1
|
Oda I, Satou Y. A master regulatory loop that activates genes in a temporally coordinated manner in muscle cells of ascidian embryos. Development 2025; 152:dev204382. [PMID: 39745198 DOI: 10.1242/dev.204382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Ascidian larval muscle cells present a classic example of autonomous development. A regulatory mechanism for these cells has been extensively investigated, and the regulatory gene circuit has been documented from maternal factors to a muscle-specific gene. In the present study, we comprehensively identified genes expressed specifically in ascidian muscle cells, and found that all of them are under control of a positive regulatory loop of Tbx6-r.b and Mrf, the core circuit identified previously. We also found that several transcription factors under control of the Tbx6-r.b/Mrf regulatory loop exhibited various temporal expression profiles, which are probably important for creating functional muscle cells. These results, together with results of previous studies, provide an exhaustive view of the regulatory system enabling autonomous development of ascidian larval muscle cells. It shows that the Tbx6-r.b/Mrf regulatory loop, but not a single gene, serves a 'master' regulatory function. This master regulatory loop not only controls spatial gene expression patterns, but also governs temporal expression patterns in ascidian muscle cells.
Collapse
Affiliation(s)
- Izumi Oda
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Vaknin I, Willinger O, Mandl J, Heuberger H, Ben-Ami D, Zeng Y, Goldberg S, Orenstein Y, Amit R. A universal system for boosting gene expression in eukaryotic cell-lines. Nat Commun 2024; 15:2394. [PMID: 38493141 PMCID: PMC10944472 DOI: 10.1038/s41467-024-46573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
We demonstrate a transcriptional regulatory design algorithm that can boost expression in yeast and mammalian cell lines. The system consists of a simplified transcriptional architecture composed of a minimal core promoter and a synthetic upstream regulatory region (sURS) composed of up to three motifs selected from a list of 41 motifs conserved in the eukaryotic lineage. The sURS system was first characterized using an oligo-library containing 189,990 variants. We validate the resultant expression model using a set of 43 unseen sURS designs. The validation sURS experiments indicate that a generic set of grammar rules for boosting and attenuation may exist in yeast cells. Finally, we demonstrate that this generic set of grammar rules functions similarly in mammalian CHO-K1 and HeLa cells. Consequently, our work provides a design algorithm for boosting the expression of promoters used for expressing industrially relevant proteins in yeast and mammalian cell lines.
Collapse
Affiliation(s)
- Inbal Vaknin
- Department of Biotechnology and Food Engineering, Technion, Haifa, Israel
| | - Or Willinger
- Department of Biotechnology and Food Engineering, Technion, Haifa, Israel
| | - Jonathan Mandl
- Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
| | - Hadar Heuberger
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dan Ben-Ami
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yi Zeng
- Department of Biotechnology and Food Engineering, Technion, Haifa, Israel
| | - Sarah Goldberg
- Department of Biotechnology and Food Engineering, Technion, Haifa, Israel
| | - Yaron Orenstein
- Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Roee Amit
- Department of Biotechnology and Food Engineering, Technion, Haifa, Israel.
- The Russell Berrie Nanotechnology Institute, Technion, Haifa, Israel.
| |
Collapse
|
3
|
van der Sande M, Frölich S, van Heeringen SJ. Computational approaches to understand transcription regulation in development. Biochem Soc Trans 2023; 51:1-12. [PMID: 36695505 PMCID: PMC9988001 DOI: 10.1042/bst20210145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/07/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Gene regulatory networks (GRNs) serve as useful abstractions to understand transcriptional dynamics in developmental systems. Computational prediction of GRNs has been successfully applied to genome-wide gene expression measurements with the advent of microarrays and RNA-sequencing. However, these inferred networks are inaccurate and mostly based on correlative rather than causative interactions. In this review, we highlight three approaches that significantly impact GRN inference: (1) moving from one genome-wide functional modality, gene expression, to multi-omics, (2) single cell sequencing, to measure cell type-specific signals and predict context-specific GRNs, and (3) neural networks as flexible models. Together, these experimental and computational developments have the potential to significantly impact the quality of inferred GRNs. Ultimately, accurately modeling the regulatory interactions between transcription factors and their target genes will be essential to understand the role of transcription factors in driving developmental gene expression programs and to derive testable hypotheses for validation.
Collapse
Affiliation(s)
| | | | - Simon J. van Heeringen
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
4
|
Kumar V, Kumar A, Tewari K, Garg NK, Changan SS, Tyagi A. Isolation and characterization of drought and ABA responsive promoter of a transcription factor encoding gene from rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1813-1831. [PMID: 36484033 PMCID: PMC9723047 DOI: 10.1007/s12298-022-01246-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Water deficit is a significant impediment to enhancing rice yield. Genetic engineering tools have enabled agriculture researchers to develop drought-tolerant cultivars of rice. A common strategy to achieve this involves expressing drought-tolerant genes driven by constitutive promoters such as CaMV35S. However, the use of constitutive promoters is often limited by the adverse effects it has on the growth and development of the plant. Additionally, it has been observed that monocot-derived promoters are more successful in driving gene expression in monocots than in dicots. Substitution of constitutive promoters with stress-inducible promoters is the currently used strategy to overcome this limitation. In the present study, a 1514 bp AP2/ERF promoter that drives the expression of a transcription factor was cloned and characterized from drought-tolerant Indian rice genotype N22. The AP2/ERF promoter was fused to the GUS gene (uidA) and transformed in Arabidopsis and rice plants. Histochemical GUS staining of transgenic Arabidopsis plants showed AP2/ERF promoter activity in roots, stems, and leaves. Water deficit stress and ABA upregulate promoter activity in transformed Arabidopsis and rice. Quantitative PCR for uidA expression confirmed induced GUS activity in Arabidopsis and rice. This study showed that water deficit inducible Os-AP2/ERF-N22 promoter can be used to overcome the limitations of constitutive promoters. Transformants overexpressing Os-AP2/ERF-N22 showed higher relative water content, membrane stability index, total chlorophyll content, chlorophyll stability index, wax content, osmotic potential, stomatal conductance, transpiration rate, photosynthetic rate and radical scavenging activity. Drought tolerant (N22) showed higher expression of Os-AP2/ERF-N22 than the susceptible (MTU1010) cultivar. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01246-9.
Collapse
Affiliation(s)
- Vaibhav Kumar
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
- Basic Science Division, Indian Council of Agricultural Research-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh India
| | - Amresh Kumar
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
- Indian Council of Agricultural Research-National Institute for Plant Biotechnology, New Delhi, India
| | - Kalpana Tewari
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
- Basic Science Division, Indian Council of Agricultural Research-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh India
| | - Nitin Kumar Garg
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
- Rajasthan Agricultural Research Institute (SKNAU Jobner), Durgapura, Jaipur India
| | - Sushil S. Changan
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
- Division of CPB and PHT, Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, India
| | - Aruna Tyagi
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
5
|
Yu D, Iwamura Y, Satou Y, Oda-Ishii I. Tbx15/18/22 shares a binding site with Tbx6-r.b to maintain expression of a muscle structural gene in ascidian late embryos. Dev Biol 2021; 483:1-12. [PMID: 34963554 DOI: 10.1016/j.ydbio.2021.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 12/25/2022]
Abstract
The ascidian larval tail contains muscle cells for swimming. Most of these muscle cells differentiate autonomously. The genetic program behind this autonomy has been studied extensively and the genetic cascade from maternal factors to initiation of expression of a muscle structural gene, Myl.c, has been uncovered; Myl.c expression is directed initially by transcription factor Tbx6-r.b at the 64-cell stage and then by the combined actions of Tbx6-r.b and Mrf from the gastrula to early tailbud stages. In the present study, we showed that transcription of Myl.c continued in late tailbud embryos and larvae, although a fusion protein of Tbx6-r.b and GFP was hardly detectable in late tailbud embryos. A knockdown experiment, reporter assay, and in vitro binding assay indicated that an essential cis-regulatory element of Myl.c that bound Tbx6-r.b in early embryos bound Tbx15/18/22 in late embryos to maintain expression of Myl.c. We also found that Tbx15/18/22 was controlled by Mrf, which constitutes a regulatory loop with Tbx6-r.b. Therefore, our data indicated that Tbx15/18/22 was activated initially under control of this regulatory loop as in the case of Myl.c, and then Tbx15/18/22 maintained the expression of Myl.c after Tbx6-r.b had disappeared. RNA-sequencing of Tbx15/18/22 morphant embryos revealed that many muscle structural genes were regulated similarly by Tbx15/18/22. Thus, the present study revealed the mechanisms of maintenance of transcription of muscle structural genes in late embryos in which Tbx15/18/22 takes the place of Tbx6-r.b.
Collapse
Affiliation(s)
- Deli Yu
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Yuri Iwamura
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan.
| | - Izumi Oda-Ishii
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| |
Collapse
|
6
|
Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, Salvi P. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. PHYSIOLOGIA PLANTARUM 2021; 172:847-868. [PMID: 33180329 DOI: 10.1111/ppl.13268] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/23/2020] [Accepted: 11/07/2020] [Indexed: 05/03/2023]
Abstract
Amid apprehension of global climate change, crop plants are inevitably confronted with a myriad of abiotic stress factors during their growth that inflicts a serious threat to their development and overall productivity. These abiotic stresses comprise extreme temperature, pH, high saline soil, and drought stress. Among different abiotic stresses, drought is considered the most calamitous stressor with its serious impact on the crops' yield stability. The development of climate-resilient crops that withstands reduced water availability is a major focus of the scientific fraternity to ensure the food security of the sharply increasing population. Numerous studies aim to recognize the key regulators of molecular and biochemical processes associated with drought stress tolerance response. A few potential candidates are now considered as promising targets for crop improvement. Transcription factors act as a key regulatory switch controlling the gene expression of diverse biological processes and, eventually, the metabolic processes. Understanding the role and regulation of the transcription factors will facilitate the crop improvement strategies intending to develop and deliver agronomically-superior crops. Therefore, in this review, we have emphasized the molecular avenues of the transcription factors that can be exploited to engineer drought tolerance potential in crop plants. We have discussed the molecular role of several transcription factors, such as basic leucine zipper (bZIP), dehydration responsive element binding (DREB), DNA binding with one finger (DOF), heat shock factor (HSF), MYB, NAC, TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP), and WRKY. We have also highlighted candidate transcription factors that can be used for the development of drought-tolerant crops.
