri Kalenitchenko
- Department of Geosciences, UiT - The Arctic University of Norway, Tromsø, Norway; LIttoral ENvironnement et Sociétés (LIENSs), La Rochelle Université, Bâtiment ILE, La Rochelle, France
| | - Stefan Büenz
- Department of Geosciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | | |
Collapse
|
2
|
Perron A, Stalport F, Dupraz S, Person A, Coll P, Szopa C, Navarro-González R, Glavin D, Vaulay MJ, Ménez B. Thermal Stability of (Bio)Carbonates: A Potential Signature for Detecting Life on Mars? ASTROBIOLOGY 2023; 23:359-371. [PMID: 37017440 DOI: 10.1089/ast.2021.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The environmental conditions that prevail on the surface of Mars (i.e., high levels of radiation and oxidants) are not favorable for the long-term preservation of organic compounds on which all strategies for finding life on Mars have been based to date. Since life commonly produces minerals that are considered more resilient, the search for biominerals could constitute a promising alternative approach. Carbonates are major biominerals on Earth, and although they have not been detected in large amounts at the martian surface, recent observations show that they could constitute a significant part of the inorganic component in the martian soil. Previous studies have shown that calcite and aragonite produced by eukaryotes thermally decompose at temperatures 15°C lower than those of their abiotic counterparts. By using carbonate concretions formed by microorganisms, we find that natural and experimental carbonates produced by prokaryotes decompose at 28°C below their abiotic counterparts. The study of this sample set serves as a proof of concept for the differential thermal analysis approach to distinguish abiotic from bio-related carbonates. This difference in carbonate decomposition temperature can be used as a first physical evidence of life on Mars to be searched by in situ space exploration missions with the resolution and the technical constraints of the available onboard instruments.
Collapse
Affiliation(s)
- Alexandra Perron
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris Est Créteil et Université Paris Cité, Institut Pierre Simon Laplace (IPSL), Créteil, France
- Université Paris Cité, Institut de physique du globe de Paris, CNRS UMR 7154, Paris, France
| | - Fabien Stalport
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris Est Créteil et Université Paris Cité, Institut Pierre Simon Laplace (IPSL), Créteil, France
| | - Sébastien Dupraz
- Université Paris Cité, Institut de physique du globe de Paris, CNRS UMR 7154, Paris, France
| | - Alain Person
- Laboratoire de Biominéralisations et Paléoenvironnements, Sorbonne Université, Paris, France
| | - Patrice Coll
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris Est Créteil et Université Paris Cité, Institut Pierre Simon Laplace (IPSL), Créteil, France
| | - Cyril Szopa
- Laboratoire Atmosphères, Milieux, Observations Spatiales, Institut Pierre Simon Laplace (IPSL), CNRS UMR 8190, UVSQ Université Paris-Saclay, Sorbonne Université, Guyancourt, France
| | - Rafael Navarro-González
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de Mexico, Mexico
| | - Daniel Glavin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Marie Josèphe Vaulay
- Laboratoire Interfaces Traitements Organisation et DYnamique des Systèmes (ITODYS), CNRS UMR 7086, Université Paris Cité, Paris, France
| | - Bénédicte Ménez
- Université Paris Cité, Institut de physique du globe de Paris, CNRS UMR 7154, Paris, France
| |
Collapse
|
3
|
Brünjes J, Seidel M, Dittmar T, Niggemann J, Schubotz F. Natural Asphalt Seeps Are Potential Sources for Recalcitrant Oceanic Dissolved Organic Sulfur and Dissolved Black Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9092-9102. [PMID: 35584055 DOI: 10.1021/acs.est.2c01123] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural oil seepages contribute about one-half of the annual petroleum input to marine systems. Yet, environmental implications and the persistence of water-soluble hydrocarbons from these seeps are vastly unknown. We investigated the release of oil-derived dissolved organic matter (DOM) from natural deep sea asphalt seeps using laboratory incubation experiments. Fresh asphalt samples collected at the Chapopote asphalt volcano in the Southern Gulf of Mexico were incubated aerobically in artificial seawater over 4 weeks. The compositional changes in the water-soluble fraction of asphalt-derived DOM were determined with ultrahigh-resolution mass spectrometry (Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) and by excitation-emission matrix spectroscopy to characterize fluorescent DOM (FDOM) applying parallel factor (PARAFAC) analysis. Highly reduced aliphatic asphalt-derived DOM was readily biodegraded, while aromatic and sulfur-enriched DOM appeared to be less bioavailable and accumulated in the aqueous phase. A quantitative molecular tracer approach revealed the abundance of highly condensed aromatic molecules of thermogenic origin. Our results indicate that natural asphalt and potentially other petroleum seepages can be sources of recalcitrant dissolved organic sulfur and dissolved black carbon to the ocean.
Collapse
Affiliation(s)
- Jonas Brünjes
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen 28359, Germany
| | - Michael Seidel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg 26129, Germany
| | - Jutta Niggemann
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Florence Schubotz
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen 28359, Germany
| |
Collapse
|
4
|
Abstract
This paper presents the results of a long-term survey of the Caspian Sea using satellite SAR and multispectral sensors. The primary environmental problem of the Caspian Sea is oil pollution which is determined by its natural properties, mainly by the presence of big oil and gas deposits beneath the seabed. Our research focuses on natural oil slicks (NOS), i.e., oil showings on the sea surface due to natural hydrocarbon emission from seabed seeps. The spatial and temporal variability of NOS in the Caspian Sea and the possibilities of their reliable detection using satellite data are examined. NOS frequency and detectability in satellite images depending on sensor type, season and geographical region are assessed. It is shown that both parameters vary significantly, and largely depend on sensor type and season, with season being most pronounced in visible (VIS) data. The locations of two offshore seep sites at the Iranian and Turkmenian shelves are accurately estimated. Statistics on individual sizes of NOS are drawn. The release rates of crude oil from the seabed to the sea surface are compared. Detailed maps of NOS are put together, and areas exposed to high risk of sea surface oil pollution are determined.
