1
|
Sakurai Y, Yu L, Matsuda A, Maishi N, Hida K. Vascular Inflammation and Cancer Malignancy. J Oral Biosci 2025:100671. [PMID: 40403964 DOI: 10.1016/j.job.2025.100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/17/2025] [Accepted: 05/20/2025] [Indexed: 05/24/2025]
Abstract
BACKGROUND Vascular inflammation is a key contributor to cancer progression and metastasis. Tumor endothelial cells (TECs) respond to microbial, metabolic, and therapeutic stimuli by upregulating adhesion molecules and cytokines, which facilitates tumor cell adhesion and immune evasion. HIGHLIGHT This review focuses on three representative vascular inflammatory triggers: Streptococcus mutans-induced endothelial activation, the oxLDL/LOX-1 signaling axis, and chemotherapy-induced vascular dysfunction. These mechanisms converge to establish a pre-metastatic niche. Emerging strategies including microbiota modulation, metabolic targeting, and low-dose metronomic (LDM) chemotherapy, have shown promise in preclinical studies for preserving vascular integrity and reducing inflammation. CONCLUSION Targeting vascular inflammation is a novel therapeutic approach to suppressing metastasis and cardiovascular events. Further studies are required to validate predictive biomarkers and optimize these strategies for clinical applications.
Collapse
Affiliation(s)
- Yuya Sakurai
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; Department of Dental Anesthesiology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Li Yu
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Aya Matsuda
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Abou-Shanab AM, Gaser OA, Galal N, Mohamed A, Atta D, Kamar SS, Magdy S, Khedr MA, Elkhenany H, El-Badri N. PHD-2/HIF-1α axis mediates doxorubicin-induced angiogenesis in SH-SY5Y neuroblastoma microenvironment: a potential survival mechanism. Sci Rep 2025; 15:7487. [PMID: 40032892 PMCID: PMC11876694 DOI: 10.1038/s41598-025-89884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
The response of neuroblastoma (NB) cells to chemotherapeutics and their influence on NB microenvironment remain incompletely understood. Herein, we examined the underlying molecular mechanism via which Doxorubicin, a chemotherapeutic agent used for NB treatment, promotes proangiogenic response in the SH-SY5Y microenvironment. Doxorubicin treatment at 1 µg/ml reduced SH-SY5Y cell proliferation and primed the apoptosis pathway. Unexpectedly, SH-SY5Y cells treated with doxorubicin upregulated their expression of the pro-angiogenic factors, including vascular endothelial growth factor (VEGF), platelets-derived growth factor (PDGF), and matrix metalloprotease-2 (MMP-2) and secretion of nitric oxide. To assess the functional angiogenesis of SH-SY5Y cells pre-treated with doxorubicin, an indirect co-culture system with human umbilical vein endothelial cells (HUVEC) was established. These HUVECs acquired enhanced proliferation, migration capacity, and tube formation capability and exhibited increased nitric oxide (NO) production, in addition to upregulated α-smooth muscle actin expression, suggesting enhanced contractility. In-ovo studies of the neo-angiogenic response of SH-SY5Y pre-treated with doxorubicin further show their promoted neo-angiogenesis as indicated by the generated blood vessels and histological analysis of CD31 expression. Inhibition of PHD-2 could be a potential target for doxorubicin, as indicated by molecular docking, molecular dynamics (MD) simulation, and MM-GBSA calculations, leading to hypoxia-inducible factor-1 alpha (HIF-1α) stabilization. Bioinformatics analyses and enrichment analyses of RNA-seq data revealed activation of Pi3K pathway which is further validated in-vitro. These results provide evidence of the unexpected pro-angiogenic response of SH-SY5Y cells to doxorubicin treatment and suggest the potential use of multi-modal therapeutic regimens for a more comprehensive approach to NB treatment.
Collapse
Affiliation(s)
- Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ola A Gaser
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Noha Galal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Alaa Mohamed
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Dina Atta
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Samaa Samir Kamar
- Histology Department, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Mennatallah A Khedr
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt.
| |
Collapse
|
3
|
Guelfi S, Hodivala-Dilke K, Bergers G. Targeting the tumour vasculature: from vessel destruction to promotion. Nat Rev Cancer 2024; 24:655-675. [PMID: 39210063 DOI: 10.1038/s41568-024-00736-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
As angiogenesis was recognized as a core hallmark of cancer growth and survival, several strategies have been implemented to target the tumour vasculature. Yet to date, attempts have rarely been so diverse, ranging from vessel growth inhibition and destruction to vessel normalization, reprogramming and vessel growth promotion. Some of these strategies, combined with standard of care, have translated into improved cancer therapies, but their successes are constrained to certain cancer types. This Review provides an overview of these vascular targeting approaches and puts them into context based on our subsequent improved understanding of the tumour vasculature as an integral part of the tumour microenvironment with which it is functionally interlinked. This new knowledge has already led to dual targeting of the vascular and immune cell compartments and sets the scene for future investigations of possible alternative approaches that consider the vascular link with other tumour microenvironment components for improved cancer therapy.
Collapse
Affiliation(s)
- Sophie Guelfi
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK.
| | - Gabriele Bergers
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Liu D, Guo L, Waasdorp C, Meijer SL, Bootsma S, Oyarce C, Bijlsma MF, van Laarhoven HWM. Hyaluronidase improves the efficacy of nab-paclitaxel after prolonged angiogenesis inhibition in preclinical models for esophagogastric cancer. Biomed Pharmacother 2024; 178:117261. [PMID: 39106708 DOI: 10.1016/j.biopha.2024.117261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND Long-term anti-angiogenesis leads to pruned vasculature, densely deposited extracellular matrix (ECM), and consequently reduced chemotherapy delivery in esophagogastric cancer (EGC). To address this issue, we evaluated the efficacy of adding a hyaluronidase or a NO-donor to the regimen of chemotherapy and anti-angiogenic drugs. METHODS A patient-derived EGC xenograft model was developed. Grafted mice were randomly assigned to four experimental groups and one control group. The experimental groups received DC101, a murine angiogenesis inhibitor, and nab-paclitaxel (NPTX), with the addition of hyaluronidase (PEGPH20), or NO-donor (nitroglycerine, NTG), or their combination, respectively. We compared tumor growth during 17 days of treatment. We performed immunohistochemistry for ECM components hyaluronan (HA) and collagen, CD31 for endothelial cells, and γH2AX for DNA damage. The positively stained areas were quantified, and vessel diameters were measured using QuPath software. RESULTS Prolonged DC101 treatment induced deposition of HA (p<0.01) and collagen (p<0.01). HA was effectively degraded by PEGPH20 (p<0.001), but not by NTG as expected. Both PEGPH20 (p<0.05) and NTG (p<0.01) dilated vessels collapsed in response to long-term DC101 treatment. However, only PEGPH20 (rather than NTG) was found to significantly inhibit tumor growth (p<0.05) in combination with NPTX and DC101. CONCLUSIONS These findings suggest that the mechanical barrier of HA is the major reason responsible for the resistance developed during prolonged anti-angiogenesis in EGC. Incorporating PEGPH20 into the existing treatment regimen is promising to improve outcomes for patients with EGC.
Collapse
Affiliation(s)
- Dajia Liu
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Lihui Guo
- Amsterdam UMC location University of Amsterdam, Department Experimental Immunology, Amsterdam Infection and Immunity Center, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Cynthia Waasdorp
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Sybren L Meijer
- Amsterdam UMC Location University of Amsterdam, Department of Pathology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Sanne Bootsma
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Cesar Oyarce
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Delgado-González E, Ríos-Arellano EDL, Anguiano B, Aceves C. Molecular Iodine Improves the Efficacy and Reduces the Side Effects of Metronomic Cyclophosphamide Treatment against Mammary Cancer Progression. Int J Mol Sci 2024; 25:8822. [PMID: 39201507 PMCID: PMC11354407 DOI: 10.3390/ijms25168822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Metronomic chemotherapy with cyclophosphamide (Cpp) has shown promising results in cancer protocols. These lower and prolonged doses have antiangiogenic, pro-cytotoxic, and moderate secondary effects. Molecular iodine (I2) reduces the viability of cancer cells and, with chemotherapeutic agents, activates the antitumoral immune response and diminishes side effects. The present work evaluates the adjuvant of oral I2 with Cpp using a murine model of mammary cancer. Female Sprague Dawley rats with 7,12-dimethylbenzantracene-induced tumors received Cpp intraperitoneal (50 and 70 mg/kg two times/week, iCpp50 and iCpp70) and oral (0.03%; 50 mg/Kg; oCpp50) doses. I2 (0.05%, 50 mg/100 mL) and oCpp50 were offered in drinking water for three weeks. iCpp70 was the most efficient antitumoral dose but generated severe body weight loss and hemorrhagic cystitis (HC). I2 prevented body weight loss, exhibited adjuvant actions with Cpp, decreasing tumor growth, and canceled HC mechanisms, including decreases in vascular endothelial growth factor (VEGF) and Survivin expression. oCpp50 + I2 diminished angiogenic signals (CD34, vessel-length, and VEGF content) and proinflammatory cytokines (interleukin-10 and tumor necrosis factor-alpha) and increased cytotoxic (lymphocytic infiltration, CD8+ cells, Tbet, and interferon-gamma) and antioxidant markers (nuclear erythroid factor-2 and glutathione peroxidase). I2 enhances the effectiveness of oCpp, making it a compelling candidate for a clinical protocol.
Collapse
Affiliation(s)
| | | | | | - Carmen Aceves
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Juriquilla 76230, Querétaro, Mexico; (E.D.-G.); (E.d.l.R.-A.); (B.A.)
| |
Collapse
|
6
|
Deo A, Sleeman JP, Shaked Y. The role of host response to chemotherapy: resistance, metastasis and clinical implications. Clin Exp Metastasis 2024; 41:495-507. [PMID: 37999904 DOI: 10.1007/s10585-023-10243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Chemotherapy remains the primary treatment for most metastatic cancers. However, the response to chemotherapy and targeted agents is often transient, and concurrent development of resistance is the primary impediment to effective cancer therapy. Strategies to overcome resistance to treatment have focused on cancer cell intrinsic factors and the tumor microenvironment (TME). Recent evidence indicates that systemic chemotherapy has a significant impact on the host that either facilitates tumor growth, allowing metastatic spread, or renders treatment ineffective. These host responses include the release of bone marrow-derived cells, activation of stromal cells in the TME, and induction of different molecular effectors. Here, we provide an overview of chemotherapy-induced systemic host responses that support tumor aggressiveness and metastasis, and which contribute to therapy resistance. Studying host responses to chemotherapy provides a solid basis for the development of adjuvant strategies to improve treatment outcomes and delay resistance to chemotherapy. This review discusses the emerging field of host response to cancer therapy, and its preclinical and potential clinical implications, explaining how under certain circumstances, these host effects contribute to metastasis and resistance to chemotherapy.
