1
|
Liao W, Nguyen A, Liu P. Alkali-induced catalytic tuning at metal and metal oxide interfaces. Chem Soc Rev 2025. [PMID: 40165688 DOI: 10.1039/d4cs01094a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Alkali metals have been recognized as effective promoters in heterogeneous catalysis, capable of enhancing catalytic activity and tuning product distributions. Over the past few decades, significant efforts have been made aiming to reveal the mechanisms underlying the promoting effect of alkalis. However, the roles that alkali metals play in the catalytic process remain elusive due to challenges in capturing their catalytic behaviours upon exposure to reactive environments. This review summarizes recent surface science and theoretical studies of alkali (potassium, cesium)-decorated metal and metal oxide model catalysts, revealing the crucial tuning by alkalis of activity and selectivity for CO2 hydrogenation. The analysis of electronic structures identifies the selective binding mechanism of the positively charged alkali ions on the surface, being able to reduce the surface work function and lead to strong electron polarization on the surfaces. Depending on the alkali-support interaction, the deposition of alkalis can selectively modify the bindings of reaction intermediates involved in CO2 hydrogenation via the interplay among the ionic, covalent and electrostatic tunings. As a result, CO2 can be effectively activated and converted into diverse products at the alkali-support interface, ranging from formic acid to methanol and ethanol. The identified selective bond-tuning advances the application of alkalis in promoting catalytic activity and controlling catalytic selectivity at alkali-support interfaces.
Collapse
Affiliation(s)
- Wenjie Liao
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | - An Nguyen
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ping Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA.
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
2
|
Peng M, Li C, Wang Z, Wang M, Zhang Q, Xu B, Li M, Ma D. Interfacial Catalysis at Atomic Level. Chem Rev 2025; 125:2371-2439. [PMID: 39818776 DOI: 10.1021/acs.chemrev.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Heterogeneous catalysts are pivotal to the chemical and energy industries, which are central to a multitude of industrial processes. Large-scale industrial catalytic processes rely on special structures at the nano- or atomic level, where reactions proceed on the so-called active sites of heterogeneous catalysts. The complexity of these catalysts and active sites often lies in the interfacial regions where different components in the catalysts come into contact. Recent advances in synthetic methods, characterization technologies, and reaction kinetics studies have provided atomic-scale insights into these critical interfaces. Achieving atomic precision in interfacial engineering allows for the manipulation of electronic profiles, adsorption patterns, and surface motifs, deepening our understanding of reaction mechanisms at the atomic or molecular level. This mechanistic understanding is indispensable not only for fundamental scientific inquiry but also for the design of the next generation of highly efficient industrial catalysts. This review examines the latest developments in atomic-scale interfacial engineering, covering fundamental concepts, catalyst design, mechanistic insights, and characterization techniques, and shares our perspective on the future trajectory of this dynamic research field.
Collapse
Affiliation(s)
- Mi Peng
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Chengyu Li
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Zhaohua Wang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Maolin Wang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Qingxin Zhang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Bingjun Xu
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Mufan Li
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ding Ma
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
3
|
Zhang Y, Han ZK, Zhu B, Hu X, Troppenz M, Rigamonti S, Li H, Draxl C, Ganduglia-Pirovano MV, Gao Y. Decoupling many-body interactions in the CeO 2(111) oxygen vacancy structure with statistical learning and cluster expansion. NANOSCALE 2025; 17:4531-4542. [PMID: 39801491 DOI: 10.1039/d4nr04591b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Oxygen vacancies (VO's) are of paramount importance in influencing the properties and applications of ceria (CeO2). Yet, comprehending the distribution and nature of VO's poses a significant challenge due to the vast number of electronic configurations and intricate many-body interactions among VO's and polarons (Ce3+ ions). In this study, we established a cluster expansion model based on first-principles calculations and statistical learning to decouple the interactions among the Ce3+ ions and VO's, thereby circumventing the limitations associated with sampling electronic configurations. By separating these interactions, we identified specific electronic configurations characterized by the most favorable VO-Ce3+ attractions and the least favorable Ce3+-Ce3+/VO-VO repulsions, which are crucial in determining the stability of vacancy structures. Through more than 108 Metropolis Monte Carlo samplings of VO's and Ce3+ ions in the near surface of CeO2(111), we explored potential configurations within an 8 × 8 supercell. Our findings revealed that oxygen vacancies tend to aggregate and are abundant in the third oxygen layer with an elevated VO concentration primarily due to extensive geometric relaxation, an aspect previously overlooked. This work introduces a novel theoretical framework for unraveling the complex vacancy structures in metal oxides, with potential applications in redox and catalytic chemistry.
Collapse
Affiliation(s)
- Yujing Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhong-Kang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Beien Zhu
- Photon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Xiaojuan Hu
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Maria Troppenz
- Institut für Physik und Iris Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany
| | - Santiago Rigamonti
- Institut für Physik und Iris Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Claudia Draxl
- Institut für Physik und Iris Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany
| | | | - Yi Gao
- Photon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
4
|
Tschammer R, Buß L, Pożarowska E, Morales C, Senanayake SD, Prieto MJ, Tănase LC, de Souza Caldas L, Tiwari A, Schmidt T, Niño MA, Foerster M, Falta J, Flege JI. High-Temperature Growth of CeO x on Au(111) and Behavior under Reducing and Oxidizing Conditions. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:3583-3594. [PMID: 40008200 PMCID: PMC11848905 DOI: 10.1021/acs.jpcc.4c08072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Inverse oxide-metal model catalysts can show superior activity and selectivity compared with the traditional supported metal-oxide architecture, commonly attributed to the synergistic overlayer-support interaction. We have investigated the growth and redox properties of ceria nanoislands grown on Au(111) between 700 and 890 °C, which yields the CeO2-Au(111) model catalyst system. We have observed a distinct correlation between deposition temperature, structural order, and oxide composition through low-energy electron microscopy, low-energy electron diffraction, intensity-voltage curves, and X-ray absorption spectroscopy. Improved structural order and thermal stability of the oxide have been achieved by increasing the oxygen chemical potential at the substrate surface using reactive oxygen (O/O2) instead of molecular O2 during growth. In situ characterization under reducing (H2) and oxidizing atmospheres (O2, CO2) indicates an irreversible loss of structural order and redox activity at high reduction temperatures, while moderate temperatures result in partial decomposition of the ceria nanoislands (Ce3+/Ce4+) to metallic cerium (Ce0). The weak interaction between Au(111) and CeO x would facilitate its reduction to the Ce0 metallic state, especially considering the comparatively strong interaction between Ce0 and Au0. Besides, the higher reactivity of atomic oxygen promotes a stronger interaction between the gold and oxide islands during the nucleation process, explaining the improved stability. Thus, we propose that by driving the nucleation and growth of the ceria/Au system in a highly oxidizing regime, novel chemical properties can be obtained.
Collapse
Affiliation(s)
- Rudi Tschammer
- Applied
Physics and Semiconductor Spectroscopy, Brandenburg University of Technology, 03046 Cottbus, Germany
| | - Lars Buß
- Applied
Physics and Semiconductor Spectroscopy, Brandenburg University of Technology, 03046 Cottbus, Germany
- Institute
of Solid State Physics, University of Bremen, 28359 Bremen, Germany
| | - Emilia Pożarowska
- Applied
Physics and Semiconductor Spectroscopy, Brandenburg University of Technology, 03046 Cottbus, Germany
| | - Carlos Morales
- Applied
Physics and Semiconductor Spectroscopy, Brandenburg University of Technology, 03046 Cottbus, Germany
| | - Sanjaya D. Senanayake
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Mauricio J. Prieto
- Department
of Interface Science, Fritz-Haber-Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Liviu C. Tănase
- Department
of Interface Science, Fritz-Haber-Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Lucas de Souza Caldas
- Department
of Interface Science, Fritz-Haber-Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Aarti Tiwari
- Department
of Interface Science, Fritz-Haber-Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Thomas Schmidt
- Department
of Interface Science, Fritz-Haber-Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Miguel A. Niño
- ALBA
Synchrotron Light Facility, 08290 Cerdanyola del Vallès, Spain
| | - Michael Foerster
- ALBA
Synchrotron Light Facility, 08290 Cerdanyola del Vallès, Spain
| | - Jens Falta
- Institute
of Solid State Physics, University of Bremen, 28359 Bremen, Germany
- MAPEX Center
for Materials and Processes, University
of Bremen, 28359 Bremen, Germany
| | - Jan Ingo Flege
- Applied
Physics and Semiconductor Spectroscopy, Brandenburg University of Technology, 03046 Cottbus, Germany
| |
Collapse
|
5
|
Bai Y, Tian D. Mechanism and catalytic activity of the water-gas shift reaction on a single-atom alloy Al 1/Cu (111) surface. NANOSCALE 2025; 17:3999-4007. [PMID: 39760441 DOI: 10.1039/d4nr03732d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The mechanism and activity of the water-gas shift reaction (WGSR) on single-atom alloy Al1/Cu (111) and Cu (111) surfaces were studied using GGA-PBE-D3. Al1/Cu (111) exhibited bifunctional active sites, with the Al site being positively charged and the Cu site negatively charged due to electronic interactions. This led to selective adsorption of H2O and CO. Al1/Cu (111) promoted H2O adsorption and dissociation, reducing the energy barrier to 0.67 eV compared with 1.13 eV on the Cu (111) surface. Meanwhile, Cu served as the active site for H2 formation, which is the rate-determining step, with an energy barrier of 0.95 eV. The Al-O and Cu-C bonds cooperatively increased the interaction strength of O-containing intermediates. Al1/Cu (111) promoted the whole WGSR through cooperativity, reducing the overall apparent activation energy. This work gives insights for the design of single atom alloy (SAA) catalysts with p-p orbital energy level matching, which facilitates orbital interactions between Al and H2O, thus achieving excellent WGSR activity.
