1
|
Ray S, Agarwal P, Nitzan A, Nédélec F, Zaidel-Bar R. Actin-capping protein regulates actomyosin contractility to maintain germline architecture in C. elegans. Development 2023; 150:dev201099. [PMID: 36897576 PMCID: PMC10112912 DOI: 10.1242/dev.201099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
Actin dynamics play an important role in tissue morphogenesis, yet the control of actin filament growth takes place at the molecular level. A challenge in the field is to link the molecular function of actin regulators with their physiological function. Here, we report an in vivo role of the actin-capping protein CAP-1 in the Caenorhabditis elegans germline. We show that CAP-1 is associated with actomyosin structures in the cortex and rachis, and its depletion or overexpression led to severe structural defects in the syncytial germline and oocytes. A 60% reduction in the level of CAP-1 caused a twofold increase in F-actin and non-muscle myosin II activity, and laser incision experiments revealed an increase in rachis contractility. Cytosim simulations pointed to increased myosin as the main driver of increased contractility following loss of actin-capping protein. Double depletion of CAP-1 and myosin or Rho kinase demonstrated that the rachis architecture defects associated with CAP-1 depletion require contractility of the rachis actomyosin corset. Thus, we uncovered a physiological role for actin-capping protein in regulating actomyosin contractility to maintain reproductive tissue architecture.
Collapse
Affiliation(s)
- Shinjini Ray
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
- Graduate Program, Mechanobiology Institute, National University of Singapore,117411, Singapore
| | - Priti Agarwal
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Anat Nitzan
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - François Nédélec
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
2
|
Sethi A, Wei H, Mishra N, Segos I, Lambie EJ, Zanin E, Conradt B. A caspase-RhoGEF axis contributes to the cell size threshold for apoptotic death in developing Caenorhabditis elegans. PLoS Biol 2022; 20:e3001786. [PMID: 36201522 PMCID: PMC9536578 DOI: 10.1371/journal.pbio.3001786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022] Open
Abstract
A cell's size affects the likelihood that it will die. But how is cell size controlled in this context and how does cell size impact commitment to the cell death fate? We present evidence that the caspase CED-3 interacts with the RhoGEF ECT-2 in Caenorhabditis elegans neuroblasts that generate "unwanted" cells. We propose that this interaction promotes polar actomyosin contractility, which leads to unequal neuroblast division and the generation of a daughter cell that is below the critical "lethal" size threshold. Furthermore, we find that hyperactivation of ECT-2 RhoGEF reduces the sizes of unwanted cells. Importantly, this suppresses the "cell death abnormal" phenotype caused by the partial loss of ced-3 caspase and therefore increases the likelihood that unwanted cells die. A putative null mutation of ced-3 caspase, however, is not suppressed, which indicates that cell size affects CED-3 caspase activation and/or activity. Therefore, we have uncovered novel sequential and reciprocal interactions between the apoptosis pathway and cell size that impact a cell's commitment to the cell death fate.
Collapse
Affiliation(s)
- Aditya Sethi
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Department of Cell & Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Hai Wei
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Nikhil Mishra
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Ioannis Segos
- Department of Cell & Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Eric J. Lambie
- Department of Cell & Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Esther Zanin
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Department Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Conradt
- Department of Cell & Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
3
|
Najafabadi FR, Leaver M, Grill SW. Orchestrating nonmuscle myosin II filament assembly at the onset of cytokinesis. Mol Biol Cell 2022; 33:ar74. [PMID: 35544301 PMCID: PMC9635286 DOI: 10.1091/mbc.e21-12-0599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/14/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Contractile forces in the actomyosin cortex are required for cellular morphogenesis. This includes the invagination of the cell membrane during division, where filaments of nonmuscle myosin II (NMII) are responsible for generating contractile forces in the cortex. However, how NMII heterohexamers form filaments in vivo is not well understood. To quantify NMII filament assembly dynamics, we imaged the cortex of Caenorhabditis elegans embryos at high spatial resolution around the time of the first division. We show that during the assembly of the cytokinetic ring, the number of NMII filaments in the cortex increases and more NMII motors are assembled into each filament. These dynamics are influenced by two proteins in the RhoA GTPase pathway, the RhoA-dependent kinase LET-502 and the myosin phosphatase MEL-11. We find that these two proteins differentially regulate NMII activity at the anterior and at the division site. We show that the coordinated action of these regulators generates a gradient of free NMII in the cytoplasm driving a net diffusive flux of NMII motors toward the cytokinetic ring. Our work highlights how NMII filament assembly and disassembly dynamics are orchestrated over space and time to facilitate the up-regulation of cortical contractility during cytokinesis.
Collapse
Affiliation(s)
- Fereshteh R. Najafabadi
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
- Biotechnology Centre, Technische Universität Dresden, Tatzberg 47/49, Dresden 01307
| | - Mark Leaver
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
- Biotechnology Centre, Technische Universität Dresden, Tatzberg 47/49, Dresden 01307
| | - Stephan W. Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
- Biotechnology Centre, Technische Universität Dresden, Tatzberg 47/49, Dresden 01307
- Excellence Cluster Physics of Life, Technische Universität, Dresden 01307, Germany
| |
Collapse
|
4
|
Carreira LAM, Szadkowski D, Müller F, Søgaard-Andersen L. Spatiotemporal regulation of switching front–rear cell polarity. Curr Opin Cell Biol 2022; 76:102076. [DOI: 10.1016/j.ceb.2022.102076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
|
5
|
CYK-1/Formin activation in cortical RhoA signaling centers promotes organismal left-right symmetry breaking. Proc Natl Acad Sci U S A 2021; 118:2021814118. [PMID: 33972425 PMCID: PMC8157923 DOI: 10.1073/pnas.2021814118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Proper left-right symmetry breaking is essential for animal development, and in many cases, this process is actomyosin-dependent. In Caenorhabditis elegans embryos active torque generation in the actomyosin layer promotes left-right symmetry breaking by driving chiral counterrotating cortical flows. While both Formins and Myosins have been implicated in left-right symmetry breaking and both can rotate actin filaments in vitro, it remains unclear whether active torques in the actomyosin cortex are generated by Formins, Myosins, or both. We combined the strength of C. elegans genetics with quantitative imaging and thin film, chiral active fluid theory to show that, while Non-Muscle Myosin II activity drives cortical actomyosin flows, it is permissive for chiral counterrotation and dispensable for chiral symmetry breaking of cortical flows. Instead, we find that CYK-1/Formin activation in RhoA foci is instructive for chiral counterrotation and promotes in-plane, active torque generation in the actomyosin cortex. Notably, we observe that artificially generated large active RhoA patches undergo rotations with consistent handedness in a CYK-1/Formin-dependent manner. Altogether, we conclude that CYK-1/Formin-dependent active torque generation facilitates chiral symmetry breaking of actomyosin flows and drives organismal left-right symmetry breaking in the nematode worm.
Collapse
|
6
|
Delattre M, Goehring NW. The first steps in the life of a worm: Themes and variations in asymmetric division in C. elegans and other nematodes. Curr Top Dev Biol 2021; 144:269-308. [PMID: 33992156 DOI: 10.1016/bs.ctdb.2020.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Starting with Boveri in the 1870s, microscopic investigation of early embryogenesis in a broad swath of nematode species revealed the central role of asymmetric cell division in embryonic axis specification, blastomere positioning, and cell fate specification. Notably, across the class Chromadorea, a conserved theme emerges-asymmetry is first established in the zygote and specifies its asymmetric division, giving rise to an anterior somatic daughter cell and a posterior germline daughter cell. Beginning in the 1980s, the emergence of Caenorhabditis elegans as a model organism saw the advent of genetic tools that enabled rapid progress in our understanding of the molecular mechanisms underlying asymmetric division, in many cases defining key paradigms that turn out to regulate asymmetric division in a wide range of systems. Yet, the consequence of this focus on C. elegans came at the expense of exploring the extant diversity of developmental variation exhibited across nematode species. Given the resurgent interest in evolutionary studies facilitated in part by new tools, here we revisit the diversity in this asymmetric first division, juxtaposing molecular insight into mechanisms of symmetry-breaking, spindle positioning and fate specification, with a consideration of plasticity and variability within and between species. In the process, we hope to highlight questions of evolutionary forces and molecular variation that may have shaped the extant diversity of developmental mechanisms observed across Nematoda.