Collapse
Affiliation(s)
- Abhilash Deo
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jonathan P Sleeman
- European Centre for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Karlsruhe Institute for Technology (KIT), IBCS-BIP, Campus Nord, 76344, Eggenstein- Leopoldshafen, Germany
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
7
|
You H, Zhao P, Zhao X, Zheng Q, Ma W, Cheng K, Li M, Kou J, Feng W. Promotion of tumor angiogenesis and growth induced by low-dose antineoplastic agents via bone-marrow-derived cells in tumor tissues. Front Pharmacol 2024; 15:1414832. [PMID: 39119610 PMCID: PMC11306047 DOI: 10.3389/fphar.2024.1414832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Abstract
Background More research is needed to solidify the basis for reasonable metronomic chemotherapy regimens due to the inconsistent clinical outcomes from studies on metronomic chemotherapy with antineoplastic agents, along with signs of a nonlinear dose-response relationship at low doses. The present study therefore explored the dose-response relationships of representative antineoplastic agents in low dose ranges and their underlying mechanisms. Methods Cyclophosphamide (CPA) and 5-fluorouracil (5-Fu) were employed to observe the effects of the frequent administration of low-dose antineoplastic agents on tumor growth, tumor angiogenesis, and bone-marrow-derived cell (BMDC) mobilization in mouse models. The effects of antineoplastic agents on tumor and endothelial cell functions with or without BMDCs were analyzed in vitro. Results Tumor growth and metastasis were significantly promoted after the administration of CPA or 5-Fu at certain low dose ranges, and were accompanied by enhanced tumor angiogenesis and proangiogenic factor expression in tumor tissues, increased proangiogenic BMDC release in the circulating blood, and augmented proangiogenic BMDC retention in tumor tissues. Low concentrations of CPA or 5-Fu were found to significantly promote tumor cell migration and invasion, and enhance BMDC adhesion to endothelial cells in vitro. Conclusion These results suggest that there are risks in empirical metronomic chemotherapy using low-dose antineoplastic agents and the optimal dosage and administration schedule of antineoplastic agents need to be determined through further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Weiyi Feng
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
8
|
Pion E, Haerteis S, Aung T. Application of Laser Speckle Contrast Imaging (LSCI) for the Angiogenesis Measurement of Tumors in the Chorioallantoic Membrane (CAM) Model. Methods Mol Biol 2023; 2572:141-153. [PMID: 36161414 DOI: 10.1007/978-1-0716-2703-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tumor angiogenesis is one essential aspect for the growth and metastasis of cancer cells, which means that adequate in vivo angiogenesis models are of utmost importance for the investigation of such diseases. The chick chorioallantoic membrane (CAM) model is one established method for this purpose and has already been used for research on multiple cancer types. One important part of the evaluation of tumors grafted onto the CAM is the measurement of tumor-induced angiogenesis. In order to address this central aspect, we utilized the novel PeriCam perfusion speckle imager (PSI) system high resolution (HR) model (Perimed AB, Järfälla, Sweden), which is based on laser speckle contrast imaging (LSCI) for the semiquantitative measurement of blood flow in the CAM model. This method enables a fast and accurate analysis of the angiogenesis of cell line tumors and primary tumors that are grafted onto the CAM. The proposed model can be regarded as a precursor model for personalized cancer therapy.
Collapse
Affiliation(s)
- Eric Pion
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany.
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, Deggendorf, Germany.
| |
Collapse
|
9
|
Wani FA, Behera K, Patel R. Amphiphilic Micelles as Superior Nanocarriers in Drug Delivery: from Current Preclinical Surveys to Structural Frameworks. ChemistrySelect 2022. [DOI: 10.1002/slct.202201928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Farooq Ahmad Wani
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia (A Central University) New Delhi 110025 India
- Department of Chemistry Jamia Millia Islamia (A Central University) New Delhi 110025 India
| | - Kamalakanta Behera
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia (A Central University) New Delhi 110025 India
| | - Rajan Patel
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia (A Central University) New Delhi 110025 India
| |
Collapse
|
10
|
Vascular disrupting agent-induced amplification of tumor targeting and prodrug activation boosts anti-tumor efficacy. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Hypoxic Hepatocellular Carcinoma Cells Acquire Arsenic Trioxide Resistance by Upregulating HIF-1α Expression. Dig Dis Sci 2022; 67:3806-3816. [PMID: 34383201 DOI: 10.1007/s10620-021-07202-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Although arsenic trioxide (ATO) is used in the treatment of advanced hepatocellular carcinoma (HCC) in clinical trials, it is not satisfactory in terms of improving HCC patients' overall survival. Intratumoral hypoxia and overexpression of hypoxia-inducible factor-1α (HIF-1α) may result in ATO resistance and tumor progression. AIMS We investigated the mechanisms involving HIF-1α expression and acquired ATO chemoresistance in HCC cells and mice. METHODS The therapeutic effects of ATO in normoxic and hypoxic HCC cells were assessed using cell viability and apoptosis assays in vitro and a xenograft model in vivo. mRNA and protein expression of HIF-1α, P-glycoprotein, and VEGF were measured by qRT-PCR and western blotting. HIF-1α inhibition was performed to investigate the mechanism of ATO resistance. VEGF secretion was tested using ELISA and tube formation assays. RESULTS Compared to normoxic cells, hypoxic HCC cells were more resistant to ATO, with higher IC50 values and less apoptosis, and upregulated HIF-1α protein expression, accompanied with the enhancement of P-glycoprotein and VEGF synthesis after ATO treatment. VEGF secretion was elevated in the supernatant of ATO-treated HCC cells, and this change can potentiate angiogenesis in vitro. HIF-1α inhibition attenuated ATO resistance and angiogenesis and promoted the anticancer effects of ATO both in vitro and in vivo by downregulating therapy-induced P-glycoprotein and VEGF overexpression. CONCLUSIONS Hypoxic HCC cells acquire ATO resistance by upregulating HIF-1α levels; thus, combining ATO with a HIF-1α-targeting agent may lead to enhanced antitumor effects in HCC.
Collapse
|
12
|
Chen Y, Liu H, Zheng Q, Li H, You H, Feng Y, Feng W. Promotion of tumor progression induced by continuous low-dose administration of antineoplastic agent gemcitabine or gemcitabine combined with cisplatin. Life Sci 2022; 306:120826. [PMID: 35870618 DOI: 10.1016/j.lfs.2022.120826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND AND OBJECTIVES There are indications that certain antineoplastic agents at low dosages may exhibit abnormal pharmacological actions, such as promoting tumor growth. However, the phenomenon still needs to be further confirmed, and its underlying mechanisms have not yet been fully elucidated. METHODS Gemcitabine (GEM) and cisplatin (CDDP) were employed as representative antineoplastic agents to observe effects of continuous low-dose chemotherapy with GEM or GEM combined with CDDP (GEM+CDDP) on tumor formation and growthin xenograft tumor models in vivo. Tumor and endothelial cell functions, apoptosis, cell cycle analysis, as well as bone marrow derived cells (BMDCs) mobilization, were evaluated with transwell, MTT or flow cytometry analysis in vitro, respectively. Histological methods were employed to assess angiogenesis in tumor tissues. RESULTS The results showed that tumor formation and growth were both significantly promoted by GEM or GEM+CDDP at as low as half of the metronomic dosages, which were accompanied by enhancements of angiogenesis in tumor tissues and the release of proangiogenic BMDCs in the circulating blood. Additionally, GEM or GEM+CDDP at low concentrations dramatically facilitated the proliferation, migration, and invasion of tumor cells in vitro. Cell-cycle arrest, activation of associated apoptotic proteins, and inhibition of apoptosis were also observed in tumor cells. CONCLUSIONS These findings indicate that, the continuous low-dose administration of GEM and GEM+CDDP can promote tumorigenesis and tumor progression in vivo by inhibiting apoptosis, mobilizing BMDCs, and promoting angiogenesis in certain dose ranges. These findings urge further investigations to avoid the potential risks in current empiric continuous low-dose chemotherapy regimens with antineoplastic agents. MAJOR FINDING This study observes a previously neglected pharmacological phenomenon and investigates its mechanism of that the continuous low-dose administration of some antineoplastic agents in certain dose ranges can promote tumorigenesis and tumor progression in vitro and in vivo, through stimulation of tumor cell functions directly as well as enhancement of tumor angiogenesis by BMDCs recruitment indirectly. The results alert to a potential risk in current empirically based continuous low-dose chemotherapy regimens such as metronomic chemotherapy.
Collapse
Affiliation(s)
- Yanshen Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, PR China; Department of Pharmacy, Jiangsu Vocational College of Medicine, Jiefang South Road 283 th, Yancheng 224005, Jiangsu, PR China
| | - Hua Liu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, PR China
| | - Qiaowei Zheng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, PR China
| | - Houli Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, PR China
| | - Huining You
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, PR China
| | - Yan Feng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, PR China
| | - Weiyi Feng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, PR China.
| |
Collapse
|
13
|
Huang M, Lin Y, Wang C, Deng L, Chen M, Assaraf YG, Chen ZS, Ye W, Zhang D. New insights into antiangiogenic therapy resistance in cancer: Mechanisms and therapeutic aspects. Drug Resist Updat 2022; 64:100849. [PMID: 35842983 DOI: 10.1016/j.drup.2022.100849] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiogenesis is a hallmark of cancer and is required for tumor growth and progression. Antiangiogenic therapy has been revolutionarily developing and was approved for the treatment of various types of cancer for nearly two decades, among which bevacizumab and sorafenib continue to be the two most frequently used antiangiogenic drugs. Although antiangiogenic therapy has brought substantial survival benefits to many cancer patients, resistance to antiangiogenic drugs frequently occurs during clinical treatment, leading to poor outcomes and treatment failure. Cumulative evidence has demonstrated that the intricate interplay among tumor cells, bone marrow-derived cells, and local stromal cells critically allows for tumor escape from antiangiogenic therapy. Currently, drug resistance has become the main challenge that hinders the therapeutic efficacies of antiangiogenic therapy. In this review, we describe and summarize the cellular and molecular mechanisms conferring tumor drug resistance to antiangiogenic therapy, which was predominantly associated with redundancy in angiogenic signaling molecules (e.g., VEGFs, GM-CSF, G-CSF, and IL17), alterations in biological processes of tumor cells (e.g., tumor invasiveness and metastasis, stemness, autophagy, metabolic reprogramming, vessel co-option, and vasculogenic mimicry), increased recruitment of bone marrow-derived cells (e.g., myeloid-derived suppressive cells, tumor-associated macrophages, and tumor-associated neutrophils), and changes in the biological functions and features of local stromal cells (e.g., pericytes, cancer-associated fibroblasts, and endothelial cells). We also review potential biomarkers to predict the response to antiangiogenic therapy in cancer patients, which mainly consist of imaging biomarkers, cellular and extracellular proteins, a certain type of bone marrow-derived cells, local stromal cell content (e.g., pericyte coverage) as well as serum or plasma biomarkers (e.g., non-coding RNAs). Finally, we highlight the recent advances in combination strategies with the aim of enhancing the response to antiangiogenic therapy in cancer patients and mouse models. This review introduces a comprehensive understanding of the mechanisms and biomarkers associated with the evasion of antiangiogenic therapy in cancer, providing an outlook for developing more effective approaches to promote the therapeutic efficacy of antiangiogenic therapy.
