1
|
Bose M, Root RA, Guan Y, Eaton J, Wittmann A, Skrmetti T, Desch SJ. Evidence of both molecular cloud and fluid chemistry in Ryugu regolith. SCIENCE ADVANCES 2024; 10:eadp3037. [PMID: 39047107 PMCID: PMC11268420 DOI: 10.1126/sciadv.adp3037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
The sulfur chemistry of (162173) Ryugu particles can be a powerful tracer of molecular cloud chemistry and small body processes, but it has not been well explored. We report identification of organosulfurs and a sulfate grain in two Ryugu particles, A0070 and A0093. The sulfate grain shows oxygen isotope ratios (δ17O = -11.0 ± 4.3 per mil, δ18O = -7.8 ± 2.3 per mil) that are akin to silicates in Ryugu but exhibit mass-independent sulfur isotopic fractionation (Δ33S = +5 ± 2 per mil). A methionine-like coating on the sulfate grain is isotopically anomalous (δ15N = +62 ± 2 per mil). Both the sulfate and organosulfurs can simultaneously form and survive during aqueous alteration within Ryugu's parent body, under reduced conditions, low temperature, and a pH >7 in the presence of N-rich organic molecules. This work extends the heliocentric zone where anomalous sulfur, formed by selective photodissociation of H2S gas in the molecular cloud, is found.
Collapse
Affiliation(s)
- Maitrayee Bose
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Robert A. Root
- Department of Environmental Science, University of Arizona, Tucson, AZ 85721, USA
| | - Yunbin Guan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jacob Eaton
- Department of Mathematical Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Axel Wittmann
- Eyring Materials Center, Arizona State University, Tempe, AZ 85287, USA
| | - Thomas Skrmetti
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Steven J. Desch
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
2
|
Changela HG, Kebukawa Y, Petera L, Ferus M, Chatzitheodoridis E, Nejdl L, Nebel R, Protiva V, Krepelka P, Moravcova J, Holbova R, Hlavenkova Z, Samoril T, Bridges JC, Yamashita S, Takahashi Y, Yada T, Nakato A, Sobotkova K, Tesarova H, Zapotok D. The evolution of organic material on Asteroid 162173 Ryugu and its delivery to Earth. Nat Commun 2024; 15:6165. [PMID: 39039074 PMCID: PMC11263614 DOI: 10.1038/s41467-024-50004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/27/2024] [Indexed: 07/24/2024] Open
Abstract
The recent return of samples from asteroid 162173 Ryugu provides a first insight into early Solar System prebiotic evolution from known planetary bodies. Ryugu's samples are CI chondrite-like, rich in water and organic material, and primarily composed of phyllosilicate. This phyllosilicate surrounds micron to submicron macromolecular organic particles known as insoluble organic matter. Using advanced microscopy techniques on Hayabusa-2 samples, we find that aqueous alteration on Ryugu produced organic particles richer in aromatics compared to less altered carbonaceous chondrites. This challenges the view that aromatic-rich organic matter formed pre-accretion. Additionally, widespread diffuse organic material occurs in phyllosilicate more aliphatic-, carboxylic-rich, and aromatic-poor than the discrete organic particles, likely preserving the soluble organic material. Some organic particles evolved to encapsulate phyllosilicate, indicating that aqueous alteration on Ryugu led to the containment of soluble organic matter within these particles. Earth therefore has been, and continues to be, delivered micron-sized polymeric organic objects containing biologically relevant molecules.
Collapse
Affiliation(s)
- H G Changela
- Department of Spectroscopy, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia.
- Department of Earth & Planetary Sciences, University of New Mexico, Albuquerque, NM, USA.
| | - Y Kebukawa
- Department of Chemistry and Life Science, Yokohama National University, Yokohama, Japan
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan
| | - L Petera
- Department of Spectroscopy, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Prague, Czechia
| | - M Ferus
- Department of Spectroscopy, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - E Chatzitheodoridis
- School of Mining and Metallurgical Engineering, National Technical University of Athens, Athens, Greece
- ESTEC, European Space Agency, Noordwijk, The Netherlands
| | - L Nejdl
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czechia
| | - R Nebel
- Department of Spectroscopy, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - V Protiva
- Department of Spectroscopy, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - P Krepelka
- Central European Institute of Technology Masaryk University, Brno, Czechia
| | - J Moravcova
- Central European Institute of Technology Masaryk University, Brno, Czechia
| | - R Holbova
- Central European Institute of Technology Masaryk University, Brno, Czechia
| | - Z Hlavenkova
- Central European Institute of Technology Masaryk University, Brno, Czechia
| | - T Samoril
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
- TESCAN GROUP a.s., Brno, Czechia
| | - J C Bridges
- Space Park Leicester, School of Physics & Astronomy, University of Leicester, Leicester, UK
| | - S Yamashita
- Institute of Materials Structure Science, High-Energy Accelerator Research Organization, Ibaraki, Japan
| | - Y Takahashi
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
| | - T Yada
- Astromaterials Science Research Group, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan
| | - A Nakato
- Astromaterials Science Research Group, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan
| | | | | | | |
Collapse
|
3
|
Ziurys LM. Prebiotic Astrochemistry from Astronomical Observations and Laboratory Spectroscopy. Annu Rev Phys Chem 2024; 75:307-327. [PMID: 38382568 DOI: 10.1146/annurev-physchem-090722-010849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The discovery of more than 200 gas-phase chemical compounds in interstellar space has led to the speculation that this nonterrestrial synthesis may play a role in the origin of life. These identifications were possible because of laboratory spectroscopy, which provides the molecular fingerprints for astronomical observations. Interstellar chemistry produces a wide range of small, organic molecules in dense clouds, such as NH2COCH3, CH3OCH3, CH3COOCH3, and CH2(OH)CHO. Carbon (C) is also carried in the fullerenes C60 and C70, which can preserve C-C bonds from circumstellar environments for future synthesis. Elusive phosphorus has now been found in molecular clouds, the sites of star formation, in the molecules PO and PN. Such clouds can collapse into solar systems, although the chemical/physical processing of the emerging planetary disk is uncertain. The presence of molecule-rich interstellar starting material, as well as the link to planetary bodies such as meteorites and comets, suggests that astrochemical processes set a prebiotic foundation.
Collapse
Affiliation(s)
- Lucy M Ziurys
- Department of Chemistry and Biochemistry, Department of Astronomy, and Steward Observatory, University of Arizona, Tucson, Arizona, USA;
| |
Collapse
|
4
|
Sugahara H, Yoshimura T, Tamenori Y, Takano Y, Ogawa NO, Chikaraishi Y, Ohkouchi N. Nitrogen K-edge X-ray adsorption near-edge structure spectroscopy of chemically adsorbed ammonia gas on clay minerals and the 15N/ 14N-nitrogen isotopic fractionation. ANAL SCI 2024; 40:781-789. [PMID: 38311696 PMCID: PMC10961286 DOI: 10.1007/s44211-023-00503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024]
Abstract
Ammonia (NH3) is a simple and essential nitrogen carrier in the universe. Its adsorption on mineral surfaces is an important step in the synthesis of nitrogenous organic molecules in extraterrestrial environments. The nitrogen isotopic ratios provide a useful tool for understanding the formation processes of N-bearing molecules. In this study, adsorption experiments were conducted using gaseous NH3 and representative clay minerals. The strongly adsorbed NH3 was 15N-enriched in a state of chemical equilibrium between the adsorption and desorption on the siliceous host surface. The nitrogen K-edge X-ray adsorption near-edge structure spectroscopy study revealed that these initial ammonia gases were chemically adsorbed as ammonium ions (NH4+) on clay minerals.
Collapse
Affiliation(s)
- Haruna Sugahara
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, Kanagawa, 237-0061, Japan.
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-Ku, Sagamihara, Kanagawa, 252-5210, Japan.
| | - Toshihiro Yoshimura
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Yusuke Tamenori
- Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
- Organization for Research Promotion, Tokyo Metropolitan University, Minami-Osawa, 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Yoshinori Takano
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Nanako O Ogawa
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Yoshito Chikaraishi
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, 060-0819, Japan
| | - Naohiko Ohkouchi
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| |
Collapse
|
5
|
Vollmer C, Kepaptsoglou D, Leitner J, Mosberg AB, El Hajraoui K, King AJ, Bays CL, Schofield PF, Araki T, Ramasse QM. High-spatial resolution functional chemistry of nitrogen compounds in the observed UK meteorite fall Winchcombe. Nat Commun 2024; 15:778. [PMID: 38278803 PMCID: PMC10817942 DOI: 10.1038/s41467-024-45064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Organic matter in extraterrestrial samples is a complex material that might have played an important role in the delivery of prebiotic molecules to the early Earth. We report here on the identification of nitrogen-containing compounds such as amino acids and N-heterocycles within the recent observed meteorite fall Winchcombe by high-spatial resolution spectroscopy techniques. Although nitrogen contents of Winchcombe organic matter are low (N/C ~ 1-3%), we were able to detect the presence of these compounds using a low-noise direct electron detector. These biologically relevant molecules have therefore been tentatively found within a fresh, minimally processed meteorite sample by high spatial resolution techniques conserving the overall petrographic context. Carbon functional chemistry investigations show that sizes of aromatic domains are small and that abundances of carboxylic functional groups are low. Our observations demonstrate that Winchcombe represents an important addition to the collection of carbonaceous chondrites and still preserves pristine extraterrestrial organic matter.
Collapse
Affiliation(s)
| | - Demie Kepaptsoglou
- SuperSTEM Laboratory, Keckwick Lane, Daresbury, UK
- School of Physics, Engineering and Technology, University of York, Heslington, UK
| | - Jan Leitner
- Institut für Geowissenschaften, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- Max Planck Institute for Chemistry, Particle Chemistry Department, Mainz, Germany
| | | | - Khalil El Hajraoui
- SuperSTEM Laboratory, Keckwick Lane, Daresbury, UK
- School of Physics, Engineering and Technology, University of York, Heslington, UK
| | - Ashley J King
- Planetary Materials Group, Natural History Museum, London, UK
| | - Charlotte L Bays
- Planetary Materials Group, Natural History Museum, London, UK
- Department of Earth Sciences, Royal Holloway, University of London, Egham, UK
| | | | - Tohru Araki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- National Institutes of Natural Sciences, Institute for Molecular Science, UVSOR Synchrotron Facility, Okazaki, Japan
| | - Quentin M Ramasse
- SuperSTEM Laboratory, Keckwick Lane, Daresbury, UK
- School of Chemical and Process Engineering and School of Physics and Astronomy, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Nguyen AN, Mane P, Keller LP, Piani L, Abe Y, Aléon J, Alexander CMO, Amari S, Amelin Y, Bajo KI, Bizzarro M, Bouvier A, Carlson RW, Chaussidon M, Choi BG, Dauphas N, Davis AM, Di Rocco T, Fujiya W, Fukai R, Gautam I, Haba MK, Hibiya Y, Hidaka H, Homma H, Hoppe P, Huss GR, Ichida K, Iizuka T, Ireland TR, Ishikawa A, Itoh S, Kawasaki N, Kita NT, Kitajima K, Kleine T, Komatani S, Krot AN, Liu MC, Masuda Y, McKeegan KD, Morita M, Motomura K, Moynier F, Nakai I, Nagashima K, Nesvorný D, Nittler L, Onose M, Pack A, Park C, Qin L, Russell SS, Sakamoto N, Schönbächler M, Tafla L, Tang H, Terada K, Terada Y, Usui T, Wada S, Wadhwa M, Walker RJ, Yamashita K, Yin QZ, Yokoyama T, Yoneda S, Young ED, Yui H, Zhang AC, Nakamura T, Naraoka H, Noguchi T, Okazaki R, Sakamoto K, Yabuta H, Abe M, Miyazaki A, Nakato A, Nishimura M, Okada T, Yada T, Yogata K, Nakazawa S, Saiki T, Tanaka S, Terui F, Tsuda Y, Watanabe SI, Yoshikawa M, Tachibana S, Yurimoto H. Abundant presolar grains and primordial organics preserved in carbon-rich exogenous clasts in asteroid Ryugu. SCIENCE ADVANCES 2023; 9:eadh1003. [PMID: 37450600 PMCID: PMC10348677 DOI: 10.1126/sciadv.adh1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Preliminary analyses of asteroid Ryugu samples show kinship to aqueously altered CI (Ivuna-type) chondrites, suggesting similar origins. We report identification of C-rich, particularly primitive clasts in Ryugu samples that contain preserved presolar silicate grains and exceptional abundances of presolar SiC and isotopically anomalous organic matter. The high presolar silicate abundance (104 ppm) indicates that the clast escaped extensive alteration. The 5 to 10 times higher abundances of presolar SiC (~235 ppm), N-rich organic matter, organics with N isotopic anomalies (1.2%), and organics with C isotopic anomalies (0.2%) in the primitive clasts compared to bulk Ryugu suggest that the clasts formed in a unique part of the protoplanetary disk enriched in presolar materials. These clasts likely represent previously unsampled outer solar system material that accreted onto Ryugu after aqueous alteration ceased, consistent with Ryugu's rubble pile origin.