Collapse
Affiliation(s)
- Marie Delattre
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Inserm, UCBL, Lyon, France.
| | | |
Collapse
|
7
|
Mukherjee N, Mukherjee C. Germ cell ribonucleoprotein granules in different clades of life: From insects to mammals. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1642. [PMID: 33555143 DOI: 10.1002/wrna.1642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Ribonucleoprotein (RNP) granules are no newcomers in biology. Found in all life forms, ranging across taxa, these membrane-less "organelles" have been classified into different categories based on their composition, structure, behavior, function, and localization. Broadly, they can be listed as stress granules (SGs), processing bodies (PBs), neuronal granules (NGs), and germ cell granules (GCGs). Keeping in line with the topic of this review, RNP granules present in the germ cells have been implicated in a wide range of cellular functions including cellular specification, differentiation, proliferation, and so forth. The mechanisms used by them can be diverse and many of them remain partly obscure and active areas of research. GCGs can be of different types in different organisms and at different stages of development, with multiple types coexisting in the same cell. In this review, the different known subcategories of GCGs have been studied with respect to five distinct model organisms, namely, Drosophila, Caenorhabditis elegans, Xenopus, Zebrafish, and mammals. Of them, the cytoplasmic polar granules in Drosophila, P granules in C. elegans, balbiani body in Xenopus and Zebrafish, and chromatoid bodies in mammals have been specifically emphasized upon. A descriptive account of the same has been provided along with insights into our current understanding of their functional significance with respect to cellular events relating to different developmental and reproductive processes. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease.
Collapse
|
8
|
Gan WJ, Motegi F. Mechanochemical Control of Symmetry Breaking in the Caenorhabditis elegans Zygote. Front Cell Dev Biol 2021; 8:619869. [PMID: 33537308 PMCID: PMC7848089 DOI: 10.3389/fcell.2020.619869] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Cell polarity is the asymmetric organization of cellular components along defined axes. A key requirement for polarization is the ability of the cell to break symmetry and achieve a spatially biased organization. Despite different triggering cues in various systems, symmetry breaking (SB) usually relies on mechanochemical modulation of the actin cytoskeleton, which allows for advected movement and reorganization of cellular components. Here, the mechanisms underlying SB in Caenorhabditis elegans zygote, one of the most popular models to study cell polarity, are reviewed. A zygote initiates SB through the centrosome, which modulates mechanics of the cell cortex to establish advective flow of cortical proteins including the actin cytoskeleton and partitioning defective (PAR) proteins. The chemical signaling underlying centrosomal control of the Aurora A kinase–mediated cascade to convert the organization of the contractile actomyosin network from an apolar to polar state is also discussed.
Collapse
Affiliation(s)
- Wan Jun Gan
- Temasek Life-Sciences Laboratory, Singapore, Singapore
| | - Fumio Motegi
- Temasek Life-Sciences Laboratory, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Carreira LAM, Tostevin F, Gerland U, Søgaard-Andersen L. Protein-protein interaction network controlling establishment and maintenance of switchable cell polarity. PLoS Genet 2020; 16:e1008877. [PMID: 32569324 PMCID: PMC7332107 DOI: 10.1371/journal.pgen.1008877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/02/2020] [Accepted: 05/21/2020] [Indexed: 11/19/2022] Open
Abstract
Cell polarity underlies key processes in all cells, including growth, differentiation and division. In the bacterium Myxococcus xanthus, front-rear polarity is crucial for motility. Notably, this polarity can be inverted, independent of the cell-cycle, by chemotactic signaling. However, a precise understanding of the protein network that establishes polarity and allows for its inversion has remained elusive. Here, we use a combination of quantitative experiments and data-driven theory to unravel the complex interplay between the three key components of the M. xanthus polarity module. By studying each of these components in isolation and their effects as we systematically reconstruct the system, we deduce the network of effective interactions between the polarity proteins. RomR lies at the root of this network, promoting polar localization of the other components, while polarity arises from interconnected negative and positive feedbacks mediated by the small GTPase MglA and its cognate GAP MglB, respectively. We rationalize this network topology as operating as a spatial toggle switch, providing stable polarity for persistent cell movement whilst remaining responsive to chemotactic signaling and thus capable of polarity inversions. Our results have implications not only for the understanding of polarity and motility in M. xanthus but also, more broadly, for dynamic cell polarity. The asymmetric localization of cellular components (polarity) is at the core of many important cellular functions including growth, division, differentiation and motility. However, important questions still remain regarding the design principles underlying polarity networks and how their activity can be controlled in space and time. We use the rod-shaped bacterium Myxococcus xanthus as a model to study polarity and its regulation. Like many bacteria, in M. xanthus a well-defined front-rear polarity axis enables efficient translocation. This polarity axis is defined by asymmetric polar localization of a switch-like GTPase and its cognate regulators, and can be reversed in response to signaling cues. Here we use a combination of quantitative experiments and data-driven theory to deduce the network of interactions among the M. xanthus polarity proteins and to show how the combination of positive- and negative-feedback interactions give rise to asymmetric polar protein localization. We rationalize this network topology as operating as a spatial toggle switch, providing stable polarity for persistent cell movement whilst remaining responsive to chemotactic signaling and capable of polarity inversions. Our results have broader implications for our understanding of dynamic cell polarity and GTPase regulation in both bacteria and eukaryotic cells.
Collapse
Affiliation(s)
| | - Filipe Tostevin
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Physik-Department, Technische Universität München, James Franck Straße, Garching, Germany
| | - Ulrich Gerland
- Physik-Department, Technische Universität München, James Franck Straße, Garching, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- * E-mail:
| |
Collapse
|
10
|
Zhao P, Teng X, Tantirimudalige SN, Nishikawa M, Wohland T, Toyama Y, Motegi F. Aurora-A Breaks Symmetry in Contractile Actomyosin Networks Independently of Its Role in Centrosome Maturation. Dev Cell 2019; 48:631-645.e6. [DOI: 10.1016/j.devcel.2019.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/21/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
|
11
|
Barui A, Datta P. Biophysical factors in the regulation of asymmetric division of stem cells. Biol Rev Camb Philos Soc 2018; 94:810-827. [PMID: 30467934 DOI: 10.1111/brv.12479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/14/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Ananya Barui
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology, Shibpur Howrah West Bengal 711103 India
| | - Pallab Datta
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology, Shibpur Howrah West Bengal 711103 India
| |
Collapse
|
12
|
Khaliullin RN, Green RA, Shi LZ, Gomez-Cavazos JS, Berns MW, Desai A, Oegema K. A positive-feedback-based mechanism for constriction rate acceleration during cytokinesis in Caenorhabditis elegans. eLife 2018; 7:36073. [PMID: 29963981 PMCID: PMC6063732 DOI: 10.7554/elife.36073] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/01/2018] [Indexed: 12/23/2022] Open
Abstract
To ensure timely cytokinesis, the equatorial actomyosin contractile ring constricts at a relatively constant rate despite its progressively decreasing size. Thus, the per-unit-length constriction rate increases as ring perimeter decreases. To understand this acceleration, we monitored cortical surface and ring component dynamics during the first cytokinesis of the Caenorhabditis elegans embryo. We found that, per unit length, the amount of ring components (myosin, anillin) and the constriction rate increase with parallel exponential kinetics. Quantitative analysis of cortical flow indicated that the cortex within the ring is compressed along the axis perpendicular to the ring, and the per-unit-length rate of cortical compression increases during constriction in proportion to ring myosin. We propose that positive feedback between ring myosin and compression-driven flow of cortex into the ring drives an exponential increase in the per-unit-length amount of ring myosin to maintain a high ring constriction rate and support this proposal with an analytical mathematical model.
Collapse
Affiliation(s)
- Renat N Khaliullin
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| | - Rebecca A Green
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| | - Linda Z Shi
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, San Diego, United States
| | - J Sebastian Gomez-Cavazos
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| | - Michael W Berns
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, San Diego, United States
| | - Arshad Desai
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| | - Karen Oegema
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| |
Collapse
|
13
|
Naganathan SR, Oates AC. Mechanochemical coupling and developmental pattern formation. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Campanale JP, Sun TY, Montell DJ. Development and dynamics of cell polarity at a glance. J Cell Sci 2017; 130:1201-1207. [PMID: 28365593 DOI: 10.1242/jcs.188599] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells exhibit morphological and molecular asymmetries that are broadly categorized as cell polarity. The cell polarity established in early embryos prefigures the macroscopic anatomical asymmetries characteristic of adult animals. For example, eggs and early embryos have polarized distributions of RNAs and proteins that generate global anterior/posterior and dorsal/ventral axes. The molecular programs that polarize embryos are subsequently reused in multiple contexts. Epithelial cells require apical/basal polarity to establish their barrier function. Migrating cells polarize in the direction of movement, creating distinct leading and trailing structures. Asymmetrically dividing stem cells partition different molecules between themselves and their daughter cells. Cell polarity can develop de novo, be maintained through rounds of cell division and be dynamically remodeled. In this Cell Science at a Glance review and poster, we describe molecular asymmetries that underlie cell polarity in several cellular contexts. We highlight multiple developmental systems that first establish cell/developmental polarity, and then maintain it. Our poster showcases repeated use of the Par, Scribble and Crumbs polarity complexes, which drive the development of cell polarity in many cell types and organisms. We then briefly discuss the diverse and dynamic changes in cell polarity that occur during cell migration, asymmetric cell division and in planar polarized tissues.