Collapse
|
5
|
Using Time-Series Videos to Quantify Methane Bubbles Flux from Natural Cold Seeps in the South China Sea. MINERALS 2020. [DOI: 10.3390/min10030216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Natural cold seeps are an important source of methane and other greenhouse gases to the ocean and atmosphere in the marine environment. Accurate quantification of methane bubble fluxes from cold seeps is vital for evaluating their influence on the global methane budget and climate change. We quantified the flux of gas bubbles released from two natural cold seep sites in the South China Sea: one seep vent in the Haima cold seeps (1400 m depth) and three seep vents at Site F (1200 m depth). We determined bubble diameter, size distribution, and bubble release rate using image processing techniques and a semiautomatic bubble-counting algorithm. The bubble size distributions fit well to log-normal distribution, with median bubble diameters between 2.54 mm and 6.17 mm. The average bubble diameters and release rates (4.8–26.1 bubbles s−1) in Site F was lower than that in Haima cold seeps (22.6 bubbles s−1), which may be attributed to a variety of factors such as the nature of the gas reservoir, hydrostatic pressure, migration pathways in the sediments, and pore size. The methane fluxes emitted at Haima cold seeps (12.6 L h−1) and at Site F (4.9 L h−1) indicate that the Haima and Site F cold seeps in the South China Sea may be a source of methane to the ocean. However, temporal variations in the bubble release rate and the geochemical characteristics of the seeps were not constrained in this study due to the short observational time interval.
Collapse
|
6
|
Queiroz LL, Bendia AG, Duarte RTD, das Graças DA, da Costa da Silva AL, Nakayama CR, Sumida PY, Lima AOS, Nagano Y, Fujikura K, Kitazato H, Pellizari VH. Bacterial diversity in deep-sea sediments under influence of asphalt seep at the São Paulo Plateau. Antonie van Leeuwenhoek 2020; 113:707-717. [PMID: 31950303 DOI: 10.1007/s10482-020-01384-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/02/2020] [Indexed: 11/29/2022]
Abstract
Here we investigated the diversity of bacterial communities from deep-sea surface sediments under influence of asphalt seeps at the Sao Paulo Plateau using next-generation sequencing method. Sampling was performed at North São Paulo Plateau using the human occupied vehicle Shinkai 6500 and her support vessel Yokosuka. The microbial diversity was studied at two surficial sediment layers (0-1 and 1-4 cm) of five samples collected in cores in water depths ranging from 2456 to 2728 m. Bacterial communities were studied through sequencing of 16S rRNA gene on the Ion Torrent platform and clustered in operational taxonomic units. We observed high diversity of bacterial sediment communities as previously described by other studies. When we considered community composition, the most abundant classes were Alphaproteobacteria (27.7%), Acidimicrobiia (20%), Gammaproteobacteria (11.3%) and Deltaproteobacteria (6.6%). Most abundant OTUs at family level were from two uncultured bacteria from Actinomarinales (5.95%) and Kiloniellaceae (3.17%). The unexpected high abundance of Alphaproteobacteria and Acidimicrobiia in our deep-sea microbial communities may be related to the presence of asphalt seep at North São Paulo Plateau, since these bacterial classes contain bacteria that possess the capability of metabolizing hydrocarbon compounds.
Collapse
Affiliation(s)
- Luciano Lopes Queiroz
- Institute of Oceanography, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, CEP: 05508-120, Brazil. .,Microbiology Graduate Program, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil.
| | - Amanda Gonçalves Bendia
- Institute of Oceanography, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, CEP: 05508-120, Brazil
| | - Rubens Tadeu Delgado Duarte
- Microbiology, Immunology and Parasitology Department, Federal University of Santa Catarina: CCB-MIP, Campus Trindade, PO Box 476, Florianópolis, CEP: 88040-900, Brazil
| | - Diego Assis das Graças
- Institute of Biological Science, Federal University of Pará, Rua Augusto Correa, 01, Belém, CEP: 66075-110, Brazil
| | - Artur Luiz da Costa da Silva
- Institute of Biological Science, Federal University of Pará, Rua Augusto Correa, 01, Belém, CEP: 66075-110, Brazil
| | - Cristina Rossi Nakayama
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Rua São Nicolau, 210, Diadema, CEP: 09913-030, Brazil
| | - Paulo Yukio Sumida
- Institute of Oceanography, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, CEP: 05508-120, Brazil
| | - Andre O S Lima
- Centro de Ciências Tecnológicas da Terra e do Mar (CTTMAR), University of Vale do Itajaí, Rua Uruguai, 458, Itajaí, SC, CEP: 88302-202, Brazil
| | - Yuriko Nagano
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Katsunori Fujikura
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Hiroshi Kitazato
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Vivian Helena Pellizari
- Institute of Oceanography, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, CEP: 05508-120, Brazil
| |
Collapse
|
7
|
Laso-Pérez R, Hahn C, van Vliet DM, Tegetmeyer HE, Schubotz F, Smit NT, Pape T, Sahling H, Bohrmann G, Boetius A, Knittel K, Wegener G. Anaerobic Degradation of Non-Methane Alkanes by " Candidatus Methanoliparia" in Hydrocarbon Seeps of the Gulf of Mexico. mBio 2019; 10:e01814-19. [PMID: 31431553 PMCID: PMC6703427 DOI: 10.1128/mbio.01814-19] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/24/2019] [Indexed: 11/20/2022] Open
Abstract