Collapse
Affiliation(s)
- Ann. N. Nguyen
- Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Prajkta Mane
- Universities Space Research Association, Lunar and Planetary Institute, Houston, TX 77058, USA
| | - Lindsay P. Keller
- Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Laurette Piani
- Centre de Recherches Pétrographiques et Géochimiques, CNRS - Université de Lorraine, Nancy 54500, France
| | - Yoshinari Abe
- Graduate School of Engineering Materials Science and Engineering, Tokyo Denki University, Tokyo 120-8551, Japan
| | - Jérôme Aléon
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Museum National d'Histoire Naturelle, CNRS UMR 7590, IRD, Paris 75005, France
| | | | - Sachiko Amari
- McDonnell Center for the Space Sciences and Physics Department, Washington University, St. Louis, MO 63130, USA
- Geochemical Research Center, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuri Amelin
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, GD 510640, China
| | - Ken-ichi Bajo
- Department of Natural History Sciences, IIL, Hokkaido University, Sapporo 001-0021, Japan
| | - Martin Bizzarro
- Centre for Star and Planet Formation, GLOBE Institute, University of Copenhagen, Copenhagen K 1350, Denmark
| | - Audrey Bouvier
- Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth 95447, Germany
| | - Richard W. Carlson
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - Marc Chaussidon
- Université Paris Cités, Institut de physique du globe de Paris, CNRS, Paris 75005, France
| | - Byeon-Gak Choi
- Department of Earth Science Education, Seoul National University, Seoul 08826, Republic of Korea
| | - Nicolas Dauphas
- Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| | - Andrew M. Davis
- Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| | - Tommaso Di Rocco
- Faculty of Geosciences and Geography, University of Göttingen, Göttingen D-37077, Germany
| | - Wataru Fujiya
- Faculty of Science, Ibaraki University, Mito 310-8512, Japan
| | - Ryota Fukai
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan
| | - Ikshu Gautam
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Makiko K. Haba
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Yuki Hibiya
- General Systems Studies, The University of Tokyo, Tokyo 153-0041, Japan
| | - Hiroshi Hidaka
- Earth and Planetary Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hisashi Homma
- Osaka Application Laboratory, SBUWDX, Rigaku Corporation, Osaka 569-1146, Japan
| | - Peter Hoppe
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Gary R. Huss
- Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Kiyohiro Ichida
- Analytical Technology, Horiba Techno Service Co. Ltd., Kyoto 601-8125, Japan
| | - Tsuyoshi Iizuka
- Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Trevor R. Ireland
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Akira Ishikawa
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Shoichi Itoh
- Earth and Planetary Sciences, Kyoto University, Kyoto 606-8502, Japan
| | - Noriyuki Kawasaki
- Department of Natural History Sciences, IIL, Hokkaido University, Sapporo 001-0021, Japan
| | - Noriko T. Kita
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kouki Kitajima
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Thorsten Kleine
- Max Planck Institute for Solar System Research, Göttingen 37077, Germany
| | - Shintaro Komatani
- Analytical Technology, Horiba Techno Service Co. Ltd., Kyoto 601-8125, Japan
| | - Alexander N. Krot
- Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - Ming-Chang Liu
- Earth, Planetary, and Space Sciences, UCLA, Los Angeles, CA 90095, USA
| | - Yuki Masuda
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Kevin D. McKeegan
- Earth, Planetary, and Space Sciences, UCLA, Los Angeles, CA 90095, USA
| | - Mayu Morita
- Analytical Technology, Horiba Techno Service Co. Ltd., Kyoto 601-8125, Japan
| | | | - Frédéric Moynier
- Université Paris Cités, Institut de physique du globe de Paris, CNRS, Paris 75005, France
| | - Izumi Nakai
- Applied Chemistry, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Kazuhide Nagashima
- Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
| | - David Nesvorný
- Department of Space Studies, Southwest Research Institute, Boulder, CO 80302, USA
| | - Larry Nittler
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Morihiko Onose
- Analytical Technology, Horiba Techno Service Co. Ltd., Kyoto 601-8125, Japan
| | - Andreas Pack
- Faculty of Geosciences and Geography, University of Göttingen, Göttingen D-37077, Germany
| | - Changkun Park
- Earth System Sciences, Korea Polar Research Institute, Incheon 21990, Korea
| | - Liping Qin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, School of Earth and Space Sciences, Anhui 230026, China
| | - Sara S. Russell
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
| | - Naoya Sakamoto
- Isotope Imaging Laboratory, Creative Research Institution, Hokkaido University, Sapporo 001-0021, Japan
| | - Maria Schönbächler
- Institute for Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | - Lauren Tafla
- Earth, Planetary, and Space Sciences, UCLA, Los Angeles, CA 90095, USA
| | - Haolan Tang
- Earth, Planetary, and Space Sciences, UCLA, Los Angeles, CA 90095, USA
| | - Kentaro Terada
- Earth and Space Science, Osaka University, Osaka 560-0043, Japan
| | - Yasuko Terada
- Spectroscopy and Imaging, Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - Tomohiro Usui
- Faculty of Science, Ibaraki University, Mito 310-8512, Japan
| | - Sohei Wada
- Department of Natural History Sciences, IIL, Hokkaido University, Sapporo 001-0021, Japan
| | - Meenakshi Wadhwa
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Richard J. Walker
- Department of Geology, University of Maryland, College Park, MD 20742, USA
| | - Katsuyuki Yamashita
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Qing-Zhu Yin
- Earth and Planetary Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Tetsuya Yokoyama
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Shigekazu Yoneda
- Science and Engineering, National Museum of Nature and Science, Tsukuba 305-0005, Japan
| | - Edward D. Young
- Earth, Planetary, and Space Sciences, UCLA, Los Angeles, CA 90095, USA
| | - Hiroharu Yui
- Department of Chemistry, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Ai-Cheng Zhang
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Tomoki Nakamura
- Department of Earth Science, Tohoku University, Sendai 980-8578, Japan
| | - Hiroshi Naraoka
- Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Takaaki Noguchi
- Earth and Planetary Sciences, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuji Okazaki
- Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kanako Sakamoto
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan
| | - Hikaru Yabuta
- Earth and Planetary Systems Science Program, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Masanao Abe
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan
| | - Akiko Miyazaki
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan
| | - Aiko Nakato
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan
| | - Masahiro Nishimura
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan
| | - Tatsuaki Okada
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan
| | - Toru Yada
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan
| | - Kasumi Yogata
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan
| | - Satoru Nakazawa
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan
| | - Takanao Saiki
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan
| | - Satoshi Tanaka
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan
| | - Fuyuto Terui
- Kanagawa Institute of Technology, Atsugi 243-0292, Japan
| | - Yuichi Tsuda
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan
| | | | - Makoto Yoshikawa
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan
| | - Shogo Tachibana
- UTokyo Organization for Planetary and Space Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Hisayoshi Yurimoto
- Department of Natural History Sciences, IIL, Hokkaido University, Sapporo 001-0021, Japan
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
| |
Collapse
|
7
|
Hoppe P, Rubin M, Altwegg K. A Comparison of Presolar Isotopic Signatures in Laboratory-Studied Primitive Solar System Materials and Comet 67P/Churyumov-Gerasimenko: New Insights from Light Elements, Halogens, and Noble Gases. SPACE SCIENCE REVIEWS 2023; 219:32. [PMID: 37251606 PMCID: PMC10209250 DOI: 10.1007/s11214-023-00977-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
Comets are considered the most primitive planetary bodies in our Solar System. ESA's Rosetta mission to Jupiter family comet 67P/Churyumov-Gerasimenko (67P/CG) has provided a wealth of isotope data which expanded the existing data sets on isotopic compositions of comets considerably. In a previous paper (Hoppe et al. in Space Sci. Rev. 214:106, 2018) we reviewed the results for comet 67P/CG from the first four years of data reduction after arrival of Rosetta at the comet in August 2014 and discussed them in the context of respective meteorite data. Since then important new isotope data of several elements, among them the biogenic elements H, C, N, and O, for comet 67P/CG, the Tagish Lake meteorite, and C-type asteroid Ryugu became available which provide new insights into the formation conditions of small planetary bodies in the Solar System's earliest history. To complement the picture on comet 67P/CG and its context to other primitive Solar System materials, especially meteorites, that emerged from our previous paper, we review here the isotopic compositions of H, C, and N in various volatile molecules, of O in water and a suite of other molecules, of the halogens Cl and Br, and of the noble gas Kr in comet 67P/CG. Furthermore, we also review the H isotope data obtained in the refractory organics of the dust grains collected in the coma of 67P/CG. These data are compared with the respective meteoritic and Ryugu data and spectroscopic observations of other comets and extra-solar environments; Cl, Br, and Kr data are also evaluated in the context of a potential late supernova contribution, as suggested by the Si- and S-isotopic data of 67P/CG.
Collapse
Affiliation(s)
- Peter Hoppe
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Martin Rubin
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Kathrin Altwegg
- Center for Space and Habitability, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| |
Collapse
|
8
|
Furukawa Y, Saigusa D, Kano K, Uruno A, Saito R, Ito M, Matsumoto M, Aoki J, Yamamoto M, Nakamura T. Distributions of CHN compounds in meteorites record organic syntheses in the early solar system. Sci Rep 2023; 13:6683. [PMID: 37095091 PMCID: PMC10125961 DOI: 10.1038/s41598-023-33595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/15/2023] [Indexed: 04/26/2023] Open
Abstract
Carbonaceous meteorites contain diverse soluble organic compounds. These compounds formed in the early solar system from volatiles accreted on tiny dust particles. However, the difference in the organic synthesis on respective dust particles in the early solar system remains unclear. We found micrometer-scale heterogeneous distributions of diverse CHN1-2 and CHN1-2O compounds in two primitive meteorites: the Murchison and NWA 801, using a surface-assisted laser desorption/ionization system connected to a high mass resolution mass spectrometer. These compounds contained mutual relationships of ± H2, ± CH2, ± H2O, and ± CH2O and showed highly similar distributions, indicating that they are the products of series reactions. The heterogeneity was caused by the micro-scale difference in the abundance of these compounds and the extent of the series reactions, indicating that these compounds formed on respective dust particles before asteroid accretion. The results of the present study provide evidence of heterogeneous volatile compositions and the extent of organic reactions among the dust particles that formed carbonaceous asteroids. The compositions of diverse small organic compounds associated with respective dust particles in meteorites are useful to understand different histories of volatile evolution in the early solar system.