Collapse
Affiliation(s)
- Mrinalini Manna
- National Institute of Plant Genome Research, New Delhi, India
| | - Tanika Thakur
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Oceania Chirom
- National Institute of Plant Genome Research, New Delhi, India
| | - Rushil Mandlik
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Rupesh Deshmukh
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Prafull Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| |
Collapse
|
7
|
Floc'hlay S, Wong ES, Zhao B, Viales RR, Thomas-Chollier M, Thieffry D, Garfield DA, Furlong EEM. Cis-acting variation is common across regulatory layers but is often buffered during embryonic development. Genome Res 2021; 31:211-224. [PMID: 33310749 PMCID: PMC7849415 DOI: 10.1101/gr.266338.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Precise patterns of gene expression are driven by interactions between transcription factors, regulatory DNA sequences, and chromatin. How DNA mutations affecting any one of these regulatory "layers" are buffered or propagated to gene expression remains unclear. To address this, we quantified allele-specific changes in chromatin accessibility, histone modifications, and gene expression in F1 embryos generated from eight Drosophila crosses at three embryonic stages, yielding a comprehensive data set of 240 samples spanning multiple regulatory layers. Genetic variation (allelic imbalance) impacts gene expression more frequently than chromatin features, with metabolic and environmental response genes being most often affected. Allelic imbalance in cis-regulatory elements (enhancers) is common and highly heritable, yet its functional impact does not generally propagate to gene expression. When it does, genetic variation impacts RNA levels through two alternative mechanisms involving either H3K4me3 or chromatin accessibility and H3K27ac. Changes in RNA are more predictive of variation in H3K4me3 than vice versa, suggesting a role for H3K4me3 downstream from transcription. The impact of a substantial proportion of genetic variation is consistent across embryonic stages, with 50% of allelic imbalanced features at one stage being also imbalanced at subsequent developmental stages. Crucially, buffering, as well as the magnitude and evolutionary impact of genetic variants, is influenced by regulatory complexity (i.e., number of enhancers regulating a gene), with transcription factors being most robust to cis-acting, but most influenced by trans-acting, variation.
Collapse
Affiliation(s)
- Swann Floc'hlay
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Emily S Wong
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Bingqing Zhao
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Rebecca R Viales
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Morgane Thomas-Chollier
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Denis Thieffry
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - David A Garfield
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| |
Collapse
|
8
|
Coulcher JF, Roure A, Chowdhury R, Robert M, Lescat L, Bouin A, Carvajal Cadavid J, Nishida H, Darras S. Conservation of peripheral nervous system formation mechanisms in divergent ascidian embryos. eLife 2020; 9:e59157. [PMID: 33191918 PMCID: PMC7710358 DOI: 10.7554/elife.59157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/13/2020] [Indexed: 01/23/2023] Open
Abstract
Ascidians with very similar embryos but highly divergent genomes are thought to have undergone extensive developmental system drift. We compared, in four species (Ciona and Phallusia for Phlebobranchia, Molgula and Halocynthia for Stolidobranchia), gene expression and gene regulation for a network of six transcription factors regulating peripheral nervous system (PNS) formation in Ciona. All genes, but one in Molgula, were expressed in the PNS with some differences correlating with phylogenetic distance. Cross-species transgenesis indicated strong levels of conservation, except in Molgula, in gene regulation despite lack of sequence conservation of the enhancers. Developmental system drift in ascidians is thus higher for gene regulation than for gene expression and is impacted not only by phylogenetic distance, but also in a clade-specific manner and unevenly within a network. Finally, considering that Molgula is divergent in our analyses, this suggests deep conservation of developmental mechanisms in ascidians after 390 My of separate evolution.
Collapse
Affiliation(s)
- Joshua F Coulcher
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Agnès Roure
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Rafath Chowdhury
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Méryl Robert
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Laury Lescat
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Aurélie Bouin
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Juliana Carvajal Cadavid
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka UniversityToyonakaJapan
| | - Sébastien Darras
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| |
Collapse
|
9
|
Chen J, Cao H, Kaufmann T, Westlye LT, Tost H, Meyer-Lindenberg A, Schwarz E. Identification of Reproducible BCL11A Alterations in Schizophrenia Through Individual-Level Prediction of Coexpression. Schizophr Bull 2020; 46:1165-1171. [PMID: 32232389 PMCID: PMC7505190 DOI: 10.1093/schbul/sbaa047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previous studies have provided evidence for an alteration of genetic coexpression in schizophrenia (SCZ). However, such analyses have thus far lacked biological specificity for individual genes, which may be critical for identifying illness-relevant effects. Therefore, we applied machine learning to identify gene-specific coexpression differences at the individual subject level and compared these between individuals with SCZ, bipolar disorder, major depressive disorder (MDD), autism spectrum disorder (ASD), and healthy controls. Utilizing transcriptome-wide gene expression data from 21 independent datasets, comprising a total of 9509 participants, we identified a reproducible decrease of BCL11A coexpression across 4 SCZ datasets that showed diagnostic specificity for SCZ when compared with ASD and MDD. We further demonstrate that individual-level coexpression differences can be combined in multivariate coexpression scores that show reproducible illness classification across independent datasets in SCZ and ASD. This study demonstrates that machine learning can capture gene-specific coexpression differences at the individual subject level for SCZ and identify novel biomarker candidates.
Collapse
Affiliation(s)
- Junfang Chen
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Han Cao
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
10
|
Liu J, Li C, Wang J, Xu D, Wang H, Wang T, Li L, Li H, Nan P, Zhang J, Wang Y, Huang C, Chen D, Zhang Y, Wen T, Zhan Q, Ma F, Qian H. Chromatin modifier MTA1 regulates mitotic transition and tumorigenesis by orchestrating mitotic mRNA processing. Nat Commun 2020; 11:4455. [PMID: 32901005 PMCID: PMC7479136 DOI: 10.1038/s41467-020-18259-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
Dysregulated alternative splicing (AS) driving carcinogenetic mitosis remains poorly understood. Here, we demonstrate that cancer metastasis-associated antigen 1 (MTA1), a well-known oncogenic chromatin modifier, broadly interacts and co-expresses with RBPs across cancers, contributing to cancerous mitosis-related AS. Using developed fCLIP-seq technology, we show that MTA1 binds abundant transcripts, preferentially at splicing-responsible motifs, influencing the abundance and AS pattern of target transcripts. MTA1 regulates the mRNA level and guides the AS of a series of mitosis regulators. MTA1 deletion abrogated the dynamic AS switches of variants for ATRX and MYBL2 at mitotic stage, which are relevant to mitosis-related tumorigenesis. MTA1 dysfunction causes defective mitotic arrest, leads to aberrant chromosome segregation, and results in chromosomal instability (CIN), eventually contributing to tumorigenesis. Currently, little is known about the RNA splicing during mitosis; here, we uncover that MTA1 binds transcripts and orchestrates dynamic splicing of mitosis regulators in tumorigenesis.
Collapse
Grants
- the National Natural Science Foundation of China, No.81502384
- the National Natural Science Foundation of China, No.81672459
- grant from ABLife, No.ABL2014-03005
- the CAMS Innovation Fund for Medical Sciences (CIFMS) No.2017-I2M-3-004 the National Natural Science Foundation of China, No.81874122
- the National Basic Research Program of China (973 Program) (No.2015CB553904), the CAMS Innovation Fund for Medical Sciences (CIFMS) (No.2016-I2M-1-001, 2019‐I2M‐1‐003), the National Natural Science Foundation of China (No. 81572842, 81872280), the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2017PT31029), the Open Issue of State Key Laboratory of Molecular Oncology (No. SKL-KF-2017-16), the Independent Issue of State Key Laboratory of Molecular Oncology (No. SKL-2017-16)
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jinsong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dongkui Xu
- VIP Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Haijuan Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ting Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lina Li
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hui Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingyao Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Changzhi Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dong Chen
- Center for Genome Analysis, ABLife Inc, Wuhan, 430075, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc, Wuhan, 430075, China
| | - Tao Wen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
11
|
Li Y, Wang X, Zhang H, Wang S, Ye X, Shi L, Xu F, Ding G. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus. PLoS One 2019; 14:e0220374. [PMID: 31344115 PMCID: PMC6657917 DOI: 10.1371/journal.pone.0220374] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/14/2019] [Indexed: 11/18/2022] Open
Abstract
Phosphate (Pi) transporters play critical roles in Pi acquisition and homeostasis. However, little is known about these transporters in oilseed rape. Therefore, the aim of the present study was to characterize the members of the PHT1 gene family in allotetraploid Brassica napus and to analyze their expression profiles in response to environmental stresses. In total, 49 PHT1 family members were identified in B. napus, including 27 genes in the A subgenome and 22 in the C subgenome. Most of the PHT1 proteins were predicted to localize to the plasma membrane. Phylogenetic analysis suggested that the members of the PHT1 gene family can be divided into seven clades, with the introns/exons and protein motifs conserved in each clade. Collinearity analysis revealed that most of the BnaPHT1 genes shared syntenic relationships with PHT1 members in Arabidopsis thaliana, B. rapa, and B. oleracea, and that whole-genome duplication (polyploidy) played a major driving force for BnaPHT1 evolution in addition to segmental duplication. Transcript abundance analysis showed that a broad range of expression patterns of individual BnaPHT1 genes occurred in response to phosphorus (P) deficiency. In addition, the expression levels of BnaPHT1 genes can be regulated by different nutrient stresses, including nitrogen (N), potassium (K), sulfur (S) and iron (Fe) stresses. Moveover, salt and drought stresses can regulate the transcript abundances of BnaPHT1s, as well as phytohormones including auxin and cytokinin. Gene coexpression analysis based on the RNA-seq data implied that BnaPHT1s might cooperate with each other as well as with other genes to regulate nutrient homeostasis in B. napus. Further analysis of the promoters revealed that GT-1, DRE and P1BS elements are widely distributed within the promoter regions of BnaPHT1 genes. Our results indicate that BnaPHT1s might be involved in cross-talk for sensing the external status of P, N, K, S and Fe, as well as salt and drought stresses. Moreover, these processes might be mediated by phytohormones. Our findings provide the first step in the complex genetic dissection of the Pi transport system in plants and implicate multiple transcriptional regulation, which probably refers to new roles of PHT1 genes in B. napus.