Collapse
Affiliation(s)
- Yun Bai
- School of Chemistry, Dalian University of Technology, No.2 Linggong Road, Dalian City, Liaoning Province, 116024, P. R. China.
| | - Dongxu Tian
- School of Chemistry, Dalian University of Technology, No.2 Linggong Road, Dalian City, Liaoning Province, 116024, P. R. China.
| |
Collapse
|
6
|
Pichon T, Righetti C, Pérard J, Le Goff A, Cavazza C. From two-component enzyme complex to nanobiohybrid for energy-efficient water-gas shift reaction. Chem Sci 2025:d4sc06394e. [PMID: 39911343 PMCID: PMC11792065 DOI: 10.1039/d4sc06394e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
The water-gas shift reaction (WGSR, CO + H2O ⇔ CO2 + H2) is widely used for the upgrading of syngas, a key substrate for various chemical processes. However, the industrial WGSR requires high pressure and temperature, and has low selectivity. Here, we have designed a biohybrid catalyst by combining CODH from Rhodospirillum rubrum, which catalyzes CO-to-CO2 conversion and a bioinspired nickel bisdiphosphine complex, which catalyzes the hydrogen evolution reaction, immobilized on carbon nanotubes. Carbon nanotubes enable the dual functioning of both catalysts providing efficient electrical conductivity and allowing electroless CO-to-CO2 conversion and H2 evolution. Owing to CO tolerance of the Ni complex, this bioinspired nanohybrid catalyst shows high performance by reaching 100% conversion yield and maximum TOF of 30 s-1 towards WGSR at ambient temperature and pressure in the presence of either pure CO or syngas.
Collapse
Affiliation(s)
- Thomas Pichon
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM F-38000 Grenoble France
| | | | - Julien Pérard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM F-38000 Grenoble France
| | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM F-38000 Grenoble France
| | | |
Collapse
|
7
|
Gajdek D, Wallander HJ, Abbondanza G, Harlow GS, Gustafson J, Blomberg S, Carlsson P, Just J, Lundgren E, Merte LR. Operando XANES Reveals the Chemical State of Iron-Oxide Monolayers During Low-Temperature CO Oxidation. Chemphyschem 2025; 26:e202400835. [PMID: 39403857 PMCID: PMC11733406 DOI: 10.1002/cphc.202400835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024]
Abstract
We have used grazing incidence X-ray absorption near edge spectroscopy (XANES) to investigate the behavior of monolayer FeOx ${_x }$ films on Pt(111) under near ambient pressure CO oxidation conditions with a total gas pressure of 1 bar. Spectra indicate reversible changes during oxidation and reduction by O2 ${_2 }$ and CO at 150 °C, attributed to a transformation between FeO bilayer and FeO2 ${_2 }$ trilayer phases. The trilayer phase is also reduced upon heating in CO+O2 ${_2 }$ , consistent with a Mars-van-Krevelen type mechanism for CO oxidation. At higher temperatures, the monolayer film dewets the surface, resulting in a loss of the observed reducibility. A similar iron oxide film prepared on Au(111) shows little sign of reduction or oxidation under the same conditions. The results highlight the unique properties of monolayer FeO and the importance of the Pt support in this reaction. The study furthermore demonstrates the power of grazing-incidence XAFS for in situ studies of these model catalysts under realistic conditions.
Collapse
Affiliation(s)
- Dorotea Gajdek
- Department of Materials Science and Applied MathematicsMalmö UniversitySE-205 06MalmöSweden
- NanoLundLund UniversityBox 118SE-221 00LundSweden
| | - Harald J. Wallander
- Department of Materials Science and Applied MathematicsMalmö UniversitySE-205 06MalmöSweden
- NanoLundLund UniversityBox 118SE-221 00LundSweden
| | - Giuseppe Abbondanza
- Department of Chemical PhysicsChalmers University of TechnologySE-412 96GöteborgSweden
| | - Gary S. Harlow
- Department of Chemistry and Biochemistry and the Oregon Center for ElectrochemistryUniversity of OregonEugeneOregon97403United States
| | - Johan Gustafson
- Division of Synchrotron Radiation ResearchLund UniversityBox 118, SE-221 00LundSweden
| | - Sara Blomberg
- NanoLundLund UniversityBox 118SE-221 00LundSweden
- Department of Process and Life Science EngineeringLund UniversityBox 118SE-221 00LundSweden
| | - Per‐Anders Carlsson
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologySE-412 96GöteborgSweden
- Competence Centre for CatalysisChalmers University of TechnologySE-412 96GöteborgSweden
| | - Justus Just
- MAX IV LaboratoryLund UniversityBox 118SE-221 00LundSweden
| | - Edvin Lundgren
- NanoLundLund UniversityBox 118SE-221 00LundSweden
- Division of Synchrotron Radiation ResearchLund UniversityBox 118, SE-221 00LundSweden
| | - Lindsay R. Merte
- Department of Materials Science and Applied MathematicsMalmö UniversitySE-205 06MalmöSweden
- NanoLundLund UniversityBox 118SE-221 00LundSweden
| |
Collapse
|
8
|
Song S, Liu Q, Swathilakshmi S, Chi HY, Zhou Z, Goswami R, Chernyshov D, Agrawal KV. High-performance H 2/CO 2 separation from 4-nm-thick oriented Zn 2(benzimidazole) 4 films. SCIENCE ADVANCES 2024; 10:eads6315. [PMID: 39671495 PMCID: PMC11641003 DOI: 10.1126/sciadv.ads6315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
High-performance membrane-based H2/CO2 separation offers a promising way to reduce the energy costs of precombustion capture. Current membranes, often made from two-dimensional laminates like metal-organic frameworks, have limitations due to complex fabrication methods requiring high temperatures, organic solvents, and long synthesis time. These processes often result in poor H2/CO2 selectivity under pressurized conditions due to defective transport pathways. Here, we introduce a simple, eco-friendly synthesis of ultrathin, intergrown Zn2(benzimidazole)4 films, as thin as 4 nm. These films are prepared at room temperature using water as the solvent, with a synthesis time of just 10 minutes. By using ultradilute precursor solutions, nucleation is delayed, promoting rapid in-plane growth on a smooth graphene substrate and eliminating defects. These membranes exhibit excellent H2 permselectivity under pressurized conditions. The combination of rapid, green synthesis and high-performance separation makes these membranes highly attractive for precombustion applications.
Collapse
Affiliation(s)
- Shuqing Song
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Qi Liu
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - S. Swathilakshmi
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Heng-Yu Chi
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Zongyao Zhou
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Ranadip Goswami
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Dmitry Chernyshov
- Swiss-Norwegian Beam Lines at European Synchrotron Radiation Facility, Grenoble 38043, France
| | - Kumar Varoon Agrawal
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| |
Collapse
|
9
|
Fu XP, Zhao H, Jia CJ. Ceria-based supported metal catalysts for the low-temperature water-gas shift reaction. Chem Commun (Camb) 2024; 60:14537-14556. [PMID: 39575617 DOI: 10.1039/d4cc04072d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Water-gas shift (WGS) reaction is a crucial step for the industrial production of hydrogen or upgrading the hydrogen generated from fossil or biomass sources by removing the residual CO. However, current industrial catalysts for this process, comprising Cu/ZnO and Fe2O3-Cr2O3, suffer from safety or environmental issues. In the past decades, ceria-based materials have attracted wide attention as WGS catalysts due to their abundant oxygen vacancies and tunable metal-support interaction. Strategies through engineering the shape or crystal facet, size of both metal and ceria, interfacial-structure, etc., to alter the performances of ceria-based catalysts have been extensively studied. Additionally, the developments in the in situ techniques and DFT calculations are favorable for deepening the understanding of the reaction mechanism and structure-function relationship at the molecular level, comprising active sites, reaction path/intermediates, and inducements for deactivation. This article critically reviews the literature on ceria-based catalysts toward the WGS reaction, covering the fundamental insight of the reaction path and development in precisely designing catalysts.
Collapse
Affiliation(s)
- Xin-Pu Fu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Hui Zhao
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
10
|
Lavroff RH, Cummings E, Sawant K, Zhang Z, Sautet P, Alexandrova AN. Cu-Supported ZnO under Conditions of CO 2 Reduction to Methanol: Why 0.2 ML Coverage? J Phys Chem Lett 2024; 15:11745-11752. [PMID: 39547933 DOI: 10.1021/acs.jpclett.4c02908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
By hydrogenating carbon dioxide to value-added products such as methanol, heterogeneous catalysts can lower greenhouse gas emissions and generate alternative liquid fuels. The most common commercial catalyst for the reduction of CO2 to methanol is Cu/ZnO/Al2O3, where ZnO improves conversion and selectivity toward methanol. The structure of this catalyst is thought to be Zn oxy(hydroxyl) overlayers on the nanometer scale on Cu. In the presence of CO2 and H2 under reaction conditions, the Cu substrate itself can be restructured and/or partially oxidized at its interface with ZnO, or the Zn might be reduced, possibly completely to a CuZn alloy, making the exact structure and stoichiometry of the active site a topic of active debate. In this study, we examine Zn3 clusters on Cu(100) and Cu(111), as a subnano model of the catalyst. We use a grand canonical genetic algorithm to sample the system structure and stoichiometry under catalytic conditions: T of 550 K, initial partial pressures of H2 of 4.5 atm and CO2 of 0.5 atm, and 1% conversion. We uncover a strong dependence of the catalyst stoichiometry on the surface coverage. At the optimal 0.2 ML surface coverage, chains of Zn(OH) form on both Cu surfaces. On Cu(100), the catalyst has many thermally accessible metastable minima, whereas on Cu(111), it does not. No oxidation or reconstruction of the Cu is found. However, at a lower coverage of Zn, Zn3 clusters take on a metallic form on Cu(100), and slightly oxidized Zn3O on Cu(111), while the surface uptakes H to form a variety of low hydrides of Cu. We thus hypothesize that the 0.2 ML Zn coverage is optimal, as found experimentally, because of the stronger yet incomplete oxidation afforded by Zn at this coverage.