Collapse
Affiliation(s)
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ritsumi Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Motoo Ito
- Kochi Institute for Core Sample Research, X-star, Japan Agency for Marine-Earth Science and Technology, Nankoku, Japan
| | | | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tomoki Nakamura
- Department of Earth Science, Tohoku University, Sendai, Japan
| |
Collapse
|
9
|
Broadley MW, Bekaert DV, Piani L, Füri E, Marty B. Origin of life-forming volatile elements in the inner Solar System. Nature 2022; 611:245-255. [DOI: 10.1038/s41586-022-05276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/25/2022] [Indexed: 11/11/2022]
|
10
|
Kwok S. The mystery of unidentified infrared emission bands. ASTROPHYSICS AND SPACE SCIENCE 2022; 367:16. [PMID: 35210653 PMCID: PMC8830496 DOI: 10.1007/s10509-022-04045-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
A family of unidentified infrared emission (UIE) bands has been observed throughout the Universe. The current observed spectral properties of the UIE bands are summarized. These properties are discussed in the frameworks of different models of the chemical carriers of these bands. The UIE carriers represent a large reservoir of carbon in the Universe, and play a significant role in the physical and chemical processes in the interstellar medium and galactic environment. A correct identification of the carrier of the UIE bands is needed to use these bands as probes of galactic evolution.
Collapse
Affiliation(s)
- Sun Kwok
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
NAKAMURA E, KOBAYASHI K, TANAKA R, KUNIHIRO T, KITAGAWA H, POTISZIL C, OTA T, SAKAGUCHI C, YAMANAKA M, RATNAYAKE DM, TRIPATHI H, KUMAR R, AVRAMESCU ML, TSUCHIDA H, YACHI Y, MIURA H, ABE M, FUKAI R, FURUYA S, HATAKEDA K, HAYASHI T, HITOMI Y, KUMAGAI K, MIYAZAKI A, NAKATO A, NISHIMURA M, OKADA T, SOEJIMA H, SUGITA S, SUZUKI A, USUI T, YADA T, YAMAMOTO D, YOGATA K, YOSHITAKE M, ARAKAWA M, FUJII A, HAYAKAWA M, HIRATA N, HIRATA N, HONDA R, HONDA C, HOSODA S, IIJIMA YI, IKEDA H, ISHIGURO M, ISHIHARA Y, IWATA T, KAWAHARA K, KIKUCHI S, KITAZATO K, MATSUMOTO K, MATSUOKA M, MICHIKAMI T, MIMASU Y, MIURA A, MOROTA T, NAKAZAWA S, NAMIKI N, NODA H, NOGUCHI R, OGAWA N, OGAWA K, OKAMOTO C, ONO G, OZAKI M, SAIKI T, SAKATANI N, SAWADA H, SENSHU H, SHIMAKI Y, SHIRAI K, TAKEI Y, TAKEUCHI H, TANAKA S, TATSUMI E, TERUI F, TSUKIZAKI R, WADA K, YAMADA M, YAMADA T, YAMAMOTO Y, YANO H, YOKOTA Y, YOSHIHARA K, YOSHIKAWA M, YOSHIKAWA K, FUJIMOTO M, WATANABE SI, TSUDA Y. On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:227-282. [PMID: 35691845 PMCID: PMC9246647 DOI: 10.2183/pjab.98.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/06/2022] [Indexed: 05/28/2023]
Abstract
Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, Δ17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10's of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation.
Collapse
Affiliation(s)
- Eizo NAKAMURA
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Katsura KOBAYASHI
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Ryoji TANAKA
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Tak KUNIHIRO
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Hiroshi KITAGAWA
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Christian POTISZIL
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Tsutomu OTA
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Chie SAKAGUCHI
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Masahiro YAMANAKA
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Dilan M. RATNAYAKE
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Havishk TRIPATHI
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Rahul KUMAR
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Maya-Liliana AVRAMESCU
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Hidehisa TSUCHIDA
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Yusuke YACHI
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, Japan
| | - Hitoshi MIURA
- Department of Information and Basic Science, Nagoya City University, Nagoya, Aichi, Japan
| | - Masanao ABE
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| | - Ryota FUKAI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Shizuho FURUYA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kentaro HATAKEDA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Tasuku HAYASHI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Yuya HITOMI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Marine Works Japan, Ltd., Yokosuka, Kanagawa, Japan
| | - Kazuya KUMAGAI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Marine Works Japan, Ltd., Yokosuka, Kanagawa, Japan
| | - Akiko MIYAZAKI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Aiko NAKATO
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Masahiro NISHIMURA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Tatsuaki OKADA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiromichi SOEJIMA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Marine Works Japan, Ltd., Yokosuka, Kanagawa, Japan
| | - Seiji SUGITA
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Planetary Exploration Research Center (PERC), Chiba Institute of Technology, Narashino, Chiba, Japan
| | - Ayako SUZUKI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Marine Works Japan, Ltd., Yokosuka, Kanagawa, Japan
| | - Tomohiro USUI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Toru YADA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Daiki YAMAMOTO
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Kasumi YOGATA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Miwa YOSHITAKE
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | | | - Atsushi FUJII
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Masahiko HAYAKAWA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Naoyuki HIRATA
- Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
| | - Naru HIRATA
- Faculty of Computer Science and Engineering, The University of Aizu, Aizu-Wakamatsu, Fukushima, Japan
| | - Rie HONDA
- Faculty of Science and Technology, Kochi University, Kochi, Japan
| | - Chikatoshi HONDA
- Faculty of Computer Science and Engineering, The University of Aizu, Aizu-Wakamatsu, Fukushima, Japan
| | - Satoshi HOSODA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Yu-ichi IIJIMA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Hitoshi IKEDA
- Research and Development Directorate, JAXA, Sagamihara, Kanagawa, Japan
| | - Masateru ISHIGURO
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | - Yoshiaki ISHIHARA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Takahiro IWATA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| | - Kosuke KAWAHARA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Shota KIKUCHI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Planetary Exploration Research Center (PERC), Chiba Institute of Technology, Narashino, Chiba, Japan
| | - Kohei KITAZATO
- Faculty of Computer Science and Engineering, The University of Aizu, Aizu-Wakamatsu, Fukushima, Japan
| | - Koji MATSUMOTO
- National Astronomical Observatory of Japan, Mitaka, Tokyo, Japan
| | - Moe MATSUOKA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Observatoire de Paris, Meudon, France
| | - Tatsuhiro MICHIKAMI
- Faculty of Engineering, Kindai University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yuya MIMASU
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Akira MIURA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Tomokatsu MOROTA
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Aichi, Japan
| | - Satoru NAKAZAWA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Noriyuki NAMIKI
- National Astronomical Observatory of Japan, Mitaka, Tokyo, Japan
| | - Hirotomo NODA
- National Astronomical Observatory of Japan, Mitaka, Tokyo, Japan
| | - Rina NOGUCHI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Faculty of Science, Niigata University, Niigata, Japan
| | - Naoko OGAWA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- JAXA Space Exploration Center, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Kazunori OGAWA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Chisato OKAMOTO
- Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
| | - Go ONO
- Research and Development Directorate, JAXA, Sagamihara, Kanagawa, Japan
| | - Masanobu OZAKI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Takanao SAIKI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | | | - Hirotaka SAWADA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Hiroki SENSHU
- Planetary Exploration Research Center (PERC), Chiba Institute of Technology, Narashino, Chiba, Japan
| | - Yuri SHIMAKI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Kei SHIRAI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
| | - Yuto TAKEI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Hiroshi TAKEUCHI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Satoshi TANAKA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
- The University of Tokyo, Kashiwa, Chiba, Japan
| | - Eri TATSUMI
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Instituto de Astrofisica de Canarias, University of La Laguna, Tenerife, Spain
| | - Fuyuto TERUI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Faculty of Engineering, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| | - Ryudo TSUKIZAKI
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Koji WADA
- Planetary Exploration Research Center (PERC), Chiba Institute of Technology, Narashino, Chiba, Japan
| | - Manabu YAMADA
- Planetary Exploration Research Center (PERC), Chiba Institute of Technology, Narashino, Chiba, Japan
| | - Tetsuya YAMADA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Yukio YAMAMOTO
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Hajime YANO
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Yasuhiro YOKOTA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Keisuke YOSHIHARA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Makoto YOSHIKAWA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| | - Kent YOSHIKAWA
- Research and Development Directorate, JAXA, Sagamihara, Kanagawa, Japan
| | - Masaki FUJIMOTO
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
| | - Sei-ichiro WATANABE
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Aichi, Japan
| | - Yuichi TSUDA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Pehr K, Bisquera R, Bishop AN, Ossa Ossa F, Meredith W, Bekker A, Love GD. Preservation and Distributions of Covalently Bound Polyaromatic Hydrocarbons in Ancient Biogenic Kerogens and Insoluble Organic Macromolecules. ASTROBIOLOGY 2021; 21:1049-1075. [PMID: 34030461 DOI: 10.1089/ast.2020.2338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The likelihood of finding pristine molecular biosignatures preserved in Earth's oldest rocks or on other planetary bodies is low, and new approaches are needed to assess the origins of highly altered and recalcitrant organic matter. In this study, we aim to understand the distributions and systematics of preservation of ancient polycyclic aromatic hydrocarbons (PAHs), as both free hydrocarbons and bound within insoluble macromolecules. We report the distributions of bound PAHs generated by catalytic hydropyrolysis from ancient biogenic kerogens and from insoluble organic matter (IOM) in high-temperature carbonaceous residues from pyrobitumens and synthetic coke. For biogenic kerogens, the degree of thermal maturity exerts the primary control on the preservation and distributions of the major five-ring and six-ring PAH compounds. This holds for both Precambrian and Phanerozoic rocks, thus source variation in primary biogenic organic matter inputs does not exert the major control on bound PAH. The IOM samples, predominantly residues from hydrocarbon cracking at high temperatures, preserve a bound PAH profile significantly distinct from ancient biogenic kerogens and characterized by an absence of perylene and higher abundance of large-ring condensed PAHs. Covalently bound PAH profiles offer promise as "last resort" molecular biosignatures for aiding the astrobiological search for ancient life.