Collapse
Affiliation(s)
- Yu Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xue Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Hao Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xiangsheng Ye
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
12
|
Razy-Krajka F, Stolfi A. Regulation and evolution of muscle development in tunicates. EvoDevo 2019; 10:13. [PMID: 31249657 PMCID: PMC6589888 DOI: 10.1186/s13227-019-0125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
For more than a century, studies on tunicate muscle formation have revealed many principles of cell fate specification, gene regulation, morphogenesis, and evolution. Here, we review the key studies that have probed the development of all the various muscle cell types in a wide variety of tunicate species. We seize this occasion to explore the implications and questions raised by these findings in the broader context of muscle evolution in chordates.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
13
|
Yu D, Oda-Ishii I, Kubo A, Satou Y. The regulatory pathway from genes directly activated by maternal factors to muscle structural genes in ascidian embryos. Development 2019; 146:dev.173104. [PMID: 30674480 DOI: 10.1242/dev.173104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Striated muscle cells in the tail of ascidian tadpole larvae differentiate cell-autonomously. Although several key regulatory factors have been identified, the genetic regulatory pathway is not fully understood; comprehensive understanding of the regulatory pathway is essential for accurate modeling in order to deduce principles for gene regulatory network dynamics, and for comparative analysis on how ascidians have evolved the cell-autonomous gene regulatory mechanism. Here, we reveal regulatory interactions among three key regulatory factors, Zic-r.b, Tbx6-r.b and Mrf, and elucidate the mechanism by which these factors activate muscle structural genes. We reveal a cross-regulatory circuit among these regulatory factors, which maintains the expression of Tbx6-r.b and Mrf during gastrulation. Although these two factors combinatorially activate muscle structural genes in late-stage embryos, muscle structural genes are activated mainly by Tbx6-r.b before gastrulation. Time points when expression of muscle structural genes become first detectable are strongly correlated with the degree of Tbx6-r.b occupancy. Thus, the genetic pathway, starting with Tbx6-r.b and Zic-r.b, which are activated by maternal factors, and ending with expression of muscle structural genes, has been revealed.
Collapse
Affiliation(s)
- Deli Yu
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Izumi Oda-Ishii
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Atsushi Kubo
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Sheshadri SA, Nishanth MJ, Harita N, Brindha P, Bindu S. Comparative genome based cis-elements analysis in the 5' upstream and 3' downstream region of cell wall invertase and Phenylalanine ammonia lyase in Nicotiana benthamiana. Comput Biol Chem 2018; 72:181-191. [PMID: 29329783 DOI: 10.1016/j.compbiolchem.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 10/12/2017] [Accepted: 11/11/2017] [Indexed: 11/18/2022]
Abstract
Plant secondary metabolites are widely used in human disease treatment; though primary metabolism provides precursors for secondary metabolism, not much has been studied to unravel the link connecting both the processes. Most common form of gene regulation interconnecting diverse metabolism occurs at the transcriptional and/or posttranscriptional level mediated by regulatory cis-elements. The present study aims at understanding the common cis-elements network connecting the major primary metabolic enzyme, cell wall invertase (CWIN) and secondary metabolism genes in Nicotiana benthamiana (N. benthamiana). The CWIN and thirty one other gene sequences were extracted from N. benthamiana genome, followed by cis-element analysis of their 5' upstream and 3' downstream region using different programs (Genomatix software suite; PLACE and PlantCARe). Comparative cis-element analysis of CWIN (N. benthamiana and other plant species) and other primary, secondary metabolism and transcription factor genes (N. benthamiana) revealed the occurrence of common stress associated cis-elements. Predominantly, AHBP, L1BX, MYBL, MADS, MYBS, GTBX, DOFF and CCAF were found in the 5' upstream region of all genes, whereas AHBP, MYBL, L1BX, HEAT, CCAF and KAN1 were largely occurring in the 3' downstream region of all genes; indicating common function of these elements in transcriptional and posttranscriptional gene regulation. Further, genomic analysis using FGENESH, GenScan and homology based methods (BlastX and BlastN) was performed on the N. benthamiana contigs harboring CWIN and PAL, in an attempt to identify genomic neighborhood genes. The 5' upstream and 3' downstream region of genes in the genomic neighborhood of CWIN and PAL were also subjected to similar cis-element analysis, and the results indicated cis-elements profile similar to CWIN, PAL and other primary, secondary metabolism and transcription factor genes. The results of evolutionary studies confirmed that the 5' upstream region of NbCWINs significantly showed more proximity to secondary metabolism genes 4CL and the redox gene SOD, followed by the phenylpropanoid pathway gene CHI. The 3' downstream regions of NbCWINs were more closely related to other plant CWINs, followed by the redox gene, SOD and primary metabolism gene FBA. Thus, the commonly found stress responsive cis-elements in our study can play a vital role in modulating key pathways of both primary and secondary metabolism; thereby postulating their role in regulating plant growth and metabolisms under unfavourable growth conditions.
Collapse
Affiliation(s)
- S A Sheshadri
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401 India
| | - M J Nishanth
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401 India
| | - N Harita
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401 India
| | - P Brindha
- Centre for Advanced Research in Indian System of Medicine (CARISM), SASTRA University, Thanjavur, 613401 India
| | - S Bindu
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401 India.
| |
Collapse
|
15
|
Liu J, Liu Q, Wang H, Li C, Wen T, An G, Qian H. NuRD subunit MTA1 interacts with the DNA non-homologous end joining Ku complex in cancer cells. RSC Adv 2018; 8:35218-35225. [PMID: 35547075 PMCID: PMC9087872 DOI: 10.1039/c8ra06907g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/10/2018] [Indexed: 11/29/2022] Open
Abstract
Metastasis-associated antigen 1 (MTA1) is a chromatin modifier mediating DNA modification and gene expression. Ku70/Ku80 complex has been reported to be essential in DNA damage response. In an effort to explore the MTA1 interactome, we captured the Ku70/Ku80 complex with two specific MTA1 antibodies in a colon cancer cell line. We first validated the in vitro interaction between MTA1 and the Ku complex by co-immunoprecipitation (co-IP) analyses in cell lysate, showing that the interaction occurred mainly at the nucleus, but also existed in the cytoplasm at a lower level. We further visualized and confirmed their in vivo interaction using proximity ligation assay (PLA), which, in line with the in vitro analysis, also demonstrated a vast majority of interaction plots in the nucleus and a small number in the cytoplasm. We previously demonstrated that MTA1 distributed dynamically and periodically during the cell cycle. Here, through fluorescent colocalization, we found that MTA1 and Ku proteins colocalized well in the nucleus at interphase and moved synchronously from prophase to anaphase. Interestingly, at the time of telophase, when MTA1 was reported to re-enter the nucleus, they were separated and moved non-synchronously. Moreover, using in situ PLA, we visualized that the interaction occurred at both interphase and mitosis. At interphase, they interacted mainly in the nucleus, but during mitosis, they interact at the periphery of chromosomes. We also showed that MTA1 correlated well with Ku in both the cancerous and normal tissues, and that they cooperated in UV-induced DNA damage response. Collectively, our data uncover a specific interaction between MTA1 and Ku complex at both the nucleus and cytoplasm, and across the whole cell cycle. We therefore propose a potential functional crosstalk between NuRD and Ku complexes, the two most fundamental function units in cells, via physical interaction. MTA1 interacts with Ku complex mainly in the nucleus at interphase and surrounding the chromosome during mitosis.![]()
Collapse
Affiliation(s)
- Jian Liu
- Medical Research Center
- Beijing Chao-Yang Hospital
- Capital Medical University
- Beijing
- China
| | - Qun Liu
- Department of Obstetrics and Gynecology
- Beijing Anzhen Hospital
- Capital Medical University
- Beijing
- China
| | - Haijuan Wang
- State Key Laboratory of Molecular Oncology
- National Cancer Center/Cancer Hospital
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
- China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology
- National Cancer Center/Cancer Hospital
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
- China
| | - Tao Wen
- Medical Research Center
- Beijing Chao-Yang Hospital
- Capital Medical University
- Beijing
- China
| | - Guangyu An
- Department of Oncology
- Beijing Chao-Yang Hospital
- Capital Medical University
- Beijing
- China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology
- National Cancer Center/Cancer Hospital
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
- China
| |
Collapse
|
16
|
Zeller RW. Electroporation in Ascidians: History, Theory and Protocols. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542079 DOI: 10.1007/978-981-10-7545-2_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Embryonic development depends on the orchestration of hundreds of regulatory and structural genes to initiate expression at the proper time, in the correct spatial domain(s), and in the amounts required for cells and tissues to become specified, determined, and ultimately to differentiate into a multicellular embryo. One of the key approaches to studying embryonic development is the generation of transgenic animals in which recombinant DNA molecules are transiently or stably introduced into embryos to alter gene expression, to manipulate gene function or to serve as reporters for specific cell types or subcellular compartments. In some model systems, such as the mouse, well-defined approaches for generating transgenic animals have been developed. In other systems, particularly non-model systems, a key challenge is to find a way of introducing molecules or other reagents into cells that produces large numbers of embryos with a minimal effect on normal development. A variety of methods have been developed, including the use of viral vectors, microinjection, and electroporation. Here, I describe how electroporation was adapted to generate transgenic embryos in the ascidian, a nontraditional invertebrate chordate model that is particularly well-suited for studying gene regulatory activity during development. I present a review of the electroporation process, describe how electroporation was first implemented in the ascidian, and provide a series of protocols describing the electroporation process, as implemented in our laboratory.