Collapse
|
11
|
Zhang D, Cao X, Cheng X, Huang L, Tu Y, Ding H, Hu J, Xu Q, Zhu J. Role of Metal-Oxide Interfaces in Methanol Decomposition: Reaction of Methanol on CeO 2/Ag(111) Inverse Model Catalysts. J Phys Chem Lett 2024; 15:11405-11414. [PMID: 39508331 DOI: 10.1021/acs.jpclett.4c02878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Metal-oxide interfaces play a critical role in catalytic processes, such as methanol adsorption and decomposition reactions. In this work, we investigated methanol reactions on the inverse model CeO2/Ag(111) catalyst surfaces, i.e., submonolayer CeO2 films on Ag(111), under ultrahigh vacuum (UHV) conditions to specially address the role of CeO2-Ag interface in the catalytic methanol decomposition reactions. Using scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and synchrotron radiation photoemission spectroscopy (SRPES), we found that, at the submonolayer ceria coverages, the CeO2 nanoislands exhibit a hexagonal CeO2(111) lattice with fully oxidized Ce4+ on Ag(111). At higher ceria coverages, multilayer ceria nanoislands form on the Ag(111) surface instead of a well-ordered film. A combination of temperature-programmed desorption (TPD) and SRPES reveals that methanol adsorbs dissociatively on the CeO2/Ag(111) surfaces at 110 K, resulting in the formation of methoxy groups. These methoxy groups subsequently decompose via two pathways: (i) interaction with lattice oxygen to produce formate species at 230 K, which then decompose to CO, and (ii) direct dehydrogenation of methoxy to formaldehyde. Notably, the surface with submonolayer CeO2 film on Ag(111) demonstrates low-temperature reactivity (440 K) for methoxy dehydrogenation to formaldehyde, which occurs at a much lower temperature, compared to the surface of multilayer CeO2 on Ag(111) surface (530 K). This finding emphasizes that the CeO2-Ag(111) interfaces provide unique active sites for methoxy dehydrogenation reactions.
Collapse
Affiliation(s)
- Dongling Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Xu Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Xingwang Cheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Luchao Huang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Yi Tu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Honghe Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Jun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Qian Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
12
|
Luo Y, Wang P, Pei Y. Atomic Level Understanding of the Structural Stability and Catalytic Activity of Nanoporous Gold/Titania Cluster Inverse Catalysts at Ambient and High Temperatures. J Phys Chem Lett 2024; 15:10525-10534. [PMID: 39400288 DOI: 10.1021/acs.jpclett.4c02486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Nanoporous gold (NPG) exhibits exceptional catalytic performance at low temperatures, but its activity declines at elevated temperatures due to structural coarsening. Loading metal oxide nanoparticles onto NPG can enhance its catalytic activity at high temperatures. In this work, we used NPG-supported titania nanoparticles as a model system (denoted as Ti2O4/NPG) to study their catalytic activity at ambient and high temperatures with CO oxidation as a probe reaction by density functional theory (DFT) calculation and ab initio molecular dynamics (AIMD) simulations. The possible factors that may affect the CO oxidation reaction pathways and energy profiles on the Ti2O4/NPG, such as oxygen vacancies; silver impurities; Mars-van Krevelen (MvK), Eley-Rideal (ER), or trimolecular Eley-Rideal (TER) mechanisms; and catalytic active sites, were comprehensively investigated. The results showed that reaction energy barriers on Ti2O4/NPG were not significantly decreased compared to the pristine NPG, indicating that their catalytic activities at ambient temperature were comparable. At the evaluated temperature (400 °C), the Ti2O4/NPG exhibited superior thermal stability and maintained its active sites, while the NPG reduced active sites due to surface coarsening. The strong oxide-metal interaction (SOMI) effect between the NPG and Ti2O4 nanoparticles is found to be a main factor for the high structural stability and catalytic activity at high temperatures.
Collapse
Affiliation(s)
- Yuting Luo
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China
| | - Pu Wang
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China
| |
Collapse
|
13
|
Wu K, Wang D, Fu Q, Xu T, Xiong Q, Peera SG, Liu C. Co/Ce-MOF-Derived Oxygen Electrode Bifunctional Catalyst for Rechargeable Zinc-Air Batteries. Inorg Chem 2024; 63:11135-11145. [PMID: 38829208 DOI: 10.1021/acs.inorgchem.4c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Improving the practicality of rechargeable zinc-air batteries relies heavily on the development of oxygen electrode catalysts that are low-cost, durable, and highly efficient in performing dual functions. In the present study, a catalyst with atomic Ce and Co distribution on a nitrogen-doped carbon substrate was prepared by doping the rare earth elements Ce and Co into a metal-organic framework precursor. Rare earth element Ce, known for its unique structure and excellent oxygen affinity, was utilized to regulate the catalytic activity. The catalyst prepared in this study demonstrated an exceptional electrocatalytic performance. At a current density of 10 mA cm-2, the catalyst exhibited an overpotential of 340 mV for the oxygen evolution reaction (OER), which was lower than that of commercial IrO2 (370 mV), while achieving a half-wave potential of 0.79 V for the process of oxygen reduction reaction (ORR), exhibiting a similar level of effectiveness as commercially accessible Pt/C catalysts (0.8 V). The catalyst's porous structure, interconnected three-dimensional carbon network, and large specific surface area are the factors contributing to the significant improvement in catalytic performance. Furthermore, in comparison to commercial Pt/C+IrO2, the catalyst exhibited good cycling stability and high efficiency in rechargeable zinc-air batteries.
Collapse
Affiliation(s)
- Kang Wu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Daomiao Wang
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Qiming Fu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Tao Xu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Qiang Xiong
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Shaik Gouse Peera
- Department of Environmental Engineering, Keimyung University, 1095, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Chao Liu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| |
Collapse
|
14
|
Li Z, Xu N, Zhang Y, Liu W, Wang J, Ma M, Fu X, Hu X, Xu W, Han ZK. Unveiling the Structure of Oxygen Vacancies in Bulk Ceria and the Physical Mechanisms behind Their Formation. J Phys Chem Lett 2024; 15:5868-5874. [PMID: 38804522 DOI: 10.1021/acs.jpclett.4c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Understanding the structures of oxygen vacancies in bulk ceria is crucial as they significantly impact the material's catalytic and electronic properties. The complex interaction between oxygen vacancies and Ce3+ ions presents challenges in characterizing ceria's defect chemistry. We introduced a machine learning-assisted cluster-expansion model to predict the energetics of defective configurations accurately within bulk ceria. This model effectively samples configurational spaces, detailing oxygen vacancy structures across different temperatures and concentrations. At lower temperatures, vacancies tend to cluster, mediated by Ce3+ ions and electrostatic repulsion, while at higher temperatures, they distribute uniformly due to configurational entropy. Our analysis also reveals a correlation between thermodynamic stability and the band gap between occupied O 2p and unoccupied Ce 4f orbitals, with wider band gaps indicating higher stability. This work enhances our understanding of defect chemistry in oxide materials and lays the groundwork for further research into how these structural properties affect ceria's performance.
Collapse
Affiliation(s)
- Zheng Li
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ning Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yujing Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wen Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiaqian Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Meiliang Ma
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaolan Fu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xiaojuan Hu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenwu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Zhong-Kang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Xu N, Xu L, Wang Y, Liu W, Xu W, Hu X, Han ZK. Unraveling the formation of oxygen vacancies on the surface of transition metal-doped ceria utilizing artificial intelligence. NANOSCALE 2024; 16:9853-9860. [PMID: 38712569 DOI: 10.1039/d3nr05950b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Ceria has been extensively utilized in different fields, with surface oxygen vacancies playing a central role. However, versatile oxygen vacancy regulation is still in its infancy. In this work, we propose an effective strategy to manipulate the oxygen vacancy formation energy via transition metal doping by combining first-principles calculations and analytical learning. We elucidate the underlying mechanism driving the formation of oxygen vacancies using combined symbolic regression and data analytics techniques. The results show that the Fermi level of the system and the electronegativity of the dopants are the paramount parameters (features) influencing the formation of oxygen vacancies. These insights not only enhance our understanding of the oxygen vacancy formation mechanism in ceria-based materials to improve their functionality but also potentially lay the groundwork for future strategies in the rational design of other transition metal oxide-based catalysts.