Collapse
Affiliation(s)
- Joseph P Campanale
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Thomas Y Sun
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Denise J Montell
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
15
|
Ding SS, Woollard A. Non-muscle myosin II is required for correct fate specification in the Caenorhabditis elegans seam cell divisions. Sci Rep 2017; 7:3524. [PMID: 28615630 PMCID: PMC5471188 DOI: 10.1038/s41598-017-01675-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/31/2017] [Indexed: 11/09/2022] Open
Abstract
During development, cell division often generates two daughters with different developmental fates. Distinct daughter identities can result from the physical polarity and size asymmetry itself, as well as the subsequent activation of distinct fate programmes in each daughter. Asymmetric divisions are a feature of the C. elegans seam lineage, in which a series of post-embryonic, stem-like asymmetric divisions give rise to an anterior daughter that differentiates and a posterior daughter that continues to divide. Here we have investigated the role of non-muscle myosin II (nmy-2) in these asymmetric divisions. We show that nmy-2 does not appear to be involved in generating physical division asymmetry, but nonetheless is important for specifying differential cell fate. While cell polarity appears normal, and chromosome and furrow positioning remains unchanged when nmy-2 is inactivated, seam cell loss occurs through inappropriate terminal differentiation of posterior daughters. This reveals a role for nmy-2 in cell fate determination not obviously linked to the primary polarity determination mechanisms it has been previously associated with.
Collapse
Affiliation(s)
- Siyu Serena Ding
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.,Institution of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, United Kingdom.,MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Alison Woollard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
16
|
Von Stetina SE, Liang J, Marnellos G, Mango SE. Temporal regulation of epithelium formation mediated by FoxA, MKLP1, MgcRacGAP, and PAR-6. Mol Biol Cell 2017; 28:2042-2065. [PMID: 28539408 PMCID: PMC5509419 DOI: 10.1091/mbc.e16-09-0644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
During embryo morphogenesis, minor epithelia are generated after, and then form bridges between, major epithelia (e.g., epidermis and gut). In Caenorhabditis elegans, this delay is regulated by four proteins that control production and localization of polarity proteins: the pioneer factor PHA-4/FoxA, kinesin ZEN-4/MKLP1, its partner CYK-4/MgcRacGAP, and PAR-6. To establish the animal body plan, embryos link the external epidermis to the internal digestive tract. In Caenorhabditis elegans, this linkage is achieved by the arcade cells, which form an epithelial bridge between the foregut and epidermis, but little is known about how development of these three epithelia is coordinated temporally. The arcade cell epithelium is generated after the epidermis and digestive tract epithelia have matured, ensuring that both organs can withstand the mechanical stress of embryo elongation; mistiming of epithelium formation leads to defects in morphogenesis. Using a combination of genetic, bioinformatic, and imaging approaches, we find that temporal regulation of the arcade cell epithelium is mediated by the pioneer transcription factor and master regulator PHA-4/FoxA, followed by the cytoskeletal regulator and kinesin ZEN-4/MKLP1 and the polarity protein PAR-6. We show that PHA-4 directly activates mRNA expression of a broad cohort of epithelial genes, including junctional factor dlg-1. Accumulation of DLG-1 protein is delayed by ZEN-4, acting in concert with its binding partner CYK-4/MgcRacGAP. Our structure–function analysis suggests that nuclear and kinesin functions are dispensable, whereas binding to CYK-4 is essential, for ZEN-4 function in polarity. Finally, PAR-6 is necessary to localize polarity proteins such as DLG-1 within adherens junctions and at the apical surface, thereby generating arcade cell polarity. Our results reveal that the timing of a landmark event during embryonic morphogenesis is mediated by the concerted action of four proteins that delay the formation of an epithelial bridge until the appropriate time. In addition, we find that mammalian FoxA associates with many epithelial genes, suggesting that direct regulation of epithelial identity may be a conserved feature of FoxA factors and a contributor to FoxA function in development and cancer.
Collapse
Affiliation(s)
- Stephen E Von Stetina
- Department of Molecular and Cellular Biology, Harvard University, Cambridge; MA 02138
| | - Jennifer Liang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge; MA 02138
| | - Georgios Marnellos
- Informatics and Scientific Applications, Science Division, Faculty of Arts and Sciences, Harvard University, Cambridge; MA 02138
| | - Susan E Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge; MA 02138
| |
Collapse
|
17
|
Zhuravlev Y, Hirsch SM, Jordan SN, Dumont J, Shirasu-Hiza M, Canman JC. CYK-4 regulates Rac, but not Rho, during cytokinesis. Mol Biol Cell 2017; 28:1258-1270. [PMID: 28298491 PMCID: PMC5415020 DOI: 10.1091/mbc.e17-01-0020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 12/18/2022] Open
Abstract
The roles of the Rho-family GAP CYK-4 and small GTPase Rac during cytokinesis are examined in Caenorhabditis elegans embryos. CYK-4 opposes Rac (and potentially Cdc42) activity during cytokinesis. There is no evidence that CYK-4 is upstream of Rho activity or that Rac disruption is a general suppressor of cytokinesis failure. Cytokinesis is driven by constriction of an actomyosin contractile ring that is controlled by Rho-family small GTPases. Rho, activated by the guanine-nucleotide exchange factor ECT-2, is upstream of both myosin-II activation and diaphanous formin-mediated filamentous actin (f-actin) assembly, which drive ring constriction. The role for Rac and its regulators is more controversial, but, based on the finding that Rac inactivation can rescue cytokinesis failure when the GTPase-activating protein (GAP) CYK-4 is disrupted, Rac activity was proposed to be inhibitory to contractile ring constriction and thus specifically inactivated by CYK-4 at the division plane. An alternative model proposes that Rac inactivation generally rescues cytokinesis failure by reducing cortical tension, thus making it easier for the cell to divide when ring constriction is compromised. In this alternative model, CYK-4 was instead proposed to activate Rho by binding ECT-2. Using a combination of time-lapse in vivo single-cell analysis and Caenorhabditis elegans genetics, our evidence does not support this alternative model. First, we found that Rac disruption does not generally rescue cytokinesis failure: inhibition of Rac specifically rescues cytokinesis failure due to disruption of CYK-4 or ECT-2 but does not rescue cytokinesis failure due to disruption of two other contractile ring components, the Rho effectors diaphanous formin and myosin-II. Second, if CYK-4 regulates cytokinesis through Rho rather than Rac, then CYK-4 inhibition should decrease levels of downstream targets of Rho. Inconsistent with this, we found no change in the levels of f-actin or myosin-II at the division plane when CYK-4 GAP activity was reduced, suggesting that CYK-4 is not upstream of ECT-2/Rho activation. Instead, we found that the rescue of cytokinesis in CYK-4 mutants by Rac inactivation was Cdc42 dependent. Together our data suggest that CYK-4 GAP activity opposes Rac (and perhaps Cdc42) during cytokinesis.
Collapse
Affiliation(s)
- Yelena Zhuravlev
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| | - Sophia M Hirsch
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| | - Shawn N Jordan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
18
|
Sustained centrosome-cortical contact ensures robust polarization of the one-cell C. elegans embryo. Dev Biol 2017; 422:135-145. [PMID: 28065742 DOI: 10.1016/j.ydbio.2016.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/09/2016] [Accepted: 12/28/2016] [Indexed: 12/28/2022]
Abstract
In C. elegans, the anterior-posterior axis is established at the one-cell stage when the embryo polarizes along its long axis. One model suggests that a cue from the centrosome triggers symmetry breaking and is then dispensable for further steps in the process. In the absence of the initial centrosome cue, a redundant mechanism, reliant on the centrosome's microtubules, can polarize the cell. Despite this model, data from multiple sources suggest that direct centrosome-contact with the cortex may play a role in ensuring robust polarization. Some of this past work includes analysis of pam-1 mutants, which lack a functional puromycin-sensitive aminopeptidase and have aberrant centrosome positioning and variable polarization defects. To better understand the role of centrosome dynamics in polarization, we looked in detail at centrosome behavior in relation to key polarity landmarks in pam-1 mutants as well as those lacking cortical flows. We provide evidence for a model in which sustained direct contact between the centrosome and the cortex acts to reinforce both the actomyosin and the microtubule-dependent pathways. This contact is necessary for polarization when flows are inhibited.