Collapse
Affiliation(s)
- Kelden Pehr
- Department of Earth and Planetary Sciences, University of California-Riverside, Riverside, California, USA
| | - Rose Bisquera
- Department of Earth and Planetary Sciences, University of California-Riverside, Riverside, California, USA
| | | | - Frantz Ossa Ossa
- Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - William Meredith
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Andrey Bekker
- Department of Earth and Planetary Sciences, University of California-Riverside, Riverside, California, USA
| | - Gordon D Love
- Department of Earth and Planetary Sciences, University of California-Riverside, Riverside, California, USA
| |
Collapse
|
13
|
Exploring the link between molecular cloud ices and chondritic organic matter in laboratory. Nat Commun 2021; 12:3538. [PMID: 34112800 PMCID: PMC8192538 DOI: 10.1038/s41467-021-23895-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/18/2021] [Indexed: 11/27/2022] Open
Abstract
Carbonaceous meteorites are fragments of asteroids rich in organic material. In the forming solar nebula, parent bodies may have accreted organic materials resulting from the evolution of icy grains observed in dense molecular clouds. The major issues of this scenario are the secondary processes having occurred on asteroids, which may have modified the accreted matter. Here, we explore the evolution of organic analogs of protostellar/protoplanetary disk material once accreted and submitted to aqueous alteration at 150 °C. The evolution of molecular compounds during up to 100 days is monitored by high resolution mass spectrometry. We report significant evolution of the molecular families, with the decreases of H/C and N/C ratios. We find that the post-aqueous products share compositional similarities with the soluble organic matter of the Murchison meteorite. These results give a comprehensive scenario of the possible link between carbonaceous meteorites and ices of dense molecular clouds. Several scenarios exist to explain the origins of the organic matter found in carbonaceous chondrites. Here, the authors show laboratory experiments confirming that a significant portion of the soluble organic matter can originate from organic ices inherited from the dense molecular cloud.
Collapse
|
14
|
Nano-FTIR spectroscopic identification of prebiotic carbonyl compounds in Dominion Range 08006 carbonaceous chondrite. Sci Rep 2021; 11:11656. [PMID: 34079034 PMCID: PMC8172632 DOI: 10.1038/s41598-021-91200-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/24/2021] [Indexed: 12/02/2022] Open
Abstract
Meteorites contain organic matter that may have contributed to the origin of life on Earth. Carbonyl compounds such as aldehydes and carboxylic acids, which occur in meteorites, may be precursors of biologically necessary organic materials in the solar system. Therefore, such organic matter is of astrobiological importance and their detection and characterization can contribute to the understanding of the early solar system as well as the origin of life. Most organic matter is typically sub-micrometer in size, and organic nanoglobules are even smaller (50–300 nm). Novel analytical techniques with nanoscale spatial resolution are required to detect and characterize organic matter within extraterrestrial materials. Most techniques require powdered samples, consume the material, and lose petrographic context of organics. Here, we report the detection of nanoglobular aldehyde and carboxylic acids in a highly primitive carbonaceous chondrite (DOM 08006) with ~ 20 nm spatial resolution using nano-FTIR spectroscopy. Such organic matter is found within the matrix of DOM 08006 and is typically 50–300 nm in size. We also show petrographic context and nanoscale morphologic/topographic features of the organic matter. Our results indicate that prebiotic carbonyl nanoglobules can form in a less aqueous and relatively elevated temperature-environment (220–230 °C) in a carbonaceous parent body.
Collapse
|
15
|
d'Ischia M, Manini P, Martins Z, Remusat L, O'D Alexander CM, Puzzarini C, Barone V, Saladino R. Insoluble organic matter in chondrites: Archetypal melanin-like PAH-based multifunctionality at the origin of life? Phys Life Rev 2021; 37:65-93. [PMID: 33774429 DOI: 10.1016/j.plrev.2021.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
An interdisciplinary review of the chemical literature that points to a unifying scenario for the origin of life, referred to as the Primordial Multifunctional organic Entity (PriME) scenario, is provided herein. In the PriME scenario it is suggested that the Insoluble Organic Matter (IOM) in carbonaceous chondrites, as well as interplanetary dust particles from meteorites and comets may have played an important role in the three most critical processes involved in the origin of life, namely 1) metabolism, via a) the provision and accumulation of molecules that are the building blocks of life, b) catalysis (e.g., by templation), and c) protection of developing life molecules against radiation by excited state deactivation; 2) compartmentalization, via adsorption of compounds on the exposed organic surfaces in fractured meteorites, and 3) replication, via deaggregation, desorption and related physical phenomena. This scenario is based on the hitherto overlooked structural and physicochemical similarities between the IOM and the dark, insoluble, multifunctional melanin polymers found in bacteria and fungi and associated with the ability of these microorganisms to survive extreme conditions, including ionizing radiation. The underlying conceptual link between these two materials is strengthened by the fact that primary precursors of bacterial and fungal melanins (collectively referred to herein as allomelanins) are hydroxylated aromatic compounds like homogentisic acid and 1,8-dihydroxynaphthalene, and that similar hydroxylated aromatic compounds, including hydroxynaphthalenes, figure prominently among possible components of the organic materials on dust grains and ices in the interstellar matter, and may be involved in the formation of IOM in meteorites. Inspired by this rationale, a vis-à-vis review of the properties of IOM from various chondrites and non-nitrogenous allomelanin pigments from bacteria and fungi is provided herein. The unrecognized similarities between these materials may pave the way for a novel scenario at the origin of life, in which IOM-related complex organic polymers delivered to the early Earth are proposed to serve as PriME and were preserved and transformed in those primitive forms of life that shared the ability to synthesize melanin polymers playing an important role in the critical processes underlying the establishment of terrestrial eukaryotes.
Collapse
Affiliation(s)
- Marco d'Ischia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Paola Manini
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Zita Martins
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Laurent Remusat
- Institut de minéralogie, de physique des matériaux et de cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, 61 rue Buffon, 75005 Paris, France
| | - Conel M O'D Alexander
- Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road, NW Washington, DC 20015-1305, USA
| | - Cristina Puzzarini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, Bologna, I-40126, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, I-56126, Italy
| | - Raffaele Saladino
- Biological and Ecological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis 01100 Viterbo, Italy
| |
Collapse
|
16
|
Abstract
Understanding the true nature of extra-terrestrial water and organic matter that were present at the birth of our solar system, and their subsequent evolution, necessitates the study of pristine astromaterials. In this study, we have studied both the water and organic contents from a dust particle recovered from the surface of near-Earth asteroid 25143 Itokawa by the Hayabusa mission, which was the first mission that brought pristine asteroidal materials to Earth’s astromaterial collection. The organic matter is presented as both nanocrystalline graphite and disordered polyaromatic carbon with high D/H and 15N/14N ratios (δD = + 4868 ± 2288‰; δ15N = + 344 ± 20‰) signifying an explicit extra-terrestrial origin. The contrasting organic feature (graphitic and disordered) substantiates the rubble-pile asteroid model of Itokawa, and offers support for material mixing in the asteroid belt that occurred in scales from small dust infall to catastrophic impacts of large asteroidal parent bodies. Our analysis of Itokawa water indicates that the asteroid has incorporated D-poor water ice at the abundance on par with inner solar system bodies. The asteroid was metamorphosed and dehydrated on the formerly large asteroid, and was subsequently evolved via late-stage hydration, modified by D-enriched exogenous organics and water derived from a carbonaceous parent body.
Collapse
|
17
|
Fujiya W, Furukawa Y, Sugahara H, Koike M, Bajo KI, Chabot NL, Miura YN, Moynier F, Russell SS, Tachibana S, Takano Y, Usui T, Zolensky ME. Analytical protocols for Phobos regolith samples returned by the Martian Moons eXploration (MMX) mission. EARTH, PLANETS, AND SPACE : EPS 2021; 73:120. [PMID: 34776735 PMCID: PMC8550573 DOI: 10.1186/s40623-021-01438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/10/2021] [Indexed: 05/12/2023]
Abstract
Japan Aerospace Exploration Agency (JAXA) will launch a spacecraft in 2024 for a sample return mission from Phobos (Martian Moons eXploration: MMX). Touchdown operations are planned to be performed twice at different landing sites on the Phobos surface to collect > 10 g of the Phobos surface materials with coring and pneumatic sampling systems on board. The Sample Analysis Working Team (SAWT) of MMX is now designing analytical protocols of the returned Phobos samples to shed light on the origin of the Martian moons as well as the evolution of the Mars-moon system. Observations of petrology and mineralogy, and measurements of bulk chemical compositions and stable isotopic ratios of, e.g., O, Cr, Ti, and Zn can provide crucial information about the origin of Phobos. If Phobos is a captured asteroid composed of primitive chondritic materials, as inferred from its reflectance spectra, geochemical data including the nature of organic matter as well as bulk H and N isotopic compositions characterize the volatile materials in the samples and constrain the type of the captured asteroid. Cosmogenic and solar wind components, most pronounced in noble gas isotopic compositions, can reveal surface processes on Phobos. Long- and short-lived radionuclide chronometry such as 53Mn-53Cr and 87Rb-87Sr systematics can date pivotal events like impacts, thermal metamorphism, and aqueous alteration on Phobos. It should be noted that the Phobos regolith is expected to contain a small amount of materials delivered from Mars, which may be physically and chemically different from any Martian meteorites in our collection and thus are particularly precious. The analysis plan will be designed to detect such Martian materials, if any, from the returned samples dominated by the endogenous Phobos materials in curation procedures at JAXA before they are processed for further analyses.
Collapse
Affiliation(s)
- Wataru Fujiya
- Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 Japan
| | - Yoshihiro Furukawa
- Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, 980-8578 Japan
| | - Haruna Sugahara
- Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210 Japan
| | - Mizuho Koike
- Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526 Japan
| | - Ken-ichi Bajo
- Department of Earth and Planetary Sciences, Hokkaido University, N10W8 Kita-ku, Sapporo, 060-0810 Japan
| | - Nancy L. Chabot
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA
| | - Yayoi N. Miura
- Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032 Japan
| | - Frederic Moynier
- Institut de Physique du Globe de Paris, CNRS, University of Paris, Paris, France
| | - Sara S. Russell
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Shogo Tachibana
- Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210 Japan
- UTOPS, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yoshinori Takano
- Biogeochemistry Research Center, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima, Yokosuka, 237-0061 Japan
| | - Tomohiro Usui
- Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210 Japan
| | | |
Collapse
|
18
|
Precometary organic matter: A hidden reservoir of water inside the snow line. Sci Rep 2020; 10:7755. [PMID: 32385395 PMCID: PMC7211008 DOI: 10.1038/s41598-020-64815-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 04/22/2020] [Indexed: 11/09/2022] Open
Abstract
The origin and evolution of solar system bodies, including water on the Earth, have been discussed based on the assumption that the relevant ingredients were simply silicates and ices. However, large amounts of organic matter have been found in cometary and interplanetary dust, which are recognized as remnants of interstellar/precometary grains. Precometary organic matter may therefore be a potential source of water; however, to date, there have been no experimental investigations into this possibility. Here, we experimentally demonstrate that abundant water and oil are formed via the heating of a precometary-organic-matter analog under conditions appropriate for the parent bodies of meteorites inside the snow line. This implies that H2O ice is not required as the sole source of water on planetary bodies inside the snow line. Further, we can explain the change in the oxidation state of the Earth from an initially reduced state to a final oxidized state. Our study also suggests that petroleum was present in the asteroids and is present in icy satellites and dwarf planets.