Collapse
Affiliation(s)
- Ning Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Liangliang Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Yue Wang
- Department of Electrical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Wen Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Wenwu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
| | - Xiaojuan Hu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Zhong-Kang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
16
|
Xiao Z, Hou F, Zhang X, Pan L, Zou JJ, Li G. Highly Dispersed Mn-Doped Ceria Supported on N-Doped Carbon Nanotubes for Enhanced Oxygen Reduction Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10561-10570. [PMID: 38728666 DOI: 10.1021/acs.langmuir.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The weak adsorption of oxygen on transition metal oxide catalysts limits the improvement of their electrocatalytic oxygen reduction reaction (ORR) performance. Herein, a dopamine-assisted method is developed to prepare Mn-doped ceria supported on nitrogen-doped carbon nanotubes (Mn-Ce-NCNTs). The morphology, dispersion of Mn-doped ceria, composition, and oxygen vacancies of the as-prepared catalysts were analyzed using various technologies. The results show that Mn-doped ceria was formed and highly dispersed on NCNTs, on which oxygen vacancies are abundant. The as-prepared Mn-Ce-NCNTs exhibit a high ORR performance, on which the average electron transfer number is 3.86 and the current density is 24.4% higher than that of commercial 20 wt % Pt/C. The peak power density of Mn-Ce-NCNTs is 68.1 mW cm-2 at the current density of 138.9 mA cm-2 for a Zn-air battery, which is close to that of 20 wt % Pt/C (69.4 mW cm-2 at 106.1 mA cm-2). Density functional theory (DFT) calculations show that the oxygen vacancy formation energies of Mn-doped CeO2(111) and pure CeO2(111) are -0.55 and 2.14 eV, respectively. Meanwhile, compared with undoped CeO2(111) (-0.02 eV), Mn-doped CeO2(111) easily adsorbs oxygen with the oxygen adsorption energy of only -0.68 eV. This work provides insights into the synergetic effect of Mn-doped ceria for facilitating oxygen adsorption and enhancing ORR performance.
Collapse
Affiliation(s)
- Zhourong Xiao
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Fang Hou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| |
Collapse
|
17
|
Wang H, Kang X, Han B. Rare-earth Element-based Electrocatalysts Designed for CO 2 Electro-reduction. CHEMSUSCHEM 2024; 17:e202301539. [PMID: 38109070 DOI: 10.1002/cssc.202301539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/13/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Electrochemical CO2 reduction presents a promising approach for synthesizing fuels and chemical feedstocks using renewable energy sources. Although significant advancements have been made in the design of catalysts for CO2 reduction reaction (CO2RR) in recent years, the linear scaling relationship of key intermediates, selectivity, stability, and economical efficiency are still required to be improved. Rare earth (RE) elements, recognized as pivotal components in various industrial applications, have been widely used in catalysis due to their unique properties such as redox characteristics, orbital structure, oxygen affinity, large ion radius, and electronic configuration. Furthermore, RE elements could effectively modulate the adsorption strength of intermediates and provide abundant metal active sites for CO2RR. Despite their potential, there is still a shortage of comprehensive and systematic analysis of RE elements employed in the design of electrocatalysts of CO2RR. Therefore, the current approaches for the design of RE element-based electrocatalysts and their applications in CO2RR are thoroughly summarized in this review. The review starts by outlining the characteristics of CO2RR and RE elements, followed by a summary of design strategies and synthetic methods for RE element-based electrocatalysts. Finally, an overview of current limitations in research and an outline of the prospects for future investigations are proposed.
Collapse
Affiliation(s)
- Hengan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
18
|
Yin H, Yan YW, Fang W, Brune H. Probing Catalytic Sites and Adsorbate Spillover on Ultrathin FeO 2-x Film on Ir(111) during CO Oxidation. ACS NANO 2024; 18:7114-7122. [PMID: 38377596 PMCID: PMC10919091 DOI: 10.1021/acsnano.3c11400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
The spatially resolved identification of active sites on the heterogeneous catalyst surface is an essential step toward directly visualizing a catalytic reaction with atomic scale. To date, ferrous centers on platinum group metals have shown promising potential for low-temperature CO catalytic oxidation, but the temporal and spatial distribution of active sites during the reaction and how molecular-scale structures develop at the interface are not fully understood. Here, we studied the catalytic CO oxidation and the effect of co-adsorbed hydrogen on the FeO2-x/Ir(111) surface. Combining scanning tunneling microscopy (STM), isotope-labeled pulse reaction measurements, and DFT calculations, we identified both FeO2/Ir and FeO2/FeO sites as active sites with different reactivity. The trilayer O-Fe-O structure with its Moiré pattern can be fully recovered after O2 exposure, where molecular O2 dissociates at the FeO/Ir interface. Additionally, as a competitor, dissociated hydrogen migrates onto the oxide film with the formation of surface hydroxyl and water clusters down to 150 K.
Collapse
Affiliation(s)
- Hao Yin
- Institute
of Physics, École Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Yu-Wei Yan
- Department
of Chemistry, Collaborative Innovation Center of Chemistry for Energy
Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials, Fudan University, Shanghai 200438, China
| | - Wei Fang
- Department
of Chemistry, Collaborative Innovation Center of Chemistry for Energy
Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials, Fudan University, Shanghai 200438, China
| | - Harald Brune
- Institute
of Physics, École Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Thum L, Arztmann M, Zizak I, Grüneberger R, Steigert A, Grimm N, Wallacher D, Schlatmann R, Amkreutz D, Gili A. In situ cell for grazing-incidence x-ray diffraction on thin films in thermal catalysis. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:033904. [PMID: 38446003 DOI: 10.1063/5.0179989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024]
Abstract
A cell for synchrotron-based grazing-incidence x-ray diffraction at ambient pressures and moderate temperatures in a controlled gas atmosphere is presented. The cell is suited for the in situ study of thin film samples under catalytically relevant conditions. To some extent, in addition to diffraction, the cell can be simultaneously applied for x-ray reflectometry and fluorescence studies. Different domes enclosing the sample have been studied and selected to ensure minimum contribution to the diffraction patterns. The applicability of the cell is demonstrated using synchrotron radiation by monitoring structural changes of a 3 nm Pd thin film upon interaction with gas-phase hydrogen and during acetylene semihydrogenation at 150 °C. The cell allows investigation of very thin films under catalytically relevant conditions.
Collapse
Affiliation(s)
- Lukas Thum
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Manuela Arztmann
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Ivo Zizak
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - René Grüneberger
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Alexander Steigert
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Nico Grimm
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Dirk Wallacher
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Rutger Schlatmann
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
- HTW Berlin-University of Applied Sciences, 12459 Berlin, Germany
| | - Daniel Amkreutz
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Albert Gili
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| |
Collapse
|
20
|
Tian L, Gao X, Wang S, Chen C, Chen M, Guo W, Wang Z, Tai X, Han X, Xu C, Ruan Y, Zhu M, Xiong C, Yao T, Zhou H, Lin Y, Wu Y. Precise arrangement of metal atoms at the interface by a thermal printing strategy. Proc Natl Acad Sci U S A 2023; 120:e2310916120. [PMID: 38117856 PMCID: PMC10756259 DOI: 10.1073/pnas.2310916120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/26/2023] [Indexed: 12/22/2023] Open
Abstract
The kinetics and pathway of most catalyzed reactions depend on the existence of interface, which makes the precise construction of highly active single-atom sites at the reaction interface a desirable goal. Herein, we propose a thermal printing strategy that not only arranges metal atoms at the silica and carbon layer interface but also stabilizes them by strong coordination. Just like the typesetting of Chinese characters on paper, this method relies on the controlled migration of movable nanoparticles between two contact substrates and the simultaneous emission of atoms from the nanoparticle surface at high temperatures. Observed by in situ transmission electron microscopy, a single Fe3O4 nanoparticle migrates from the core of a SiO2 sphere to the surface like a droplet at high temperatures, moves along the interface of SiO2 and the coated carbon layer, and releases metal atoms until it disappears completely. These detached atoms are then in situ trapped by nitrogen and sulfur defects in the carbon layer to generate Fe single-atom sites, exhibiting excellent activity for oxygen reduction reaction. Also, sites' densities can be regulated by controlling the size of Fe3O4 nanoparticle between the two surfaces. More importantly, this strategy is applicable to synthesize Mn, Co, Pt, Pd, Au single-atom sites, which provide a general route to arrange single-atom sites at the interface of different supports for various applications.
Collapse
Affiliation(s)
- Lin Tian
- Deep Space Exploration Laboratory/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Xiaoping Gao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, China
| | - Sicong Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, China
| | - Cai Chen
- Deep Space Exploration Laboratory/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Min Chen
- Deep Space Exploration Laboratory/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Wenxin Guo
- Deep Space Exploration Laboratory/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Zhe Wang
- Preservation Technology, Advanced Research Center, Hefei Hualing Co., Ltd., Hefei230000, China
| | - Xiaolin Tai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, China
| | - Xiao Han
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, China
| | - Chenxi Xu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei230009, China
| | - Yaner Ruan
- Deep Space Exploration Laboratory/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Mengzhao Zhu
- Deep Space Exploration Laboratory/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Can Xiong
- Deep Space Exploration Laboratory/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Tao Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, China
| | - Huang Zhou
- Deep Space Exploration Laboratory/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, China
| | - Yuen Wu
- Deep Space Exploration Laboratory/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
- Dalian National Laboratory for Clean Energy, Dalian116023, China
| |
Collapse
|
21
|
Song T, Li R, Wang J, Dong C, Feng X, Ning Y, Mu R, Fu Q. Enhanced Methanol Synthesis over Self-Limited ZnO x Overlayers on Cu Nanoparticles Formed via Gas-Phase Migration Route. Angew Chem Int Ed Engl 2023:e202316888. [PMID: 38078622 DOI: 10.1002/anie.202316888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 12/29/2023]
Abstract
Supported metal catalysts are widely used for chemical conversion, in which construction of high density metal-oxide or oxide-metal interface is an important means to improve their reaction performance. Here, Cu@ZnOx encapsulation structure has been in situ constructed through gas-phase migration of Zn species from ZnO particles onto surface of Cu nanoparticles under CO2 hydrogenation atmosphere at 450 °C. The gas-phase deposition of Zn species onto the Cu surface and growth of ZnOx overlayer is self-limited under the high temperature and redox gas (CO2 /H2 ) conditions. Accordingly, high density ZnOx -Cu interface sites can be effectively tailored to have an enhanced activity in CO2 hydrogenation to methanol. This work reveals a new route for the construction of active oxide-metal interface and classic strong metal-support interaction state through gas-phase migration of support species induced by high temperature redox reaction atmosphere.