Collapse
|
19
|
Nishikawa M, Naganathan SR, Jülicher F, Grill SW. Controlling contractile instabilities in the actomyosin cortex. eLife 2017; 6:e19595. [PMID: 28117665 PMCID: PMC5354522 DOI: 10.7554/elife.19595] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/14/2017] [Indexed: 01/27/2023] Open
Abstract
The actomyosin cell cortex is an active contractile material for driving cell- and tissue morphogenesis. The cortex has a tendency to form a pattern of myosin foci, which is a signature of potentially unstable behavior. How a system that is prone to such instabilities can rveliably drive morphogenesis remains an outstanding question. Here, we report that in the Caenorhabditis elegans zygote, feedback between active RhoA and myosin induces a contractile instability in the cortex. We discover that an independent RhoA pacemaking oscillator controls this instability, generating a pulsatory pattern of myosin foci and preventing the collapse of cortical material into a few dynamic contracting regions. Our work reveals how contractile instabilities that are natural to occur in mechanically active media can be biochemically controlled to robustly drive morphogenetic events.
Collapse
Affiliation(s)
- Masatoshi Nishikawa
- Biotechnology Center, Technical University Dresden, Dresden, Germany,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sundar Ram Naganathan
- Biotechnology Center, Technical University Dresden, Dresden, Germany,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Stephan W Grill
- Biotechnology Center, Technical University Dresden, Dresden, Germany,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany,
| |
Collapse
|
20
|
Pacquelet A. Asymmetric Cell Division in the One-Cell C. elegans Embryo: Multiple Steps to Generate Cell Size Asymmetry. Results Probl Cell Differ 2017; 61:115-140. [PMID: 28409302 DOI: 10.1007/978-3-319-53150-2_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first division of the one-cell C. elegans embryo has been a fundamental model in deciphering the mechanisms underlying asymmetric cell division. Polarization of the one-cell zygote is induced by a signal from the sperm centrosome and results in the asymmetric distribution of PAR proteins. Multiple mechanisms then maintain PAR polarity until the end of the first division. Once asymmetrically localized, PAR proteins control several essential aspects of asymmetric division, including the position of the mitotic spindle along the polarity axis. Coordination of the spindle and cytokinetic furrow positions is the next essential step to ensure proper asymmetric division. In this chapter, I review the different mechanisms underlying these successive steps of asymmetric division. Work from the last 30 years has revealed the existence of multiple and redundant regulatory pathways which ensure division robustness. Besides the essential role of PAR proteins, this work also emphasizes the importance of both microtubules and actomyosin throughout the different steps of asymmetric division.
Collapse
Affiliation(s)
- Anne Pacquelet
- CNRS, UMR6290, Rennes, France. .,Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes, France. .,CNRS UMR6290-IGDR, 2 avenue du Professeur Léon Bernard, 35043, Rennes Cedex, France.
| |
Collapse
|
21
|
Wernike D, Chen Y, Mastronardi K, Makil N, Piekny A. Mechanical forces drive neuroblast morphogenesis and are required for epidermal closure. Dev Biol 2016; 412:261-77. [PMID: 26923492 DOI: 10.1016/j.ydbio.2016.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
Tissue morphogenesis requires myosin-dependent events such as cell shape changes and migration to be coordinated between cells within a tissue, and/or with cells from other tissues. However, few studies have investigated the simultaneous morphogenesis of multiple tissues in vivo. We found that during Caenorhabditis elegans ventral enclosure, when epidermal cells collectively migrate to cover the ventral surface of the embryo, the underlying neuroblasts (neuronal precursor cells) also undergo morphogenesis. We found that myosin accumulates as foci along the junction-free edges of the ventral epidermal cells to form a ring, whose closure is myosin-dependent. We also observed the accumulation of myosin foci and the adhesion junction proteins E-cadherin and α-catenin in the underlying neuroblasts. Myosin may help to reorganize a subset of neuroblasts into a rosette-like pattern, and decrease their surface area as the overlying epidermal cells constrict. Since myosin is required in the neuroblasts for ventral enclosure, we propose that mechanical forces in the neuroblasts influence constriction of the overlying epidermal cells. In support of this model, disrupting neuroblast cell division or altering their fate influences myosin localization in the overlying epidermal cells. The coordination of myosin-dependent events and forces between cells in different tissues could be a common theme for coordinating morphogenetic events during metazoan development.
Collapse
Affiliation(s)
- Denise Wernike
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Yun Chen
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Neetha Makil
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, Quebec, Canada.
| |
Collapse
|
22
|
Ajduk A, Zernicka-Goetz M. Polarity and cell division orientation in the cleavage embryo: from worm to human. Mol Hum Reprod 2015; 22:691-703. [PMID: 26660321 PMCID: PMC5062000 DOI: 10.1093/molehr/gav068] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023] Open
Abstract
Cleavage is a period after fertilization, when a 1-cell embryo starts developing into a multicellular organism. Due to a series of mitotic divisions, the large volume of a fertilized egg is divided into numerous smaller, nucleated cells—blastomeres. Embryos of different phyla divide according to different patterns, but molecular mechanism of these early divisions remains surprisingly conserved. In the present paper, we describe how polarity cues, cytoskeleton and cell-to-cell communication interact with each other to regulate orientation of the early embryonic division planes in model animals such as Caenorhabditis elegans, Drosophila and mouse. We focus particularly on the Par pathway and the actin-driven cytoplasmic flows that accompany it. We also describe a unique interplay between Par proteins and the Hippo pathway in cleavage mammalian embryos. Moreover, we discuss the potential meaning of polarity, cytoplasmic dynamics and cell-to-cell communication as quality biomarkers of human embryos.
Collapse
Affiliation(s)
- Anna Ajduk
- Department of Embryology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
23
|
Cytoskeletal Symmetry Breaking and Chirality: From Reconstituted Systems to Animal Development. Symmetry (Basel) 2015. [DOI: 10.3390/sym7042062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
24
|
Blanchoud S, Busso C, Naef F, Gönczy P. Quantitative analysis and modeling probe polarity establishment in C. elegans embryos. Biophys J 2015; 108:799-809. [PMID: 25692585 DOI: 10.1016/j.bpj.2014.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/17/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022] Open
Abstract
Cell polarity underlies many aspects of metazoan development and homeostasis, and relies notably on a set of PAR proteins located at the cell cortex. How these proteins interact in space and time remains incompletely understood. We performed a quantitative assessment of polarity establishment in one-cell stage Caenorhabditis elegans embryos by combining time-lapse microscopy and image analysis. We used our extensive data set to challenge and further specify an extant mathematical model. Using likelihood-based calibration, we uncovered that cooperativity is required for both anterior and posterior PAR complexes. Moreover, we analyzed the dependence of polarity establishment on changes in size or temperature. The observed robustness of PAR domain dimensions in embryos of different sizes is in agreement with a model incorporating fixed protein concentrations and variations in embryo surface/volume ratio. In addition, we quantified the dynamics of polarity establishment over most of the viable temperatures range of C. elegans. Modeling of these data suggests that diffusion of PAR proteins is the process most affected by temperature changes, although cortical flows appear unaffected. Overall, our quantitative analytical framework provides insights into the dynamics of polarity establishment in a developing system.