Collapse
Affiliation(s)
- Robert W Zeller
- Center for Applied and Experimental Genomics, Department of Biology, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
17
|
Crocker J, Ilsley GR. Using synthetic biology to study gene regulatory evolution. Curr Opin Genet Dev 2017; 47:91-101. [DOI: 10.1016/j.gde.2017.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 12/21/2022]
|
18
|
Tolkin T, Christiaen L. Rewiring of an ancestral Tbx1/10-Ebf-Mrf network for pharyngeal muscle specification in distinct embryonic lineages. Development 2017; 143:3852-3862. [PMID: 27802138 DOI: 10.1242/dev.136267] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/30/2016] [Indexed: 01/01/2023]
Abstract
Skeletal muscles arise from diverse embryonic origins in vertebrates, yet converge on extensively shared regulatory programs that require muscle regulatory factor (MRF)-family genes. Myogenesis in the tail of the simple chordate Ciona exhibits a similar reliance on its single MRF-family gene, and diverse mechanisms activate Ci-Mrf Here, we show that myogenesis in the atrial siphon muscles (ASMs) and oral siphon muscles (OSMs), which control the exhalant and inhalant siphons, respectively, also requires Mrf We characterize the ontogeny of OSM progenitors and compare the molecular basis of Mrf activation in OSM versus ASM. In both muscle types, Ebf and Tbx1/10 are expressed and function upstream of Mrf However, we demonstrate that regulatory relationships between Tbx1/10, Ebf and Mrf differ between the OSM and ASM lineages. We propose that Tbx1, Ebf and Mrf homologs form an ancient conserved regulatory state for pharyngeal muscle specification, whereas their regulatory relationships might be more evolutionarily variable.
Collapse
Affiliation(s)
- Theadora Tolkin
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
19
|
Trizzino M, Park Y, Holsbach-Beltrame M, Aracena K, Mika K, Caliskan M, Perry GH, Lynch VJ, Brown CD. Transposable elements are the primary source of novelty in primate gene regulation. Genome Res 2017; 27:1623-1633. [PMID: 28855262 PMCID: PMC5630026 DOI: 10.1101/gr.218149.116] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 08/17/2017] [Indexed: 12/11/2022]
Abstract
Gene regulation shapes the evolution of phenotypic diversity. We investigated the evolution of liver promoters and enhancers in six primate species using ChIP-seq (H3K27ac and H3K4me1) to profile cis-regulatory elements (CREs) and using RNA-seq to characterize gene expression in the same individuals. To quantify regulatory divergence, we compared CRE activity across species by testing differential ChIP-seq read depths directly measured for orthologous sequences. We show that the primate regulatory landscape is largely conserved across the lineage, with 63% of the tested human liver CREs showing similar activity across species. Conserved CRE function is associated with sequence conservation, proximity to coding genes, cell-type specificity, and transcription factor binding. Newly evolved CREs are enriched in immune response and neurodevelopmental functions. We further demonstrate that conserved CREs bind master regulators, suggesting that while CREs contribute to species adaptation to the environment, core functions remain intact. Newly evolved CREs are enriched in young transposable elements (TEs), including Long-Terminal-Repeats (LTRs) and SINE-VNTR-Alus (SVAs), that significantly affect gene expression. Conversely, only 16% of conserved CREs overlap TEs. We tested the cis-regulatory activity of 69 TE subfamilies by luciferase reporter assays, spanning all major TE classes, and showed that 95.6% of tested TEs can function as either transcriptional activators or repressors. In conclusion, we demonstrated the critical role of TEs in primate gene regulation and illustrated potential mechanisms underlying evolutionary divergence among the primate species through the noncoding genome.
Collapse
Affiliation(s)
- Marco Trizzino
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - YoSon Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marcia Holsbach-Beltrame
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Katherine Aracena
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Katelyn Mika
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Minal Caliskan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - George H Perry
- Departments of Anthropology and Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Vincent J Lynch
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
20
|
Khoueiry P, Girardot C, Ciglar L, Peng PC, Gustafson EH, Sinha S, Furlong EE. Uncoupling evolutionary changes in DNA sequence, transcription factor occupancy and enhancer activity. eLife 2017; 6. [PMID: 28792889 PMCID: PMC5550276 DOI: 10.7554/elife.28440] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
Sequence variation within enhancers plays a major role in both evolution and disease, yet its functional impact on transcription factor (TF) occupancy and enhancer activity remains poorly understood. Here, we assayed the binding of five essential TFs over multiple stages of embryogenesis in two distant Drosophila species (with 1.4 substitutions per neutral site), identifying thousands of orthologous enhancers with conserved or diverged combinatorial occupancy. We used these binding signatures to dissect two properties of developmental enhancers: (1) potential TF cooperativity, using signatures of co-associations and co-divergence in TF occupancy. This revealed conserved combinatorial binding despite sequence divergence, suggesting protein-protein interactions sustain conserved collective occupancy. (2) Enhancer in-vivo activity, revealing orthologous enhancers with conserved activity despite divergence in TF occupancy. Taken together, we identify enhancers with diverged motifs yet conserved occupancy and others with diverged occupancy yet conserved activity, emphasising the need to functionally measure the effect of divergence on enhancer activity.
Collapse
Affiliation(s)
- Pierre Khoueiry
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Lucia Ciglar
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Pei-Chen Peng
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Champaign, United States
| | - E Hilary Gustafson
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Saurabh Sinha
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.,Carl R. Woese Institute of Genomic Biology, University of Illinois, Champaign, United States
| | - Eileen Em Furlong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| |
Collapse
|
21
|
Crocker J, Stern DL. Functional regulatory evolution outside of the minimal even-skipped stripe 2 enhancer. Development 2017; 144:3095-3101. [PMID: 28760812 DOI: 10.1242/dev.149427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/19/2017] [Indexed: 12/27/2022]
Abstract
Transcriptional enhancers are regions of DNA that drive precise patterns of gene expression. Although many studies have elucidated how individual enhancers can evolve, most of this work has focused on what are called 'minimal' enhancers, the smallest DNA regions that drive expression that approximates an aspect of native gene expression. Here, we explore how the Drosophila erecta even-skipped (eve) locus has evolved by testing its activity in the divergent D. melanogaster genome. We found, as has been reported previously, that the D. erecta eve stripe 2 enhancer (eveS2) fails to drive appreciable expression in D. melanogaster However, we found that a large transgene carrying the entire D. erecta eve locus drives normal eve expression, including in stripe 2. We performed a functional dissection of the region upstream of the D. erecta eveS2 region and found multiple Zelda motifs that are required for normal expression. Our results illustrate how sequences outside of minimal enhancer regions can evolve functionally through mechanisms other than changes in transcription factor-binding sites that drive patterning.
Collapse
Affiliation(s)
- Justin Crocker
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
22
|
Discover mouse gene coexpression landscapes using dictionary learning and sparse coding. Brain Struct Funct 2017; 222:4253-4270. [DOI: 10.1007/s00429-017-1460-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 06/13/2017] [Indexed: 11/25/2022]
|
23
|
Crocker J, Tsai A, Stern DL. A Fully Synthetic Transcriptional Platform for a Multicellular Eukaryote. Cell Rep 2017; 18:287-296. [DOI: 10.1016/j.celrep.2016.12.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/14/2015] [Accepted: 12/07/2016] [Indexed: 01/12/2023] Open
|
24
|
Sheshadri SA, Nishanth MJ, Simon B. Stress-Mediated cis-Element Transcription Factor Interactions Interconnecting Primary and Specialized Metabolism in planta. FRONTIERS IN PLANT SCIENCE 2016; 7:1725. [PMID: 27933071 PMCID: PMC5122738 DOI: 10.3389/fpls.2016.01725] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/02/2016] [Indexed: 05/07/2023]
Abstract
Plant specialized metabolites are being used worldwide as therapeutic agents against several diseases. Since the precursors for specialized metabolites come through primary metabolism, extensive investigations have been carried out to understand the detailed connection between primary and specialized metabolism at various levels. Stress regulates the expression of primary and specialized metabolism genes at the transcriptional level via transcription factors binding to specific cis-elements. The presence of varied cis-element signatures upstream to different stress-responsive genes and their transcription factor binding patterns provide a prospective molecular link among diverse metabolic pathways. The pattern of occurrence of these cis-elements (overrepresentation/common) decipher the mechanism of stress-responsive upregulation of downstream genes, simultaneously forming a molecular bridge between primary and specialized metabolisms. Though many studies have been conducted on the transcriptional regulation of stress-mediated primary or specialized metabolism genes, but not much data is available with regard to cis-element signatures and transcription factors that simultaneously modulate both pathway genes. Hence, our major focus would be to present a comprehensive analysis of the stress-mediated interconnection between primary and specialized metabolism genes via the interaction between different transcription factors and their corresponding cis-elements. In future, this study could be further utilized for the overexpression of the specific transcription factors that upregulate both primary and specialized metabolism, thereby simultaneously improving the yield and therapeutic content of plants.