Collapse
Affiliation(s)
- Tongyuan Song
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jianyang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Cui Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaohui Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Yanxiao Ning
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
22
|
Negi SS, Kim HM, Cheon BS, Jeong CH, Roh HS, Jeong DW. Restructuring Co-CoO x Interface with Titration Rate in Co/Nb-CeO 2 Catalysts for Higher Water-Gas Shift Performance. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37902875 DOI: 10.1021/acsami.3c09312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
H2 production via water-gas shift reaction (WGS) is an important process and applied widely. Cobalt-modified CeO2 are promising catalysts for WGS reaction. Herein, a series of Co/Nb-CeO2 catalysts were prepared by varying the rate of precipitant addition during the coprecipitation method and examined for hydrogen generation through WGS reaction. The rates of precipitant addition were 1, 5, 15, and 25 mL/min. We obtained ceria supported cobalt catalysts with different sizes and morphology such as 3, 8 nm nanoclusters, 30 nm cubic nanoparticles, and 50 nm hexagonal nanoparticles. The well dispersed small cobalt particles in Co/Nb-CeO2 that was prepared at 5 mL/min titration rate exhibit strong interaction between cobalt oxide and CeO2 that retards the reduction of CoOx producing Co-CoOx pairs. In contrast, 1-Co/Nb-CeO2 and 25-Co/Nb-CeO2 result in bigger and aggregated Co particles, resulting in fewer interfaces with CeO2. The Co0, Coδ+, Ce3+, and Ov species are responsible for improved reducibility in Co/Nb-CeO2 catalysts and were quantitively measured using XPS, XAS, and Raman spectroscopy. The Co-CoOx interface assists dissociation of the H2O molecule; CO oxidation requires low activation energy and realizes a high turnover frequency of 9.8 s-1. The 5-Co/Nb-CeO2 catalyst achieved thermodynamic equilibrium equivalent CO conversion with efficient H2 production during WGS reaction at a gas hourly space velocity of 315,282 h-1. Successively, the 5-Co/Nb-CeO2 catalyst exhibited stable performance for straight 168 h attributed to stable CO-Coδ+ intermediate formation, achieving efficient inhibition of typical CO chemistry over the Co metal, suitable for hydrogen generation from waste derived synthesis gas.
Collapse
Affiliation(s)
- Sanjay Singh Negi
- Industrial Technology Research Center, Changwon National University, 20 Changwondaehak-ro, Changwon, Gyeongnam 51140, Republic of Korea
| | - Hak-Min Kim
- Industrial Technology Research Center, Changwon National University, 20 Changwondaehak-ro, Changwon, Gyeongnam 51140, Republic of Korea
| | - Beom-Su Cheon
- Department of Environmental Engineering, Changwon National University, 20 Changwondaehak-ro, Changwon, Gyeongnam 51140, Republic of Korea
| | - Chang-Hoon Jeong
- Department of Smart Environmental Energy Engineering, Changwon National University, 20 Changwondaehak-ro, Changwon, Gyeongnam 51140, Republic of Korea
- Hydrogen Industry Planning Team, Changwon Industry Promotion Agency, 46 Changwon-daero, Changwon, Gyeongnam 51395, Republic of Korea
| | - Hyun-Seog Roh
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon 26493, Republic of Korea
| | - Dae-Woon Jeong
- Department of Environment & Energy Engineering, Changwon National University, 20 Changwondaehak-ro, Changwon, Gyeongnam 51140, Republic of Korea
- School of Smart & Green Engineering, Changwon National University, 20 Changwondaehak-ro, Changwon, Gyeongnam 51140, Republic of Korea
| |
Collapse
|
23
|
Fu XP, Wu CP, Wang WW, Jin Z, Liu JC, Ma C, Jia CJ. Boosting reactivity of water-gas shift reaction by synergistic function over CeO 2-x/CoO 1-x/Co dual interfacial structures. Nat Commun 2023; 14:6851. [PMID: 37891176 PMCID: PMC10611738 DOI: 10.1038/s41467-023-42577-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Dual-interfacial structure within catalysts is capable of mitigating the detrimentally completive adsorption during the catalysis process, but its construction strategy and mechanism understanding remain vastly lacking. Here, a highly active dual-interfaces of CeO2-x/CoO1-x/Co is constructed using the pronounced interfacial interaction from surrounding small CeO2-x islets, which shows high activity in catalyzing the water-gas shift reaction. Kinetic evidence and in-situ characterization results revealed that CeO2-x modulates the oxidized state of Co species and consequently generates the dual active CeO2-x/CoO1-x/Co interface during the WGS reaction. A synergistic redox mechanism comprised of independent contribution from dual functional interfaces, including CeO2-x/CoO1-x and CoO1-x/Co, is authenticated by experimental and theoretical results, where the CeO2-x/CoO1-x interface alleviates the CO poison effect, and the CoO1-x/Co interface promotes the H2 formation. The results may provide guidance for fabricating dual-interfacial structures within catalysts and shed light on the mechanism over multi-component catalyst systems.
Collapse
Affiliation(s)
- Xin-Pu Fu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Cui-Ping Wu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Zhao Jin
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Jin-Cheng Liu
- Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, 300350, Tianjin, China.
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, 410082, Changsha, China.
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China.
| |
Collapse
|
24
|
Pan J, Li XE, Zhu Y, Zhou J, Zhu Z, Li C, Liu X, Liang X, Yang Z, Chen Q, Ren P, Wen XD, Zhou X, Wu K. Clustering-Evolved Frontier Orbital for Low-Temperature CO 2 Dissociation. J Am Chem Soc 2023; 145:18748-18752. [PMID: 37606281 DOI: 10.1021/jacs.3c06845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
In this study, single Ni2 clusters (two Ni atoms bridged by a lattice oxygen) are successfully synthesized on monolayered CuO. They exhibit a remarkable activity toward low-temperature CO2 thermal dissociation, in contrast to cationic Ni atoms that nondissociatively adsorb CO2 and metallic Ni ones that are chemically inert for CO2 adsorption. Density functional theory calculations reveal that the Ni2 clusters can significantly alter the spatial symmetry of their unoccupied frontier orbitals to match the occupied counterpart of the CO2 molecule and enable its low-temperature dissociation. This study may help advance single-cluster catalysis and exploit the unexcavated mechanism for low-temperature CO2 activation.
Collapse
Affiliation(s)
- Jinliang Pan
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiu-E Li
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yifan Zhu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junyi Zhou
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhen Zhu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Changlin Li
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xianzheng Liu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaoyang Liang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zengxu Yang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiwei Chen
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Pengju Ren
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Xiao-Dong Wen
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Xiong Zhou
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
25
|
Liu C, Lin L, Wu H, Liu Y, Mu R, Fu Q. Activating lattice oxygen of single-layer ZnO for the catalytic oxidation reaction. Phys Chem Chem Phys 2023; 25:20121-20127. [PMID: 37462941 DOI: 10.1039/d3cp02580b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Tuning an oxide/metal interface is of critical importance for the performance enhancement of many heterogeneous catalytic reactions. However, catalytic oxidation occurring at the interface between non-reducible oxide and metal has been challenging, since non-reducible oxides hardly lose their lattice oxygen (OL) or dissociate O2 from the gas phase. In this work, a ZnO monolayer film on Au(111) is used as an inverse catalyst to investigate CO oxidation occurring at the ZnO/Au(111) interface via high pressure scanning tunneling microscopy. Surface science experiments indicate that oxygen intercalation under the ZnO monolayer film, termed ZnO/O/Au(111), can be achieved via a surface reaction with 1 × 10-6 mbar O3. Subsequent exposure of the formed ZnO/O/Au(111) surface to mbar CO at room temperature leads to the recovery of the pristine ZnO/Au(111) surface. Theoretical calculations reveal that OL adjacent to intercalated oxygen (Oint) is activated due to the OL-Zn-Oint bonding and surface corrugation, which can be directly involved in CO oxidation. Subsequently, Oint migrates to the formed oxygen vacancy from the subsurface resuming the pristine ZnO structure. These results thus reveal that oxygen intercalation underneath single-layer ZnO will strongly boost the oxidation reaction via activating adjacent lattice oxygen atoms.