Collapse
Affiliation(s)
- Simon Blanchoud
- Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland; The Institute of Bioengineering (IBI), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Félix Naef
- The Institute of Bioengineering (IBI), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
25
|
Osborne Nishimura E, Zhang JC, Werts AD, Goldstein B, Lieb JD. Asymmetric transcript discovery by RNA-seq in C. elegans blastomeres identifies neg-1, a gene important for anterior morphogenesis. PLoS Genet 2015; 11:e1005117. [PMID: 25875092 PMCID: PMC4395330 DOI: 10.1371/journal.pgen.1005117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/03/2015] [Indexed: 11/23/2022] Open
Abstract
After fertilization but prior to the onset of zygotic transcription, the C. elegans zygote cleaves asymmetrically to create the anterior AB and posterior P1 blastomeres, each of which goes on to generate distinct cell lineages. To understand how patterns of RNA inheritance and abundance arise after this first asymmetric cell division, we pooled hand-dissected AB and P1 blastomeres and performed RNA-seq. Our approach identified over 200 asymmetrically abundant mRNA transcripts. We confirmed symmetric or asymmetric abundance patterns for a subset of these transcripts using smFISH. smFISH also revealed heterogeneous subcellular patterning of the P1-enriched transcripts chs-1 and bpl-1. We screened transcripts enriched in a given blastomere for embryonic defects using RNAi. The gene neg-1 (F32D1.6) encoded an AB-enriched (anterior) transcript and was required for proper morphology of anterior tissues. In addition, analysis of the asymmetric transcripts yielded clues regarding the post-transcriptional mechanisms that control cellular mRNA abundance during asymmetric cell divisions, which are common in developing organisms.
Collapse
Affiliation(s)
- Erin Osborne Nishimura
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jay C. Zhang
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Adam D. Werts
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bob Goldstein
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason D. Lieb
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
26
|
Nagawa S, Xu T, Yang Z. RHO GTPase in plants: Conservation and invention of regulators and effectors. Small GTPases 2014; 1:78-88. [PMID: 21686259 DOI: 10.4161/sgtp.1.2.14544] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/13/2010] [Accepted: 12/20/2010] [Indexed: 12/30/2022] Open
Abstract
Plants possess a single subfamily of Rho GTPases, ROP, which does usual things as do Rho-family GTPases in animal and fungal systems, namely participating in the spatial control of cellular processes by signaling to the cytoskeleton and vesicular trafficking. As one would expect, ROPs are modulated by conserved regulators such as DHR2-type GEFs, RhoGAPs and Rho GDIs. What is surprising is that plants have invented new regulators such as PRONE-type GEFs (known as RopGEFs) and effectors such as RICs and ICRs/RIPs in the regulation of the cytoskeleton and vesicular trafficking. This review will discuss recent work on characterizing ROP regulators and effectors as well as addressing why and how a mixture of conserved and novel Rho signaling mechanisms is utilized to modulate fundamental cellular processes such as cytoskeletal dynamics/reorganization and vesicular trafficking.
Collapse
Affiliation(s)
- Shingo Nagawa
- Center for Plant Cell Biology; Department of Botany and Plant Sciences; University of California; Riverside, CA USA
| | | | | |
Collapse
|
27
|
Mulinari S, Häcker U. Rho-guanine nucleotide exchange factors during development: Force is nothing without control. Small GTPases 2014; 1:28-43. [PMID: 21686118 DOI: 10.4161/sgtp.1.1.12672] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 05/31/2010] [Accepted: 06/14/2010] [Indexed: 01/04/2023] Open
Abstract
The development of multicellular organisms is associated with extensive rearrangements of tissues and cell sheets. The driving force for these rearrangements is generated mostly by the actin cytoskeleton. In order to permit the reproducible development of a specific body plan, dynamic reorganization of the actin cytoskeleton must be precisely coordinated in space and time. GTP-exchange factors that activate small GTPases of the Rho family play an important role in this process. Here we review the role of this class of cytoskeletal regulators during important developmental processes such as epithelial morphogenesis, cytokinesis, cell migration, cell polarity, neuronal growth cone extension and phagocytosis in different model systems.
Collapse
Affiliation(s)
- Shai Mulinari
- Department of Experimental Medical Science; Lund Strategic Research Center for Stem Cell Biology and Cell Therapy; Lund University; Lund, Sweden
| | | |
Collapse
|
28
|
Keikhaee MR, Nash EB, O'Rourke SM, Bowerman B. A semi-dominant mutation in the general splicing factor SF3a66 causes anterior-posterior axis reversal in one-cell stage C. elegans embryos. PLoS One 2014; 9:e106484. [PMID: 25188372 PMCID: PMC4154684 DOI: 10.1371/journal.pone.0106484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/31/2014] [Indexed: 11/19/2022] Open
Abstract
Establishment of anterior-posterior polarity in one-cell stage Caenorhabditis elegans embryos depends in part on astral microtubules. As the zygote enters mitosis, these microtubules promote the establishment of a posterior pole by binding to and protecting a cytoplasmic pool of the posterior polarity protein PAR-2 from phosphorylation by the cortically localized anterior polarity protein PKC-3. Prior to activation of the sperm aster, the oocyte Meiosis I and II spindles assemble and function, usually at the future anterior pole, but these meiotic spindle microtubules fail to establish posterior polarity through PAR-2. Here we show that a semi-dominant mutation in the general splicing factor SF3a66 can lead to a reversed axis of AP polarity that depends on PAR-2 and possibly on close proximity of oocyte meiotic spindles with the cell cortex. One possible explanation is that reduced levels of PKC-3, due to a general splicing defect, can result in axis reversal due to a failure to prevent oocyte meiotic spindle microtubules from interfering with AP axis formation.
Collapse
Affiliation(s)
- Mohammad R. Keikhaee
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Eric B. Nash
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Sean M. O'Rourke
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- * E-mail:
| |
Collapse
|
29
|
Landmann F, Foster JM, Michalski ML, Slatko BE, Sullivan W. Co-evolution between an endosymbiont and its nematode host: Wolbachia asymmetric posterior localization and AP polarity establishment. PLoS Negl Trop Dis 2014; 8:e3096. [PMID: 25165813 PMCID: PMC4148215 DOI: 10.1371/journal.pntd.0003096] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/03/2014] [Indexed: 01/07/2023] Open
Abstract
While bacterial symbionts influence a variety of host cellular responses throughout development, there are no documented instances in which symbionts influence early embryogenesis. Here we demonstrate that Wolbachia, an obligate endosymbiont of the parasitic filarial nematodes, is required for proper anterior-posterior polarity establishment in the filarial nematode B. malayi. Characterization of pre- and post-fertilization events in B. malayi reveals that, unlike C. elegans, the centrosomes are maternally derived and produce a cortical-based microtubule organizing center prior to fertilization. We establish that Wolbachia rely on these cortical microtubules and dynein to concentrate at the posterior cortex. Wolbachia also rely on PAR-1 and PAR-3 polarity cues for normal concentration at the posterior cortex. Finally, we demonstrate that Wolbachia depletion results in distinct anterior-posterior polarity defects. These results provide a striking example of endosymbiont-host co-evolution operating on the core initial developmental event of axis determination. Filarial nematodes are responsible for a number of neglected tropical diseases. The vast majority of these human parasites harbor the bacterial endosymbiont Wolbachia. Wolbachia are essential for filarial nematode survival and reproduction, and thus are a promising anti-filarial drug target. Understanding the molecular and cellular basis of Wolbachia-nematode interactions will facilitate the development of a new class of drugs that specifically disrupt these interactions. Here we focus on Wolbachia segregation patterns and interactions with the host cytoskeleton during early embryogenesis. Our studies indicate that centrosomes are maternally inherited in filarial nematodes resulting in a posterior microtubule-organizing center of maternal origin, unique to filarial nematodes. This microtubule-organizing center facilitates the concentration of Wolbachia at the posterior pole. We find that the microtubule motor dynein is required for the proper posterior Wolbachia localization. In addition, we demonstrate that Wolbachia rely on polarity signals in the egg for their preferential localization at the posterior pole. Conversely, Wolbachia are required for normal embryonic axis determination and Wolbachia removal leads to distinct anterior-posterior embryonic polarity defects. To our knowledge, this is the first example of a bacterial endosymbiont required for normal host embryogenesis.