Collapse
Affiliation(s)
| | | | - Bindu Simon
- School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| |
Collapse
|
25
|
Abstract
Ascidians are invertebrate chordates with a biphasic life cycle characterized by a dual body plan that displays simplified versions of chordate structures, such as a premetamorphic 40-cell notochord topped by a dorsal nerve cord and postmetamorphic pharyngeal slits. These relatively simple chordates are characterized by rapid development, compact genomes and ease of transgenesis, and thus provide the opportunity to rapidly characterize the genomic organization, developmental function, and transcriptional regulation of evolutionarily conserved gene families. This review summarizes the current knowledge on members of the T-box family of transcription factors in Ciona and other ascidians. In both chordate and nonchordate animals, these genes control a variety of morphogenetic processes, and their mutations are responsible for malformations and developmental defects in organisms ranging from flies to humans. In ascidians, T-box transcription factors are required for the formation and specialization of essential structures, including notochord, muscle, heart, and differentiated neurons. In recent years, the experimental advantages offered by ascidian embryos have allowed the rapid accumulation of a wealth of information on the molecular mechanisms that regulate the expression of T-box genes. These studies have also elucidated the strategies employed by these transcription factors to orchestrate the appropriate spatial and temporal deployment of the numerous target genes that they control.
Collapse
Affiliation(s)
- A Di Gregorio
- New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
26
|
Yao Y, Minor PJ, Zhao YT, Jeong Y, Pani AM, King AN, Symmons O, Gan L, Cardoso WV, Spitz F, Lowe CJ, Epstein DJ. Cis-regulatory architecture of a brain signaling center predates the origin of chordates. Nat Genet 2016; 48:575-80. [PMID: 27064252 PMCID: PMC4848136 DOI: 10.1038/ng.3542] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/11/2016] [Indexed: 12/13/2022]
Abstract
Genomic approaches have predicted hundreds of thousands of tissue-specific cis-regulatory sequences, but the determinants critical to their function and evolutionary history are mostly unknown. Here we systematically decode a set of brain enhancers active in the zona limitans intrathalamica (zli), a signaling center essential for vertebrate forebrain development via the secreted morphogen Sonic hedgehog (Shh). We apply a de novo motif analysis tool to identify six position-independent sequence motifs together with their cognate transcription factors that are essential for zli enhancer activity and Shh expression in the mouse embryo. Using knowledge of this regulatory lexicon, we discover new Shh zli enhancers in mice and a functionally equivalent element in hemichordates, indicating an ancient origin of the Shh zli regulatory network that predates the chordate phylum. These findings support a strategy for delineating functionally conserved enhancers in the absence of overt sequence homologies and over extensive evolutionary distances.
Collapse
Affiliation(s)
- Yao Yao
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Clinical Research Building 470, Philadelphia, PA 19104, USA
| | - Paul J. Minor
- Hopkins Marine Station, Department of Biology, Stanford University, 120 Oceanview Blvd. Pacific Grove, CA 93950, USA
| | - Ying-Tao Zhao
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Clinical Research Building 470, Philadelphia, PA 19104, USA
| | - Yongsu Jeong
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si 446-701, Republic of Korea
| | - Ariel M. Pani
- Hopkins Marine Station, Department of Biology, Stanford University, 120 Oceanview Blvd. Pacific Grove, CA 93950, USA
| | - Anna N. King
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Clinical Research Building 470, Philadelphia, PA 19104, USA
| | - Orsolya Symmons
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lin Gan
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wellington V. Cardoso
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Medical Center, New York, NY 10032, USA
| | - François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christopher J. Lowe
- Hopkins Marine Station, Department of Biology, Stanford University, 120 Oceanview Blvd. Pacific Grove, CA 93950, USA
| | - Douglas J. Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Clinical Research Building 470, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Quantitatively predictable control of Drosophila transcriptional enhancers in vivo with engineered transcription factors. Nat Genet 2016; 48:292-8. [DOI: 10.1038/ng.3509] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 01/15/2016] [Indexed: 12/13/2022]
|
28
|
José-Edwards DS, Oda-Ishii I, Kugler JE, Passamaneck YJ, Katikala L, Nibu Y, Di Gregorio A. Brachyury, Foxa2 and the cis-Regulatory Origins of the Notochord. PLoS Genet 2015; 11:e1005730. [PMID: 26684323 PMCID: PMC4684326 DOI: 10.1371/journal.pgen.1005730] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/16/2015] [Indexed: 11/18/2022] Open
Abstract
A main challenge of modern biology is to understand how specific constellations of genes are activated to differentiate cells and give rise to distinct tissues. This study focuses on elucidating how gene expression is initiated in the notochord, an axial structure that provides support and patterning signals to embryos of humans and all other chordates. Although numerous notochord genes have been identified, the regulatory DNAs that orchestrate development and propel evolution of this structure by eliciting notochord gene expression remain mostly uncharted, and the information on their configuration and recurrence is still quite fragmentary. Here we used the simple chordate Ciona for a systematic analysis of notochord cis-regulatory modules (CRMs), and investigated their composition, architectural constraints, predictive ability and evolutionary conservation. We found that most Ciona notochord CRMs relied upon variable combinations of binding sites for the transcription factors Brachyury and/or Foxa2, which can act either synergistically or independently from one another. Notably, one of these CRMs contains a Brachyury binding site juxtaposed to an (AC) microsatellite, an unusual arrangement also found in Brachyury-bound regulatory regions in mouse. In contrast, different subsets of CRMs relied upon binding sites for transcription factors of widely diverse families. Surprisingly, we found that neither intra-genomic nor interspecific conservation of binding sites were reliably predictive hallmarks of notochord CRMs. We propose that rather than obeying a rigid sequence-based cis-regulatory code, most notochord CRMs are rather unique. Yet, this study uncovered essential elements recurrently used by divergent chordates as basic building blocks for notochord CRMs.
Collapse
Affiliation(s)
- Diana S. José-Edwards
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Izumi Oda-Ishii
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Jamie E. Kugler
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Yale J. Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Lavanya Katikala
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Yutaka Nibu
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Anna Di Gregorio
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Shadow Enhancers Are Pervasive Features of Developmental Regulatory Networks. Curr Biol 2015; 26:38-51. [PMID: 26687625 PMCID: PMC4712172 DOI: 10.1016/j.cub.2015.11.034] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 11/22/2022]
Abstract
Embryogenesis is remarkably robust to segregating mutations and environmental variation; under a range of conditions, embryos of a given species develop into stereotypically patterned organisms. Such robustness is thought to be conferred, in part, through elements within regulatory networks that perform similar, redundant tasks. Redundant enhancers (or "shadow" enhancers), for example, can confer precision and robustness to gene expression, at least at individual, well-studied loci. However, the extent to which enhancer redundancy exists and can thereby have a major impact on developmental robustness remains unknown. Here, we systematically assessed this, identifying over 1,000 predicted shadow enhancers during Drosophila mesoderm development. The activity of 23 elements, associated with five genes, was examined in transgenic embryos, while natural structural variation among individuals was used to assess their ability to buffer against genetic variation. Our results reveal three clear properties of enhancer redundancy within developmental systems. First, it is much more pervasive than previously anticipated, with 64% of loci examined having shadow enhancers. Their spatial redundancy is often partial in nature, while the non-overlapping function may explain why these enhancers are maintained within a population. Second, over 70% of loci do not follow the simple situation of having only two shadow enhancers-often there are three (rols), four (CadN and ade5), or five (Traf1), at least one of which can be deleted with no obvious phenotypic effects. Third, although shadow enhancers can buffer variation, patterns of segregating variation suggest that they play a more complex role in development than generally considered.
Collapse
|
30
|
Handling Permutation in Sequence Comparison: Genome-Wide Enhancer Prediction in Vertebrates by a Novel Non-Linear Alignment Scoring Principle. PLoS One 2015; 10:e0141487. [PMID: 26505748 PMCID: PMC4624239 DOI: 10.1371/journal.pone.0141487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/08/2015] [Indexed: 01/01/2023] Open
Abstract
Enhancers have been described to evolve by permutation without changing function. This has posed the problem of how to predict enhancer elements that are hidden from alignment-based approaches due to the loss of co-linearity. Alignment-free algorithms have been proposed as one possible solution. However, this approach is hampered by several problems inherent to its underlying working principle. Here we present a new approach, which combines the power of alignment and alignment-free techniques into one algorithm. It allows the prediction of enhancers based on the query and target sequence only, no matter whether the regulatory logic is co-linear or reshuffled. To test our novel approach, we employ it for the prediction of enhancers across the evolutionary distance of ~450Myr between human and medaka. We demonstrate its efficacy by subsequent in vivo validation resulting in 82% (9/11) of the predicted medaka regions showing reporter activity. These include five candidates with partially co-linear and four with reshuffled motif patterns. Orthology in flanking genes and conservation of the detected co-linear motifs indicates that those candidates are likely functionally equivalent enhancers. In sum, our results demonstrate that the proposed principle successfully predicts mutated as well as permuted enhancer regions at an encouragingly high rate.
Collapse
|
31
|
Gordon KL, Arthur RK, Ruvinsky I. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence. PLoS Genet 2015; 11:e1005268. [PMID: 26020930 PMCID: PMC4447282 DOI: 10.1371/journal.pgen.1005268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 05/09/2015] [Indexed: 11/28/2022] Open
Abstract
Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements. To explore the phylogenetic limits of conservation of cis-regulatory elements, we used transgenesis to test the functions of enhancers of four genes from several species spanning the phylum Nematoda. While we found a striking degree of functional conservation among the examined cis elements, their DNA sequences lacked apparent conservation with the C. elegans orthologs. In fact, sequence similarity between C. elegans and the distantly related nematodes was no greater than would be expected by chance. Short motifs, similar to known regulatory sequences in C. elegans, can be detected in most of the cis elements. When tested, some of these sites appear to mediate regulatory function. However, they seem to have originated through motif turnover, rather than to have been preserved from a common ancestor. Our results suggest that gene regulatory networks are broadly conserved in the phylum Nematoda, but this conservation persists despite substantial reorganization of regulatory elements and could not be detected using naïve comparisons of sequence similarity.