Collapse
Affiliation(s)
- Changping Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Hao Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yijing Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
26
|
Li Z, Wang M, Jia Y, Du R, Li T, Zheng Y, Chen M, Qiu Y, Yan K, Zhao WW, Wang P, Waterhouse GIN, Dai S, Zhao Y, Chen G. CeO 2/Cu 2O/Cu Tandem Interfaces for Efficient Water-Gas Shift Reaction Catalysis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37339248 DOI: 10.1021/acsami.3c06386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Metal-oxide interfaces on Cu-based catalysts play very important roles in the low-temperature water-gas shift reaction (LT-WGSR). However, developing catalysts with abundant, active, and robust Cu-metal oxide interfaces under LT-WGSR conditions remains challenging. Herein, we report the successful development of an inverse copper-ceria catalyst (Cu@CeO2), which exhibited very high efficiency for the LT-WGSR. At a reaction temperature of 250 °C, the LT-WGSR activity of the Cu@CeO2 catalyst was about three times higher than that of a pristine Cu catalyst without CeO2. Comprehensive quasi-in situ structural characterizations indicated that the Cu@CeO2 catalyst was rich in CeO2/Cu2O/Cu tandem interfaces. Reaction kinetics studies and density functional theory (DFT) calculations revealed that the Cu+/Cu0 interfaces were the active sites for the LT-WGSR, while adjacent CeO2 nanoparticles play a key role in activating H2O and stabilizing the Cu+/Cu0 interfaces. Our study highlights the role of the CeO2/Cu2O/Cu tandem interface in regulating catalyst activity and stability, thus contributing to the development of improved Cu-based catalysts for the LT-WGSR.
Collapse
Affiliation(s)
- Zhengjian Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Mingzhi Wang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yanyan Jia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ruian Du
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Tan Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yanping Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Mingshu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Keyou Yan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Pei Wang
- College of Science, Huazhong Agricultural University, Wuhan 430074, PR China
| | | | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yun Zhao
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
27
|
Gao Y, Xiong K, Zhu B. Design of Cu/MoOx for CO2 Reduction via Reverse Water Gas Shift Reaction. Catalysts 2023. [DOI: 10.3390/catal13040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
CO2 reduction to CO as raw material for conversion to chemicals and gasoline fuels via the reverse water–gas shift (RWGS) reaction is generally acknowledged to be a promising strategy that makes the CO2 utilization process more economical and efficient. Cu-based catalysts are low-cost and have high catalytic performance but have insufficient stability due to hardening at high temperatures. In this work, a series of Cu-based catalysts supported by MoOx were synthesized for noble metal-free RWGS reactions, and the effects of MoOx support on catalyst performance were investigated. The results show that the introduction of MoOx can effectively improve the catalytic performance of RWGS reactions. The obtained Cu/MoOx (1:1) catalyst displays excellent activity with 35.85% CO2 conversion and 99% selectivity for CO at 400 °C. A combination of XRD, XPS, and HRTEM characterization results demonstrate that MoOx support enhances the metal-oxide interactions with Cu through electronic modification and geometric coverage, thus obtaining highly dispersed copper and more Cu-MoOx interfaces as well as more corresponding oxygen vacancies.
Collapse
|
28
|
Cha X, Wang X, Huang M, Cai D, Sun K, Jiang J, Zhou SF, Zhan G. Fabrication of supported Pt/CeO 2 nanocatalysts doped with different elements for CO oxidation: theoretical and experimental studies. Dalton Trans 2023; 52:3661-3670. [PMID: 36847219 DOI: 10.1039/d3dt00181d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Supported Pt/CeO2 catalysts have been widely used in carbon monoxide (CO) oxidation; however, the high oxygen vacancy formation energy (Evac) in the process leads to the poor performance of these catalysts. Herein, we explored different element (Pr, Cu, or N) doped CeO2 supports using Ce-based metal-organic frameworks (MOFs) as precursors via calcination treatment. The obtained CeO2 supports were used to load Pt nanoparticles. These catalysts were systematically characterized by various techniques, and they showed superior catalytic activity for CO oxidation compared to undoped catalysts which could be attributed to the formation of Ce3+, and high amounts of Oads/(Oads + Olat) and Ptδ+/Pttotal. Moreover, density functional theory calculations with on-site Coulomb interaction correction (DFT+U) were performed to provide atomic-scale insights into the reaction process by the Mars-van Krevelen (M-vK) mechanism, which revealed that the element-doped catalysts could simultaneously reduce the adsorption energies of CO and lower reaction energy barriers in the *OOCO associative pathway.
Collapse
Affiliation(s)
- Xingwen Cha
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China.
| | - Xueying Wang
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China.
| | - Mingzhen Huang
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China.
| | - Dongren Cai
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China.
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin Five Village, Nanjing, Jiangsu, 210042, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin Five Village, Nanjing, Jiangsu, 210042, P. R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China.
| | - Guowu Zhan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China.
| |
Collapse
|
29
|
Zhang K, Guo Q, Wang Y, Cao P, Zhang J, Heggen M, Mayer J, Dunin-Borkowski RE, Wang F. Ethylene Carbonylation to 3-Pentanone with In Situ Hydrogen via a Water–Gas Shift Reaction on Rh/CeO 2. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Kun Zhang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450003, China
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Qiang Guo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Yehong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Pengfei Cao
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Juelich GmbH, Juelich 52425, Germany
- Central Facility for Electron Microscopy, RWTH Aachen University, 52074 Aachen, Germany
| | - Jian Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Marc Heggen
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Juelich GmbH, Juelich 52425, Germany
| | - Joachim Mayer
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Juelich GmbH, Juelich 52425, Germany
- Central Facility for Electron Microscopy, RWTH Aachen University, 52074 Aachen, Germany
| | - Rafal E. Dunin-Borkowski
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Juelich GmbH, Juelich 52425, Germany
| | - Feng Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450003, China
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| |
Collapse
|
30
|
Yin P, Yang Y, Yan H, Wei M. Theoretical Calculations on Metal Catalysts Toward Water-Gas Shift Reaction: a Review. Chemistry 2023; 29:e202203781. [PMID: 36723438 DOI: 10.1002/chem.202203781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
Water-gas shift (WGS) reaction offers a dominating path to hydrogen generation from fossil fuel, in which heterogeneous metal catalysts play a crucial part in this course. This review highlights and summarizes recent developments on theoretical calculations of metal catalysts developed to date, including surface structure (e. g., monometallic and polymetallic systems) and interface structure (e. g., supported catalysts and metal oxide composites), with special emphasis on the characteristics of crystal-face effect, alloying strategy, and metal-support interaction. A systematic summarization on reaction mechanism was performed, including redox mechanism, associative mechanism as well as hybrid mechanism; the development on chemical kinetics (e. g., molecular dynamics, kinetic Monte Carlo and microkinetic simulation) was then introduced. At the end, challenges associated with theoretical calculations on metal catalysts toward WGS reaction are discussed and some perspectives on the future advance of this field are provided.
Collapse
Affiliation(s)
- Pan Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Institute of Engineering Technology, SINOPEC Catalyst Co., Ltd., Beijing, 110112, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
31
|
Yu J, Chen W, He F, Song W, Cao C. Electronic Oxide-Support Strong Interactions in the Graphdiyne-Supported Cuprous Oxide Nanocluster Catalyst. J Am Chem Soc 2023; 145:1803-1810. [PMID: 36638321 DOI: 10.1021/jacs.2c10976] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The interfacial interaction in supported catalysts is of great significance for heterogeneous catalysis because it can induce charge transfer, regulate electronic structure of active sites, influence reactant adsorption behavior, and eventually affect the catalytic performance. It has been theoretically and experimentally elucidated well in metal/oxide catalysts and oxide/metal inverse catalysts, but is rarely reported in carbon-supported catalysts due to the inertness of traditional carbon materials. Using an example of a graphdiyne-supported cuprous oxide nanocluster catalyst (Cu2O NCs/GDY), we herein demonstrate the strong electronic interaction between them and put forward a new type of electronic oxide-graphdiyne strong interaction, analogous to the concept of electronic oxide/metal strong interactions in oxide/metal inverse catalysts. Such electronic oxide-graphdiyne strong interaction can not only stabilize Cu2O NCs in a low-oxidation state without aggregation and oxidation under ambient conditions but also change their electronic structure, resulting in the optimized adsorption energy for reactants/intermediates and thus leading to improved catalytic activity in the Cu(I)-catalyzed azide-alkyne cycloaddition reaction. Our study will contribute to the comprehensive understanding of interfacial interactions in supported catalysts.
Collapse
Affiliation(s)
- Jia Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weiming Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Feng He
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weiguo Song
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Changyan Cao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
32
|
The graphene-supported Lanthanum oxide cluster as efficient bifunctional electrocatalyst for oxygen reaction. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Wang Q, Xiao Y, Yang S, Zhang Y, Wu L, Pan H, Rao D, Chen T, Sun Z, Wang G, Zhu J, Zeng J, Wei S, Zheng X. Monitoring Electron Flow in Nickel Single-Atom Catalysts during Nitrogen Photofixation. NANO LETTERS 2022; 22:10216-10223. [PMID: 36352348 DOI: 10.1021/acs.nanolett.2c03595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An efficient catalytic system for nitrogen (N2) photofixation generally consists of light-harvesting units, active sites, and an electron-transfer bridge. In order to track photogenerated electron flow between different functional units, it is highly desired to develop in situ characterization techniques with element-specific capability, surface sensitivity, and detection of unoccupied states. In this work, we developed in situ synchrotron radiation soft X-ray absorption spectroscopy (in situ sXAS) to probe the variation of electronic structure for a reaction system during N2 photoreduction. Nickel single-atom and ceria nanoparticle comodified reduced graphene oxide (CeO2/Ni-G) was designed as a model catalyst. In situ sXAS directly reveals the dynamic interfacial charge transfer of photogenerated electrons under illumination and the consequent charge accumulation at the catalytic active sites for N2 activation. This work provides a powerful tool to monitor the electronic structure evolution of active sites under reaction conditions for photocatalysis and beyond.