Collapse
Affiliation(s)
- Maohua Huang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Yuning Lin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Chenran Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Minfeng Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for Biotechnology, St. John's University, NY 11439, USA.
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
14
|
Carcamo B, Francia G. Cyclic Metronomic Chemotherapy for Pediatric Tumors: Six Case Reports and a Review of the Literature. J Clin Med 2022; 11:jcm11102849. [PMID: 35628975 PMCID: PMC9144744 DOI: 10.3390/jcm11102849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 05/13/2022] [Indexed: 12/03/2022] Open
Abstract
We report a retrospective case series of six Hispanic children with tumors treated with metronomic chemotherapy. The six cases comprised one rhabdoid tumor of the kidney, one ependymoma, two medulloblastomas, one neuroblastoma, and a type II neurocytoma of the spine. Treatment included oral cyclophosphamide daily for 21 days alternating with oral etoposide daily for 21 days in a backbone of daily valproic acid and celecoxib. In one case, celecoxib was substituted with sulindac. Of the six patients, three showed complete responses, and all patients showed some response to metronomic therapy with only minor hematologic toxicity. One patient had hemorrhagic gastritis likely associated with NSAIDs while off prophylactic antacids. These data add to a growing body of evidence suggesting that continuous doses of valproic acid and celecoxib coupled with alternating metronomic chemotherapy of agents such as etoposide and cyclophosphamide can produce responses in pediatric tumors relapsing to conventional dose chemotherapy.
Collapse
Affiliation(s)
- Benjamin Carcamo
- Department of Pediatric Hematology Oncology, El Paso Children’s Hospital, El Paso, TX 79905, USA
- Department of Pediatrics, Texas Tech University Health Science Center, El Paso, TX 79430, USA
- Correspondence: (B.C.); (G.F.); Tel.: +1-915-479-8970 (B.C.); +1-915-747-8025 (G.F.); Fax: +1-915-242-8437 (B.C.); +1-915-747-5808 (G.F.)
| | - Giulio Francia
- Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, TX 79968, USA
- Correspondence: (B.C.); (G.F.); Tel.: +1-915-479-8970 (B.C.); +1-915-747-8025 (G.F.); Fax: +1-915-242-8437 (B.C.); +1-915-747-5808 (G.F.)
| |
Collapse
|
15
|
Fatherree JP, Guarin JR, McGinn RA, Naber SP, Oudin MJ. Chemotherapy-Induced Collagen IV Drives Cancer Cell Motility through Activation of Src and Focal Adhesion Kinase. Cancer Res 2022; 82:2031-2044. [PMID: 35260882 PMCID: PMC9381104 DOI: 10.1158/0008-5472.can-21-1823] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/15/2021] [Accepted: 03/04/2022] [Indexed: 01/07/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and deadly subtype of breast cancer, accounting for 30,000 cases annually in the United States. While there are several clinical trials ongoing to identify new agents to treat TNBC, the majority of patients with TNBC are treated with anthracycline- or taxane-based chemotherapies in the neoadjuvant setting, followed by surgical resection and adjuvant chemotherapy. While many patients respond well to this approach, as many as 25% will suffer local or metastatic recurrence within 5 years. Understanding the mechanisms that drive recurrence after chemotherapy treatment is critical to improving survival for patients with TNBC. It is well established that the extracellular matrix (ECM), which provides structure and support to tissues, is a major driver of tumor growth, local invasion, and dissemination of cancer cells to distant metastatic sites. In the present study, we show that decellularized ECM (dECM) obtained from chemotherapy-treated mice increases motility of treatment-naïve breast cancer cells compared with vehicle-treated dECM. Tandem-mass-tag proteomics revealed that anthracycline- and taxane-based chemotherapies induce drug-specific changes in tumor ECM composition. The basement membrane protein collagen IV was significantly upregulated in the ECM of chemotherapy-treated mice and patients treated with neoadjuvant chemotherapy. Collagen IV drove invasion via activation of Src and focal adhesion kinase signaling downstream of integrin α1 and α2, and inhibition of collagen IV-driven signaling decreased motility in chemotherapy-treated dECM. These studies provide a novel mechanism by which chemotherapy may induce metastasis via its effects on ECM composition. SIGNIFICANCE Cytotoxic chemotherapy induces significant changes in the composition of tumor ECM, inducing a more invasive and aggressive phenotype in residual tumor cells following chemotherapy.
Collapse
Affiliation(s)
- Jackson P. Fatherree
- Department of Biomedical Engineering, Tufts School of Engineering, Tufts University, Medford, Massachusetts
| | - Justinne R. Guarin
- Department of Biomedical Engineering, Tufts School of Engineering, Tufts University, Medford, Massachusetts
| | - Rachel A. McGinn
- Department of Biomedical Engineering, Tufts School of Engineering, Tufts University, Medford, Massachusetts
| | - Stephen P. Naber
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, Tufts School of Engineering, Tufts University, Medford, Massachusetts.,Corresponding Author: Madeleine J. Oudin, Science & Engineering Complex, 200 College Avenue, Medford, MA 02155. Phone: 617-627-2580; E-mail:
| |
Collapse
|
16
|
Michon S, Rodier F, Yu FTH. Targeted Anti-Cancer Provascular Therapy Using Ultrasound, Microbubbles, and Nitrite to Increase Radiotherapy Efficacy. Bioconjug Chem 2022; 33:1093-1105. [PMID: 34990112 DOI: 10.1021/acs.bioconjchem.1c00510] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoxia is an important mechanism of resistance to radiation therapy in many human malignancies including prostate cancer. It has been recently shown that ultrasound targeted microbubble cavitation (UTMC) can increase blood perfusion in skeletal muscle by triggering nitric oxide signaling. Interestingly, this effect was amplified with a sodium nitrite coinjection. Since sodium nitrite has been shown to synergize with radiotherapy (RT), we hypothesized that UTMC with a sodium nitrite coinjection could further radiosensitize solid tumors by increasing blood perfusion and thus reduce tumor hypoxia. We evaluated (1) the ability of UTMC with and without nitrite to increase perfusion in muscle (mouse hindlimbs) and human prostate tumors using different pulse lengths and pressure; (2) the efficacy of this approach as a provascular therapy given directly before RT in the human prostate subcutaneous xenografts PC3 tumor model. Using long pulses with various pressures, in muscle, the provascular response following UTMC was strong (6.61 ± 4.41-fold increase in perfusion post-treatment). In tumors, long pulses caused an increase in perfusion (2.42 ± 1.38-fold) at lower mechanical index (MI = 0.25) but not at higher MI (0.375, 0.5, and 0.750) when compared to control (no UTMC). However, when combined with RT, UTMC with long pulses (MI = 0.25) did not improve tumor growth inhibition. With short pulses, in muscle, the provascular response following UTMC (SONOS) + nitrite was strong (13.74 ± 8.60-fold increase in perfusion post-treatment). In tumors, UTMC (SONOS) + nitrite also caused a provascular response (1.94 ± 1.20-fold increase in perfusion post-treatment) that lasted for at least 10 min, but not with nitrite alone. Interestingly, the blunted provascular response observed for long pulses at higher MI without nitrite was reversed with the addition of nitrite. UTMC (SONOS) with and without nitrite caused an increase in perfusion in tumors. The provascular response observed for UTMC (SONOS) + nitrite was confirmed by histology. Finally, there was an improved growth inhibition for the 8 Gy RT dose + nitrite + UTMC group vs 8 Gy RT + nitrite alone. This effect was not significant with mice treated by UTMC + nitrite and receiving doses of 0 or 2 Gy RT. In conclusion, UTMC + nitrite increased blood flow leading to an increased efficacy of higher doses of RT in our tumor model, warranting further study of this strategy.
Collapse
Affiliation(s)
- Simon Michon
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, Québec H2X 0A9, Canada.,Institut de Génie Biomédical, Université de Montréal, Montréal, Québec H3T 1J4, Canada.,Département de Radiologie, Radio-Oncologie Et Médecine Nucléaire, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, Québec H2X 0A9, Canada.,Département de Radiologie, Radio-Oncologie Et Médecine Nucléaire, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - François T H Yu
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, Québec H2X 0A9, Canada.,Institut de Génie Biomédical, Université de Montréal, Montréal, Québec H3T 1J4, Canada.,Département de Radiologie, Radio-Oncologie Et Médecine Nucléaire, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
17
|
Guerrero J, Dasen B, Frismantiene A, Pigeot S, Ismail T, Schaefer DJ, Philippova M, Resink TJ, Martin I, Scherberich A. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:213-229. [PMID: 35259280 PMCID: PMC8929526 DOI: 10.1093/stcltm/szab021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/31/2021] [Indexed: 11/24/2022] Open
Abstract
Cells of the stromal vascular fraction (SVF) of human adipose tissue have the capacity to generate osteogenic grafts with intrinsic vasculogenic properties. However, cultured adipose-derived stromal cells (ASCs), even after minimal monolayer expansion, lose osteogenic capacity in vivo. Communication between endothelial and stromal/mesenchymal cell lineages has been suggested to improve bone formation and vascularization by engineered tissues. Here, we investigated the specific role of a subpopulation of SVF cells positive for T-cadherin (T-cad), a putative endothelial marker. We found that maintenance during monolayer expansion of a T-cad-positive cell population, composed of endothelial lineage cells (ECs), is mandatory to preserve the osteogenic capacity of SVF cells in vivo and strongly supports their vasculogenic properties. Depletion of T-cad-positive cells from the SVF totally impaired bone formation in vivo and strongly reduced vascularization by SVF cells in association with decreased VEGF and Adiponectin expression. The osteogenic potential of T-cad-depleted SVF cells was fully rescued by co-culture with ECs from a human umbilical vein (HUVECs), constitutively expressing T-cad. Ectopic expression of T-cad in ASCs stimulated mineralization in vitro but failed to rescue osteogenic potential in vivo, indicating that the endothelial nature of the T-cad-positive cells is the key factor for induction of osteogenesis in engineered grafts based on SVF cells. This study demonstrates that crosstalk between stromal and T-cad expressing endothelial cells within adipose tissue critically regulates osteogenesis, with VEGF and adiponectin as associated molecular mediators.