Collapse
Affiliation(s)
- Kacy L. Gordon
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (KLG); (IR)
| | - Robert K. Arthur
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Ilya Ruvinsky
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (KLG); (IR)
| |
Collapse
|
32
|
Stolfi A, Lowe EK, Racioppi C, Ristoratore F, Brown CT, Swalla BJ, Christiaen L. Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians. eLife 2014; 3:e03728. [PMID: 25209999 PMCID: PMC4356046 DOI: 10.7554/elife.03728] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/05/2014] [Indexed: 12/13/2022] Open
Abstract
Ascidians present a striking dichotomy between conserved phenotypes and divergent genomes: embryonic cell lineages and gene expression patterns are conserved between distantly related species. Much research has focused on Ciona or Halocynthia spp. but development in other ascidians remains poorly characterized. In this study, we surveyed the multipotent myogenic B7.5 lineage in Molgula spp. Comparisons to the homologous lineage in Ciona revealed identical cell division and fate specification events that result in segregation of larval, cardiac, and pharyngeal muscle progenitors. Moreover, the expression patterns of key regulators are conserved, but cross-species transgenic assays uncovered incompatibility, or ‘unintelligibility’, of orthologous cis-regulatory sequences between Molgula and Ciona. These sequences drive identical expression patterns that are not recapitulated in cross-species assays. We show that this unintelligibility is likely due to changes in both cis- and trans-acting elements, hinting at widespread and frequent turnover of regulatory mechanisms underlying otherwise conserved aspects of ascidian embryogenesis. DOI:http://dx.doi.org/10.7554/eLife.03728.001 When two species have features that look similar, this may be because the features arise by the same processes during development. Other features may look similar yet develop by different mechanisms. ‘Developmental system drift’ refers to the process where a physical feature remains unaltered during evolution, but the underlying pathway that controls its development is changed. However, to date, there have been only a few experimental studies that support this idea. Ascidians—also commonly known as sea squirts—are vase-like marine creatures, which start off as tadpole-like larvae that swim around until they find a place to settle down and attach themselves. Once attached, the sea squirts lose the ability to swim and start feeding, typically by filtering material out of the seawater. Sea squirts and their close relatives are the invertebrates (animals without backbones) that are most closely related to all vertebrates (animals with backbones), including humans. Furthermore, although different species of sea squirt have almost identical embryos, their genomes are very different. Stolfi et al. have now studied whether developmental system drift may have occurred during the evolution of ascidians, by analyzing different species of sea squirt named Molgula and Ciona. Stolfi et al. compared the genomes of Molgula and Ciona and studied the expression of genes in the cells that give rise to the heart and the muscles of the head. As an embryo develops, specific genes are switched on or off, and these patterns of gene activation were broadly identical in the two species of sea squirt examined. Enhancers are sequences of DNA that control when and how a gene is switched on. Given the similarities between the development of heart and head muscle cells in the different sea squirts, Stolfi et al. looked to see if the mechanisms of gene expression, and therefore the enhancers, were also conserved. Unexpectedly, this was not the case. When enhancers from Molgula were introduced into Ciona (and vice versa), these sequences were unable to switch on gene expression—thus enhancers from one sea squirt species could not function in the other. Stolfi et al. conclude that the developmental systems may have drifted considerably during evolution of the sea squirts, in spite of their nearly identical embryos. This reinforces the view that different paths can lead to the formation of similar physical features. DOI:http://dx.doi.org/10.7554/eLife.03728.002
Collapse
Affiliation(s)
- Alberto Stolfi
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Elijah K Lowe
- Department of Computer Science and Engineering, Michigan State University, East Lansing, United States
| | - Claudia Racioppi
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Filomena Ristoratore
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - C Titus Brown
- Department of Computer Science and Engineering, Michigan State University, East Lansing, United States
| | - Billie J Swalla
- Department of Biology, University of Washington, Seattle, United States
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| |
Collapse
|
33
|
Barrière A, Ruvinsky I. Pervasive divergence of transcriptional gene regulation in Caenorhabditis nematodes. PLoS Genet 2014; 10:e1004435. [PMID: 24968346 PMCID: PMC4072541 DOI: 10.1371/journal.pgen.1004435] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/28/2014] [Indexed: 12/18/2022] Open
Abstract
Because there is considerable variation in gene expression even between closely related species, it is clear that gene regulatory mechanisms evolve relatively rapidly. Because primary sequence conservation is an unreliable proxy for functional conservation of cis-regulatory elements, their assessment must be carried out in vivo. We conducted a survey of cis-regulatory conservation between C. elegans and closely related species C. briggsae, C. remanei, C. brenneri, and C. japonica. We tested enhancers of eight genes from these species by introducing them into C. elegans and analyzing the expression patterns they drove. Our results support several notable conclusions. Most exogenous cis elements direct expression in the same cells as their C. elegans orthologs, confirming gross conservation of regulatory mechanisms. However, the majority of exogenous elements, when placed in C. elegans, also directed expression in cells outside endogenous patterns, suggesting functional divergence. Recurrent ectopic expression of different promoters in the same C. elegans cells may reflect biases in the directions in which expression patterns can evolve due to shared regulatory logic of coexpressed genes. The fact that, despite differences between individual genes, several patterns repeatedly emerged from our survey, encourages us to think that general rules governing regulatory evolution may exist and be discoverable.
Collapse
Affiliation(s)
- Antoine Barrière
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AB); (IR)
| | - Ilya Ruvinsky
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AB); (IR)
| |
Collapse
|
34
|
Abstract
Instructions for when, where and to what level each gene should be expressed are encoded within regulatory sequences. The importance of motifs recognized by DNA-binding regulators has long been known, but their extensive characterization afforded by recent technologies only partly accounts for how regulatory instructions are encoded in the genome. Here, we review recent advances in our understanding of regulatory sequences that influence transcription and go beyond the description of motifs. We discuss how understanding different aspects of the sequence-encoded regulation can help to unravel the genotype-phenotype relationship, which would lead to a more accurate and mechanistic interpretation of personal genome sequences.
Collapse
Affiliation(s)
- Michal Levo
- Department of Molecular Cell Biology, and Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eran Segal
- Department of Molecular Cell Biology, and Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
35
|
Schwarzer W, Spitz F. The architecture of gene expression: integrating dispersed cis-regulatory modules into coherent regulatory domains. Curr Opin Genet Dev 2014; 27:74-82. [PMID: 24907448 DOI: 10.1016/j.gde.2014.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 02/06/2023]
Abstract
Specificity and precision of expression are essential for the genes that regulate developmental processes. The specialized cis-acting modules, such as enhancers, that define gene expression patterns can be distributed across large regions, raising questions about the nature of the mechanisms that underline their action. Recent data has exposed the structural 3D context in which these long-range enhancers are operating. Here, we present how these studies shed new light on principles driving long-distance regulatory relationships. We discuss the molecular mechanisms that enable and accompany the action of long-range acting elements and the integration of multiple distributed regulatory inputs into the coherent and specific regulatory programs that are key to embryonic development.
Collapse
Affiliation(s)
- Wibke Schwarzer
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
36
|
Payne JL, Wagner A. Latent phenotypes pervade gene regulatory circuits. BMC SYSTEMS BIOLOGY 2014; 8:64. [PMID: 24884746 PMCID: PMC4061115 DOI: 10.1186/1752-0509-8-64] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/12/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Latent phenotypes are non-adaptive byproducts of adaptive phenotypes. They exist in biological systems as different as promiscuous enzymes and genome-scale metabolic reaction networks, and can give rise to evolutionary adaptations and innovations. We know little about their prevalence in the gene expression phenotypes of regulatory circuits, important sources of evolutionary innovations. RESULTS Here, we study a space of more than sixteen million three-gene model regulatory circuits, where each circuit is represented by a genotype, and has one or more functions embodied in one or more gene expression phenotypes. We find that the majority of circuits with single functions have latent expression phenotypes. Moreover, the set of circuits with a given spectrum of functions has a repertoire of latent phenotypes that is much larger than that of any one circuit. Most of this latent repertoire can be easily accessed through a series of small genetic changes that preserve a circuit's main functions. Both circuits and gene expression phenotypes that are robust to genetic change are associated with a greater number of latent phenotypes. CONCLUSIONS Our observations suggest that latent phenotypes are pervasive in regulatory circuits, and may thus be an important source of evolutionary adaptations and innovations involving gene regulation.
Collapse
|
37
|
Enhancer diversity and the control of a simple pattern of Drosophila CNS midline cell expression. Dev Biol 2014; 392:466-82. [PMID: 24854999 DOI: 10.1016/j.ydbio.2014.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 01/13/2023]
Abstract
Transcriptional enhancers integrate information derived from transcription factor binding to control gene expression. One key question concerns the extent of trans- and cis-regulatory variation in how co-expressed genes are controlled. The Drosophila CNS midline cells constitute a group of neurons and glia in which expression changes can be readily characterized during specification and differentiation. Using a transgenic approach, we compare the cis-regulation of multiple genes expressed in the Drosophila CNS midline primordium cells, and show that while the expression patterns may appear alike, the target genes are not equivalent in how these common expression patterns are achieved. Some genes utilize a single enhancer that promotes expression in all midline cells, while others utilize multiple enhancers with distinct spatial, temporal, and quantitative contributions. Two regulators, Single-minded and Notch, play key roles in controlling early midline gene expression. While Single-minded is expected to control expression of most, if not all, midline primordium-expressed genes, the role of Notch in directly controlling midline transcription is unknown. Midline primordium expression of the rhomboid gene is dependent on cell signaling by the Notch signaling pathway. Mutational analysis of a rhomboid enhancer reveals at least 5 distinct types of functional cis-control elements, including a binding site for the Notch effector, Suppressor of Hairless. The results suggest a model in which Notch/Suppressor of Hairless levels are insufficient to activate rhomboid expression by itself, but does so in conjunction with additional factors, some of which, including Single-minded, provide midline specificity to Notch activation. Similarly, a midline glial enhancer from the argos gene, which is dependent on EGF/Spitz signaling, is directly regulated by contributions from both Pointed, the EGF transcriptional effector, and Single-minded. In contrast, midline primordium expression of other genes shows a strong dependence on Single-minded and varying combinations of additional transcription factors. Thus, Single-minded directly regulates midline primordium-expressed genes, but in some cases plays a primary role in directing target gene midline expression, and in others provides midline specificity to cell signaling inputs.