Crude oil and gases in the seabed provide an important energy source for subsurface microorganisms. We investigated the role of archaea in the anaerobic degradation of non-methane alkanes in deep-sea oil seeps from the Gulf of Mexico. We identified microscopically the ethane and short-chain alkane oxidizers "Candidatus Argoarchaeum" and "Candidatus Syntrophoarchaeum" forming consortia with bacteria. Moreover, we found that the sediments contain large numbers of cells from the archaeal clade "Candidatus Methanoliparia," which was previously proposed to perform methanogenic alkane degradation. "Ca. Methanoliparia" occurred abundantly as single cells attached to oil droplets in sediments without apparent bacterial or archaeal partners. Metagenome-assembled genomes of "Ca. Methanoliparia" encode a complete methanogenesis pathway including a canonical methyl-coenzyme M reductase (MCR) but also a highly divergent MCR related to those of alkane-degrading archaea and pathways for the oxidation of long-chain alkyl units. Its metabolic genomic potential and its global detection in hydrocarbon reservoirs suggest that "Ca. Methanoliparia" is an important methanogenic alkane degrader in subsurface environments, producing methane by alkane disproportionation as a single organism.IMPORTANCE Oil-rich sediments from the Gulf of Mexico were found to contain diverse alkane-degrading groups of archaea. The symbiotic, consortium-forming "Candidatus Argoarchaeum" and "Candidatus Syntrophoarchaeum" are likely responsible for the degradation of ethane and short-chain alkanes, with the help of sulfate-reducing bacteria. "Ca. Methanoliparia" occurs as single cells associated with oil droplets. These archaea encode two phylogenetically different methyl-coenzyme M reductases that may allow this organism to thrive as a methanogen on a substrate of long-chain alkanes. Based on a library survey, we show that "Ca. Methanoliparia" is frequently detected in oil reservoirs and may be a key agent in the transformation of long-chain alkanes to methane. Our findings provide evidence for the important and diverse roles of archaea in alkane-rich marine habitats and support the notion of a significant functional versatility of the methyl coenzyme M reductase.
Collapse
Affiliation(s)
- Rafael Laso-Pérez
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
- MARUM, Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Cedric Hahn
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
| | - Daan M van Vliet
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Halina E Tegetmeyer
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Florence Schubotz
- MARUM, Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Nadine T Smit
- MARUM, Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Thomas Pape
- MARUM, Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Heiko Sahling
- MARUM, Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Gerhard Bohrmann
- MARUM, Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Antje Boetius
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
- MARUM, Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Katrin Knittel
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
| | - Gunter Wegener
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
- MARUM, Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| |
Collapse
|
8
|
Vargas-Gastélum L, Chong-Robles J, Lago-Lestón A, Darcy JL, Amend AS, Riquelme M. Targeted ITS1 sequencing unravels the mycodiversity of deep-sea sediments from the Gulf of Mexico. Environ Microbiol 2019; 21:4046-4061. [PMID: 31336033 DOI: 10.1111/1462-2920.14754] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 11/26/2022]
Abstract
Fungi from marine environments have been significantly less studied than terrestrial fungi. This study describes distribution patterns and associated habitat characteristics of the mycobiota of deep-sea sediments collected from the Mexican exclusive economic zone (EEZ) of the Gulf of Mexico (GoM), ranging between 1000 and > 3500 m depth. Internal Transcribed Spacer 1 (ITS1) amplicons were sequenced by Illumina MiSeq. From 29 stations sampled across three annual campaigns, a total of 4421 operational taxonomic units (OTUs) were obtained, indicating a high fungal richness. Most OTUs assignments corresponded to Ascomycota, unidentified fungi and Basidiomycota. The majority of the stations shared a mere 31 OTUs, including the worldwide reported genera Penicillium, Rhodotorula and Cladosporium. Both a transient and a conserved community were identified, suggesting their dependence on or adaptation to the habitat dynamics, respectively. The differences found in fungal richness and taxonomic compositions were correlated principally with latitude, carbon and carbonates content, and terrigenous content, which could be the potential drivers that delimit fungal distribution. This study represents an expansion of our current knowledge on the biogeography of the fungal community from deep-sea sediments, and identifies the geographic and physicochemical properties that delimit fungal composition and distribution in the GoM.
Collapse
Affiliation(s)
- Lluvia Vargas-Gastélum
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada, Baja California, 22860, Mexico
| | - Jennyfers Chong-Robles
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada, Baja California, 22860, Mexico
| | - Asunción Lago-Lestón
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada, Baja California, 22860, Mexico
| | - John L Darcy
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Anthony S Amend
- Botany Department, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Meritxell Riquelme
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada, Baja California, 22860, Mexico
| |
Collapse
|
9
|
Morrison AE, Dhoonmoon C, White HK. Chemical characterization of natural and anthropogenic-derived oil residues on Gulf of Mexico beaches. MARINE POLLUTION BULLETIN 2018; 137:501-508. [PMID: 30503461 DOI: 10.1016/j.marpolbul.2018.10.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
Oil residues originating from the Deepwater Horizon (DWH) incident persist on Gulf of Mexico beaches alongside oil from offshore industrial activity, natural seepage, and asphalt from parking lots and roads. To determine the primary differences in the chemical composition of these oil residues, a variety of samples were collected from beaches from Florida to Alabama over a two-year period from 2015 to 2017. Bulk chemical characteristics of the oil residues were examined via gas chromatography with flame ionization detection (GC-FID) and mass spectrometry (GC-MS), as well as thin layer chromatography with flame ionization detection (TLC-FID), and attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR). These bulk chemical analyses revealed features unique to the different sample types, expanding our understanding of the chemical composition and variability of persistent oil residues, and providing a means to detect and monitor their long-term fate in the coastal environment.