Collapse
Affiliation(s)
- Julien Guerrero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Boris Dasen
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Agne Frismantiene
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sebastien Pigeot
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tarek Ismail
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Maria Philippova
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Therese J Resink
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Corresponding author: Arnaud Scherberich, Department of Biomedicine, Hebelstrasse 20, University Hospital Basel, 4031 Basel, Switzerland. Tel: +41 061 328 73 75;
| |
Collapse
|
18
|
Missing data handling technique in joint modeling context. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Lai V, Neshat SY, Rakoski A, Pitingolo J, Doloff JC. Drug delivery strategies in maximizing anti-angiogenesis and anti-tumor immunity. Adv Drug Deliv Rev 2021; 179:113920. [PMID: 34384826 DOI: 10.1016/j.addr.2021.113920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Metronomic chemotherapy has been shown to elicit anti-tumor immune response and block tumor angiogenesis distinct from that observed with maximal tolerated dose (MTD) therapy. This review delves into the mechanisms behind anti-tumor immunity and seeks to identify the differential effect of dosing regimens, including daily low-dose and medium-dose intermittent chemotherapy (MEDIC), on both innate and adaptive immune populations involved in observed anti-tumor immune response. Given reports of VEGF/VEGFR blockade antagonizing anti-tumor immunity, drug choice, dose, and selective delivery determined by advanced formulations/vehicles are highlighted as potential sources of innovation for identifying anti-angiogenic modalities that may be combined with metronomic regimens without interrupting key immune players in the anti-tumor response. Engineered drug delivery mechanisms that exhibit extended and local release of anti-angiogenic agents both alone and in combination with chemotherapeutic treatments have also been demonstrated to elicit a potent and potentially systemic anti-tumor immune response, favoring tumor regression and stasis over progression. This review examines this interplay between various cancer models, the host immune response, and select anti-cancer agents depending on drug dosing, scheduling/regimen, and delivery modality.
Collapse
Affiliation(s)
- Victoria Lai
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah Y Neshat
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amanda Rakoski
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - James Pitingolo
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua C Doloff
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Division of Cancer Immunology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
20
|
Muñoz R, Girotti A, Hileeto D, Arias FJ. Metronomic Anti-Cancer Therapy: A Multimodal Therapy Governed by the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13215414. [PMID: 34771577 PMCID: PMC8582362 DOI: 10.3390/cancers13215414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Metronomic chemotherapy with different mechanisms of action against cancer cells and their microenvironment represents an exceptional holistic cancer treatment. Each type of tumor has its own characteristics, including each individual tumor in each patient. Understanding the complexity of the dynamic interactions that take place between tumor and stromal cells and the microenvironment in tumor progression and metastases, as well as the response of the host and the tumor itself to anticancer therapy, will allow therapeutic actions with long-lasting effects to be implemented using metronomic regimens. This study aims to highlight the complexity of cellular interactions in the tumor microenvironment and summarize some of the preclinical and clinical results that explain the multimodality of metronomic therapy, which, together with its low toxicity, supports an inhibitory effect on the primary tumor and metastases. We also highlight the possible use of nano-therapeutic agents as good partners for metronomic chemotherapy. Abstract The concept of cancer as a systemic disease, and the therapeutic implications of this, has gained special relevance. This concept encompasses the interactions between tumor and stromal cells and their microenvironment in the complex setting of primary tumors and metastases. These factors determine cellular co-evolution in time and space, contribute to tumor progression, and could counteract therapeutic effects. Additionally, cancer therapies can induce cellular and molecular responses in the tumor and host that allow them to escape therapy and promote tumor progression. In this study, we describe the vascular network, tumor-infiltrated immune cells, and cancer-associated fibroblasts as sources of heterogeneity and plasticity in the tumor microenvironment, and their influence on cancer progression. We also discuss tumor and host responses to the chemotherapy regimen, at the maximum tolerated dose, mainly targeting cancer cells, and a multimodal metronomic chemotherapy approach targeting both cancer cells and their microenvironment. In a combination therapy context, metronomic chemotherapy exhibits antimetastatic efficacy with low toxicity but is not exempt from resistance mechanisms. As such, a better understanding of the interactions between the components of the tumor microenvironment could improve the selection of drug combinations and schedules, as well as the use of nano-therapeutic agents against certain malignancies.
Collapse
Affiliation(s)
- Raquel Muñoz
- Department of Biochemistry, Physiology and Molecular Biology, University of Valladolid, Paseo de Belén, 47011 Valladolid, Spain
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
- Correspondence:
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| | - Denise Hileeto
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 361, Canada;
| | - Francisco Javier Arias
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| |
Collapse
|
21
|
Yu X, Su Q, Chang X, Chen K, Yuan P, Liu T, Tian R, Bai Y, Zhang Y, Chen X. Multimodal obstruction of tumorigenic energy supply via bionic nanocarriers for effective tumor therapy. Biomaterials 2021; 278:121181. [PMID: 34653932 DOI: 10.1016/j.biomaterials.2021.121181] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/05/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Sufficient energy generation based on effective transport of nutrient via abundant blood vessels in tumor tissue and subsequent oxidative metabolism in mitochondria is critical for growth, proliferation and migration of tumor. Thus the strategy to cut off this transport pathway (blood vessels) and simultaneously close the power house (mitochondria) is highly desired for tumor treatment. Herein, we fabricated a bionic nanocarrier with core-shell-corona structure to give selective and effective tumor therapy via stepwise destruction of existed tumor vessel, inhibition of tumor angiogenesis and dysfunction of tumor mitochondria. The core of this bionic nanocarrier consists of combretastatin A4 phosphate (CA4P) and vitamin K2 (VK2) co-loaded mesoporous silica nanoparticle (MSNs), which is in charge of the vasculature destruction and mitochondrial dysfunction after cargos release. The N-tert-butylacrylamide (TBAM) and tri-sulfated N-acetylglucosamine (TSAG) shell served as artificial affinity reagent against vascular endothelial growth factor (VEGF) for angiogenesis inhibition. As to guarantee that these actions only happened in tumor, the hyaluronic acid (HA) corona was introduced to endow the nanocarrier with tumor targeting property and stimuli-responsiveness for accurate therapy. Both in vitro and in vivo results indicated that the CA4P/VK2-MSNs-TBAM/TSAG-HA (CVMMGH for short) nanocarrier combined well-controllable manipulation of tumor vasculature and tumor mitochondria to effectivly cut off the tumorigenic energy supply, which performed significant inhibition of tumor growth, demonstrating the great candidate of our strategy for effective tumor therapy.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qi Su
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xiaowei Chang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kun Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Pingyun Yuan
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ran Tian
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yongkang Bai
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
22
|
Hsu PY, Mammadova A, Benkirane-Jessel N, Désaubry L, Nebigil CG. Updates on Anticancer Therapy-Mediated Vascular Toxicity and New Horizons in Therapeutic Strategies. Front Cardiovasc Med 2021; 8:694711. [PMID: 34386529 PMCID: PMC8353082 DOI: 10.3389/fcvm.2021.694711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular toxicity is a frequent adverse effect of current anticancer chemotherapies and often results from endothelial dysfunction. Vascular endothelial growth factor inhibitors (VEGFi), anthracyclines, plant alkaloids, alkylating agents, antimetabolites, and radiation therapy evoke vascular toxicity. These anticancer treatments not only affect tumor vascularization in a beneficial manner, they also damage ECs in the heart. Cardiac ECs have a vital role in cardiovascular functions including hemostasis, inflammatory and coagulation responses, vasculogenesis, and angiogenesis. EC damage can be resulted from capturing angiogenic factors, inhibiting EC proliferation, survival and signal transduction, or altering vascular tone. EC dysfunction accounts for the pathogenesis of myocardial infarction, atherothrombosis, microangiopathies, and hypertension. In this review, we provide a comprehensive overview of the effects of chemotherapeutic agents on vascular toxicity leading to hypertension, microvascular rarefaction thrombosis and atherosclerosis, and affecting drug delivery. We also describe the potential therapeutic approaches such as vascular endothelial growth factor (VEGF)-B and prokineticin receptor-1 agonists to maintain endothelial function during or following treatments with chemotherapeutic agents, without affecting anti-tumor effectiveness.
Collapse
Affiliation(s)
| | | | | | | | - Canan G. Nebigil
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, FMTS (Fédération de Médecine Translationnelle de l'Université de Strasbourg), Strasbourg, France
| |
Collapse
|
23
|
Su NW, Chen YJ. Metronomic Therapy in Oral Squamous Cell Carcinoma. J Clin Med 2021; 10:jcm10132818. [PMID: 34206730 PMCID: PMC8269021 DOI: 10.3390/jcm10132818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Metronomic therapy is characterized by drug administration in a low-dose, repeated, and regular manner without prolonged drug-free interval. The two main anticancer mechanisms of metronomic therapy are antiangiogenesis and immunomodulation, which have been demonstrated in several delicate in vitro and in vivo experiments. In contrast to the traditional maximum tolerated dose (MTD) dosing of chemotherapy, metronomic therapy possesses comparative efficacy but greatlydecreases the incidence and severity of treatment side-effects. Clinical trials of metronomic anticancer treatment have revealed promising results in a variety cancer types and specific patient populations such as the elderly and pediatric malignancies. Oral cavity squamous cell carcinoma (OCSCC) is an important health issue in many areas around the world. Long-term survival is about 50% in locally advanced disease despite having high-intensity treatment combined surgery, radiotherapy, and chemotherapy. In this article, we review and summarize the essence of metronomic therapy and focus on its applications in OCSCC treatment.