Collapse
Affiliation(s)
- Frederic Landmann
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Labs, University of California, Santa Cruz, California, United States of America
- Centre de Recherche de Biochimie Macromoléculaire, CNRS, Montpellier, France
- * E-mail:
| | - Jeremy M. Foster
- Molecular Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Michelle L. Michalski
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States of America
| | - Barton E. Slatko
- Molecular Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - William Sullivan
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Labs, University of California, Santa Cruz, California, United States of America
| |
Collapse
|
30
|
Ellis RE, Stanfield GM. The regulation of spermatogenesis and sperm function in nematodes. Semin Cell Dev Biol 2014; 29:17-30. [PMID: 24718317 PMCID: PMC4082717 DOI: 10.1016/j.semcdb.2014.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
In the nematode C. elegans, both males and self-fertile hermaphrodites produce sperm. As a result, researchers have been able to use a broad range of genetic and genomic techniques to dissect all aspects of sperm development and function. Their results show that the early stages of spermatogenesis are controlled by transcriptional and translational processes, but later stages are dominated by protein kinases and phosphatases. Once spermatids are produced, they participate in many interactions with other cells - signals from the somatic gonad determine when sperm activate and begin to crawl, signals from the female reproductive tissues guide the sperm, and signals from sperm stimulate oocytes to mature and be ovulated. The sperm also show strong competitive interactions with other sperm and oocytes. Some of the molecules that mediate these processes have conserved functions in animal sperm, others are conserved proteins that have been adapted for new roles in nematode sperm, and some are novel proteins that provide insights into evolutionary change. The advent of new techniques should keep this system on the cutting edge of research in cellular and reproductive biology.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, B303 Science Center, 2 Medical Center Drive, Stratford, NJ 08084, United States.
| | - Gillian M Stanfield
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
31
|
Singh D, Pohl C. A function for the midbody remnant in embryonic patterning. Commun Integr Biol 2014; 7:e28533. [PMID: 25346787 PMCID: PMC4203541 DOI: 10.4161/cib.28533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/14/2014] [Indexed: 01/10/2023] Open
Abstract
Asymmetric cell divisions combine cell division with fate specification and one general model of how this is achieved was proposed already decades ago1,2: During interphase, the cell polarity axis is specified, followed by orientation of the spindle along the polarity axis and segregation of fate determinants along the polarity axis during mitosis. In most cells, the polarity axis and the spindle will usually align with the long axis that the cell had before division, also called Hertwig’s rule3–6. In the C. elegans embryo, the first polarity axis also forms along the long axis of the embryo by enrichment of myosin in the anterior7 and formation of mutually exclusive anterior and posterior cortical polarity domains, mediated through directional cortical contractile flow8–10. The directionality of this flow is determined by an extrinsic cue, the entry of the sperm, which inhibits Rho-dependent myosin activation at the future posterior pole by bringing with it the Rho GTPase activating protein CYK-411,12. Moreover, since there is no previous division ‘history’ before the first cleavage, mechanisms have to ensure that the nucleus-centrosome complex undergoes a 90 degree rotation so that the spindle can subsequently elongate along the long axis13–15. Additional mechanisms ensure that the site of cleavage is perpendicular to the long axis16,17. Hence, tight coupling of an extrinsic cue to intrinsic polarity formation and spindle elongation enables alignment of the division orientation with the long axis of the organism and successful segregation of fate determinants.
Collapse
Affiliation(s)
- Deepika Singh
- Buchmann Institute for Molecular Life Sciences; Institute of Biochemistry II; Goethe University; Frankfurt (Main), Germany
| | - Christian Pohl
- Buchmann Institute for Molecular Life Sciences; Institute of Biochemistry II; Goethe University; Frankfurt (Main), Germany
| |
Collapse
|
32
|
Pham K, Sacirbegovic F, Russell SM. Polarized cells, polarized views: asymmetric cell division in hematopoietic cells. Front Immunol 2014; 5:26. [PMID: 24550912 PMCID: PMC3909886 DOI: 10.3389/fimmu.2014.00026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/16/2014] [Indexed: 11/17/2022] Open
Abstract
It has long been recognized that alterations in cell shape and polarity play important roles in coordinating lymphocyte functions. In the last decade, a new aspect of lymphocyte polarity has attracted much attention, termed asymmetric cell division (ACD). ACD has previously been shown to dictate or influence many aspects of development in model organisms such as the worm and the fly, and to be disrupted in disease. Recent observations that ACD also occurs in lymphocytes led to exciting speculations that ACD might influence lymphocyte differentiation and function, and leukemia. Dissecting the role that ACD might play in these activities has not been straightforward, and the evidence to date for a functional role in lymphocyte fate determination has been controversial. In this review, we discuss the evidence to date for ACD in lymphocytes, and how it might influence lymphocyte fate. We also discuss current gaps in our knowledge, and suggest approaches to definitively test the physiological role of ACD in lymphocytes.
Collapse
Affiliation(s)
- Kim Pham
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre , East Melbourne, VIC , Australia ; Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology , Hawthorn, VIC , Australia
| | - Faruk Sacirbegovic
- Department of Pathology, University of Melbourne , Melbourne, VIC , Australia
| | - Sarah M Russell
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre , East Melbourne, VIC , Australia ; Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology , Hawthorn, VIC , Australia ; Department of Pathology, University of Melbourne , Melbourne, VIC , Australia ; Sir Peter MacCallum Department of Oncology, University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
33
|
Akhshi TK, Wernike D, Piekny A. Microtubules and actin crosstalk in cell migration and division. Cytoskeleton (Hoboken) 2013; 71:1-23. [DOI: 10.1002/cm.21150] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - Denise Wernike
- Department of Biology; Concordia University; Montreal Quebec Canada
| | - Alisa Piekny
- Department of Biology; Concordia University; Montreal Quebec Canada
| |
Collapse
|
34
|
Motegi F, Seydoux G. The PAR network: redundancy and robustness in a symmetry-breaking system. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130010. [PMID: 24062581 PMCID: PMC3785961 DOI: 10.1098/rstb.2013.0010] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To become polarized, cells must first 'break symmetry'. Symmetry breaking is the process by which an unpolarized, symmetric cell develops a singularity, often at the cell periphery, that is used to develop a polarity axis. The Caenorhabditis elegans zygote breaks symmetry under the influence of the sperm-donated centrosome, which causes the PAR polarity regulators to sort into distinct anterior and posterior cortical domains. Modelling analyses have shown that cortical flows induced by the centrosome combined with antagonism between anterior and posterior PARs (mutual exclusion) are sufficient, in principle, to break symmetry, provided that anterior and posterior PAR activities are precisely balanced. Experimental evidence indicates, however, that the system is surprisingly robust to changes in cortical flows, mutual exclusion and PAR balance. We suggest that this robustness derives from redundant symmetry-breaking inputs that engage two positive feedback loops mediated by the anterior and posterior PAR proteins. In particular, the PAR-2 feedback loop stabilizes the polarized state by creating a domain where posterior PARs are immune to exclusion by anterior PARs. The two feedback loops in the PAR network share characteristics with the two feedback loops in the Cdc42 polarization network of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Fumio Motegi
- Temasek Lifesciences Laboratory, National University of Singapore, , 1 Research Link, Singapore 117604, Republic of Singapore
| | | |
Collapse
|
35
|
Chan E, Nance J. Mechanisms of CDC-42 activation during contact-induced cell polarization. J Cell Sci 2013; 126:1692-702. [PMID: 23424200 DOI: 10.1242/jcs.124594] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polarization of early embryos provides a foundation to execute essential patterning and morphogenetic events. In Caenorhabditis elegans, cell contacts polarize early embryos along their radial axis by excluding the cortical polarity protein PAR-6 from sites of cell contact, thereby restricting PAR-6 to contact-free cell surfaces. Radial polarization requires the cortically enriched Rho GTPase CDC-42, which in its active form recruits PAR-6 through direct binding. The Rho GTPase activating protein (RhoGAP) PAC-1, which localizes specifically to cell contacts, triggers radial polarization by inactivating CDC-42 at these sites. The mechanisms responsible for activating CDC-42 at contact-free surfaces are unknown. Here, in an overexpression screen of Rho guanine nucleotide exchange factors (RhoGEFs), which can activate Rho GTPases, we identify CGEF-1 and ECT-2 as RhoGEFs that act through CDC-42 to recruit PAR-6 to the cortex. We show that ECT-2 and CGEF-1 localize to the cell surface and that removing their activity causes a reduction in levels of cortical PAR-6. Through a structure-function analysis, we show that the tandem DH-PH domains of CGEF-1 and ECT-2 are sufficient for GEF activity, but that regions outside of these domains target each protein to the cell surface. Finally, we provide evidence suggesting that the N-terminal region of ECT-2 may direct its in vivo preference for CDC-42 over another known target, the Rho GTPase RHO-1. We propose that radial polarization results from a competition between RhoGEFs, which activate CDC-42 throughout the cortex, and the RhoGAP PAC-1, which inactivates CDC-42 at cell contacts.