Collapse
Affiliation(s)
- Alexandra E Morrison
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA
| | - Charvanaa Dhoonmoon
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA
| | - Helen K White
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA.
| |
Collapse
|
10
|
Jiang K, Zhang J, Sakatoku A, Kambayashi S, Yamanaka T, Kanehara T, Fujikura K, Pellizari VH. Discovery and biogeochemistry of asphalt seeps in the North São Paulo Plateau, Brazilian Margin. Sci Rep 2018; 8:12619. [PMID: 30135574 PMCID: PMC6105600 DOI: 10.1038/s41598-018-30928-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 08/06/2018] [Indexed: 11/25/2022] Open
Abstract
An initial multiple biogeochemical dataset was acquired from the first discovered asphalt seeps in the Brazil margin during deep-sea dive surveys in 2013 using a manned submersible. These surveys were conducted on the outer escarpment of the North São Paulo Plateau. Sediment cores taken from the submersible were processed for pore water and sediment biogeochemistry. The silica concentration, as a chemical geothermometer, showed a steep gradient in the pore water, which indicates the possibility of an active brine system operating in the seepage area. Rare earth elements were used as powerful tracers of chemical processes. Low rare earth element concentrations in both asphalt and Fe-Mn oxyhydroxide-phase sediments suggests that rare earth elements were released during the oil fractionation and biodegradation processes and further depleted under the reducing environment. The main bacterial communities of the sediment were Proteobacteria in the asphalt sites, while at non-asphalt sites, the main bacterial communities of sediment were Firmicutes. Stable carbon and nitrogen isotopes were used to determine the food sources of the heterotrophs, and results suggest that asphalt probably provides a carbon source for these benthic animals. This study may provide useful information to clarify the impact of heavy hydrocarbon seepage on the marine ecosystem.
Collapse
Affiliation(s)
- Kai Jiang
- Graduate School of Science and Engineering, University of Toyama, Toyama, 9308555, Japan
| | - Jing Zhang
- Graduate School of Science and Engineering, University of Toyama, Toyama, 9308555, Japan.
| | - Akihiro Sakatoku
- Graduate School of Science and Engineering, University of Toyama, Toyama, 9308555, Japan
| | - Shota Kambayashi
- Graduate School of Science and Engineering, University of Toyama, Toyama, 9308555, Japan
| | - Toshiro Yamanaka
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 7008530, Japan.,School of Marine Resources and Environment, Tokyo University of Marine Science and Technology, Tokyo, 1088477, Japan
| | - Toshiyuki Kanehara
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 7008530, Japan
| | - Katsunori Fujikura
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, 2370061, Japan
| | - Vivian Helena Pellizari
- Instituto Oceanográfico, Departamento de Oceanografia Biológica, Universidade de São Paulo, São Paulo, 05508120, Brazil
| |
Collapse
|
11
|
Thermophilic endospores associated with migrated thermogenic hydrocarbons in deep Gulf of Mexico marine sediments. ISME JOURNAL 2018; 12:1895-1906. [PMID: 29599524 PMCID: PMC6052102 DOI: 10.1038/s41396-018-0108-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/16/2018] [Accepted: 03/12/2018] [Indexed: 12/31/2022]
Abstract
Dormant endospores of thermophilic bacteria (thermospores) can be detected in cold marine sediments following high-temperature incubation. Thermospores in the cold seabed may be explained by a dispersal history originating in deep biosphere oil reservoir habitats where upward migration of petroleum fluids at hydrocarbon seeps transports viable cells into the overlying ocean. We assessed this deep-to-shallow dispersal hypothesis through geochemical and microbiological analyses of 111 marine sediments from the deep water Eastern Gulf of Mexico. GC-MS and fluorescence confirmed the unambiguous presence of thermogenic hydrocarbons in 71 of these locations, indicating seepage from deeply sourced petroleum in the subsurface. Heating each sediment to 50 °C followed by 16S rRNA gene sequencing revealed several thermospores with a cosmopolitan distribution throughout the study area, as well as thermospores that were more geographically restricted. Among the thermospores having a more limited distribution, 12 OTUs from eight different lineages were repeatedly detected in sediments containing thermogenic hydrocarbons. A subset of these were significantly correlated with hydrocarbons (p < 0.05) and most closely related to Clostridiales previously detected in oil reservoirs from around the world. This provides evidence of bacteria in the ocean being dispersed out of oil reservoirs, and suggests that specific thermospores may be used as model organisms for studying warm-to-cold transmigration in the deep sea.
Collapse
|
12
|
Krajewski LC, Lobodin VV, Johansen C, Bartges TE, Maksimova EV, MacDonald IR, Marshall AG. Linking Natural Oil Seeps from the Gulf of Mexico to Their Origin by Use of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1365-1374. [PMID: 29320168 DOI: 10.1021/acs.est.7b04445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report chemical characterization of natural oil seeps from the Gulf of Mexico by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and Gas Chromatography/Atmospheric Pressure Chemical Ionization Mass Spectrometry (GC/APCI-MS), to highlight how FT-ICR MS can also be employed as a means to determine petroleum connectivity, in addition to traditional GC/MS techniques. The source of petroleum is the Green Canyon (GC) 600 lease block in the Gulf of Mexico. Within GC600, two natural oil seepage zones, Mega Plume and Birthday Candles, continuously release hydrocarbons and develop persistent oil slicks at the sea surface above them. We chemically trace the petroleum from the surface oil slicks to the Mega Plume seep itself, and further to a petroleum reservoir 5 km away in lease block GC645 (Holstein Reservoir). We establish the connectivity between oil samples and confirm a common geological origin for the oil slicks, oil seep, and reservoir oil. The ratios of seven common petroleum biomarkers detected by GC/APCI-MS display clear similarity between the GC600 and GC645 samples, as well as a distinct difference from another reservoir oil collected ∼300 km away (Macondo crude oil from MC252 lease block). FT-ICR MS and principal component analysis (PCA) demonstrate further similarities between the GC600 and GC645 samples that distinctly differ from MC252. A common geographical origin is postulated for the GC600/GC645 samples, with petroleum migrating from the GC645 reservoir to the oil seeps found in GC600 and up through the water column to the sea surface as an oil slick.