Collapse
Affiliation(s)
- Nai-Wen Su
- Department of Internal Medicine, Division of Hematology and Medical Oncology, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City 10449, Taiwan;
- Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, Taipei City 112021, Taiwan
| | - Yu-Jen Chen
- Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, Taipei City 112021, Taiwan
- Department of Radiation Oncology, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City 25160, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-2-2809-4661
| |
Collapse
|
24
|
Huang M, Chen M, Qi M, Ye G, Pan J, Shi C, Yang Y, Zhao L, Mo X, Zhang Y, Li Y, Zhong J, Lu W, Li X, Zhang J, Lin J, Luo L, Liu T, Tang PM, Hong A, Cao Y, Ye W, Zhang D. Perivascular cell-derived extracellular vesicles stimulate colorectal cancer revascularization after withdrawal of antiangiogenic drugs. J Extracell Vesicles 2021; 10:e12096. [PMID: 34035882 PMCID: PMC8138700 DOI: 10.1002/jev2.12096] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/02/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022] Open
Abstract
Antiangiogenic tyrosine kinase inhibitors (AA-TKIs) have become a promising therapeutic strategy for colorectal cancer (CRC). In clinical practice, a significant proportion of cancer patients temporarily discontinue AA-TKI treatment due to recurrent toxicities, economic burden or acquired resistance. However, AA-TKI therapy withdrawal-induced tumour revascularization frequently occurs, hampering the clinical application of AA-TKIs. Here, this study demonstrates that tumour perivascular cells mediate tumour revascularization after withdrawal of AA-TKI therapy. Pharmacological inhibition and genetic ablation of perivascular cells largely attenuate the rebound effect of CRC vascularization in the AA-TKI cessation experimental settings. Mechanistically, tumour perivascular cell-derived extracellular vehicles (TPC-EVs) contain Gas6 that instigates the recruitment of endothelial progenitor cells (EPCs) for tumour revascularization via activating the Axl pathway. Gas6 silence and an Axl inhibitor markedly inhibit tumour revascularization by impairing EPC recruitment. Consequently, combination therapy of regorafenib with the Axl inhibitor improves overall survival in mice metastatic CRC model by inhibiting tumour growth. Together, these data shed new mechanistic insights into perivascular cells in off-AA-TKI-induced tumour revascularization and indicate that blocking the Axl signalling may provide an attractive anticancer approach for sustaining long-lasting angiostatic effects to improve the therapeutic outcomes of antiangiogenic drugs in CRC.
Collapse
Affiliation(s)
- Maohua Huang
- College of PharmacyJinan UniversityGuangzhouChina
| | - Minfeng Chen
- College of PharmacyJinan UniversityGuangzhouChina
| | - Ming Qi
- College of PharmacyJinan UniversityGuangzhouChina
| | - Geni Ye
- College of PharmacyJinan UniversityGuangzhouChina
| | - Jinghua Pan
- Department of General Surgerythe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Changzheng Shi
- Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translationthe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yunlong Yang
- Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Luyu Zhao
- Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translationthe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Xukai Mo
- Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translationthe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yiran Zhang
- Department of General Surgerythe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yong Li
- College of PharmacyJinan UniversityGuangzhouChina
| | | | - Weijin Lu
- College of PharmacyJinan UniversityGuangzhouChina
| | - Xiaobo Li
- College of PharmacyJinan UniversityGuangzhouChina
| | - Jiayan Zhang
- College of PharmacyJinan UniversityGuangzhouChina
| | - Jinrong Lin
- Department of Obstetricsthe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Liangping Luo
- Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translationthe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | | | - Patrick Ming‐Kuen Tang
- Department of Anatomical and Cellular PathologyPrince of Wales HospitalThe Chinese University of Hong KongSha TinHong Kong
| | - An Hong
- Department of Cell BiologyJinan UniversityGuangzhouChina
| | - Yihai Cao
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstituteStockholmSweden
| | - Wencai Ye
- College of PharmacyJinan UniversityGuangzhouChina
| | | |
Collapse
|
25
|
Alternative Vascularization Mechanisms in Tumor Resistance to Therapy. Cancers (Basel) 2021; 13:cancers13081912. [PMID: 33921099 PMCID: PMC8071410 DOI: 10.3390/cancers13081912] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Tumors rely on blood vessels to grow and metastasize. Malignant tumors can employ different strategies to create a functional vascular network. Tumor cells can use normal processes of vessel formation but can also employ cancer-specific mechanisms, by co-opting normal vessels present in tissues or by turning themselves into vascular cells. These different types of tumor vessels have specific molecular and functional characteristics that profoundly affect tumor behavior and response to therapies, including drugs targeting the tumor vasculature (antiangiogenic therapies). In this review, we discuss how vessels formed by different mechanisms affect the intrinsic sensitivity of tumors to therapy and, on the other hand, how therapies can affect tumor vessel formation, leading to resistance to drugs, cancer recurrence, and treatment failure. Potential strategies to avoid vessel-mediated resistance to antineoplastic therapies will be discussed. Abstract Blood vessels in tumors are formed through a variety of different mechanisms, each generating vessels with peculiar structural, molecular, and functional properties. This heterogeneity has a major impact on tumor response or resistance to antineoplastic therapies and is now emerging as a promising target for strategies to prevent drug resistance and improve the distribution and efficacy of antineoplastic treatments. This review presents evidence of how different mechanisms of tumor vessel formation (vasculogenesis, glomeruloid proliferation, intussusceptive angiogenesis, vasculogenic mimicry, and vessel co-option) affect tumor responses to antiangiogenic and antineoplastic therapies, but also how therapies can promote alternative mechanisms of vessel formation, contributing to tumor recurrence, malignant progression, and acquired drug resistance. We discuss the possibility of tailoring treatment strategies to overcome vasculature-mediated drug resistance or to improve drug distribution and efficacy.
Collapse
|
26
|
Single arm, phase two study of low-dose metronomic eribulin in metastatic breast cancer. Breast Cancer Res Treat 2021; 188:91-99. [PMID: 33797651 PMCID: PMC8233258 DOI: 10.1007/s10549-021-06175-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/03/2021] [Indexed: 11/29/2022]
Abstract
Background Treatment options for metastatic breast cancer (MBC) refractory to anthracyclines and taxanes are limited. In a phase III trial, eribulin demonstrated a significant improvement in overall survival compared to treatment of physician’s choice, but had limited tolerability because of neutropenia and peripheral neuropathy. Based on prior studies of alternative treatment schedules with other therapies, we hypothesized that a low-dose metronomic schedule of eribulin would permit patients to remain on treatment more consistently without treatment delays, resulting in longer time to progression, and improved toxicity profile. Methods We conducted a multi-site single arm, phase II trial patients with MBC. All patients were treated with metronomic eribulin (0.9 mg/m2 administered intravenously on days 1, 8, and 15 of a 28-day cycle.) Treatment was continued until the patient developed disease progression, unacceptable toxicity, or chose to stop the study. Patients must have had prior taxane exposure. The primary endpoint was progression-free survival. Secondary end points were overall survival, response rate, and clinical benefit rate. Exploratory biomarkers were performed to analyze change in levels of circulating endothelial cells (CECs), circulating endothelial precursors, and carbonic anhydrase IX (CAIX) with response to therapy. Findings We consented 86 patients and 59 were evaluable for final analysis. Median age was 59 years; 78% had HER2 negative tumors. The median progression-free survival (PFS) was 3.5 months with overall survival (OS) of 14.3 months. Objective response rate was 15% with clinical benefit rate of 48%. Reported grade 3 neutropenia and peripheral neuropathy were 18% and 5%, respectively. Treatment discontinuation due to toxicity was seen in 3% of patients. Interpretation Metronomic weekly low-dose eribulin is an active and tolerable regimen with significantly less myelosuppression, alopecia, and peripheral neuropathy than is seen with the approved dose and schedule, allowing longer duration of use and disease control, with similar outcomes compared to the standard dose regimen. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-021-06175-x.
Collapse
|
27
|
Khononov I, Jacob E, Fremder E, Dahan N, Harel M, Raviv Z, Krastev B, Shaked Y. Host response to immune checkpoint inhibitors contributes to tumor aggressiveness. J Immunother Cancer 2021; 9:e001996. [PMID: 33707313 PMCID: PMC7957134 DOI: 10.1136/jitc-2020-001996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have made a paradigm shift in clinical oncology due to unprecedented long-term remissions. However, only a small proportion of patients respond to ICI therapy. It is, therefore, essential to understand the mechanisms driving therapy resistance and to develop strategies for increasing response rates. We previously demonstrated that in response to various cancer treatment modalities, the host activates a range of biological processes that promote tumor regrowth and metastasis. Here, we characterize the host-mediated response to ICI therapy, and investigate its contribution to therapy resistance. METHODS Tumor cell migration, invasion and motility were assessed in the presence of plasma from ICI-treated mice and patients. Immune cell composition in peripheral blood and tumors of ICI-treated mice was assessed by flow and mass cytometry. Plasma host factors driving tumor aggressiveness were identified by proteomic profiling, followed by bioinformatic analysis. The therapeutic effect of inhibiting host-mediated processes in ICI-treated mice was assessed in a tumor model. RESULTS Tumor cells exhibit enhanced migratory and invasive properties in vitro on exposure to plasma from anti-PD1-treated mice. Moreover, mice intravenously injected with plasma-exposed tumor cells display increased metastatic burden and mortality rate in comparison to control arms. Furthermore, tumors from anti-PD1-treated mice as well as Matrigel plugs containing plasma from anti-PD1-treated mice are highly infiltrated with immune cell types associated with both antitumor and protumor activity. These collective findings suggest that anti-PD1 treatment induces a systemic host response that potentially counteracts the drug's therapeutic activity. Proteomic profiling of plasma from anti-PD1-treated mice reveals an activation of multiple biological pathways associated with tumor aggressiveness. Consequently, blocking IL-6, one of the key drivers of the identified biological pathways, counteracts ICI-induced metastatic properties in vitro and improves ICI treatment efficacy in vivo. Lastly, plasma samples from ICI-treated non-small cell lung cancer patients differentially affect tumor cell aggressiveness in vitro, with enhanced tumor cell motility correlating with a worse clinical outcome. CONCLUSIONS ICI therapy induces host-mediated processes that contribute to therapy resistance. Identification and analysis of such processes may lead to the discovery of biomarkers for clinical response and strategies for overcoming therapy resistance.