Collapse
Affiliation(s)
- Qingyu Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yu Xiao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Shaokang Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Yida Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Lihui Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
| | - Haibin Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
| | - Dewei Rao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Tao Chen
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
| | - Gongming Wang
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
| |
Collapse
|
34
|
Gao M, Yang Z, Zhang H, Ma J, Zou Y, Cheng X, Wu L, Zhao D, Deng Y. Ordered Mesopore Confined Pt Nanoclusters Enable Unusual Self-Enhancing Catalysis. ACS CENTRAL SCIENCE 2022; 8:1633-1645. [PMID: 36589882 PMCID: PMC9801509 DOI: 10.1021/acscentsci.2c01290] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Indexed: 06/17/2023]
Abstract
As an important kind of emerging heterogeneous catalyst for sustainable chemical processes, supported metal cluster (SMC) catalysts have received great attention for their outstanding activity; however, the easy aggregation of metal clusters due to their migration along the substrate's surface usually deteriorates their activity and even causes catalyst failure during cycling. Herein, stable Pt nanoclusters (NCs, ∼1.06 nm) are homogeneously confined in the uniform spherical mesopores of mesoporous titania (mpTiO2) by the interaction between Pt NCs and metal oxide pore walls made of polycrystalline anatase TiO2. The obtained Pt-mpTiO2 exhibits excellent stability with well-retained CO conversion (∼95.0%) and Pt NCs (∼1.20 nm) in the long term water-gas shift (WGS) reaction. More importantly, the Pt-mpTiO2 displays an unusual increasing activity during the cyclic catalyzing WGS reaction, which was found to stem from the in situ generation of interfacial active sites (Ti3+-Ov-Ptδ+) by the reduction effect of spillover hydrogen generated at the stably supported Pt NCs. The Pt-mpTiO2 catalysts also show superior performance toward the selective hydrogenation of furfural to 2-methylfuran. This work discloses an efficient and robust Pt-mpTiO2 catalyst and systematically elucidates the mechanism underlying its unique catalytic activity, which helps to design stable SMC catalysts with self-enhancing interfacial activity in sustainable heterogeneous catalysis.
Collapse
Affiliation(s)
- Meiqi Gao
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Zhirong Yang
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Haijiao Zhang
- Institute
of Nanochemistry and Nanobiology, School of Environmental and Chemical
Engineering, Shanghai University, Shanghai200444, People’s Republic of China
| | - Junhao Ma
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Yidong Zou
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Xiaowei Cheng
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Limin Wu
- Institute
of Energy and Materials Chemistry, Inner
Mongolia University, Hohhot010021, China
| | - Dongyuan Zhao
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Yonghui Deng
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| |
Collapse
|
35
|
Zhang Y, Jia A, Li Z, Yuan Z, Huang W. Titania-Morphology-Dependent Pt–TiO 2 Interfacial Catalysis in Water-Gas Shift Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yunshang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Aiping Jia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
| | - Zhaorui Li
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Zhenxuan Yuan
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Weixin Huang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
36
|
Chen Y, Dang D, Yan B, Cheng Y. Nanocomposite catalysts of non-purified MoVNbTeOx with CeO2 or TiO2 for oxidative dehydrogenation of ethane. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Highly efficient and selective Ru and Ce modified ZSM-5 catalysts for catalytic oxidation of toluene. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Chen J, Wu XP, Hope MA, Lin Z, Zhu L, Wen Y, Zhang Y, Qin T, Wang J, Liu T, Xia X, Wu D, Gong XQ, Tang W, Ding W, Liu X, Chen L, Grey CP, Peng L. Surface differences of oxide nanocrystals determined by geometry and exogenously coordinated water molecules. Chem Sci 2022; 13:11083-11090. [PMID: 36320476 PMCID: PMC9517059 DOI: 10.1039/d2sc03885d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 09/06/2024] Open
Abstract
Determining the different surfaces of oxide nanocrystals is key in developing structure-property relations. In many cases, only surface geometry is considered while ignoring the influence of surroundings, such as ubiquitous water on the surface. Here we apply 17O solid-state NMR spectroscopy to explore the facet differences of morphology-controlled ceria nanocrystals considering both geometry and water adsorption. Tri-coordinated oxygen ions at the 1st layer of ceria (111), (110), and (100) facets exhibit distinct 17O NMR shifts at dry surfaces while these 17O NMR parameters vary in the presence of water, indicating its non-negligible effects on the oxide surface. Thus, the interaction between water and oxide surfaces and its impact on the chemical environment should be considered in future studies, and solid-state NMR spectroscopy is a sensitive approach for obtaining such information. The work provides new insights into elucidating the surface chemistry of oxide nanomaterials.
Collapse
Affiliation(s)
- Junchao Chen
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Sciences, Shanghai Jiao Tong University Shanghai 200240 China
| | - Xin-Ping Wu
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Michael A Hope
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Zhiye Lin
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Lei Zhu
- State Key Laboratory of Space Power Technology, Shanghai Institute of Space Power-Sources (SISP), Shanghai Academy of Spaceflight Technology Shanghai 200245 China
| | - Yujie Wen
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Yixiao Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Sciences, Shanghai Jiao Tong University Shanghai 200240 China
| | - Tian Qin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Sciences, Shanghai Jiao Tong University Shanghai 200240 China
| | - Jia Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Tao Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University Shanghai 200092 China
| | - Xifeng Xia
- Analysis and Testing Center, Nanjing University of Science and Technology Nanjing 210094 China
| | - Di Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Weiping Tang
- State Key Laboratory of Space Power Technology, Shanghai Institute of Space Power-Sources (SISP), Shanghai Academy of Spaceflight Technology Shanghai 200245 China
| | - Weiping Ding
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Sciences, Shanghai Jiao Tong University Shanghai 200240 China
| | - Liwei Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Sciences, Shanghai Jiao Tong University Shanghai 200240 China
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences Suzhou 215123 China
| | - Clare P Grey
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
- Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University Nanjing 210093 China
- Frontiers Science Center for Critical Earth Material Cycling (FSC-CEMaC), Nanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
39
|
Xi S, Zhang J, Xie K. Low‐temperature Water‐gas Shift Reaction Enhanced by Oxygen Vacancies in Pt‐loaded Porous Single‐crystalline Oxide Monoliths. Angew Chem Int Ed Engl 2022; 61:e202209851. [DOI: 10.1002/anie.202209851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shaobo Xi
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jie Zhang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Kui Xie
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
- Key Laboratory of Design & Assembly of Functional Nanostructures Chinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|
40
|
Zhang S, Liu Y, Zhang M, Ma Y, Hu J, Qu Y. Sustainable production of hydrogen with high purity from methanol and water at low temperatures. Nat Commun 2022; 13:5527. [PMID: 36130943 PMCID: PMC9492729 DOI: 10.1038/s41467-022-33186-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022] Open
Abstract
Carbon neutrality initiative has stimulated the development of the sustainable methodologies for hydrogen generation and safe storage. Aqueous-phase reforming methanol and H2O (APRM) has attracted the particular interests for their high gravimetric density and easy availability. Thus, to efficiently release hydrogen and significantly suppress CO generation at low temperatures without any additives is the sustainable pursuit of APRM. Herein, we demonstrate that the dual-active sites of Pt single-atoms and frustrated Lewis pairs (FLPs) on porous nanorods of CeO2 enable the efficient additive-free H2 generation with a low CO (0.027%) through APRM at 120 °C. Mechanism investigations illustrate that the Pt single-atoms and Lewis acidic sites cooperatively promote the activation of methanol. With the help of a spontaneous water dissociation on FLPs, Pt single-atoms exhibit a significantly improved reforming of *CO to promote H2 production and suppress CO generation. This finding provides a promising path towards the flexible hydrogen utilizations.
Collapse
Affiliation(s)
- Sai Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, Shenzhen, China
| | - Yuxuan Liu
- Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xian Jiaotong University, 710049, Xian, China
| | - Mingkai Zhang
- Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xian Jiaotong University, 710049, Xian, China
| | - Yuanyuan Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, China
| | - Jun Hu
- School of Chemical Engineering, Northwest University, 710069, Xian, China.
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, China.
| |
Collapse
|
41
|
Zhang R, Lin L, Wang D, Liu Y, Ling Y, Zhao S, Mu R, Fu Q. The Interplay between Hydroxyl Coverage and Reaction Selectivity of CO Conversion over the MnOH x/Pt Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rankun Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dongqing Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yijing Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yunjian Ling
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Siqin Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
42
|
Xi S, Zhang J, Xie K. Low‐temperature Water‐gas Shift Reaction Enhanced by Oxygen Vacancies in Pt‐loaded Porous Single‐crystalline Oxide Monoliths. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shaobo Xi
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter Key Laboratory of Optoelectronic Materials Chemistry and Physics CHINA
| | - Jie Zhang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter Key Laboratory of Optoelectronic Materials Chemistry and Physics CHINA
| | - Kui Xie
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter Materials Center 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
43
|
Qin SN, Wei DY, Wei J, Lin JS, Chen QQ, Wu YF, Jin HZ, Zhang H, Li JF. Direct identification of the carbonate intermediate during water-gas shift reaction at Pt-NiO interfaces using surface-enhanced Raman spectroscopy. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63964-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Chandel M, Kumar P, Arora A, Kataria S, Dubey SC, M D, Kaur K, Sahu BK, De Sarkar A, Shanmugam V. Nanocatalytic Interface to Decode the Phytovolatile Language for Latent Crop Diagnosis in Future Farms. Anal Chem 2022; 94:11081-11088. [PMID: 35905143 DOI: 10.1021/acs.analchem.2c02244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crop diseases cause the release of volatiles. Here, the use of an SnO2-based chemoresistive sensor for early diagnosis has been attempted. Ionone is one of the signature volatiles released by the enzymatic and nonenzymatic cleavage of carotene at the latent stage of some biotic stresses. To our knowledge, this is the first attempt at sensing volatiles with multiple oxidation sites, i.e., ionone (4 oxidation sites), from the phytovolatile library, to derive stronger signals at minimum concentrations. Further, the sensitivity was enhanced on an interdigitated electrode by the addition of platinum as the dopant for a favorable space charge layer and for surface island formation for reactive interface sites. The mechanistic influence of oxygen vacancy formation was studied through detailed density functional theory (DFT) calculations and reactive oxygen-assisted enhanced binding through X-ray photoelectron spectroscopy (XPS) analysis.