Collapse
|
19
|
Wadhwa M, McCoy TJ, Schrader DL. Advances in Cosmochemistry Enabled by Antarctic Meteorites. ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES 2020; 48:233-258. [PMID: 33380754 PMCID: PMC7768904 DOI: 10.1146/annurev-earth-082719-055815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
At present, meteorites collected in Antarctica dominate the total number of the world's known meteorites. We focus here on the scientific advances in cosmochemistry and planetary science that have been enabled by access to, and investigations of, these Antarctic meteorites. A meteorite recovered during one of the earliest field seasons of systematic searches, Elephant Moraine (EET) A79001, was identified as having originated on Mars based on the composition of gases released from shock melt pockets in this rock. Subsequently, the first lunar meteorite, Allan Hills (ALH) 81005, was also recovered from the Antarctic. Since then, many more meteorites belonging to these two classes of planetary meteorites, as well as other previously rare or unknown classes of meteorites (particularly primitive chondrites and achondrites), have been recovered from Antarctica. Studies of these samples are providing unique insights into the origin and evolution of the Solar System and planetary bodies.
Collapse
Affiliation(s)
- Meenakshi Wadhwa
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, USA
| | - Timothy J McCoy
- Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Devin L Schrader
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
20
|
Sandford SA, Nuevo M, Bera PP, Lee TJ. Prebiotic Astrochemistry and the Formation of Molecules of Astrobiological Interest in Interstellar Clouds and Protostellar Disks. Chem Rev 2020; 120:4616-4659. [DOI: 10.1021/acs.chemrev.9b00560] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Scott A. Sandford
- NASA Ames Research Center, MS 245-6, Moffett Field, California 94035, United States
| | - Michel Nuevo
- NASA Ames Research Center, MS 245-6, Moffett Field, California 94035, United States
- BAER Institute, NASA Research Park, MS 18-4, Moffett Field, California 94035, United States
| | - Partha P. Bera
- NASA Ames Research Center, MS 245-6, Moffett Field, California 94035, United States
- BAER Institute, NASA Research Park, MS 18-4, Moffett Field, California 94035, United States
| | - Timothy J. Lee
- NASA Ames Research Center, MS 245-3, Moffett Field, California 94035, United States
| |
Collapse
|
21
|
Schmidt DR, Woolf NJ, Zega TJ, Ziurys LM. Extreme 13C, 15N and 17O isotopic enrichment in the young planetary nebula K4-47. Nature 2018; 564:378-381. [PMID: 30568193 DOI: 10.1038/s41586-018-0763-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/31/2018] [Indexed: 11/09/2022]
Abstract
Carbon, nitrogen and oxygen are the three most abundant elements in the Galaxy after hydrogen and helium. Whereas hydrogen and helium were created in the Big Bang, carbon, nitrogen and oxygen arise from nucleosynthesis in stars. Of particular interest1,2 are the isotopic ratios 12C/13C, 14N/15N and 16O/17O because they are effective tracers of nucleosynthesis and help to benchmark the chemical processes that occurred in primitive interstellar material as it evolved into our Solar System3. However, the origins of the rare isotopes 15N and 17O remain uncertain, although novae and very massive stars that explode as supernovae are postulated4-6 to be the main sources of 15N. Here we report millimetre-wavelength observations of the young bipolar planetary nebula K4-47 that indicate another possible source for these isotopes. We identify various carbon-bearing molecules in K4-47 that show that this object is carbon-rich, and find unusually high enrichment in rare carbon (13C), oxygen (17O) and nitrogen (15N) isotopes: 12C/13C = 2.2 ± 0.8, 16O/17O = 21.4 ± 10.3 and 14N/15N = 13.6 ± 6.5 (uncertainties are three standard deviations); for comparison, the corresponding solar ratios7 are 89.4 ± 0.2, 2,632 ± 7 and 435 ± 57. One possible interpretation of these results is that K4-47 arose from a J-type asymptotic giant branch star that underwent a helium-shell flash (an explosive nucleosynthetic event that converts large quantities of helium to carbon and other elements), enriching the resulting planetary nebula in 15N and 17O and creating its bipolar geometry. Other possible explanations are that K4-47 is a binary system or that it resulted from a white dwarf merger, as has been suggested for object CK Vul8. These results suggest that nucleosynthesis of carbon, nitrogen and oxygen is not well understood and that the classification of certain stardust grains must be reconsidered.
Collapse
Affiliation(s)
- D R Schmidt
- Department of Astronomy, Steward Observatory, University of Arizona, Tucson, AZ, USA
| | - N J Woolf
- Department of Astronomy, Steward Observatory, University of Arizona, Tucson, AZ, USA
| | - T J Zega
- Department of Planetary Science, Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - L M Ziurys
- Department of Astronomy, Steward Observatory, University of Arizona, Tucson, AZ, USA. .,Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA. .,Arizona Radio Observatory, Steward Observatory, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
22
|
|
23
|
Hoppe P, Rubin M, Altwegg K. Presolar Isotopic Signatures in Meteorites and Comets: New Insights from the Rosetta Mission to Comet 67P/Churyumov-Gerasimenko. SPACE SCIENCE REVIEWS 2018; 214:106. [PMID: 37265997 PMCID: PMC10229468 DOI: 10.1007/s11214-018-0540-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 08/20/2018] [Indexed: 06/01/2023]
Abstract
Comets are considered the most primitive planetary bodies in our Solar System, i.e., they should have best preserved the solid components of the matter from which our Solar System formed. ESA's recent Rosetta mission to Jupiter family comet 67P/Churyumov-Gerasimenko (67P/CG) has provided a wealth of isotope data which expanded the existing data sets on isotopic compositions of comets considerably. In this paper we review our current knowledge on the isotopic compositions of H, C, N, O, Si, S, Ar, and Xe in primitive Solar System materials studied in terrestrial laboratories and how the Rosetta data acquired with the ROSINA (Rosetta Orbiter Sensor for Ion and Neutral Analysis) and COSIMA (COmetary Secondary Ion Mass Analyzer) mass spectrometer fit into this picture. The H, Si, S, and Xe isotope data of comet 67P/CG suggest that this comet might be particularly primitive and might have preserved large amounts of unprocessed presolar matter. We address the question whether the refractory Si component of 67P/CG contains a presolar isotopic fingerprint from a nearby Type II supernova (SN) and discuss to which extent C and O isotope anomalies originating from presolar grains should be observable in dust from 67P/CG. Finally, we explore whether the isotopic fingerprint of a potential late SN contribution to the formation site of 67P/CG in the solar nebula can be seen in the volatile component of 67P/CG.
Collapse
Affiliation(s)
- Peter Hoppe
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Martin Rubin
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Kathrin Altwegg
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
- Center for Space and Habitability, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| |
Collapse
|
24
|
Tartèse R, Chaussidon M, Gurenko A, Delarue F, Robert F. Insights into the origin of carbonaceous chondrite organics from their triple oxygen isotope composition. Proc Natl Acad Sci U S A 2018; 115:8535-8540. [PMID: 30082400 PMCID: PMC6112742 DOI: 10.1073/pnas.1808101115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dust grains of organic matter were the main reservoir of C and N in the forming Solar System and are thus considered to be an essential ingredient for the emergence of life. However, the physical environment and the chemical mechanisms at the origin of these organic grains are still highly debated. In this study, we report high-precision triple oxygen isotope composition for insoluble organic matter isolated from three emblematic carbonaceous chondrites, Orgueil, Murchison, and Cold Bokkeveld. These results suggest that the O isotope composition of carbonaceous chondrite insoluble organic matter falls on a slope 1 correlation line in the triple oxygen isotope diagram. The lack of detectable mass-dependent O isotopic fractionation, indicated by the slope 1 line, suggests that the bulk of carbonaceous chondrite organics did not form on asteroidal parent bodies during low-temperature hydrothermal events. On the other hand, these O isotope data, together with the H and N isotope characteristics of insoluble organic matter, may indicate that parent bodies of different carbonaceous chondrite types largely accreted organics formed locally in the protosolar nebula, possibly by photochemical dissociation of C-rich precursors.
Collapse
Affiliation(s)
- Romain Tartèse
- School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom;
| | - Marc Chaussidon
- Institut de Physique du Globe de Paris, Université Sorbonne-Paris-Cité, Université Paris Diderot, CNRS UMR 7154, F-75238 Paris, France
| | - Andrey Gurenko
- Centre de Recherches Pétrographiques et Géochimiques, UMR 7358, Université de Lorraine, F-54501 Vandoeuvre-lès-Nancy, France
| | - Frédéric Delarue
- Sorbonne Université, Université Pierre-et-Marie-Curie, CNRS, École Pratique des Hautes Etudes, Paris Sciences et Lettres, UMR 7619 Milieux Environnementaux, Transferts et Interactions dans les Hydrosystèmes et les Sols, F-75005 Paris, France
| | - François Robert
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d'Histoire Naturelle, Sorbonne Universités, CNRS, Université Pierre-et-Marie-Curie, and Institut de Recherche pour le Développement, F-75005 Paris, France
| |
Collapse
|
25
|
Eigenbrode JL, Summons RE, Steele A, Freissinet C, Millan M, Navarro-González R, Sutter B, McAdam AC, Franz HB, Glavin DP, Archer PD, Mahaffy PR, Conrad PG, Hurowitz JA, Grotzinger JP, Gupta S, Ming DW, Sumner DY, Szopa C, Malespin C, Buch A, Coll P. Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science 2018; 360:1096-1101. [DOI: 10.1126/science.aas9185] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/29/2018] [Indexed: 11/02/2022]
Abstract
Establishing the presence and state of organic matter, including its possible biosignatures, in martian materials has been an elusive quest, despite limited reports of the existence of organic matter on Mars. We report the in situ detection of organic matter preserved in lacustrine mudstones at the base of the ~3.5-billion-year-old Murray formation at Pahrump Hills, Gale crater, by the Sample Analysis at Mars instrument suite onboard the Curiosity rover. Diverse pyrolysis products, including thiophenic, aromatic, and aliphatic compounds released at high temperatures (500° to 820°C), were directly detected by evolved gas analysis. Thiophenes were also observed by gas chromatography–mass spectrometry. Their presence suggests that sulfurization aided organic matter preservation. At least 50 nanomoles of organic carbon persists, probably as macromolecules containing 5% carbon as organic sulfur molecules.
Collapse
|
26
|
Nittler LR, Alexander CMO, Davidson J, Riebe MEI, Stroud RM, Wang J. High Abundances of Presolar Grains and 15N-rich Organic Matter in CO3.0 Chondrite Dominion Range 08006. GEOCHIMICA ET COSMOCHIMICA ACTA 2018; 226:107-131. [PMID: 29628527 PMCID: PMC5881170 DOI: 10.1016/j.gca.2018.01.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
NanoSIMS C-, N-, and O-isotopic mapping of matrix in CO3.0 chondrite Dominion Range (DOM) 08006 revealed it to have in its matrix the highest abundance of presolar O-rich grains (257 +76/-96 ppm, 2σ) of any meteorite. It also has a matrix abundance of presolar SiC of 35 (+25/-17, 2σ) ppm, similar to that seen across primitive chondrite classes. This provides additional support to bulk isotopic and petrologic evidence that DOM 08006 is the most primitive known CO meteorite. Transmission electron microscopy of five presolar silicate grains revealed one to have a composite mineralogy similar to larger amoeboid olivine aggregates and consistent with equilibrium condensation, two non-stoichiometric amorphous grains and two olivine grains, though one is identified as such solely based on its composition. We also found insoluble organic matter (IOM) to be present primarily as sub-micron inclusions with ranges of C- and N-isotopic anomalies similar to those seen in primitive CR chondrites and interplanetary dust particles. In contrast to other primitive extraterrestrial materials, H isotopic imaging showed normal and homogeneous D/H. Most likely, DOM 08006 and other CO chondrites accreted a similar complement of primitive and isotopically anomalous organic matter to that found in other chondrite classes and IDPs, but the very limited amount of thermal metamorphism experienced by DOM 08006 has caused loss of D-rich organic moieties, while not substantially affecting either the molecular carriers of C and N anomalies or most inorganic phases in the meteorite. One C-rich grain that was highly depleted in 13C and 15N was identified; we propose it originated in the Sun's parental molecular cloud.