Collapse
MESH Headings
- A549 Cells
- Adaptive Immunity/drug effects
- Animals
- Breast Neoplasms/drug therapy
- Breast Neoplasms/immunology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Cell Movement/drug effects
- Cytokines/blood
- Drug Resistance, Neoplasm
- Female
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/toxicity
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, SCID
- Neoplasm Invasiveness
- Neoplasms/drug therapy
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/metabolism
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Mice
Collapse
Affiliation(s)
- Irina Khononov
- Rappaport Faculty of Medicine, Rappaport Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | - Ziv Raviv
- Rappaport Faculty of Medicine, Rappaport Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa, Israel
| | - Boris Krastev
- Clinic of Medical Oncology, MHAT Hospital for Women Health Nadezhda, Sofia, Bulgaria
| | - Yuval Shaked
- Rappaport Faculty of Medicine, Rappaport Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
28
|
Menzel L, Höpken UE, Rehm A. Angiogenesis in Lymph Nodes Is a Critical Regulator of Immune Response and Lymphoma Growth. Front Immunol 2020; 11:591741. [PMID: 33343570 PMCID: PMC7744479 DOI: 10.3389/fimmu.2020.591741] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor-induced remodeling of the microenvironment in lymph nodes (LNs) includes the formation of blood vessels, which goes beyond the regulation of metabolism, and shaping a survival niche for tumor cells. In contrast to solid tumors, which primarily rely on neo-angiogenesis, hematopoietic malignancies usually grow within pre-vascularized autochthonous niches in secondary lymphatic organs or the bone marrow. The mechanisms of vascular remodeling in expanding LNs during infection-induced responses have been studied in more detail; in contrast, insights into the conditions of lymphoma growth and lodging remain enigmatic. Based on previous murine studies and clinical trials in human, we conclude that there is not a universal LN-specific angiogenic program applicable. Instead, signaling pathways that are tightly connected to autochthonous and infiltrating cell types contribute variably to LN vascular expansion. Inflammation related angiogenesis within LNs relies on dendritic cell derived pro-inflammatory cytokines stimulating vascular endothelial growth factor-A (VEGF-A) expression in fibroblastic reticular cells, which in turn triggers vessel growth. In high-grade B cell lymphoma, angiogenesis correlates with poor prognosis. Lymphoma cells immigrate and grow in LNs and provide pro-angiogenic growth factors themselves. In contrast to infectious stimuli that impact on LN vasculature, they do not trigger the typical inflammatory and hypoxia-related stroma-remodeling cascade. Blood vessels in LNs are unique in selective recruitment of lymphocytes via high endothelial venules (HEVs). The dissemination routes of neoplastic lymphocytes are usually disease stage dependent. Early seeding via the blood stream requires the expression of the homeostatic chemokine receptor CCR7 and of L-selectin, both cooperate to facilitate transmigration of tumor and also of protective tumor-reactive lymphocytes via HEV structures. In this view, the HEV route is not only relevant for lymphoma cell homing, but also for a continuous immunosurveillance. We envision that HEV functional and structural alterations during lymphomagenesis are not only key to vascular remodeling, but also impact on tumor cell accessibility when targeted by T cell-mediated immunotherapies.
Collapse
Affiliation(s)
- Lutz Menzel
- Translational Tumor Immunology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Uta E. Höpken
- Microenvironmental Regulation in Autoimmunity and Cancer, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Armin Rehm
- Translational Tumor Immunology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
29
|
The Dichotomous Role of Bone Marrow Derived Cells in the Chemotherapy-Treated Tumor Microenvironment. J Clin Med 2020; 9:jcm9123912. [PMID: 33276524 PMCID: PMC7761629 DOI: 10.3390/jcm9123912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Bone marrow derived cells (BMDCs) play a wide variety of pro- and anti-tumorigenic roles in the tumor microenvironment (TME) and in the metastatic process. In response to chemotherapy, the anti-tumorigenic function of BMDCs can be enhanced due to chemotherapy-induced immunogenic cell death. However, in recent years, a growing body of evidence suggests that chemotherapy or other anti-cancer drugs can also facilitate a pro-tumorigenic function in BMDCs. This includes elevated angiogenesis, tumor cell proliferation and pro-tumorigenic immune modulation, ultimately contributing to therapy resistance. Such effects do not only contribute to the re-growth of primary tumors but can also support metastasis. Thus, the delicate balance of BMDC activities in the TME is violated following tumor perturbation, further requiring a better understanding of the complex crosstalk between tumor cells and BMDCs. In this review, we discuss the different types of BMDCs that reside in the TME and their activities in tumors following chemotherapy, with a major focus on their pro-tumorigenic role. We also cover aspects of rationally designed combination treatments that target or manipulate specific BMDC types to improve therapy outcomes.
Collapse
|
30
|
Dal Bo M, De Mattia E, Baboci L, Mezzalira S, Cecchin E, Assaraf YG, Toffoli G. New insights into the pharmacological, immunological, and CAR-T-cell approaches in the treatment of hepatocellular carcinoma. Drug Resist Updat 2020; 51:100702. [DOI: 10.1016/j.drup.2020.100702] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
|
31
|
Roles for receptor tyrosine kinases in tumor progression and implications for cancer treatment. Adv Cancer Res 2020; 147:1-57. [PMID: 32593398 DOI: 10.1016/bs.acr.2020.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Growth factors and their receptor tyrosine kinases (RTKs), a group of transmembrane molecules harboring cytoplasm-facing tyrosine-specific kinase functions, play essential roles in migration of multipotent cell populations and rapid proliferation of stem cells' descendants, transit amplifying cells, during embryogenesis and tissue repair. These intrinsic functions are aberrantly harnessed when cancer cells undergo intertwined phases of cell migration and proliferation during cancer progression. For example, by means of clonal expansion growth factors fixate the rarely occurring driver mutations, which initiate tumors. Likewise, autocrine and stromal growth factors propel angiogenesis and penetration into the newly sprouted vessels, which enable seeding micro-metastases at distant organs. We review genetic and other mechanisms that preempt ligand-mediated activation of RTKs, thereby supporting sustained cancer progression. The widespread occurrence of aberrant RTKs and downstream signaling pathways in cancer, identifies molecular targets suitable for pharmacological intervention. We list all clinically approved cancer drugs that specifically intercept oncogenic RTKs. These are mainly tyrosine kinase inhibitors and monoclonal antibodies, which can inhibit cancer but inevitably become progressively less effective due to adaptive rewiring processes or emergence of new mutations, processes we overview. Similarly important are patient treatments making use of radiation, chemotherapeutic agents and immune checkpoint inhibitors. The many interfaces linking RTK-targeted therapies and these systemic or local regimens are described in details because of the great promise offered by combining pharmacological modalities.
Collapse
|
32
|
Zheng K, Kros JM, Li J, Zheng PP. DNA-nanorobot-guided thrombin-inducing tumor infarction: raising new potential clinical concerns. Drug Discov Today 2020; 25:951-955. [PMID: 32205200 DOI: 10.1016/j.drudis.2020.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 11/19/2022]
Abstract
DNA-nanorobot-guided thrombin-inducing tumor infarction (DNA NanorobotTh-ITI) is emerging as a powerful therapeutic strategy for treatment of solid cancers. The technology represents a major advance in the application of DNA nanotechnology for anticancer therapy. More importantly, the technology is being translated from preclinical studies to the clinic owing to its promising anticancer effects with fewer toxicities demonstrated in preclinical settings. However, despite these beneficial effects of the technology, it is important to point out that some important potential clinical concerns remain to be addressed. Here, we raise these clinical concerns along with these beneficial effects of the technology. Hopefully, these newly raised potential clinical concerns could drive forward research in this field to expedite its clinical translation.
Collapse
Affiliation(s)
- Kang Zheng
- Department of Orthopedics, Ningbo Medical Center Li Hui Li Hospital, Ningbo, Zhejiang, China
| | - Johan M Kros
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jin Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping-Pin Zheng
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
33
|
Morgan RD, Banerjee S, Hall M, Clamp AR, Zhou C, Hasan J, Orbegoso C, Taylor S, Tugwood J, Lyon AR, Dive C, Rustin GJS, Jayson GC. Pazopanib and Fosbretabulin in recurrent ovarian cancer (PAZOFOS): A multi-centre, phase 1b and open-label, randomised phase 2 trial. Gynecol Oncol 2020; 156:545-551. [PMID: 31932108 DOI: 10.1016/j.ygyno.2020.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Vascular co-option is a resistance mechanism to anti-angiogenic agents, but combinations of anti-vascular agents may overcome this resistance. We report a phase 1b and randomised phase 2 trial to determine the safety and efficacy of pazopanib with fosbretabulin. METHODS Eligible patients had recurrent, epithelial ovarian cancer with a platinum-free interval (PFI) of 3 to 12 months. Patients were stratified according to PFI (>6 versus ≤6 months) and prior bevacizumab use. RESULTS Twelve patients were treated in the phase 1b. Commonest grade ≥ 2 adverse events (AEs) were hypertension (100%), neutropenia (50%), fatigue (50%), vomiting (50%). There was one DLT (grade 3 fatigue). The recommended phase 2 dose level was fosbretabulin 54 mg/m2 on days 1, 8 and 15 and pazopanib 600 mg once daily (od), every 28 days, which was then compared to pazopanib 800 mg od in a randomised phase 2 trial. Twenty-one patients were randomised (1:1) in the phase 2 trial. In phase 1b and phase 2, four patients treated with pazopanib and fosbretabulin developed reversible, treatment-related cardiac AEs, leading to premature discontinuation of the study. In the phase 2 trial, the median PFS was 7.6 months (95% CI 4.1-not estimated) versus 3.7 months (95% CI 1.0-8.1) in favour of the experimental arm (HR 0.30, 95% CI 0.09-1.03, P = .06). CONCLUSIONS It remains unclear whether pazopanib with with fosbretabulin is an efficacious regimen to treat epithelial ovarian cancer. Effective cardiac risk mitigation is needed to increase the tolerability and maximize patient safety in future trials.
Collapse
Affiliation(s)
- Robert D Morgan
- Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Marcia Hall
- Mount Vernon Cancer Centre, Northwood, Middlesex, UK
| | - Andrew R Clamp
- Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Cong Zhou
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, Manchester, UK
| | | | | | - Sarah Taylor
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, Manchester, UK
| | - Jonathan Tugwood
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, Manchester, UK
| | - Alexander R Lyon
- Royal Brompton and Harefield NHS Foundation Trust, London, UK; Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, UK
| | - Caroline Dive
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, Manchester, UK
| | | | - Gordon C Jayson
- Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
34
|
Guo F, Ji G, Li Q, Yang Y, Shui L, Shen Y, Yang H. Bacterial particles retard tumor growth as a novel vascular disrupting agent. Biomed Pharmacother 2020; 122:109757. [DOI: 10.1016/j.biopha.2019.109757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/07/2019] [Accepted: 11/29/2019] [Indexed: 02/08/2023] Open
|
35
|
Rauschenbach L. Spinal Cord Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1226:97-109. [PMID: 32030679 DOI: 10.1007/978-3-030-36214-0_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intramedullary spinal cord tumors (IMSCT) are rare entities for which there currently exist no standardized treatment paradigms. Consequently, patients usually receive treatment modalities that were established for intracerebral tumors; these approaches, however, typically result in functional impairment, recurrent tumor growth, and short overall survival. There is a distinct lack of promising research efforts in this field, which raises questions about whether spinal cord tumor microenvironment (TME) might promote the development, progression, and treatment resistance of IMSCT. In this review, we aim to examine spinal cord biology, compare spinal cord and brain microenvironments, and discuss mutual interactions between IMSCT and TME. Manipulating these pathways may provide new treatment approaches for future patient groups.