Collapse
Affiliation(s)
- Logan C Krajewski
- Department of Chemistry and Biochemistry, Florida State University , 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Vladislav V Lobodin
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University , 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Caroline Johansen
- Department of Earth, Ocean and Atmospheric Science, Florida State University , 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Tessa E Bartges
- Department of Chemistry and Biochemistry, Florida State University , 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Ekaterina V Maksimova
- College of Marine Science, University of South Florida , St. Petersburg, Florida 33701, United States
| | - Ian R MacDonald
- Department of Earth, Ocean and Atmospheric Science, Florida State University , 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Alan G Marshall
- Department of Chemistry and Biochemistry, Florida State University , 95 Chieftain Way, Tallahassee, Florida 32306, United States
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University , 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| |
Collapse
|
13
|
Comparative metagenomics of hydrocarbon and methane seeps of the Gulf of Mexico. Sci Rep 2017; 7:16015. [PMID: 29167487 PMCID: PMC5700182 DOI: 10.1038/s41598-017-16375-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/10/2017] [Indexed: 11/18/2022] Open
Abstract
Oil and gas percolate profusely through the sediments of the Gulf of Mexico, leading to numerous seeps at the seafloor, where complex microbial, and sometimes animal communities flourish. Sediments from three areas (two cold seeps with contrasting hydrocarbon composition and a site outside any area of active seepage) of the Gulf of Mexico were investigated and compared. Consistent with the existence of a seep microbiome, a distinct microbial community was observed in seep areas compared to sediment from outside areas of active seepage. The microbial community from sediments without any influence from hydrocarbon seepage was characterized by Planctomycetes and the metabolic potential was consistent with detrital marine snow degradation. By contrast, in seep samples with methane as the principal hydrocarbon, methane oxidation by abundant members of ANME-1 was likely the predominant process. Seep samples characterized by fluids containing both methane and complex hydrocarbons, were characterized by abundant Chloroflexi (Anaerolinaceae) and deltaproteobacterial lineages and exhibited potential for complex hydrocarbon degradation. These different metabolic capacities suggested that microorganisms in cold seeps can potentially rely on other processes beyond methane oxidation and that the hydrocarbon composition of the seep fluids may be a critical factor structuring the seafloor microbial community composition and function.
Collapse
|
14
|
Abstract
Cycloclasticus bacteria are ubiquitous in oil-rich
regions of the ocean and are known for their ability to degrade polycyclic
aromatic hydrocarbons (PAHs). In this study, we describe
Cycloclasticus that have established a symbiosis with
Bathymodiolus heckerae mussels and poecilosclerid sponges
from asphalt-rich, deep-sea oil seeps at Campeche Knolls in the southern Gulf of
Mexico. Genomic and transcriptomic analyses revealed that in contrast to all
known Cycloclasticus, the symbiotic
Cycloclasticus appeared to lack the genes needed for PAH
degradation. Instead, these symbionts use propane and other short-chain alkanes
such as ethane and butane as carbon and energy sources, thus expanding the
limited range of substrates known to power chemosynthetic symbioses. Analyses of
short-chain alkanes in the environment of the Campeche Knolls symbioses revealed
that these are present at high concentrations (in the µM to mM range).
Comparative genomic analyses revealed high similarities between the genes used
by the symbiotic Cycloclasticus to degrade short-chain alkanes
and those of free-living Cycloclasticus that bloomed during the
Deepwater Horizon (DWH) oil spill. Our results indicate that the metabolic
versatility of bacteria within the Cycloclasticus clade is
higher than previously assumed, and highlight the expanded role of these
keystone species in the degradation of marine hydrocarbons.
Collapse
|
15
|
MacDonald IR, Garcia-Pineda O, Beet A, Daneshgar Asl S, Feng L, Graettinger G, French-McCay D, Holmes J, Hu C, Huffer F, Leifer I, Muller-Karger F, Solow A, Silva M, Swayze G. Natural and unnatural oil slicks in the Gulf of Mexico. JOURNAL OF GEOPHYSICAL RESEARCH. OCEANS 2015; 120:8364-8380. [PMID: 27774370 PMCID: PMC5064732 DOI: 10.1002/2015jc011062] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 11/25/2015] [Indexed: 05/05/2023]
Abstract
When wind speeds are 2-10 m s-1, reflective contrasts in the ocean surface make oil slicks visible to synthetic aperture radar (SAR) under all sky conditions. Neural network analysis of satellite SAR images quantified the magnitude and distribution of surface oil in the Gulf of Mexico from persistent, natural seeps and from the Deepwater Horizon (DWH) discharge. This analysis identified 914 natural oil seep zones across the entire Gulf of Mexico in pre-2010 data. Their ∼0.1 µm slicks covered an aggregated average of 775 km2. Assuming an average volume of 77.5 m3 over an 8-24 h lifespan per oil slick, the floating oil indicates a surface flux of 2.5-9.4 × 104 m3 yr-1. Oil from natural slicks was regionally concentrated: 68%, 25%, 7%, and <1% of the total was observed in the NW, SW, NE, and SE Gulf, respectively. This reflects differences in basin history and hydrocarbon generation. SAR images from 2010 showed that the 87 day DWH discharge produced a surface-oil footprint fundamentally different from background seepage, with an average ocean area of 11,200 km2 (SD 5028) and a volume of 22,600 m3 (SD 5411). Peak magnitudes of oil were detected during equivalent, ∼14 day intervals around 23 May and 18 June, when wind speeds remained <5 m s-1. Over this interval, aggregated volume of floating oil decreased by 21%; area covered increased by 49% (p < 0.1), potentially altering its ecological impact. The most likely causes were increased applications of dispersant and surface burning operations.