Collapse
|
38
|
Dissection of thousands of cell type-specific enhancers identifies dinucleotide repeat motifs as general enhancer features. Genome Res 2014; 24:1147-56. [PMID: 24714811 PMCID: PMC4079970 DOI: 10.1101/gr.169243.113] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gene expression is determined by genomic elements called enhancers, which contain short motifs bound by different transcription factors (TFs). However, how enhancer sequences and TF motifs relate to enhancer activity is unknown, and general sequence requirements for enhancers or comprehensive sets of important enhancer sequence elements have remained elusive. Here, we computationally dissect thousands of functional enhancer sequences from three different Drosophila cell lines. We find that the enhancers display distinct cis-regulatory sequence signatures, which are predictive of the enhancers’ cell type-specific or broad activities. These signatures contain transcription factor motifs and a novel class of enhancer sequence elements, dinucleotide repeat motifs (DRMs). DRMs are highly enriched in enhancers, particularly in enhancers that are broadly active across different cell types. We experimentally validate the importance of the identified TF motifs and DRMs for enhancer function and show that they can be sufficient to create an active enhancer de novo from a nonfunctional sequence. The function of DRMs as a novel class of general enhancer features that are also enriched in human regulatory regions might explain their implication in several diseases and provides important insights into gene regulation.
Collapse
|
39
|
Erceg J, Saunders TE, Girardot C, Devos DP, Hufnagel L, Furlong EEM. Subtle changes in motif positioning cause tissue-specific effects on robustness of an enhancer's activity. PLoS Genet 2014; 10:e1004060. [PMID: 24391522 PMCID: PMC3879207 DOI: 10.1371/journal.pgen.1004060] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 11/11/2013] [Indexed: 12/14/2022] Open
Abstract
Deciphering the specific contribution of individual motifs within cis-regulatory modules (CRMs) is crucial to understanding how gene expression is regulated and how this process is affected by sequence variation. But despite vast improvements in the ability to identify where transcription factors (TFs) bind throughout the genome, we are limited in our ability to relate information on motif occupancy to function from sequence alone. Here, we engineered 63 synthetic CRMs to systematically assess the relationship between variation in the content and spacing of motifs within CRMs to CRM activity during development using Drosophila transgenic embryos. In over half the cases, very simple elements containing only one or two types of TF binding motifs were capable of driving specific spatio-temporal patterns during development. Different motif organizations provide different degrees of robustness to enhancer activity, ranging from binary on-off responses to more subtle effects including embryo-to-embryo and within-embryo variation. By quantifying the effects of subtle changes in motif organization, we were able to model biophysical rules that explain CRM behavior and may contribute to the spatial positioning of CRM activity in vivo. For the same enhancer, the effects of small differences in motif positions varied in developmentally related tissues, suggesting that gene expression may be more susceptible to sequence variation in one tissue compared to another. This result has important implications for human eQTL studies in which many associated mutations are found in cis-regulatory regions, though the mechanism for how they affect tissue-specific gene expression is often not understood.
Collapse
Affiliation(s)
- Jelena Erceg
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Timothy E. Saunders
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Charles Girardot
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Damien P. Devos
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Lars Hufnagel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Eileen E. M. Furlong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
40
|
Irvine SQ. Study of Cis-regulatory Elements in the Ascidian Ciona intestinalis. Curr Genomics 2013; 14:56-67. [PMID: 23997651 PMCID: PMC3580780 DOI: 10.2174/138920213804999192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 12/30/2012] [Accepted: 01/01/2013] [Indexed: 01/31/2023] Open
Abstract
The ascidian (sea squirt) C. intestinalis has become an important model organism for the study of cis-regulation. This is largely due to the technology that has been developed for assessing cis-regulatory activity through the use of transient reporter transgenes introduced into fertilized eggs. This technique allows the rapid and inexpensive testing of endogenous or altered DNA for regulatory activity in vivo. This review examines evidence that C. intestinaliscis-regulatory elements are located more closely to coding regions than in other model organisms. I go on to compare the organization of cis-regulatory elements and conserved non-coding sequences in Ciona, mammals, and other deuterostomes for three representative C.intestinalis genes, Pax6, FoxAa, and the DlxA-B cluster, along with homologs in the other species. These comparisons point out some of the similarities and differences between cis-regulatory elements and their study in the various model organisms. Finally, I provide illustrations of how C. intestinalis lends itself to detailed study of the structure of cis-regulatory elements, which have led, and promise to continue to lead, to important insights into the fundamentals of transcriptional regulation.
Collapse
Affiliation(s)
- Steven Q Irvine
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
41
|
Menoret D, Santolini M, Fernandes I, Spokony R, Zanet J, Gonzalez I, Latapie Y, Ferrer P, Rouault H, White KP, Besse P, Hakim V, Aerts S, Payre F, Plaza S. Genome-wide analyses of Shavenbaby target genes reveals distinct features of enhancer organization. Genome Biol 2013; 14:R86. [PMID: 23972280 PMCID: PMC4053989 DOI: 10.1186/gb-2013-14-8-r86] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 08/23/2013] [Indexed: 12/17/2022] Open
Abstract
Background Developmental programs are implemented by regulatory interactions between Transcription Factors (TFs) and their target genes, which remain poorly understood. While recent studies have focused on regulatory cascades of TFs that govern early development, little is known about how the ultimate effectors of cell differentiation are selected and controlled. We addressed this question during late Drosophila embryogenesis, when the finely tuned expression of the TF Ovo/Shavenbaby (Svb) triggers the morphological differentiation of epidermal trichomes. Results We defined a sizeable set of genes downstream of Svb and used in vivo assays to delineate 14 enhancers driving their specific expression in trichome cells. Coupling computational modeling to functional dissection, we investigated the regulatory logic of these enhancers. Extending the repertoire of epidermal effectors using genome-wide approaches showed that the regulatory models learned from this first sample are representative of the whole set of trichome enhancers. These enhancers harbor remarkable features with respect to their functional architectures, including a weak or non-existent clustering of Svb binding sites. The in vivo function of each site relies on its intimate context, notably the flanking nucleotides. Two additional cis-regulatory motifs, present in a broad diversity of composition and positioning among trichome enhancers, critically contribute to enhancer activity. Conclusions Our results show that Svb directly regulates a large set of terminal effectors of the remodeling of epidermal cells. Further, these data reveal that trichome formation is underpinned by unexpectedly diverse modes of regulation, providing fresh insights into the functional architecture of enhancers governing a terminal differentiation program.
Collapse
|
42
|
Massively parallel decoding of mammalian regulatory sequences supports a flexible organizational model. Nat Genet 2013; 45:1021-1028. [PMID: 23892608 DOI: 10.1038/ng.2713] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/28/2013] [Indexed: 12/12/2022]
Abstract
Despite continual progress in the cataloging of vertebrate regulatory elements, little is known about their organization and regulatory architecture. Here we describe a massively parallel experiment to systematically test the impact of copy number, spacing, combination and order of transcription factor binding sites on gene expression. A complex library of ∼5,000 synthetic regulatory elements containing patterns from 12 liver-specific transcription factor binding sites was assayed in mice and in HepG2 cells. We find that certain transcription factors act as direct drivers of gene expression in homotypic clusters of binding sites, independent of spacing between sites, whereas others function only synergistically. Heterotypic enhancers are stronger than their homotypic analogs and favor specific transcription factor binding site combinations, mimicking putative native enhancers. Exhaustive testing of binding site permutations suggests that there is flexibility in binding site order. Our findings provide quantitative support for a flexible model of regulatory element activity and suggest a framework for the design of synthetic tissue-specific enhancers.
Collapse
|
43
|
Marinić M, Aktas T, Ruf S, Spitz F. An integrated holo-enhancer unit defines tissue and gene specificity of the Fgf8 regulatory landscape. Dev Cell 2013; 24:530-42. [PMID: 23453598 DOI: 10.1016/j.devcel.2013.01.025] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 11/26/2012] [Accepted: 01/31/2013] [Indexed: 12/26/2022]
Abstract
Fgf8 encodes a key signaling factor, and its precise regulation is essential for embryo patterning. Here, we identified the regulatory modules that control Fgf8 expression during mammalian embryogenesis. These enhancers are interspersed with unrelated genes along a large region of 220 kb; yet they act on Fgf8 only. Intriguingly, this region also contains additional genuine enhancer activities that are not transformed into gene expression. Using genomic engineering strategies, we showed that these multiple and distinct regulatory modules act as a coherent unit and influence genes depending on their position rather than on their promoter sequence. These findings highlight how the structure of a locus regulates the autonomous intrinsic activities of the regulatory elements it contains and contributes to their tissue and target specificities. We discuss the implications of such regulatory systems regarding the evolution of gene expression and the impact of human genomic structural variations.