Collapse
Affiliation(s)
- Larry R Nittler
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA
| | - Conel M O'D Alexander
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA
| | - Jemma Davidson
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA
| | - My E I Riebe
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA
| | - Rhonda M Stroud
- Materials Science and Technology Division, Code 6366, US Naval Research Laboratory, Washington, DC 20375-5320, USA
| | - Jianhua Wang
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA
| |
Collapse
|
27
|
Aponte JC, Abreu NM, Glavin DP, Dworkin JP, Elsila JE. Distribution of Aliphatic Amines in CO, CV and CK Carbonaceous Chondrites and Relation to Mineralogy and Processing History. METEORITICS & PLANETARY SCIENCE 2017; 52:2632-2646. [PMID: 32440083 PMCID: PMC7241535 DOI: 10.1111/maps.12959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The analysis of water-soluble organic compounds in meteorites provides valuable insights into the prebiotic synthesis of organic matter and the processes that occurred during the formation of the solar system. We investigated the concentration of aliphatic monoamines present in the hot acid-water extracts of the unaltered Antarctic carbonaceous chondrites DOM 08006 (CO3) and MIL 05013 (CO3), and the thermally altered meteorites Allende (CV3), LAP 02206 (CV3), GRA 06101 (CV3), ALH 85002 (CK4), and EET 92002 (CK5). We have also reviewed and assessed the petrologic characteristics of the meteorites studied here, to evaluate the effects of asteroidal processing on the abundance and molecular distributions of monoamines. The CO3, CV3, CK4, and CK5 meteorites studied here contain total concentrations of amines ranging from 1.2 to 4.0 nmol/g of meteorite; these amounts are one to three orders of magnitude below those observed in carbonaceous chondrites from the CI, CM and CR groups. The low amine abundances for CV and CK chondrites may be related to their extensive degree of thermal metamorphism and/or to their low original amine content. Although the CO3 meteorites DOM 08006 and MIL 05013 do not show signs of thermal and aqueous alteration, their monoamine contents are comparable to those observed in moderately/extensively thermally altered CV3, CK4, and CK5 carbonaceous chondrites. The low content of monoamines in pristine CO carbonaceous chondrites suggests that the initial amounts, and not asteroidal processes, play a dominant role in the content of monoamines in carbonaceous chondrites. The primary monoamines, methylamine, ethylamine and n-propylamine constitute the most abundant amines in the CO3, CV3, CK4, and CK5 meteorites studied here. Contrary to the predominance of n-ω-amino acid isomers in CO3 and thermally altered meteorites, there appears to be no preference for the larger n-α-amines.
Collapse
Affiliation(s)
- José C. Aponte
- Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
- Department of Chemistry, Catholic University of America, Washington, DC 20064, USA
| | - Neyda M. Abreu
- Earth Science Program, Pennsylvania State University – Du Bois Campus, Du Bois, Pennsylvania 15801, USA
| | - Daniel P. Glavin
- Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - Jason P. Dworkin
- Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - Jamie E. Elsila
- Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| |
Collapse
|
28
|
Alexander CMO, Cody GD, De Gregorio BT, Nittler LR, Stroud RM. The nature, origin and modification of insoluble organic matter in chondrites, the possibly interstellar source of Earth's C and N. CHEMIE DER ERDE : BEITRAGE ZUR CHEMISCHEN MINERALOGIE, PETROGRAPHIE UND GEOLOGIE 2017; 77:227-256. [PMID: 31007270 PMCID: PMC6469876 DOI: 10.1016/j.chemer.2017.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
All chondrites accreted ~3.5 wt.% C in their matrices, the bulk of which was in a macromolecular solvent and acid insoluble organic material (IOM). Similar material to IOM is found in interplanetary dust particles (IDPs) and comets. The IOM accounts for almost all of the C and N in chondrites, and a significant fraction of the H. Chondrites and, to a lesser extent, comets were probably the major sources of volatiles for the Earth and the other terrestrial planets. Hence, IOM was both the major source of Earth's volatiles and a potential source of complex prebiotic molecules. Large enrichments in D and 15N, relative to the bulk solar isotopic compositions, suggest that IOM or its precursors formed in very cold, radiation-rich environments. Whether these environments were in the interstellar medium (ISM) or the outer Solar System is unresolved. Nevertheless, the elemental and isotopic compositions and functional group chemistry of IOM provide important clues to the origin(s) of organic matter in protoplanetary disks. IOM is modified relatively easily by thermal and aqueous processes, so that it can also be used to constrain the conditions in the solar nebula prior to chondrite accretion and the conditions in the chondrite parent bodies after accretion. Here we review what is known about the abundances, compositions and physical nature of IOM in the most primitive chondrites. We also discuss how the IOM has been modified by thermal metamorphism and aqueous alteration in the chondrite parent bodies, and how these changes may be used both as petrologic indicators of the intensity of parent body processing and as tools for classification. Finally, we critically assess the various proposed mechanisms for the formation of IOM in the ISM or Solar System.
Collapse
Affiliation(s)
- C M O'D Alexander
- Dept. Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, Washington, DC 20015, USA
| | - G D Cody
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, DC 20015, USA
| | - B T De Gregorio
- Dept. Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, Washington, DC 20015, USA
| | - L R Nittler
- Dept. Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, Washington, DC 20015, USA
| | - R M Stroud
- Materials Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
29
|
Abstract
The hydrogen isotope ratio (D/H) is commonly used to reconstruct the chemical processes at the origin of water and organic compounds in the early solar system. On the one hand, the large enrichments in deuterium of the insoluble organic matter (IOM) isolated from the carbonaceous meteorites are interpreted as a heritage of the interstellar medium or resulting from ion-molecule reactions taking place in the diffuse part of the protosolar nebula. On the other hand, the molecular structure of this IOM suggests that organic radicals have played a central role in a gas-phase organosynthesis. So as to reproduce this type of chemistry between organic radicals, experiments based on a microwave plasma of CH4 have been performed. They yielded a black organic residue in which ion microprobe analyses revealed hydrogen isotopic anomalies at a submicrometric spatial resolution. They likely reflect differences in the D/H ratios between the various CHx radicals whose polymerization is at the origin of the IOM. These isotopic heterogeneities, usually referred to as hot and cold spots, are commensurable with those observed in meteorite IOM. As a consequence, the appearance of organic radicals in the ionized regions of the disk surrounding the Sun during its formation may have triggered the formation of organic compounds.
Collapse
|
30
|
Ziurys LM, Halfen DT, Geppert W, Aikawa Y. Following the Interstellar History of Carbon: From the Interiors of Stars to the Surfaces of Planets. ASTROBIOLOGY 2016; 16:997-1012. [PMID: 28001448 DOI: 10.1089/ast.2016.1484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The chemical history of carbon is traced from its origin in stellar nucleosynthesis to its delivery to planet surfaces. The molecular carriers of this element are examined at each stage in the cycling of interstellar organic material and their eventual incorporation into solar system bodies. The connection between the various interstellar carbon reservoirs is also examined. Carbon has two stellar sources: supernova explosions and mass loss from evolved stars. In the latter case, the carbon is dredged up from the interior and then ejected into a circumstellar envelope, where a rich and unusual C-based chemistry occurs. This molecular material is eventually released into the general interstellar medium through planetary nebulae. It is first incorporated into diffuse clouds, where carbon is found in polyatomic molecules such as H2CO, HCN, HNC, c-C3H2, and even C60+. These objects then collapse into dense clouds, the sites of star and planet formation. Such clouds foster an active organic chemistry, producing compounds with a wide range of functional groups with both gas-phase and surface mechanisms. As stars and planets form, the chemical composition is altered by increasing stellar radiation, as well as possibly by reactions in the presolar nebula. Some molecular, carbon-rich material remains pristine, however, encapsulated in comets, meteorites, and interplanetary dust particles, and is delivered to planet surfaces. Key Words: Carbon isotopes-Prebiotic evolution-Interstellar molecules-Comets-Meteorites. Astrobiology 16, 997-1012.
Collapse
Affiliation(s)
- L M Ziurys
- 1 Department of Chemistry and Biochemistry, Department of Astronomy, and Arizona Radio Observatory, University of Arizona , Tucson, Arizona, USA
| | - D T Halfen
- 1 Department of Chemistry and Biochemistry, Department of Astronomy, and Arizona Radio Observatory, University of Arizona , Tucson, Arizona, USA
| | - W Geppert
- 2 Physics Department, Stockholm University , Stockholm, Sweden
| | - Y Aikawa
- 3 Center for Computational Sciences, University of Tsukuba , Tsukuba, Japan
| |
Collapse
|
31
|
Chakraborty S, Jackson TL, Rude B, Ahmed M, Thiemens MH. Nitrogen isotopic fractionations in the low temperature (80 K) vacuum ultraviolet photodissociation of N2. J Chem Phys 2016. [DOI: 10.1063/1.4962447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Subrata Chakraborty
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0356, USA
| | - Teresa L. Jackson
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0356, USA
| | - Bruce Rude
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Musahid Ahmed
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - M. H. Thiemens
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0356, USA
| |
Collapse
|
32
|
Cleeves LI, Bergin EA, Alexander CMO, Du F, Graninger D, Öberg KI, Harries TJ. EXPLORING THE ORIGINS OF DEUTERIUM ENRICHMENTS IN SOLAR NEBULAR ORGANICS. THE ASTROPHYSICAL JOURNAL 2016; 819:13. [PMID: 30842682 PMCID: PMC6398959 DOI: 10.3847/0004-637x/819/1/13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Deuterium-to-hydrogen (D/H) enrichments in molecular species provide clues about their original formation environment. The organic materials in primitive solar system bodies generally have higher D/H ratios and show greater D/H variation when compared to D/H in solar system water. We propose this difference arises at least in part due to (1) the availability of additional chemical fractionation pathways for organics beyond that for water, and (2) the higher volatility of key carbon reservoirs compared to oxygen. We test this hypothesis using detailed disk models, including a sophisticated, new disk ionization treatment with a low cosmic-ray ionization rate, and find that disk chemistry leads to higher deuterium enrichment in organics compared to water, helped especially by fractionation via the precursorsCH 2 D + / CH 3 + . We also find that the D/H ratio in individual species varies significantly depending on their particular formation pathways. For example, from ~20-40 au, CH4 can reach D/H ~ 2 × 10-3, while D/H in CH3OH remains locally unaltered. Finally, while the global organic D/H in our models can reproduce intermediately elevated D/H in the bulk hydrocarbon reservoir, our models are unable to reproduce the most deuterium-enriched organic materials in the solar system, and thus our model requires some inheritance from the cold interstellar medium from which the Sun formed.