Collapse
Affiliation(s)
- I R MacDonald
- Florida State University, Dept. of Earth, Ocean, and Atmospheric Science Tallahassee Florida USA
| | - O Garcia-Pineda
- Florida State University, Dept. of Earth, Ocean, and Atmospheric Science Tallahassee Florida USA
| | - A Beet
- Woods Hole Oceanographic Institution Woods Hole Massachusetts USA
| | - S Daneshgar Asl
- Florida State University, Dept. of Earth, Ocean, and Atmospheric Science Tallahassee Florida USA
| | - L Feng
- University of South Florida, Dept. of Marine Science St. Petersburg Florida USA
| | | | | | - J Holmes
- Abt Associates Boulder Colorado USA
| | - C Hu
- University of South Florida, Dept. of Marine Science St. Petersburg Florida USA
| | - F Huffer
- Florida State University, Dept. of Earth, Ocean, and Atmospheric Science Tallahassee Florida USA
| | - I Leifer
- Bubbleology Research International Solvang California USA
| | - F Muller-Karger
- University of South Florida, Dept. of Marine Science St. Petersburg Florida USA
| | - A Solow
- Woods Hole Oceanographic Institution Woods Hole Massachusetts USA
| | - M Silva
- Florida State University, Dept. of Earth, Ocean, and Atmospheric Science Tallahassee Florida USA
| | - G Swayze
- U.S. Geological Survey Lakewood Colorado USA
| |
Collapse
|
16
|
Raggi L, Schubotz F, Hinrichs KU, Dubilier N, Petersen JM. Bacterial symbionts of Bathymodiolus mussels and Escarpia tubeworms from Chapopote, an asphalt seep in the Southern Gulf of Mexico. Environ Microbiol 2012; 15:1969-87. [PMID: 23279012 DOI: 10.1111/1462-2920.12051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/14/2012] [Indexed: 11/28/2022]
Abstract
Chemosynthetic life was recently discovered at Chapopote, an asphalt hydrocarbon seep in the southern Gulf of Mexico. Preliminary morphological analyses indicated that one tubeworm and two mussel species colonize Chapopote. Our molecular analyses identified the tubeworm as Escarpia sp., and the mussels as Bathymodiolus heckerae and B. brooksi. Comparative 16S rRNA analysis and FISH showed that all three species harbour intracellular sulfur-oxidizing symbionts highly similar or identical to those found in the same host species from northern Gulf of Mexico (nGoM). The mussels also harbour methane-oxidizing symbionts, and these shared highly similar to identical 16S rRNA sequences to their nGoM conspecifics. We discovered a novel symbiont in B. heckerae, which is closely related to hydrocarbon-degrading bacteria of the genus Cycloclasticus. In B. heckerae, we found key genes for the use of aromatic compounds, and its stable carbon isotope values were consistently higher than B. brooksi, indicating that the novel symbiont might use isotopically heavy aromatic hydrocarbons from the asphalt seep. This discovery is particularly intriguing because until now only methane and reduced sulfur compounds have been shown to power cold-seep chemosynthetic symbioses. The abundant hydrocarbons available at Chapopote would provide these mussel symbioses with a rich source of nutrition.
Collapse
Affiliation(s)
- L Raggi
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany
| | | | | | | | | |
Collapse
|
17
|
Qu Y, Crne AE, Lepland A, van Zuilen MA. Methanotrophy in a Paleoproterozoic oil field ecosystem, Zaonega Formation, Karelia, Russia. GEOBIOLOGY 2012; 10:467-478. [PMID: 23009699 DOI: 10.1111/gbi.12007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 08/21/2012] [Indexed: 06/01/2023]
Abstract
Organic carbon rich rocks in the c. 2.0 Ga Zaonega Formation (ZF), Karelia, Russia, preserve isotopic characteristics of a Paleoproterozoic ecosystem and record some of the oldest known oil generation and migration. Isotopic data derived from drill core material from the ZF show a shift in δ(13) C(org) from c. -25‰ in the lower part of the succession to c. -40‰ in the upper part. This stratigraphic shift is a primary feature and cannot be explained by oil migration, maturation effects, or metamorphic overprints. The shift toward (13) C-depleted organic matter (δ(13) C(org) < -25‰) broadly coincides with lithological evidence for the generation of oil and gas in the underlying sediments and seepage onto the sea floor. We propose that the availability of thermogenic CH(4) triggered the activity of methanotrophic organisms, resulting in the production of anomalously (13) C-depleted biomass. The stratigraphic shift in δ(13) C(org) records the change from CO(2) -fixing autotrophic biomass to biomass containing a significant contribution from methanotrophy. It has been suggested recently that this shift in δ(13) C(org) reflects global forcing and progressive oxidation of the Earth. However, the lithologic indication for local thermogenic CH(4) , sourced within the oil field, is consistent with basinal methanotrophy. This indicates that regional/basinal processes can also explain the δ(13) C(org) negative isotopic shift observed in the ZF.