Collapse
Affiliation(s)
- Mirna Marinić
- Developmental Biology Unit, EMBL, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | | | | | | |
Collapse
|
44
|
Izzi SA, Colantuono BJ, Sullivan K, Khare P, Meedel TH. Functional studies of the Ciona intestinalis myogenic regulatory factor reveal conserved features of chordate myogenesis. Dev Biol 2013; 376:213-23. [PMID: 23391688 DOI: 10.1016/j.ydbio.2013.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/08/2013] [Accepted: 01/24/2013] [Indexed: 10/27/2022]
Abstract
Ci-MRF is the sole myogenic regulatory factor (MRF) of the ascidian Ciona intestinalis, an invertebrate chordate. In order to investigate its properties we developed a simple in vivo assay based on misexpressing Ci-MRF in the notochord of Ciona embryos. We used this assay to examine the roles of three structural motifs that are conserved among MRFs: an alanine-threonine (Ala-Thr) dipeptide of the basic domain that is known in vertebrates as the myogenic code, a cysteine/histidine-rich (C/H) domain found just N-terminal to the basic domain, and a carboxy-terminal amphipathic α-helix referred to as Helix III. We show that the Ala-Thr dipeptide is necessary for normal Ci-MRF function, and that while eliminating the C/H domain or Helix III individually has no demonstrable effect on Ci-MRF, simultaneous loss of both motifs significantly reduces its activity. Our studies also indicate that direct interaction between CiMRF and an essential E-box of Ciona Troponin I is required for the expression of this muscle-specific gene and that multiple classes of MRF-regulated genes exist in Ciona. These findings are consistent with substantial conservation of MRF-directed myogenesis in chordates and demonstrate for the first time that the Ala/Thr dipeptide of the basic domain of an invertebrate MRF behaves as a myogenic code.
Collapse
Affiliation(s)
- Stephanie A Izzi
- Department of Biology, Rhode Island College, Providence, RI 02908, USA
| | | | | | | | | |
Collapse
|
45
|
Deciphering the transcriptional cis-regulatory code. Trends Genet 2012; 29:11-22. [PMID: 23102583 DOI: 10.1016/j.tig.2012.09.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 02/07/2023]
Abstract
Information about developmental gene expression resides in defined regulatory elements, called enhancers, in the non-coding part of the genome. Although cells reliably utilize enhancers to orchestrate gene expression, a cis-regulatory code that would allow their interpretation has remained one of the greatest challenges of modern biology. In this review, we summarize studies from the past three decades that describe progress towards revealing the properties of enhancers and discuss how recent approaches are providing unprecedented insights into regulatory elements in animal genomes. Over the next years, we believe that the functional characterization of regulatory sequences in entire genomes, combined with recent computational methods, will provide a comprehensive view of genomic regulatory elements and their building blocks and will enable researchers to begin to understand the sequence basis of the cis-regulatory code.
Collapse
|
46
|
Stolfi A, Christiaen L. Genetic and genomic toolbox of the chordate Ciona intestinalis. Genetics 2012; 192:55-66. [PMID: 22964837 PMCID: PMC3430545 DOI: 10.1534/genetics.112.140590] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 04/30/2012] [Indexed: 02/01/2023] Open
Abstract
The experimental malleability and unique phylogenetic position of the sea squirt Ciona intestinalis as part of the sister group to the vertebrates have helped establish these marine chordates as model organisms for the study of developmental genetics and evolution. Here we summarize the tools, techniques, and resources available to the Ciona geneticist, citing examples of studies that employed such strategies in the elucidation of gene function in Ciona. Genetic screens, germline transgenesis, electroporation of plasmid DNA, and microinjection of morpholinos are all routinely employed, and in the near future we expect these to be complemented by targeted mutagenesis, homologous recombination, and RNAi. The genomic resources available will continue to support the design and interpretation of genetic experiments and allow for increasingly sophisticated approaches on a high-throughput, whole-genome scale.
Collapse
Affiliation(s)
- Alberto Stolfi
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA.
| | | |
Collapse
|
47
|
Spitz F, Furlong EEM. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 2012; 13:613-26. [PMID: 22868264 DOI: 10.1038/nrg3207] [Citation(s) in RCA: 1500] [Impact Index Per Article: 115.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Developmental progression is driven by specific spatiotemporal domains of gene expression, which give rise to stereotypically patterned embryos even in the presence of environmental and genetic variation. Views of how transcription factors regulate gene expression are changing owing to recent genome-wide studies of transcription factor binding and RNA expression. Such studies reveal patterns that, at first glance, seem to contrast with the robustness of the developmental processes they encode. Here, we review our current knowledge of transcription factor function from genomic and genetic studies and discuss how different strategies, including extensive cooperative regulation (both direct and indirect), progressive priming of regulatory elements, and the integration of activities from multiple enhancers, confer specificity and robustness to transcriptional regulation during development.
Collapse
Affiliation(s)
- François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany.
| | | |
Collapse
|
48
|
Berendzen KW, Weiste C, Wanke D, Kilian J, Harter K, Dröge-Laser W. Bioinformatic cis-element analyses performed in Arabidopsis and rice disclose bZIP- and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription. BMC PLANT BIOLOGY 2012; 12:125. [PMID: 22852874 PMCID: PMC3438128 DOI: 10.1186/1471-2229-12-125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 07/11/2012] [Indexed: 05/05/2023]
Abstract
BACKGROUND In higher plants, a diverse array of developmental and growth-related processes is regulated by the plant hormone auxin. Recent publications have proposed that besides the well-characterized Auxin Response Factors (ARFs) that bind Auxin Response Elements (AuxREs), also members of the bZIP- and MYB-transcription factor (TF) families participate in transcriptional control of auxin-regulated genes via bZIP Response Elements (ZREs) or Myb Response Elements (MREs), respectively. RESULTS Applying a novel bioinformatic algorithm, we demonstrate on a genome-wide scale that singular motifs or composite modules of AuxREs, ZREs, MREs but also of MYC2 related elements are significantly enriched in promoters of auxin-inducible genes. Despite considerable, species-specific differences in the genome structure in terms of the GC content, this enrichment is generally conserved in dicot (Arabidopsis thaliana) and monocot (Oryza sativa) model plants. Moreover, an enrichment of defined composite modules has been observed in selected auxin-related gene families. Consistently, a bipartite module, which encompasses a bZIP-associated G-box Related Element (GRE) and an AuxRE motif, has been found to be highly enriched. Making use of transient reporter studies in protoplasts, these findings were experimentally confirmed, demonstrating that GREs functionally interact with AuxREs in regulating auxin-mediated transcription. CONCLUSIONS Using genome-wide bioinformatic analyses, evolutionary conserved motifs have been defined which potentially function as AuxRE-dependent coupling elements to establish auxin-specific expression patterns. Based on these findings, experimental approaches can be designed to broaden our understanding of combinatorial, auxin-controlled gene regulation.
Collapse
Affiliation(s)
- Kenneth W Berendzen
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Christoph Weiste
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Universität Würzburg, Julius-von-Sachs-Platz 2, 97082, Würzburg, Germany
| | - Dierk Wanke
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Joachim Kilian
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Klaus Harter
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Wolfgang Dröge-Laser
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Universität Würzburg, Julius-von-Sachs-Platz 2, 97082, Würzburg, Germany
| |
Collapse
|
49
|
Donner TJ, Scarpella E. Transcriptional control of early vein expression of CYCA2; 1 and CYCA2;4 in Arabidopsis leaves. Mech Dev 2012; 130:14-24. [PMID: 22842098 DOI: 10.1016/j.mod.2012.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/14/2012] [Accepted: 07/16/2012] [Indexed: 01/14/2023]
Abstract
Unlike most animal tissue networks, the patterns of vein networks in plant leaves are variable and plastic, suggesting distinct control mechanisms. Thus, knowledge of the gene regulatory circuits that pattern leaf vein networks could suggest new control mechanisms of tissue network formation. However, the cis-regulatory elements required for expression at early stages of vein development are largely unknown. Here we show that the Arabidopsis genes CYCLIN A2;1 (CYCA2;1) and CYCLIN A2;4 (CYCA2;4), previously shown to act redundantly in vein cell proliferation, are expressed at early stages of vein development. We show that stage-specific expression of CYCA2;1 and CYCA2;4 in vein development depends on regulatory elements containing, respectively, one and three evolutionarily conserved transcription-factor binding sites. Our data suggest that early vein expression is encoded in regulatory elements of different structures.
Collapse
Affiliation(s)
- Tyler J Donner
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9
| | | |
Collapse
|
50
|
Woznica A, Haeussler M, Starobinska E, Jemmett J, Li Y, Mount D, Davidson B. Initial deployment of the cardiogenic gene regulatory network in the basal chordate, Ciona intestinalis. Dev Biol 2012; 368:127-39. [PMID: 22595514 DOI: 10.1016/j.ydbio.2012.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/26/2012] [Accepted: 05/04/2012] [Indexed: 12/31/2022]
Abstract
The complex, partially redundant gene regulatory architecture underlying vertebrate heart formation has been difficult to characterize. Here, we dissect the primary cardiac gene regulatory network in the invertebrate chordate, Ciona intestinalis. The Ciona heart progenitor lineage is first specified by Fibroblast Growth Factor/Map Kinase (FGF/MapK) activation of the transcription factor Ets1/2 (Ets). Through microarray analysis of sorted heart progenitor cells, we identified the complete set of primary genes upregulated by FGF/Ets shortly after heart progenitor emergence. Combinatorial sequence analysis of these co-regulated genes generated a hypothetical regulatory code consisting of Ets binding sites associated with a specific co-motif, ATTA. Through extensive reporter analysis, we confirmed the functional importance of the ATTA co-motif in primary heart progenitor gene regulation. We then used the Ets/ATTA combination motif to successfully predict a number of additional heart progenitor gene regulatory elements, including an intronic element driving expression of the core conserved cardiac transcription factor, GATAa. This work significantly advances our understanding of the Ciona heart gene network. Furthermore, this work has begun to elucidate the precise regulatory architecture underlying the conserved, primary role of FGF/Ets in chordate heart lineage specification.
Collapse
Affiliation(s)
- Arielle Woznica
- Department of Molecular and Cellular Biology, Molecular Cardiovascular Research Program, University of Arizona, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|