Collapse
Affiliation(s)
- L Ilsedore Cleeves
- Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA;
| | - Edwin A Bergin
- Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109, USA
| | | | - Fujun Du
- Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109, USA
| | - Dawn Graninger
- Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA;
| | - Karin I Öberg
- Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA;
| | - Tim J Harries
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
| |
Collapse
|
33
|
The deuterium/hydrogen distribution in chondritic organic matter attests to early ionizing irradiation. Nat Commun 2015; 6:8567. [PMID: 26461170 PMCID: PMC4633821 DOI: 10.1038/ncomms9567] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 09/04/2015] [Indexed: 11/23/2022] Open
Abstract
Primitive carbonaceous chondrites contain a large array of organic compounds dominated by insoluble organic matter (IOM). A striking feature of this IOM is the systematic enrichment in deuterium compared with the solar hydrogen reservoir. This enrichment has been taken as a sign of low-temperature ion-molecule or gas-grain reactions. However, the extent to which Solar System processes, especially ionizing radiation, can affect D/H ratios is largely unknown. Here, we report the effects of electron irradiation on the hydrogen isotopic composition of organic precursors containing different functional groups. From an initial terrestrial composition, overall D-enrichments and differential intramolecular fractionations comparable with those measured in the Orgueil meteorite were induced. Therefore, ionizing radiation can quantitatively explain the deuteration of organics in some carbonaceous chondrites. For these meteorites, the precursors of the IOM may have had the same isotopic composition as the main water reservoirs of the inner Solar System. The insoluble organic matter in primitive carbonaceous chondrites has a systematic large enrichment in deuterium and several hypotheses have been proposed to explain this. Here, the authors demonstrate that irradiation from the protosun could quantitatively explain the deuteration.
Collapse
|
34
|
Sephton MA, Watson JS, Meredith W, Love GD, Gilmour I, Snape CE. Multiple Cosmic Sources for Meteorite Macromolecules? ASTROBIOLOGY 2015; 15:779-86. [PMID: 26418568 PMCID: PMC4623988 DOI: 10.1089/ast.2015.1331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The major organic component in carbonaceous meteorites is an organic macromolecular material. The Murchison macromolecular material comprises aromatic units connected by aliphatic and heteroatom-containing linkages or occluded within the wider structure. The macromolecular material source environment remains elusive. Traditionally, attempts to determine source have strived to identify a single environment. Here, we apply a highly efficient hydrogenolysis method to liberate units from the macromolecular material and use mass spectrometric techniques to determine their chemical structures and individual stable carbon isotope ratios. We confirm that the macromolecular material comprises a labile fraction with small aromatic units enriched in (13)C and a refractory fraction made up of large aromatic units depleted in (13)C. Our findings suggest that the macromolecular material may be derived from at least two separate environments. Compound-specific carbon isotope trends for aromatic compounds with carbon number may reflect mixing of the two sources. The story of the quantitatively dominant macromolecular material in meteorites appears to be made up of more than one chapter.
Collapse
Affiliation(s)
- Mark A. Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Jonathan S. Watson
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, UK
| | - William Meredith
- School of Chemical, Environmental and Mining Engineering, University of Nottingham, University Park, Nottingham, UK
| | - Gordon D. Love
- Department of Earth Sciences, University of California, Riverside, California, USA
| | - Iain Gilmour
- Centre for Earth, Planetary, Space and Astronomical Research, The Open University, Milton Keynes, UK
| | - Colin E. Snape
- School of Chemical, Environmental and Mining Engineering, University of Nottingham, University Park, Nottingham, UK
| |
Collapse
|
35
|
Ziurys LM, Adande GR, Edwards JL, Schmidt DR, Halfen DT, Woolf NJ. Prebiotic chemical evolution in the astrophysical context. ORIGINS LIFE EVOL B 2015; 45:275-88. [PMID: 25894971 DOI: 10.1007/s11084-015-9431-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/18/2015] [Indexed: 11/24/2022]
Abstract
An ever increasing amount of molecular material is being discovered in the interstellar medium, associated with the birth and death of stars and planetary systems. Radio and millimeter-wave astronomical observations, made possible by high-resolution laboratory spectroscopy, uniquely trace the history of gas-phase molecules with biogenic elements. Using a combination of both disciplines, the full extent of the cycling of molecular matter, from circumstellar ejecta of dying stars - objects which expel large amounts of carbon - to nascent solar systems, has been investigated. Such stellar ejecta have been found to exhibit a rich and varied chemical content. Observations demonstrate that this molecular material is passed onto planetary nebulae, the final phase of stellar evolution. Here the star sheds almost its entire original mass, becoming an ultraviolet-emitting white dwarf. Molecules such as H2CO, HCN, HCO(+), and CCH are present in significant concentrations across the entire age span of such nebulae. These data suggest that gas-phase polyatomic, carbon-containing molecules survive the planetary nebula phase and subsequently are transported into the interstellar medium, seeding the chemistry of diffuse and then dense clouds. The extent of the chemical complexity in dense clouds is unknown, hindered by the high spectral line density. Organic species such as acetamide and methyl amine are present in such objects, and NH2CHO has a wide Galactic distribution. However, organophosphorus compounds have not yet been detected in dense clouds. Based on carbon and nitrogen isotope ratios, molecular material from the ISM appears to become incorporated into solar system planetesimals. It is therefore likely that interstellar synthesis influences prebiotic chemistry on planet surfaces.
Collapse
Affiliation(s)
- L M Ziurys
- Department of Chemistry, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ, 85721-0065, USA,
| | | | | | | | | | | |
Collapse
|
36
|
Quantum tunneling observed without its characteristic large kinetic isotope effects. Proc Natl Acad Sci U S A 2015; 112:7438-43. [PMID: 26034285 DOI: 10.1073/pnas.1501328112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Classical transition-state theory is fundamental to describing chemical kinetics; however, quantum tunneling is also important in explaining the unexpectedly large reaction efficiencies observed in many chemical systems. Tunneling is often indicated by anomalously large kinetic isotope effects (KIEs), because a particle's ability to tunnel decreases significantly with its increasing mass. Here we experimentally demonstrate that cold hydrogen (H) and deuterium (D) atoms can add to solid benzene by tunneling; however, the observed H/D KIE was very small (1-1.5) despite the large intrinsic H/D KIE of tunneling (≳ 100). This strong reduction is due to the chemical kinetics being controlled not by tunneling but by the surface diffusion of the H/D atoms, a process not greatly affected by the isotope type. Because tunneling need not be accompanied by a large KIE in surface and interfacial chemical systems, it might be overlooked in other systems such as aerosols or enzymes. Our results suggest that surface tunneling reactions on interstellar dust may contribute to the deuteration of interstellar aromatic and aliphatic hydrocarbons, which could represent a major source of the deuterium enrichment observed in carbonaceous meteorites and interplanetary dust particles. These findings could improve our understanding of interstellar physicochemical processes, including those during the formation of the solar system.
Collapse
|
37
|
Abstract
Refractory organics are the main hosts of carbon, nitrogen, and other biogenic elements in primitive solar system material. We have synthesized refractory organics by ionizing a gas mixture reminiscent of the composition of the protosolar nebula, at temperatures up to 1,000 K in a plasma. Synthesized compounds share chemical and structural features with chondritic organics, and trapped noble gases reproduce well the elemental and isotopic characteristics of meteoritic noble gases. Our study suggests that organosynthesis took place in the solar system, including in its warm regions, and was ubiquitous anywhere the nebular gas was subject to ionization. In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)−CO−N2−noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system.
Collapse
|
38
|
Maity S, Kaiser RI, Jones BM. Formation of complex organic molecules in methanol and methanol-carbon monoxide ices exposed to ionizing radiation--a combined FTIR and reflectron time-of-flight mass spectrometry study. Phys Chem Chem Phys 2014; 17:3081-114. [PMID: 25515545 DOI: 10.1039/c4cp04149f] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The radiation induced chemical processing of methanol and methanol-carbon monoxide ices at 5.5 K exposed to ionizing radiation in the form of energetic electrons and subsequent temperature programmed desorption is reported in this study. The endogenous formation of complex organic molecules was monitored online and in situ via infrared spectroscopy in the solid state and post irradiation with temperature programmed desorption (TPD) using highly sensitive reflectron time-of-flight (ReTOF) mass spectrometry coupled with single photoionization at 10.49 eV. Infrared spectroscopic analysis of the processed ice systems resulted in the identification of simple molecules including the hydroxymethyl radical (CH2OH), formyl radical (HCO), methane (CH4), formaldehyde (H2CO), carbon dioxide (CO2), ethylene glycol (HOCH2CH2OH), glycolaldehyde (HOCH2CHO), methyl formate (HCOOCH3), and ketene (H2CCO). In addition, ReTOF mass spectrometry of subliming molecules following temperature programmed desorption definitely identified several closed shell C/H/O bearing organics including ketene (H2CCO), acetaldehyde (CH3COH), ethanol (C2H5OH), dimethyl ether (CH3OCH3), glyoxal (HCOCOH), glycolaldehyde (HOCH2CHO), ethene-1,2-diol (HOCHCHOH), ethylene glycol (HOCH2CH2OH), methoxy methanol (CH3OCH2OH) and glycerol (CH2OHCHOHCH2OH) in the processed ice systems. Additionally, an abundant amount of molecules yet to be specifically identified were observed sublimating from the irradiated ices including isomers with the formula C3H(x=4,6,8)O, C4H(x=8,10)O, C3H(x=4,6,8)O2, C4H(x=6,8)O2, C3H(x=4,6)O3, C4H8O3, C4H(x=4,6,8)O4, C5H(x=6,8)O4 and C5H(x=6,8)O5. The last group of molecules containing four to five oxygen atoms observed sublimating from the processed ice samples include an astrobiologically important class of sugars relevant to RNA, phospholipids and energy storage. Experiments are currently being designed to elucidate their chemical structure. In addition, several reaction pathways were identified in the irradiated ices of mixed isotopes based upon the results of both in situ FTIR analysis and TPD ReTOF gas phase analysis. In general, the results of this study provide crucial information on the formation of a variety of classes of organics including alcohols, ketones, aldehydes, esters, ethers, and sugars within the bulk ices upon exposure to ionizing radiation that are relevant to the molecular clouds within the interstellar medium.
Collapse
Affiliation(s)
- Surajit Maity
- Department of Chemistry, W.M. Keck Research Laboratory in Astrochemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
39
|
Wampfler SF, Jørgensen JK, Bizzarro M, Bisschop SE. Observations of nitrogen isotope fractionation in deeply embedded protostars. ASTRONOMY AND ASTROPHYSICS 2014; 572:A24. [PMID: 25684776 PMCID: PMC4326685 DOI: 10.1051/0004-6361/201423773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
CONTEXT The terrestrial planets, comets, and meteorites are significantly enriched in 15N compared to the Sun and Jupiter. While the solar and jovian nitrogen isotope ratio is believed to represent the composition of the protosolar nebula, a still unidentified process has caused 15N-enrichment in the solids. Several mechanisms have been proposed to explain the variations, including chemical fractionation. However, observational results that constrain the fractionation models are scarce. While there is evidence of 15N-enrichment in prestellar cores, it is unclear how the signature evolves into the protostellar phases. AIMS The aim of this study is to measure the 14N/15N ratio around three nearby, embedded low- to intermediate-mass protostars. METHODS Isotopologues of HCN and HNC were used to probe the 14N/15N ratio. A selection of J = 3-2 and 4-3 transitions of H13CN, HC15N, HN13C, and H15NC was observed with the Atacama Pathfinder EXperiment telescope (APEX). The 14N/15N ratios were derived from the integrated intensities assuming a standard 12C/13C ratio. The assumption of optically thin emission was verified using radiative transfer modeling and hyperfine structure fitting. RESULTS Two sources, IRAS 16293A and R CrA IRS7B, show 15N-enrichment by a factor of ~1.5-2.5 in both HCN and HNC with respect to the solar composition. IRAS 16293A falls in the range of typical prestellar core values. Solar composition cannot be excluded for the third source, OMC-3 MMS6. Furthermore, there are indications of a trend toward increasing 14N/15N ratios with increasing outer envelope temperature. CONCLUSIONS The enhanced 15N abundances in HCN and HNC found in two Class 0 sources (14N/15N ~ 160-290) and the tentative trend toward a temperature-dependent 14N/15N ratio are consistent with the chemical fractionation scenario, but 14N/15N ratios from additional tracers are indispensable for testing the models. Spatially resolved observations are needed to distinguish between chemical fractionation and isotope-selective photochemistry.