Collapse
Affiliation(s)
- Y Qu
- Centre for Geobiology, University of Bergen, Bergen, Norway
| | | | | | | |
Collapse
|
18
|
Römer M, Sahling H, Pape T, Bohrmann G, Spieß V. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jc007424] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Kleindienst S, Ramette A, Amann R, Knittel K. Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ Microbiol 2012; 14:2689-710. [PMID: 22882476 DOI: 10.1111/j.1462-2920.2012.02832.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Marine gas and hydrocarbon seeps are hot spots of sulfate reduction which is fuelled by methane, other short-chain alkanes or a complex mixture of hydrocarbons. In this study, we investigated the global distribution and abundance of sulfate-reducing bacteria (SRB) in eight gas and hydrocarbon seeps by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH). The majority of Deltaproteobacteria were assigned to specific SRB groups, i.e. 83 ± 14% at gas seeps and 61 ± 35% at hydrocarbon seeps, indicating that the probe set used was sufficient for classification of marine SRB. Statistical analysis showed that SRB abundance and distribution were significantly influenced by habitat type and sediment depth. Members of the Desulfosarcina/Desulfococcus (DSS) clade strongly dominated all sites. Our data indicated the presence of many diverse and highly specialized DSS species of low abundance rather than a single abundant subgroup. In addition, SEEP-SRB2, an uncultured deep-branching deltaproteobacterial group, was ubiquitously found in high abundances at all sites. SEEP-SRB2 members occurred either in a novel association with methanotrophic archaea in shell-type ANME-2/SEEP-SRB2 consortia, in association with ANME-1 archaea in Black Sea microbial mats or as single cells. Two other uncultured groups, SEEP-SRB3 and SEEP-SRB4, were preferentially detected in surface sediments from mud volcanoes.
Collapse
Affiliation(s)
- Sara Kleindienst
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
| | | | | | | |
Collapse
|
20
|
Connelly DP, Copley JT, Murton BJ, Stansfield K, Tyler PA, German CR, Van Dover CL, Amon D, Furlong M, Grindlay N, Hayman N, Hühnerbach V, Judge M, Le Bas T, McPhail S, Meier A, Nakamura KI, Nye V, Pebody M, Pedersen RB, Plouviez S, Sands C, Searle RC, Stevenson P, Taws S, Wilcox S. Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre. Nat Commun 2012; 3:620. [PMID: 22233630 PMCID: PMC3274706 DOI: 10.1038/ncomms1636] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 12/07/2011] [Indexed: 11/16/2022] Open
Abstract
The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with >400 °C venting from the world's deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents.
Collapse
Affiliation(s)
- Douglas P. Connelly
- National Oceanography Centre, Southampton, UK
- These authors contributed equally to this work.
| | - Jonathan T. Copley
- Department of Ocean and Earth Science, University of Southampton, Southampton, UK
- These authors contributed equally to this work.
| | | | - Kate Stansfield
- Department of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Paul A. Tyler
- Department of Ocean and Earth Science, University of Southampton, Southampton, UK
| | | | | | - Diva Amon
- Department of Ocean and Earth Science, University of Southampton, Southampton, UK
| | | | - Nancy Grindlay
- Center for Marine Science, University of North Carolina, Wilmington, NC, USA
| | - Nicholas Hayman
- University of Texas, Institute for Geophysics, Austin, TX, USA
| | | | - Maria Judge
- National University of Ireland, Earth and Ocean Sciences, Galway, Ireland
| | - Tim Le Bas
- National Oceanography Centre, Southampton, UK
| | | | - Alexandra Meier
- Department of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Ko-ichi Nakamura
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Verity Nye
- Department of Ocean and Earth Science, University of Southampton, Southampton, UK
| | | | | | | | - Carla Sands
- National Oceanography Centre, Southampton, UK
| | | | | | - Sarah Taws
- Department of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Sally Wilcox
- Department of Psychology, University of Exeter, Exeter, UK
| |
Collapse
|
21
|
Improved dsrA-based terminal restriction fragment length polymorphism analysis of sulfate-reducing bacteria. Appl Environ Microbiol 2010; 76:5308-11. [PMID: 20543035 DOI: 10.1128/aem.03004-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To better describe the community structure of sulfate-reducing bacteria in environmental systems, we compared several dissimilatory sulfite reductase (dsr) primer sets for terminal restriction fragment length polymorphism application. A new reverse primer that increased allelic diversity estimates up to 5-fold was applied to hydrocarbon seep samples to examine the relationship between guild activity and diversity.
Collapse
|
22
|
Cordes EE, Hourdez S, Roberts HH. Unusual Habitats and Organisms Associated with the Cold Seeps of the Gulf of Mexico. TOPICS IN GEOBIOLOGY 2010. [DOI: 10.1007/978-90-481-9572-5_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
23
|
Cordes EE, Bergquist DC, Fisher CR. Macro-ecology of Gulf of Mexico cold seeps. ANNUAL REVIEW OF MARINE SCIENCE 2009; 1:143-168. [PMID: 21141033 DOI: 10.1146/annurev.marine.010908.163912] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Shortly after the discovery of chemosynthetic ecosystems at deep-sea hydrothermal vents, similar ecosystems were found at cold seeps in the Gulf of Mexico. Over the past two decades, these sites have become model systems for understanding the physiology of the symbiont-containing megafauna and the ecology of seep communities worldwide. Symbiont-containing bi-valves and siboglinid polychaetes dominate the communities, including five bathymodiolin mussel species and six vestimentiferan (siboglinid polychaete) species in the Gulf of Mexico. The mussels include the first described examples of methanotrophic symbiosis and dual methanotrophic/thiotrophic symbiosis. Studies with the vestimentiferans have demonstrated their potential for extreme longevity and their ability to use posterior structures for subsurface exchange of dissolved metabolites. Ecological investigations have demonstrated that the vestimentiferans function as ecosystem engineers and identified a community succession sequence from a specialized high-biomass endemic community to a low-biomass community of background fauna over the life of a hydrocarbon seep site.