Collapse
Affiliation(s)
- Emily Chan
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
36
|
Bastos RN, Penate X, Bates M, Hammond D, Barr FA. CYK4 inhibits Rac1-dependent PAK1 and ARHGEF7 effector pathways during cytokinesis. ACTA ACUST UNITED AC 2013; 198:865-80. [PMID: 22945935 PMCID: PMC3432774 DOI: 10.1083/jcb.201204107] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In mitosis, animal cells lose their adhesion to the surrounding surfaces and become rounded. During mitotic exit, they reestablish these adhesions and at the same time physically contract and divide. How these competing processes are spatially segregated at the cell cortex remains mysterious. To address this question, we define the specific effector pathways used by RhoA and Rac1 in mitotic cells. We demonstrate that the MKlp1-CYK4 centralspindlin complex is a guanosine triphosphatase-activating protein (GAP) for Rac1 and not RhoA and that CYK4 negatively regulated Rac1 activity at the cell equator in anaphase. Cells expressing a CYK4 GAP mutant had defects in cytokinesis and showed elevated staining for the cell adhesion marker vinculin. These defects could be rescued by depletion of ARHGEF7 and p21-activated kinase, Rac1-specific effector proteins required for cell adhesion. Based on these findings, we propose that CYK4 GAP activity is required during anaphase to inhibit Rac1-dependent effector pathways associated with control of cell spreading and adhesion.
Collapse
|
37
|
Abstract
Determinants of cell polarity orient the behaviour of many cell types during development. Pioneering genetic screens in yeast, worms and flies have identified key polarity determinants that are evolutionarily conserved across the animal kingdom. Recent work in these three model organisms has combined computer modelling with experimental analysis to reveal the molecular mechanisms that drive the polarisation of determinants. Two key principles have emerged: the first is the requirement for a positive-feedback loop to drive self-recruitment of determinants to the plasma membrane; the second is the requirement for mutual antagonism between determinants that localise to opposite ends of the cell.
Collapse
Affiliation(s)
- Barry J Thompson
- Cancer Research UK, London Research Institute, Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
38
|
|
39
|
Spiga FM, Prouteau M, Gotta M. The TAO kinase KIN-18 regulates contractility and establishment of polarity in the C. elegans embryo. Dev Biol 2013; 373:26-38. [DOI: 10.1016/j.ydbio.2012.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 09/15/2012] [Accepted: 10/01/2012] [Indexed: 01/12/2023]
|
40
|
Abstract
Cell polarity is crucial for many functions including cell migration, tissue organization and asymmetric cell division. In animal cells, cell polarity is controlled by the highly conserved PAR (PARtitioning defective) proteins. par genes have been identified in Caenorhabditis elegans in screens for maternal lethal mutations that disrupt cytoplasmic partitioning and asymmetric division. Although PAR proteins were identified more than 20 years ago, our understanding on how they regulate polarity and how they are regulated is still incomplete. In this chapter we review our knowledge of the processes of cell polarity establishment and maintenance, and asymmetric cell division in the early C. elegans embryo. We discuss recent findings that highlight new players in cell polarity and/or reveal the molecular details on how PAR proteins regulate polarity processes.
Collapse
|
41
|
Deubiquitylation machinery is required for embryonic polarity in Caenorhabditis elegans. PLoS Genet 2012; 8:e1003092. [PMID: 23209443 PMCID: PMC3510043 DOI: 10.1371/journal.pgen.1003092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 10/01/2012] [Indexed: 11/19/2022] Open
Abstract
The Caenorhabditis elegans one-cell embryo polarizes in response to a cue from the paternally donated centrosome and asymmetrically segregates cell fate determinants that direct the developmental program of the worm. We have found that genes encoding putative deubiquitylating enzymes (DUBs) are required for polarization of one-cell embryos. Maternal loss of the proteins MATH-33 and USP-47 leads to variable inability to correctly establish and maintain asymmetry as defined by posterior and anterior polarity proteins PAR-2 and PAR-3. The first observable defect is variable positioning of the centrosome with respect to the cell cortex and the male pronucleus. The severity of the polarity defects correlates with distance of the centrosome from the cortex. Furthermore, polarity defects can be bypassed by mutations that bring the centrosome in close proximity to the cortex. In addition we find that polarity and centrosome positioning defects can be suppressed by compromising protein turnover. We propose that the DUB activity of MATH-33 and USP-47 stabilizes one or more proteins required for association of the centrosome with the cortex. Because these DUBs are homologous to two members of a group of DUBs that act in fission yeast polarity, we tested additional members of that family and found that another C. elegans DUB gene, usp-46, also contributes to polarity. Our finding that deubiquitylating enzymes required for polarity in Schizosaccharomyces pombe are also required in C. elegans raises the possibility that these DUBs act through an evolutionarily conserved mechanism to control cell polarity. In eukaryotes, modification of proteins by the covalent ligation of a protein called ubiquitin is an important regulatory mechanism. In this study we found that deubiquitylation enzymes, which are known to cleave ubiquitin off of target proteins, are required for asymmetry in one-cell embryos of the nematode C. elegans. In one-cell embryos the establishment of asymmetry depends on a signal from the centrosome, a microtubule-organizing center. This signal breaks homogeneity in the contractile cytoskeleton located at the cortex of the embryo. We have identified three deubiquitylation enzymes that are necessary for the centrosome to properly localize adjacent to the cortex to perform its symmetry-breaking role. Furthermore, a homologous group of enzymes in fission yeast also regulates cell polarity. Our results suggest that a novel mechanism of centrosome localization regulated by ubiquitylation exists in C. elegans; this mechanism is masked by genetic redundancy and may be an evolutionarily conserved mechanism for cell asymmetry.
Collapse
|
42
|
Abstract
Nearly every cell type exhibits some form of polarity, yet the molecular mechanisms vary widely. Here we examine what we term 'chemical systems' where cell polarization arises through biochemical interactions in signaling pathways, 'mechanical systems' where cells polarize due to forces, stresses and transport, and 'mechanochemical systems' where polarization results from interplay between mechanics and chemical signaling. To reveal potentially unifying principles, we discuss mathematical conceptualizations of several prototypical examples. We suggest that the concept of local activation and global inhibition - originally developed to explain spatial patterning in reaction-diffusion systems - provides a framework for understanding many cases of cell polarity. Importantly, we find that the core ingredients in this framework - symmetry breaking, self-amplifying feedback, and long-range inhibition - involve processes that can be chemical, mechanical, or even mechanochemical in nature.
Collapse
|
43
|
McKinley RFA, Harris TJC. Displacement of basolateral Bazooka/PAR-3 by regulated transport and dispersion during epithelial polarization in Drosophila. Mol Biol Cell 2012; 23:4465-71. [PMID: 23015757 PMCID: PMC3496619 DOI: 10.1091/mbc.e12-09-0655] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bazooka/PAR-3 apicolateral polarity landmarks are established by the combination of two basolateral displacement activities in the Drosophila embryo. Basolateral PAR-1 activity acts redundantly with a basal-to-apical transport mechanism. With disruption of either mechanism alone Bazooka can polarize, but disruption of both blocks polarization. Polarity landmarks guide epithelial development. In the early Drosophila ectoderm, the scaffold protein Bazooka (Drosophila PAR-3) forms apicolateral landmarks to direct adherens junction assembly. However, it is unclear how Bazooka becomes polarized. We report two mechanisms acting in concert to displace Bazooka from the basolateral membrane. As cells form during cellularization, basally localized Bazooka undergoes basal-to-apical transport. Bazooka requires its three postsynaptic density 95, discs large, zonula occludens-1 (PDZ) domains to engage the transport mechanism, but with the PDZ domains deleted, basolateral displacement still occurs by gastrulation. Basolateral PAR-1 activity appears to act redundantly with the transport mechanism. Knockdown of PAR-1 sporadically destabilizes cellularization furrows, but basolateral displacement of Bazooka still occurs by gastrulation. In contrast, basolateral Bazooka displacement is blocked with disruption of both the transport mechanism and phosphorylation by PAR-1. Thus Bazooka is polarized through a combination of transport and PAR-1–induced dispersion from basolateral membranes. Our work complements recent findings in Caenorhabditis elegans and thus suggests the coupling of transport and dispersion is a common protein polarization strategy.