Collapse
Affiliation(s)
- Laurèl Rauschenbach
- Department of Neurosurgery, University Hospital Essen, Essen, Germany. .,DKFZ Division of Translational Neuro-Oncology at the West German Cancer Center (WTZ), German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, Essen, Germany.
| |
Collapse
|
36
|
Abstract
Resistance to cancer therapy remains a major challenge in clinical oncology. Although the initial treatment phase is often successful, eventual resistance, characterized by tumour relapse or spread, is discouraging. The majority of studies devoted to investigating the basis of resistance have focused on tumour-related changes that contribute to therapy resistance and tumour aggressiveness. However, over the last decade, the diverse roles of various host cells in promoting therapy resistance have become more appreciated. A growing body of evidence demonstrates that cancer therapy can induce host-mediated local and systemic responses, many of which shift the delicate balance within the tumour microenvironment, ultimately facilitating or supporting tumour progression. In this Review, recent advances in understanding how the host response to different cancer therapies may promote therapy resistance are discussed, with a focus on therapy-induced immunological, angiogenic and metastatic effects. Also summarized is the potential of evaluating the host response to cancer therapy in an era of precision medicine in oncology.
Collapse
Affiliation(s)
- Yuval Shaked
- Department of Cell Biology and Cancer Science, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
37
|
Sabbah N, Tamari T, Elimelech R, Doppelt O, Rudich U, Zigdon-Giladi H. Predicting Angiogenesis by Endothelial Progenitor Cells Relying on In-Vitro Function Assays and VEGFR-2 Expression Levels. Biomolecules 2019; 9:biom9110717. [PMID: 31717420 PMCID: PMC6921061 DOI: 10.3390/biom9110717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Clinical trials have demonstrated the safety and efficacy of autologous endothelial progenitor cell (EPC) therapy in various diseases. Since EPCs' functions are influenced by genetic, systemic and environmental factors, the therapeutic potential of each individual EPCs is unknown and may affect treatment outcome. Therefore, our aim was to compare EPCs function among healthy donors in order to predict blood vessel formation (angiogenesis) before autologous EPC transplantation. Human EPCs were isolated from the blood of ten volunteers. EPCs proliferation rate, chemoattractant ability, and CXCR4 mRNA levels were different among donors (p < 0.0001, p < 0.01, p < 0.001, respectively). A positive correlation was found between SDF-1, CXCR4, and EPCs proliferation (R = 0.736, p < 0.05 and R = 0.8, p < 0.01, respectively). In-vivo, blood vessels were counted ten days after EPCs transplantation in a subcutaneous mouse model. Mean vessel density was different among donors (p = 0.0001); nevertheless, donors with the lowest vessel densities were higher compared to control (p < 0.05). Finally, using a linear regression model, a mathematical equation was generated to predict blood vessel density relying on: (i) EPCs chemoattractivity, and (ii) VEGFR-2 mRNA levels. Results reveal differences in EPCs functions among healthy individuals, emphasizing the need for a potency assay to pave the way for standardized research and clinical use of human EPCs.
Collapse
Affiliation(s)
- Nadin Sabbah
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
| | - Tal Tamari
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
| | - Rina Elimelech
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
- Department of Periodontology, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Ofri Doppelt
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
| | - Utai Rudich
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
| | - Hadar Zigdon-Giladi
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
- Department of Periodontology, Rambam Health Care Campus, Haifa 3109601, Israel
- Correspondence: ; Tel.: +972-4-854-3606
| |
Collapse
|
38
|
Karagiannis GS, Condeelis JS, Oktay MH. Chemotherapy-Induced Metastasis: Molecular Mechanisms, Clinical Manifestations, Therapeutic Interventions. Cancer Res 2019; 79:4567-4576. [PMID: 31431464 PMCID: PMC6744993 DOI: 10.1158/0008-5472.can-19-1147] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022]
Abstract
Chemotherapy offers long-term clinical benefits to many patients with advanced cancer. However, recent evidence has linked the cytotoxic effects of chemotherapy with the de novo elicitation of a prometastatic tumor microenvironment. This "modified" tumor microenvironment is triggered by a chemotherapy-driven cytokine storm or through direct effects of certain chemotherapeutics on stromal and/or immune cells, the most critical being tumor-associated macrophages. These chemotherapy-educated cells act as facilitators in tumor-host cell interactions promoting the establishment of distant metastasis. Certain clinical studies now offer substantial evidence that prometastatic changes are indeed identified in the tumor microenvironment of certain patient subpopulations, especially those that do not present with any pathologic response after neoadjuvant chemotherapy. Deciphering the exact contextual prerequisites for chemotherapy-driven metastasis will be paramount for designing novel mechanism-based treatments for circumventing chemotherapy-induced metastasis.
Collapse
Affiliation(s)
- George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York.
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Surgery, Montefiore Medical Center, Bronx, New York
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York.
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Montefiore Medical Center, Bronx, New York
| |
Collapse
|
39
|
Lee HP, Wang SW, Wu YC, Tsai CH, Tsai FJ, Chung JG, Huang CY, Yang JS, Hsu YM, Yin MC, Li TM, Tang CH. Glucocerebroside reduces endothelial progenitor cell-induced angiogenesis. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1660623] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Hsiang-Ping Lee
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Natural Products and Research Center for Natural Products & Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chang-Hai Tsai
- China Medical University Children’s Hospital, China Medical University, Taichung, Taiwan
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- China Medical University Children’s Hospital, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Mei-Chin Yin
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
40
|
Pramanik R, Bakhshi S. Metronomic therapy in pediatric oncology: A snapshot. Pediatr Blood Cancer 2019; 66:e27811. [PMID: 31207063 DOI: 10.1002/pbc.27811] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
Abstract
Metronomic chemotherapy transitioned from the bench to bedside in the early 2000s and since then has carved a niche for itself in pediatric oncology. It has been used solely or in combination with other modalities such as radiotherapy, maximum tolerated dose chemotherapy, and targeted agents in adjuvant, palliative, as well as maintenance settings. No wonder, the resulting medical literature is extremely heterogeneous. In this review, the authors review and synthesize the published literature in pediatric metronomics giving a glimpse of its history, varied applications, and evolution of this genre of chemotherapy in pediatric cancers. Limitations, future prospects, and grey areas are also highlighted.
Collapse
Affiliation(s)
- Raja Pramanik
- Department of Medical Oncology, Dr. B. R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B. R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
41
|
Benguigui M, Weitz IS, Timaner M, Kan T, Shechter D, Perlman O, Sivan S, Raviv Z, Azhari H, Shaked Y. Copper oxide nanoparticles inhibit pancreatic tumor growth primarily by targeting tumor initiating cells. Sci Rep 2019; 9:12613. [PMID: 31471546 PMCID: PMC6717199 DOI: 10.1038/s41598-019-48959-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells, also termed tumor initiating cells (TICs), are a rare population of cells within the tumor mass which initiate tumor growth and metastasis. In pancreatic cancer, TICs significantly contribute to tumor re-growth after therapy, due to their intrinsic resistance. Here we demonstrate that copper oxide nanoparticles (CuO-NPs) are cytotoxic against TIC-enriched PANC1 human pancreatic cancer cell cultures. Specifically, treatment with CuO-NPs decreases cell viability and increases apoptosis in TIC-enriched PANC1 cultures to a greater extent than in standard PANC1 cultures. These effects are associated with increased reactive oxygen species (ROS) levels, and reduced mitochondrial membrane potential. Furthermore, we demonstrate that CuO-NPs inhibit tumor growth in a pancreatic tumor model in mice. Tumors from mice treated with CuO-NPs contain a significantly higher number of apoptotic TICs in comparison to tumors from untreated mice, confirming that CuO-NPs target TICs in vivo. Overall, our findings highlight the potential of using CuO-NPs as a new therapeutic modality for pancreatic cancer.
Collapse
Affiliation(s)
- Madeleine Benguigui
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Iris S Weitz
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, 2161002, Israel
| | - Michael Timaner
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Tal Kan
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Dvir Shechter
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Or Perlman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | - Sarit Sivan
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, 2161002, Israel
| | - Ziv Raviv
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Haim Azhari
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | - Yuval Shaked
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel.
| |
Collapse
|
42
|
Reguera-Nuñez E, Man S, Xu P, Hilberg F, Kerbel RS. Variable impact of three different antiangiogenic drugs alone or in combination with chemotherapy on multiple bone marrow-derived cell populations involved in angiogenesis and immunity. Angiogenesis 2019; 22:535-546. [DOI: 10.1007/s10456-019-09677-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022]
|
43
|
Kim KS, Youn YS, Bae YH. Immune-triggered cancer treatment by intestinal lymphatic delivery of docetaxel-loaded nanoparticle. J Control Release 2019; 311-312:85-95. [PMID: 31461664 DOI: 10.1016/j.jconrel.2019.08.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022]
Abstract
The maximally tolerated dose (MTD) approach in conventional chemotherapy accompanies adverse effects, primarily due to high drug concentrations in the blood after intravenous administration and non-specific damages to highly proliferating cells, including immune cells. This causes the immune system to dysfunction. To rather boost intrinsic tumor-fighting immune capacity, we demonstrate a new oral route treatment regimen of docetaxel (DTX) without apparent toxicity. The DTX-loaded cationic solid lipid nanoparticles (DSLN-CSG) were coated with an anionic polymer conjugated with glycocholic acid. The resulting nanoparticles (DSLN-CSG, ~120 nm in diameter) were actively absorbed in the distal ileum mediated by interactions with the apical sodium bile acid transporter. The plasma DTX profile was sustained up to 24 h after a single oral dose and did not impair the functions of the immune system. In mouse models, daily oral DSLN-CSG administration inhibited the growth of existing tumors and tumor formation by medication prior to cancer cell inoculation. The extent of effects depended on the cancer cell lines of melanoma, colorectal adenocarcinoma, and breast carcinoma. It was most effective for melanoma in growth inhibition and in preventing tumor formation in mice. During the medication, the cytotoxic T cell population increased while the populations of tumor-associated macrophage and regulatory T cell declined. The low dose daily oral treatment may help patients with intermittent maintenance therapy between MTD cycles and prevent tumor recurrence after completing remission for certain tumors.