Collapse
Affiliation(s)
- Mahima Chandel
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Prem Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Anu Arora
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Sarita Kataria
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Sunil Chandra Dubey
- Plant Protection and Biosafety, Indian Council of Agricultural Research, Krishi Bhawan, Dr. Rajendra Prasad Road, New Delhi, New Delhi 110001, India
| | - Djanaguiraman M
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Kamaljit Kaur
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Bandana Kumari Sahu
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Abir De Sarkar
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Vijayakumar Shanmugam
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| |
Collapse
|
45
|
Zhang Z, Zheng B, Tian H, He Y, Huang X, Ali S, Xu H. Rational design of highly efficient MXene-based catalysts for the water-gas-shift reaction. Phys Chem Chem Phys 2022; 24:18265-18271. [PMID: 35876328 DOI: 10.1039/d1cp05789h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water molecules linked by hydrogen bonds are responsible for the high efficiency of bi-functional catalysts for the water-gas-shift (WGS) reaction because water can act as a proton transfer medium. Herein, we propose an associative pathway for the WGS reaction assisted by water to realize hydrogen production. Based on this pathway, we show by first-principles calculations that a large family of oxygen-terminated two-dimensional transition metal carbides and nitrides (MXenes) deposited on Au clusters are promising catalysts for the WGS reaction. Remarkably, the rate-determining barriers for *CO → *COOH on Au/Mn+1XnO2 are in the range from 0.15 eV to 0.39 eV, indicating that WGS can occur at much lower temperatures. Furthermore, a comprehensive microkinetic model is constructed to describe the turnover frequencies (TOF) for the product under the steady-state conditions. More importantly, there is a perfect linear scaling relationship between the rate-determining barriers of the WGS and the free energy of the adsorbed hydrogen. Besides, the potential energy diagrams for CO reforming reveal that the F terminations introduced in experiments have only a slight influence on the catalytic performance of the oxygen-terminated MXenes. Our work not only opens a new avenue towards the WGS reaction but also provides many ideal catalysts for hydrogen production.
Collapse
Affiliation(s)
- Zhe Zhang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, China.,Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Baobing Zheng
- College of Physics and Optoelectronic Technology, Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji 721016, China
| | - Hao Tian
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Physics, The University of Hong Kong, Hong Kong
| | - Yanling He
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Physics, The University of Hong Kong, Hong Kong
| | - Xiang Huang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sajjad Ali
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hu Xu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, 518055, China.,Shenzhen Key Laboratory for Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
46
|
Wang Y, Ren X, Jiang B, Deng M, Zhao X, Pang R, Li SF. Synergetic Catalysis of Magnetic Single-Atom Catalysts Confined in Graphitic-C 3N 4/CeO 2(111) Heterojunction for CO Oxidization. J Phys Chem Lett 2022; 13:6367-6375. [PMID: 35796604 DOI: 10.1021/acs.jpclett.2c01605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic single-atom catalysts (MSAC), due to the intrinsic spin degree of freedom, are of particular importance relative to other conventional SAC for applications in various catalytic processes, especially in those cases that involve spin-triplet O2. However, the bottleneck issue in this field is the clustering of the SAC during the processes. Here using first-principles calculations we predict that Mn atoms can be readily confined in the interface of the porous g-C3N4/CeO2(111) heterostructure, forming high-performance MSAC for O2 activation via a delicate synergetic mechanism of charge transfer, mainly provided by the p-block g-C3N4 overlayer mediated by the d-block Mn active site, and spin selection, preserved mainly through active participation of the f-block Ce atoms and/or g-C3N4, which effectively promotes the CO oxidization. Such a recipe is also demonstrated to be valid for V- and Nb-MSACs, which may shed new light on the design of highly efficient MSACs for various important chemical processes wherein spin-selection matters.
Collapse
Affiliation(s)
- Yueyang Wang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyan Ren
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Bojie Jiang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Deng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xingju Zhao
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Pang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - S F Li
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
47
|
Lavroff RH, Morgan HWT, Zhang Z, Poths P, Alexandrova AN. Ensemble representation of catalytic interfaces: soloists, orchestras, and everything in-between. Chem Sci 2022; 13:8003-8016. [PMID: 35919426 PMCID: PMC9278157 DOI: 10.1039/d2sc01367c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Catalytic systems are complex and dynamic, exploring vast chemical spaces on multiple timescales. In this perspective, we discuss the dynamic behavior of fluxional, heterogeneous thermal and electrocatalysts and the ensembles of many isomers which govern their behavior. We develop a new paradigm in catalysis theory in which highly fluxional systems, namely sub-nano clusters, isomerize on a much shorter timescale than that of the catalyzed reaction, so macroscopic properties arise from the thermal ensemble of isomers, not just the ground state. Accurate chemical predictions can only be reached through a many-structure picture of the catalyst, and we explain the breakdown of conventional methods such as linear scaling relations and size-selected prevention of sintering. We capitalize on the forward-looking discussion of the means of controlling the size of these dynamic ensembles. This control, such that the most effective or selective isomers can dominate the system, is essential for the fluxional catalyst to be practicable, and their targeted synthesis to be possible. It will also provide a fundamental lever of catalyst design. Finally, we discuss computational tools and experimental methods for probing ensembles and the role of specific isomers. We hope that catalyst optimization using chemically informed descriptors of ensemble nature and size will become a new norm in the field of catalysis and have broad impacts in sustainable energy, efficient chemical production, and more.
Collapse
Affiliation(s)
- Robert H Lavroff
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles California 90095-1569 USA
| | - Harry W T Morgan
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles California 90095-1569 USA
| | - Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles California 90095-1569 USA
| | - Patricia Poths
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles California 90095-1569 USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles California 90095-1569 USA
| |
Collapse
|
48
|
Gäßler M, Stahl J, Schowalter M, Pokhrel S, Rosenauer A, Mädler L, Güttel R. The Impact of Support Material of Cobalt‐Based Catalysts Prepared by Double Flame Spray Pyrolysis on CO2 Methanation Dynamics. ChemCatChem 2022. [DOI: 10.1002/cctc.202200286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Max Gäßler
- Ulm University: Universitat Ulm Institute of Chemical Engineering GERMANY
| | - Jakob Stahl
- University of Bremen: Universitat Bremen Faculty of Production Engineering GERMANY
| | - Marco Schowalter
- University of Bremen: Universitat Bremen Institute of Solid State Physics GERMANY
| | - Suman Pokhrel
- University of Bremen: Universitat Bremen Faculty of Production Engineering GERMANY
| | - Andreas Rosenauer
- University of Bremen: Universitat Bremen Institute of Solid State Physics GERMANY
| | - Lutz Mädler
- University of Bremen: Universitat Bremen Faculty of Production Engineering GERMANY
| | - Robert Güttel
- Universitat Ulm Institute of Chemical Process Engineering Albert-Einstein-Allee 11 89081 Ulm GERMANY
| |
Collapse
|
49
|
Cai ZF, Käser T, Kumar N, Zenobi R. Visualizing On-Surface Decomposition Chemistry at the Nanoscale Using Tip-Enhanced Raman Spectroscopy. J Phys Chem Lett 2022; 13:4864-4870. [PMID: 35617121 DOI: 10.1021/acs.jpclett.2c01112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Chemical imaging of molecular decomposition processes at solid-liquid interfaces is a long-standing problem in achieving mechanistic understanding. Conventional analytical tools fail to meet this challenge due to the lack of required chemical sensitivity and specificity at the nanometer scale. In this work, we demonstrate that high-resolution hyperspectral tip-enhanced Raman spectroscopy (TERS) imaging can be a powerful analytical tool for studying on-surface decomposition chemistry at the nanoscale. Specifically, we present a TERS-based hyperspectral approach to visualize the on-surface decomposition process of a pyridine-4-thiol self-assembled monolayer on atomically flat Au(111) surfaces under ambient conditions. Reactive intermediates involved in the degradation process are spectroscopically detected with 5 nm spatial resolution. With supporting density functional theory simulations, a key species could be assigned to the disulfide reaction intermediate. This work opens a new application area for studying on-surface decomposition chemistry and related dynamics quantitatively at solid-liquid interfaces with nanometer spatial resolution.
Collapse
Affiliation(s)
- Zhen-Feng Cai
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland
| | - Timon Käser
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland
| |
Collapse
|
50
|
Cao X, Han YF, Peng C, Zhu M. A Review on the Water‐Gas Shift Reaction over Nickel‐Based Catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinyu Cao
- East China University of Science and Technology School of Chemical Engineering CHINA
| | - Yi-Fan Han
- East China University of Science and Technology School of Chemical Engineering CHINA
| | - Chong Peng
- Sinopec: China Petrochemical Corporation School of Chemical Engineering CHINA
| | - Minghui Zhu
- East China University of Science and Technology Department of Chemical Engineering 130 Meilong Road 200237 Shanghai CHINA
| |
Collapse
|