Collapse
Affiliation(s)
- Erik E Cordes
- Biology Department, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | | | | |
Collapse
|
24
|
|
25
|
Ding F, Spiess V, Brüning M, Fekete N, Keil H, Bohrmann G. A conceptual model for hydrocarbon accumulation and seepage processes around Chapopote asphalt site, southern Gulf of Mexico: From high resolution seismic point of view. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jb005484] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Feng Ding
- RCOM (Research Center Ocean Margins); Universität Bremen; Bremen Germany
| | - Volkhard Spiess
- RCOM (Research Center Ocean Margins); Universität Bremen; Bremen Germany
| | - Markus Brüning
- RCOM (Research Center Ocean Margins); Universität Bremen; Bremen Germany
| | - Noemi Fekete
- RCOM (Research Center Ocean Margins); Universität Bremen; Bremen Germany
| | - Hanno Keil
- RCOM (Research Center Ocean Margins); Universität Bremen; Bremen Germany
| | - Gerhard Bohrmann
- RCOM (Research Center Ocean Margins); Universität Bremen; Bremen Germany
| |
Collapse
|
26
|
Orcutt B, Samarkin V, Boetius A, Joye S. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Environ Microbiol 2008; 10:1108-17. [PMID: 18218032 DOI: 10.1111/j.1462-2920.2007.01526.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The anaerobic oxidation of methane (AOM) in the marine subsurface is a significant sink for methane in the environment, yet our understanding of its regulation and dynamics is still incomplete. Relatively few groups of microorganisms consume methane in subsurface environments--namely the anaerobic methanotrophic archaea (ANME clades 1, 2 and 3), which are phylogenetically related to methanogenic archaea. Anaerobic oxidation of methane presumably proceeds via a 'reversed' methanogenic pathway. The ANME are generally associated with sulfate-reducing bacteria (SRB) and sulfate is the only documented final electron acceptor for AOM in marine sediments. Our comparative study explored the coupling of AOM with sulfate reduction (SR) and methane generation (MOG) in microbial communities from Gulf of Mexico cold seep sediments that were naturally enriched with methane and other hydrocarbons. These sediments harbour a variety of ANME clades and SRB. Following enrichment under an atmosphere of methane, AOM fuelled 50-100% of SR, even in sediment slurries containing petroleum-associated hydrocarbons and organic matter. In the presence of methane and sulfate, the investigated microbial communities produce methane at a small fraction ( approximately 10%) of the AOM rate. Anaerobic oxidation of methane, MOG and SR rates decreased significantly with decreasing concentration of methane, and in the presence of the SR inhibitor molybdate, but reacted differently to the MOG inhibitor 2-bromoethanesulfonate (BES). The addition of acetate, a possible breakdown product of petroleum in situ and a potential intermediate in AOM/SR syntrophy, did not suppress AOM activity; rather acetate stimulated microbial activity in oily sediment slurries.
Collapse
Affiliation(s)
- Beth Orcutt
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
27
|
Abstract
The seabed is a diverse environment that ranges from the desert-like deep seafloor to the rich oases that are present at seeps, vents, and food falls such as whales, wood or kelp. As well as the sedimentation of organic material from above, geological processes transport chemical energy--hydrogen, methane, hydrogen sulphide and iron--to the seafloor from the subsurface below, which provides a significant proportion of the deep-sea energy. At the sites on the seafloor where chemical energy is delivered, rich and diverse microbial communities thrive. However, most subsurface microorganisms live in conditions of extreme energy limitation, with mean generation times of up to thousands of years. Even in the most remote subsurface habitats, temperature rather than energy seems to set the ultimate limit for life, and in the deep biosphere, where energy is most depleted, life might even be based on the cleavage of water by natural radioisotopes. Here, we review microbial biodiversity and function in these intriguing environments.
Collapse
Affiliation(s)
- Bo Barker Jørgensen
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen D-28359, Germany.
| | | |
Collapse
|
28
|
Jerosch K, Schlüter M, Pesch R. Spatial analysis of marine categorical information using indicator kriging applied to georeferenced video mosaics of the deep-sea Håkon Mosby Mud Volcano. ECOL INFORM 2006. [DOI: 10.1016/j.ecoinf.2006.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Berndt C. Focused fluid flow in passive continental margins. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2005; 363:2855-71. [PMID: 16286294 DOI: 10.1098/rsta.2005.1666] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Passive continental margins such as the Atlantic seaboard of Europe are important for society as they contain large energy resources, and they sustain ecosystems that are the basis for the commercial fish stock. The margin sediments are very dynamic environments. Fluids are expelled from compacting sediments, bottom water temperature changes cause gas hydrate systems to change their locations and occasionally large magmatic intrusions boil the pore water within the sedimentary basins, which is then expelled to the surface. The fluids that seep through the seabed at the tops of focused fluid flow systems have a crucial role for seabed ecology, and study of such fluid flow systems can also help in predicting the distribution of hydrocarbons in the subsurface and deciphering the climate record. Therefore, the study of focused fluid flow will become one of the most important fields in marine geology in the future.
Collapse
Affiliation(s)
- Christian Berndt
- National Oceanography Centre European Way, Southampton SO14 3ZH, UK.
| |
Collapse
|
30
|
MARTIN JOELW, HANEY TODDA. Decapod crustaceans from hydrothermal vents and cold seeps: a review through 2005. Zool J Linn Soc 2005. [DOI: 10.1111/j.1096-3642.2005.00178.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Hovland M, MacDonald IR, Rueslåtten H, Johnsen HK, Naehr T, Bohrmann G. Chapopote Asphalt Volcano may have been generated by supercritical water. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005eo420002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Schulze-Makuch D, Irwin LN, Lipps JH, LeMone D, Dohm JM, Fairén AG. Scenarios for the evolution of life on Mars. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005je002430] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|