Collapse
Affiliation(s)
- Kyoung Sub Kim
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Yu Seok Youn
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - You Han Bae
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
44
|
Wang Y, Yu H, Zhang D, Wang G, Song W, Liu Y, Ma S, Tang Z, Liu Z, Sakurai K, Chen X. Co-administration of combretastatin A4 nanoparticles and sorafenib for systemic therapy of hepatocellular carcinoma. Acta Biomater 2019; 92:229-240. [PMID: 31100462 DOI: 10.1016/j.actbio.2019.05.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/26/2022]
Abstract
Effective systemic therapy is highly desired for the treatment of hepatocellular carcinoma (HCC). In this study, a combination of nanoparticles of poly(L-glutamic acid)-graft-methoxy poly(ethylene glycol)/combretastatin A4 sodium salt (CA4-NPs) plus sorafenib is developed for the cooperative systemic treatment of HCC. The CA4-NPs leads to the disruption of established tumor blood vessels and extensive tumor necrosis, however, inducing increased expression of VEGF-A and angiogenesis. Sorafenib reduces the VEGF-A induced angiogenesis and further inhibits tumor proliferation, cooperating with the CA4-NPs. A significant decrease in tumor volume and prolonged survival time are observed in the combination group of CA4-NPs plus sorafenib compared with CA4-NPs or sorafenib monotherapy in subcutaneous and orthotopic H22 hepatic tumor models. Seventy-one percent of the mice are alive without residual tumor at 96 days post tumor inoculation for the subcutaneous models treated with CA4-NPs 30 or 35 mg·kg-1 plus sorafenib 30 mg·kg-1. Our findings suggest that co-administration of sorafenib and CA4-NPs possesses significant antitumor efficacy for HCC treatment. STATEMENT OF SIGNIFICANCE: Effective systemic therapy is highly desired for the treatment of hepatocellular carcinoma (HCC). Herein, we demonstrate that a combination of nanoparticles of poly(L-glutamic acid)-graft-methoxy poly(ethylene glycol)/combretastatin A4 sodium salt (CA4-NPs) plus sorafenib is a promising synergistic approach for systemic treatment of HCC. The CA4-NPs leads to the disruption of established tumor blood vessels and extensive tumor necrosis, however, inducing increased expression of VEGF-A and angiogenesis. Sorafenib reduces the VEGF-A induced angiogenesis and further inhibits tumor proliferation, cooperating with the CA4-NPs.
Collapse
Affiliation(s)
- Yalin Wang
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Haiyang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Dawei Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Guanyi Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Yingmin Liu
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Sheng Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China.
| | - Ziling Liu
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Kazuo Sakurai
- The University of Kitakyushu, Department of Chemistry and Biochemistry, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| |
Collapse
|
45
|
Liang Y, Hao Y, Wu Y, Zhou Z, Li J, Sun X, Liu YN. Integrated Hydrogel Platform for Programmed Antitumor Therapy Based on Near Infrared-Triggered Hyperthermia and Vascular Disruption. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21381-21390. [PMID: 31141335 DOI: 10.1021/acsami.9b05536] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Complete tumor regression is a great challenge faced by single therapy of near-infrared (NIR)-triggered hyperthermia or vascular disrupting agents. An injectable nanocomposite (NC) hydrogel is rationally designed for combined anticancer therapy based on NIR-triggered hyperthermia and vascular disruption. The NC hydrogel, codelivered with Prussian blue (PB) nanoparticles and combretastatin A4 (CA4), has good shear-thinning, self-recovery, and excellent photothermal properties. Because of the remarkable tumor-site retention and sustained release of CA4 (about 10% over 12 days), the NC hydrogel has a tumor suppression rate of 99.6%. The programmed combinational therapy conveys the concept of "attack + guard", where PB-based NIR irradiation imposes intensive attack on most of cancer cells, and CA4 serves as a guard against the tumor growth by cutting off the energy supply. Moreover, the biosafety and eco-friendliness of the hydrogel platform pave the way toward clinical applications.
Collapse
|
46
|
Ribatti D, Annese T, Ruggieri S, Tamma R, Crivellato E. Limitations of Anti-Angiogenic Treatment of Tumors. Transl Oncol 2019; 12:981-986. [PMID: 31121490 PMCID: PMC6529826 DOI: 10.1016/j.tranon.2019.04.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/26/2023] Open
Abstract
Clinical trials using anti-vascular endothelial growth factor /(VEGF) molecules induce a modest improvement in overall survival, measurable in weeks to just a few months, and tumors respond differently to these agents. In this review article, we have exposed some tumor characteristics and processes that may impair the effectiveness of anti-angiogenic approaches, including genotypic changes on endothelial cells, the vascular normalization phenomenon, and the vasculogenic mimicry. The usage of anti-angiogenic molecules leads to hypoxic tumor microenvironment which enhances tumor invasiveness. The role of tumor-infiltrating cells, including tumor associated macrophages and fibroblasts (TAMs and TAFs) in the therapeutic response to anti-angiogenic settings was also highlighted. Finally, among the new therapeutic approaches to target tumor vasculature, anti-PD-1 or anti-PD-L1 therapy sensitizing and prolonging the efficacy of anti-angiogenic therapy, have been discussed.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Simona Ruggieri
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Enrico Crivellato
- Department of Medicine, Section of Human Anatomy, University of Udine, Italy
| |
Collapse
|
47
|
Tanase C, Popescu ID, Enciu AM, Gheorghisan-Galateanu AA, Codrici E, Mihai S, Albulescu L, Necula L, Albulescu R. Angiogenesis in cutaneous T-cell lymphoma - proteomic approaches. Oncol Lett 2019; 17:4060-4067. [PMID: 30944599 PMCID: PMC6444338 DOI: 10.3892/ol.2018.9734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
Neoangiogenesis plays an important role in cutaneous lymphoma pathogenesis. Cutaneous T-cell lymphoma (CTCL) is characterized by the presence of malignant T-cell clones in the skin. Vascular microenvironment of lymphomas accelerates neoangiogenesis through several factors released by tumoral cells: VEGF family, bFGF and PIGF. Tumor stroma (fibroblasts, inflammatory and immune cells) also plays a crucial role, by providing additional angiogenic factors. The angiogenic process through the VEGF-VEGFR axis can promote survival, proliferation and metastasis via autocrine mechanisms in cutaneous lymphomas. Microvascular density (MVD) measures the neo-vascularization of cutaneous lymphoma, generated by the response of tumor cells, proangiogenic stromal cells, and benign T/B lymphocytes within the tumor inflammatory infiltrate. Pro-angiogenic proteins have been found to indicate the evolution and prognosis in patients with CTCL. In conclusion, anti-angiogenic therapeutic protocols can target tumor vasculature or malignant tumor cells directly or through a large number of combinations with other drugs. The integration of proteomics into clinical practice based on high-throughput technologies leads to the development of personalized medicine, adapting the specific biomarkers to the application of cancer-type specific individual drug targets.
Collapse
Affiliation(s)
- Cristiana Tanase
- Department of Biochemistry-Proteomics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- ‘Titu Maiorescu’ University, Faculty of Medicine, 004051 Bucharest, Romania
| | - Ionela Daniela Popescu
- Department of Biochemistry-Proteomics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Ana-Maria Enciu
- Department of Biochemistry-Proteomics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Department of Cellular and Molecular Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Ancuta Augustina Gheorghisan-Galateanu
- Department of Cellular and Molecular Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 050047 Bucharest, Romania
- ‘C.I. Parhon’ National Institute of Endocrinology, 011863 Bucharest, Romania
| | - Elena Codrici
- Department of Biochemistry-Proteomics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Simona Mihai
- Department of Biochemistry-Proteomics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Lucian Albulescu
- Department of Biochemistry-Proteomics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Laura Necula
- Department of Biochemistry-Proteomics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Department of Cellular and Molecular, ‘Stefan S. Nicolau’ Institute of Virology, 030304 Bucharest, Romania
| | - Radu Albulescu
- Department of Biochemistry-Proteomics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- National Institute for Chemical-Pharmaceutical Research and Development, 061323 Bucharest, Romania
| |
Collapse
|
48
|
Inhibition of platelet GPVI induces intratumor hemorrhage and increases efficacy of chemotherapy in mice. Blood 2019; 133:2696-2706. [PMID: 30952674 DOI: 10.1182/blood.2018877043] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/19/2019] [Indexed: 01/02/2023] Open
Abstract
Maintenance of tumor vasculature integrity is indispensable for tumor growth and thus affects tumor progression. Previous studies have identified platelets as major regulators of tumor vascular integrity, as their depletion selectively rendered tumor vessels highly permeable and caused massive intratumoral hemorrhage. While these results established platelets as potential targets for antitumor therapy, their depletion is not a treatment option due to their essential role in hemostasis. Thus, a detailed understanding of how platelets safeguard vascular integrity in tumors is urgently demanded. Here, we show for the first time that functional inhibition of glycoprotein VI (GPVI) on the platelet surface with an antibody (JAQ1) F(ab)2 fragment rapidly induces tumor hemorrhage and diminishes tumor growth similar to complete platelet depletion while not inducing systemic bleeding complications. The intratumor bleeding and tumor growth arrest could be reverted by depletion of Ly6G+ cells, confirming them to be responsible for the induction of bleeding and necrosis within the tumor. In addition, JAQ1 F(ab)2-mediated GPVI inhibition increased intratumoral accumulation of coadministered chemotherapeutic agents, such as Doxil and paclitaxel, thereby resulting in a profound antitumor effect. In summary, our findings identify platelet GPVI as a key regulator of vascular integrity specifically in growing tumors and could serve as a basis for the development of antitumor strategies based on the interference with platelet function.
Collapse
|
49
|
Bulner S, Prodeus A, Gariepy J, Hynynen K, Goertz DE. Enhancing Checkpoint Inhibitor Therapy with Ultrasound Stimulated Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:500-512. [PMID: 30447880 DOI: 10.1016/j.ultrasmedbio.2018.10.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 08/24/2018] [Accepted: 10/03/2018] [Indexed: 06/09/2023]
Abstract
Checkpoint inhibitor (CI) immunotherapy is playing an increasingly prominent role in the treatment of cancer but is effective and durable in only a subset of patients. There are concerted efforts to improve CI therapy through the use of multiple CIs or use of CIs in combination with other anti-cancer agents. Here we investigate the use of "anti-vascular" ultrasound-stimulated microbubble (USMB) treatments in combination with anti-PD-1 CI therapy. The colorectal cancer cell line CT26 was used to conduct longitudinal growth studies along with acute experiments to assess ultrasound-induced anti-tumor immune responses using flow cytometry and enzyme-linked immunospot (ELISPOT) analysis. Longitudinal experiments indicated that USMB + anti-PD-1 treatments significantly enhanced tumor growth inhibition and animal survival relative to monotherapies. Flow cytometry and ELISPOT data did not clearly support a T cell-dependent mechanism for the enhancement. Therefore, the results indicate the ability of anti-vascular USMBs to increase the anti-tumor effects of CI therapy; the specific mechanisms of enhancement remain to be established.
Collapse
Affiliation(s)
| | - Aaron Prodeus
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jean Gariepy
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - David E Goertz
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
50
|
Lee HP, Chen PC, Wang SW, Fong YC, Tsai CH, Tsai FJ, Chung JG, Huang CY, Yang JS, Hsu YM, Li TM, Tang CH. Plumbagin suppresses endothelial progenitor cell-related angiogenesis in vitro and in vivo. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.040] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|