Collapse
Affiliation(s)
- S F Wampfler
- Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 København K, Denmark ; Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 København Ø, Denmark
| | - J K Jørgensen
- Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 København Ø, Denmark ; Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 København K, Denmark
| | - M Bizzarro
- Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 København K, Denmark
| | - S E Bisschop
- Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 København K, Denmark ; Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 København Ø, Denmark
| |
Collapse
|
40
|
Fluid-induced organic synthesis in the solar nebula recorded in extraterrestrial dust from meteorites. Proc Natl Acad Sci U S A 2014; 111:15338-43. [PMID: 25288736 DOI: 10.1073/pnas.1408206111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Isotopically anomalous carbonaceous grains in extraterrestrial samples represent the most pristine organics that were delivered to the early Earth. Here we report on gentle aberration-corrected scanning transmission electron microscopy investigations of eight (15)N-rich or D-rich organic grains within two carbonaceous Renazzo-type (CR) chondrites and two interplanetary dust particles (IDPs) originating from comets. Organic matter in the IDP samples is less aromatic than that in the CR chondrites, and its functional group chemistry is mainly characterized by C-O bonding and aliphatic C. Organic grains in CR chondrites are associated with carbonates and elemental Ca, which originate either from aqueous fluids or possibly an indigenous organic source. One distinct grain from the CR chondrite NWA 852 exhibits a rim structure only visible in chemical maps. The outer part is nanoglobular in shape, highly aromatic, and enriched in anomalous nitrogen. Functional group chemistry of the inner part is similar to spectra from IDP organic grains and less aromatic with nitrogen below the detection limit. The boundary between these two areas is very sharp. The direct association of both IDP-like organic matter with dominant C-O bonding environments and nanoglobular organics with dominant aromatic and C-N functionality within one unique grain provides for the first time to our knowledge strong evidence for organic synthesis in the early solar system activated by an anomalous nitrogen-containing parent body fluid.
Collapse
|
41
|
Massive isotopic effect in vacuum UV photodissociation of N2 and implications for meteorite data. Proc Natl Acad Sci U S A 2014; 111:14704-9. [PMID: 25267643 DOI: 10.1073/pnas.1410440111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitrogen isotopic distributions in the solar system extend across an enormous range, from -400‰, in the solar wind and Jovian atmosphere, to about 5,000‰ in organic matter in carbonaceous chondrites. Distributions such as these require complex processing of nitrogen reservoirs and extraordinary isotope effects. While theoretical models invoke ion-neutral exchange reactions outside the protoplanetary disk and photochemical self-shielding on the disk surface to explain the variations, there are no experiments to substantiate these models. Experimental results of N2 photolysis at vacuum UV wavelengths in the presence of hydrogen are presented here, which show a wide range of enriched δ(15)N values from 648‰ to 13,412‰ in product NH3, depending upon photodissociation wavelength. The measured enrichment range in photodissociation of N2, plausibly explains the range of δ(15)N in extraterrestrial materials. This study suggests the importance of photochemical processing of the nitrogen reservoirs within the solar nebula.
Collapse
|
42
|
|
43
|
Affiliation(s)
- Thomas Henning
- Max Planck Institute for Astronomy, Königstuhl
17, D-69117 Heidelberg, Germany
| | - Dmitry Semenov
- Max Planck Institute for Astronomy, Königstuhl
17, D-69117 Heidelberg, Germany
| |
Collapse
|
44
|
Piani L, Remusat L, Robert F. Determination of the H isotopic composition of individual components in fine-scale mixtures of organic matter and phyllosilicates with the nanoscale secondary ion mass spectrometry. Anal Chem 2012; 84:10199-206. [PMID: 23121456 DOI: 10.1021/ac301099u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
When organic matter is mixed on a nanometer scale with clay minerals, the individual D/H ratios of the two H-bearing phases cannot be directly measured even with the nominal spatial resolution of nanoscale secondary ion mass spectrometry (NanoSIMS, 50-100 nm). To overcome this limitation, a new analytical protocol is proposed based on the deconvolution of the D(-)/H(-) and (16)OD(-)/(16)OH(-) ionic ratios measured by NanoSIMS. Indeed, since the yields of H(-) and (16)OH(-) are different for organics and clays, it should be theoretically possible to determine the mixing ratio of these two components in the area analyzed by the ion probe. Using organics with different D/H ratios, the interdependence of the D(-)/H(-) and (16)OD(-)/(16)OH(-) ionic ratios was determined in pure samples. Then using the H(-) and (16)OH(-) yields and the isotopic ratios measured on pure organic matter and clays, the expected D(-)/H(-) and (16)OD(-)/(16)OH(-) variations as a function of the mixing proportions were determined. These numerical predictions are consistent with measurements on laboratory prepared mixtures of D-rich organic matter and D-poor phyllosilicates, validating both the proposed experimental protocol and its use for meteorites. With an improvement of the precision of the ionic ratios by a factor of 10, it should possible to expend this protocol to samples having natural terrestrial D/H variations. Such an improvement could be attainable with the development of synthetic deuterated reference samples.
Collapse
Affiliation(s)
- Laurette Piani
- Laboratoire de Minéralogie et Cosmochimie du Muséum, Muséum National d'Histoire Naturelle, Paris, France.
| | | | | |
Collapse
|
45
|
Alexander CMO, Bowden R, Fogel ML, Howard KT, Herd CDK, Nittler LR. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 2012; 337:721-3. [PMID: 22798405 DOI: 10.1126/science.1223474] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Determining the source(s) of hydrogen, carbon, and nitrogen accreted by Earth is important for understanding the origins of water and life and for constraining dynamical processes that operated during planet formation. Chondritic meteorites are asteroidal fragments that retain records of the first few million years of solar system history. The deuterium/hydrogen (D/H) values of water in carbonaceous chondrites are distinct from those in comets and Saturn's moon Enceladus, implying that they formed in a different region of the solar system, contrary to predictions of recent dynamical models. The D/H values of water in carbonaceous chondrites also argue against an influx of water ice from the outer solar system, which has been invoked to explain the nonsolar oxygen isotopic composition of the inner solar system. The bulk hydrogen and nitrogen isotopic compositions of CI chondrites suggest that they were the principal source of Earth's volatiles.
Collapse
Affiliation(s)
- C M O'D Alexander
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The biological record suggests that life on Earth arose as soon as conditions were favorable, which indicates that life either originated quickly, or arrived from elsewhere to seed Earth. Experimental research under the theme of “astrobiology” has produced data that some view as strong evidence for the second possibility, known as the panspermia hypothesis. While it is not unreasonable to consider the possibility that Earth’s life originated elsewhere and potentially much earlier, we conclude that the current literature offers no definitive evidence to support this hypothesis.
Chladni’s view, that they fall from the skies, pronounced in 1795, was ridiculed by the learned men of the times. (Rachel, 1881) Evidence of life on Mars, even if only in the distant past, would finally answer the age-old question of whether living beings on Earth are alone in the universe. The magnitude of such a discovery is illustrated by President Bill Clinton’s appearance at a 1996 press conference to announce that proof had been found at last. A meteorite chipped from the surface of the Red Planet some 15 million years ago appeared to contain the fossil remains of tiny life-forms that indicated life had once existed on Mars. (Young and Martel, 2010)
Collapse
|
47
|
Abstract
AbstractThe insoluble organic material preserved in primitive chondritic meteorites shares many similarities with the refractory organic material in interplanetary dust particles and comets, suggesting that there is a genetic link between the organic matter in objects that formed between ~3 AU and ~30 AU from the Sun. These similarities include large D and 15N enrichments in bulk and even more extreme enrichments in isotopic hotspots. The enrichments attest to formation in very cold environments, either in the outer Solar System or the protosolar molecular cloud. There are many properties of this organic material that are consistent with an interstellar origin, but a Solar System origin cannot be ruled out. Similar organic material is presumably an important component of most protoplanetary disks, and heating or sputtering of this material would be a source of PAHs in disks. The soluble organic matter was more heavily effected by processes on the chondritic parent bodies than the insoluble material. Amino acids, for instance, probably formed by reaction of ketones and aldehydes with NH3 and HCN. The accretion of the relatively volatile NH3 and HCN, presumably in ices, strengthens the chondrite-comet connection. However, unlike most comets the water in chondrites, when it was accreted, had D/H ratios that were similar to or depleted relative to Earth.
Collapse
|
48
|
Abstract
AbstractComets are made of ices, organics and minerals that record the chemistry of the outer regions of the primitive solar nebula where they agglomerated 4.6 Gyr ago. Compositional analyses of comets can provide important clues on the chemical and physical processes that occurred in the early phases of Solar System formation, and possibly in the natal molecular cloud that predated the formation of the solar nebula. This paper presents a short review of our present knowledge of the composition of comets. Implications for the origin of cometary materials are discussed.
Collapse
|
49
|
Herd CDK, Blinova A, Simkus DN, Huang Y, Tarozo R, Alexander CMO, Gyngard F, Nittler LR, Cody GD, Fogel ML, Kebukawa Y, Kilcoyne ALD, Hilts RW, Slater GF, Glavin DP, Dworkin JP, Callahan MP, Elsila JE, De Gregorio BT, Stroud RM. Origin and evolution of prebiotic organic matter as inferred from the Tagish Lake meteorite. Science 2011; 332:1304-7. [PMID: 21659601 DOI: 10.1126/science.1203290] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The complex suite of organic materials in carbonaceous chondrite meteorites probably originally formed in the interstellar medium and/or the solar protoplanetary disk, but was subsequently modified in the meteorites' asteroidal parent bodies. The mechanisms of formation and modification are still very poorly understood. We carried out a systematic study of variations in the mineralogy, petrology, and soluble and insoluble organic matter in distinct fragments of the Tagish Lake meteorite. The variations correlate with indicators of parent body aqueous alteration. At least some molecules of prebiotic importance formed during the alteration.
Collapse
Affiliation(s)
- Christopher D K Herd
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Recent developments in analytical instrumentation have led to revolutionary discoveries in cosmochemistry. Instrumental advances have been made along two lines: (i) increase in spatial resolution and sensitivity of detection, allowing for the study of increasingly smaller samples, and (ii) increase in the precision of isotopic analysis that allows more precise dating, the study of isotopic heterogeneity in the Solar System, and other studies. A variety of instrumental techniques are discussed, and important examples of discoveries are listed. Instrumental techniques and instruments include the ion microprobe, laser ablation gas MS, Auger EM, resonance ionization MS, accelerator MS, transmission EM, focused ion-beam microscopy, atom probe tomography, X-ray absorption near-edge structure/electron loss near-edge spectroscopy, Raman microprobe, NMR spectroscopy, and inductively coupled plasma MS.
Collapse
|