Collapse
Affiliation(s)
- R F Andrew McKinley
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | | |
Collapse
|
44
|
Tse YC, Werner M, Longhini KM, Labbe JC, Goldstein B, Glotzer M. RhoA activation during polarization and cytokinesis of the early Caenorhabditis elegans embryo is differentially dependent on NOP-1 and CYK-4. Mol Biol Cell 2012; 23:4020-31. [PMID: 22918944 PMCID: PMC3469517 DOI: 10.1091/mbc.e12-04-0268] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RhoA and the Rho guanine nucleotide exchange factor ECT-2 are involved in both polarization and cytokinesis. During cytokinesis, interactions of ECT-2 with the Rho GTPase-activating protein CYK-4 promote RhoA activation. A novel protein, NOP-1, acts in parallel with CYK-4 to promote RhoA activation during polarization and cytokinesis. The GTPase RhoA is a central regulator of cellular contractility in a wide variety of biological processes. During these events, RhoA is activated by guanine nucleotide exchange factors (GEFs). These molecules are highly regulated to ensure that RhoA activation occurs at the proper time and place. During cytokinesis, RhoA is activated by the RhoGEF ECT-2. In human cells, ECT-2 activity requires its association with CYK-4, which is a component of the centralspindlin complex. In contrast, in early Caenorhabditis elegans embryos, not all ECT-2–dependent functions require CYK-4. In this study, we identify a novel protein, NOP-1, that functions in parallel with CYK-4 to promote RhoA activation. We use mutations in nop-1 and cyk-4 to dissect cytokinesis and cell polarization. NOP-1 makes a significant, albeit largely redundant, contribution to cytokinesis. In contrast, NOP-1 is required for the preponderance of RhoA activation during the establishment phase of polarization.
Collapse
Affiliation(s)
- Yu Chung Tse
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
45
|
Craddock C, Lavagi I, Yang Z. New insights into Rho signaling from plant ROP/Rac GTPases. Trends Cell Biol 2012; 22:492-501. [PMID: 22795444 DOI: 10.1016/j.tcb.2012.05.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 12/21/2022]
Abstract
In animal and plant cells, a wide range of key cellular processes that require the establishment of cell polarity are governed by Rho-GTPases. In contrast to animals and yeast, however, plants possess a single Rho-GTPase subfamily called Rho-like GTPases from plants (ROPs). This raises the question of how plants achieve the high level of regulation required for polar cellular processes. It is becoming evident that plants have evolved specific regulators, including ROP-Guanine Exchange Factors (GEFs) and the Rop-interactive CRIB motif-containing protein (RIC) effectors. Recent research shows that the spatiotemporal dynamics of ROPs, the cytoskeleton, endocytosis, and exocytosis are intertwined. This review focuses on the proposed self-organizing nature of ROPs in plants and how ROP-mediated cellular mechanisms compare with those responsible for cell polarity in animals and yeast.
Collapse
Affiliation(s)
- Christian Craddock
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92508, USA
| | | | | |
Collapse
|
46
|
Centrosomes can initiate a polarity axis from any position within one-cell C. elegans embryos. Curr Biol 2012; 22:583-9. [PMID: 22425158 DOI: 10.1016/j.cub.2012.01.064] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/05/2012] [Accepted: 01/30/2012] [Indexed: 11/22/2022]
Abstract
The stereotyped asymmetry of one-cell C. elegans embryos has proven to be an important model for identifying molecular determinants of cell polarity. How polarity is initiated is less well understood. Polarity establishment depends on centrosomes, which use two molecularly distinct pathways to break symmetry. In both, the centrosome's position adjacent to the cell cortex is thought to determine where polarization starts. Defects in centrosome-cortex juxtaposition correlate with defects in polarity establishment in several mutants, suggesting that these processes may be linked, but there is no direct test of this. Here we assess how centrosome position relative to the cortex affects polarity establishment. We find that centrosomes can initiate polarity from any position within the embryo volume, but centrosome-cortex proximity decreases the time required to initiate polarity. Polarization itself brings about close centrosome-cortex proximity. Prior to polarization, cytoplasmic microtubules constrain centrosome movement near the cortex, expanding the controversial role of microtubules during polarity establishment. The ability of centrosomes to induce a single polarity axis from any position within the egg emphasizes the flexible, self-organizing properties of polarization in C. elegans embryos and contrasts the common view of C. elegans development as invariant.
Collapse
|
47
|
|
48
|
Johnston WL, Dennis JW. The eggshell in the C. elegans oocyte-to-embryo transition. Genesis 2011; 50:333-49. [PMID: 22083685 DOI: 10.1002/dvg.20823] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 10/28/2011] [Accepted: 10/31/2011] [Indexed: 12/13/2022]
Abstract
In egg-laying animals, embryonic development takes place within the highly specialized environment provided by the eggshell and its underlying extracellular matrix. Far from being simply a passive physical support, the eggshell is a key player in many early developmental events. Herein, we review current understanding of eggshell structure, biosynthesis, and function in zygotic development of the nematode, C. elegans. Beginning at sperm contact or entry, eggshell layers are produced sequentially. The earlier outer layers are required for secretion or organization of inner layers, and layers differ in composition and function. Developmental events that depend on the eggshell include polyspermy barrier generation, high fidelity meiotic chromosome segregation, osmotic barrier synthesis, polar body extrusion, anterior-posterior polarization, and organization of membrane and cortical proteins. The C. elegans eggshell is proving to be an excellent, tractable system to study the molecular cues of the extracellular matrix that instruct cell polarity and early development.
Collapse
Affiliation(s)
- Wendy L Johnston
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5.
| | | |
Collapse
|
49
|
Motegi F, Zonies S, Hao Y, Cuenca AA, Griffin E, Seydoux G. Microtubules induce self-organization of polarized PAR domains in Caenorhabditis elegans zygotes. Nat Cell Biol 2011; 13:1361-7. [PMID: 21983565 PMCID: PMC3208083 DOI: 10.1038/ncb2354] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/05/2011] [Indexed: 02/06/2023]
Abstract
A hallmark of polarized cells is the segregation of the PAR polarity regulators into asymmetric domains at the cell cortex1, 2. Antagonistic interactions involving two conserved kinases, atypical protein kinase C (aPKC) and PAR-1, have been implicated in polarity maintenance1, 2, but the mechanisms that initiate the formation of asymmetric PAR domains are not understood. Here, we describe one pathway used by the sperm-donated centrosome to polarize the PAR proteins in Caenorhabditis elegans zygotes. Before polarization, cortical aPKC excludes PAR-1 kinase and its binding partner PAR-2 by phosphorylation. During symmetry breaking, microtubules nucleated by the centrosome locally protect PAR-2 from phosphorylation by aPKC, allowing PAR-2 and PAR-1 to access the cortex nearest the centrosome. Cortical PAR-1 phosphorylates PAR-3, causing the PAR-3/aPKC complex to leave the cortex. Our findings illustrate how microtubules, independent of actin dynamics, stimulate the self-organization of PAR proteins by providing local protection against a global barrier imposed by aPKC.
Collapse
Affiliation(s)
- Fumio Motegi
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins University School of Medicine, 725 N. Wolfe St., PCTB 706, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
50
|
The branched actin nucleator Arp2/3 promotes nuclear migrations and cell polarity in the C. elegans zygote. Dev Biol 2011; 357:356-69. [PMID: 21798253 DOI: 10.1016/j.ydbio.2011.07.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/17/2011] [Accepted: 07/06/2011] [Indexed: 01/08/2023]
Abstract
Regulated movements of the nucleus are essential during zygote formation, cell migrations, and differentiation of neurons. The nucleus moves along microtubules (MTs) and is repositioned on F-actin at the cellular cortex. Two families of nuclear envelope proteins, SUN and KASH, link the nucleus to the actin and MT cytoskeletons during nuclear movements. However, the role of actin nucleators in nuclear migration and positioning is poorly understood. We show that the branched actin nucleator, Arp2/3, affects nuclear movements throughout embryonic and larval development in C. elegans, including nuclear migrations in epidermal cells and neuronal precursors. In one-cell embryos the migration of the male pronucleus to meet the female pronucleus after fertilization requires Arp2/3. Loss of Arp2/3 or its activators changes the dynamics of non-muscle myosin, NMY-2, and alters the cortical accumulation of posterior PAR proteins. Reduced establishment of the posterior microtubule cytoskeleton in Arp2/3 mutants correlates with reduced male pronuclear migration. The UNC-84/SUN nuclear envelope protein that links the nucleus to the MT and actin cytoskeleton is known to regulate later nuclear migrations. We show here it also positions the male pronucleus. These studies demonstrate a global role for Arp2/3 in nuclear migrations. In the C. elegans one-cell embryo Arp2/3 promotes the establishment of anterior/posterior polarity and promotes MT growth that propels the anterior migration of the male pronucleus. In contrast with previous studies emphasizing pulling forces on the male pronucleus, we propose that robust MT nucleation pushes the male pronucleus anteriorly to join the female pronucleus.
Collapse
|