1
|
Singer A, Ramos A, Keating AE. Elaboration of the Homer1 recognition landscape reveals incomplete divergence of paralogous EVH1 domains. Protein Sci 2024; 33:e5094. [PMID: 38989636 PMCID: PMC11237882 DOI: 10.1002/pro.5094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024]
Abstract
Short sequences that mediate interactions with modular binding domains are ubiquitous throughout eukaryotic proteomes. Networks of short linear motifs (SLiMs) and their corresponding binding domains orchestrate many cellular processes, and the low mutational barrier to evolving novel interactions provides a way for biological systems to rapidly sample selectable phenotypes. Mapping SLiM binding specificity and the rules that govern SLiM evolution is fundamental to uncovering the pathways regulated by these networks and developing the tools to manipulate them. We used high-throughput screening of the human proteome to identify sequences that bind to the Enabled/VASP homology 1 (EVH1) domain of the postsynaptic density scaffolding protein Homer1. This expanded our understanding of the determinants of Homer EVH1 binding preferences and defined a new motif that can facilitate the discovery of additional Homer-mediated interactions. Interestingly, the Homer1 EVH1 domain preferentially binds to sequences containing an N-terminally overlapping motif that is bound by the paralogous family of Ena/VASP actin polymerases, and many of these sequences can bind to EVH1 domains from both protein families. We provide evidence from orthologous EVH1 domains in pre-metazoan organisms that the overlap in human Ena/VASP and Homer binding preferences corresponds to an incomplete divergence from a common Ena/VASP ancestor. Given this overlap in binding profiles, promiscuous sequences that can be recognized by both families either achieve specificity through extrinsic regulatory strategies or may provide functional benefits via multi-specificity. This may explain why these paralogs incompletely diverged despite the accessibility of further diverged isoforms.
Collapse
Affiliation(s)
- Avinoam Singer
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Alejandra Ramos
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Amy E. Keating
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
2
|
Calligaris M, Zito G, Busà R, Bulati M, Iannolo G, Gallo A, Carreca AP, Cuscino N, Castelbuono S, Carcione C, Centi C, Amico G, Bertani A, Chinnici CM, Conaldi PG, Scilabra SD, Miceli V. Proteomic analysis and functional validation reveal distinct therapeutic capabilities related to priming of mesenchymal stromal/stem cells with IFN-γ and hypoxia: potential implications for their clinical use. Front Cell Dev Biol 2024; 12:1385712. [PMID: 38882056 PMCID: PMC11179434 DOI: 10.3389/fcell.2024.1385712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are a heterogeneous population of multipotent cells that can be obtained from various tissues, such as dental pulp, adipose tissue, bone marrow and placenta. MSCs have gained importance in the field of regenerative medicine because of their promising role in cell therapy and their regulatory abilities in tissue repair and regeneration. However, a better characterization of these cells and their products is necessary to further potentiate their clinical application. In this study, we used unbiased high-resolution mass spectrometry-based proteomic analysis to investigate the impact of distinct priming strategies, such as hypoxia and IFN-γ treatment, on the composition and therapeutic functionality of the secretome produced by MSCs derived from the amniotic membrane of the human placenta (hAMSCs). Our investigation revealed that both types of priming improved the therapeutic efficacy of hAMSCs, and these improvements were related to the secretion of functional factors present in the conditioned medium (CM) and exosomes (EXOs), which play crucial roles in mediating the paracrine effects of MSCs. In particular, hypoxia was able to induce a pro-angiogenic, innate immune response-activating, and tissue-regenerative hAMSC phenotype, as highlighted by the elevated production of regulatory factors such as VEGFA, PDGFRB, ANGPTL4, ENG, GRO-γ, IL8, and GRO-α. IFN-γ priming, instead, led to an immunosuppressive profile in hAMSCs, as indicated by increased levels of TGFB1, ANXA1, THBS1, HOMER2, GRN, TOLLIP and MCP-1. Functional assays validated the increased angiogenic properties of hypoxic hAMSCs and the enhanced immunosuppressive activity of IFN-γ-treated hAMSCs. This study extends beyond the direct priming effects on hAMSCs, demonstrating that hypoxia and IFN-γ can influence the functional characteristics of hAMSC-derived secretomes, which, in turn, orchestrate the production of functional factors by peripheral blood cells. This research provides valuable insights into the optimization of MSC-based therapies by systematically assessing and comparing the priming type-specific functional features of hAMSCs. These findings highlight new strategies for enhancing the therapeutic efficacy of MSCs, particularly in the context of multifactorial diseases, paving the way for the use of hAMSC-derived products in clinical practice.
Collapse
Affiliation(s)
- Matteo Calligaris
- Proteomics Group, Ri.MED Foundation c/o IRCCS ISMETT, Palermo, Italy
| | - Giovanni Zito
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Rosalia Busà
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Matteo Bulati
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Gioacchin Iannolo
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Alessia Gallo
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | | | - Nicola Cuscino
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Salvatore Castelbuono
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | | | - Claudio Centi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | | | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Cinzia Maria Chinnici
- Regenerative Medicine and Immunotherapy Area, Ri.MED Foundation c/o IRCCS ISMETT, Palermo, Italy
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | | | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| |
Collapse
|
3
|
KAWARA TAKETO, INOUE KOJI, SHIOZAWA SHUNICHI, OSAWA KAYO, KOMAI KOICHIRO. Genetic Rare Variants Affecting Multiple Pathways in Japanese Patients with Palindromic Rheumatism. THE KOBE JOURNAL OF MEDICAL SCIENCES 2024; 70:E26-E38. [PMID: 38719338 PMCID: PMC11086632 DOI: 10.24546/0100489391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/14/2024] [Indexed: 05/12/2024]
Abstract
Palindromic rheumatism (PR) is a type of cryptogenic paroxysmal arthritis. Several genes may be involved in PR pathogenesis; however, conducting comprehensive case-control genetic studies for PR poses challenges owing to its rarity as a disease. Moreover, case-control studies may overlook rare variants that occur infrequently but play a significant role in pathogenesis. This study aimed to identify disease-related genes in Japanese patients with PR using whole-genome sequencing (WGS) and rare-variant analysis. Genomic DNA was obtained from two familial cases and one sporadic case, and it was subjected to WGS. WGS data of 104 healthy individuals obtained from a public database were used as controls. We performed data analysis for rare variants on detected variants using SKAT-O, KBAC, and SKAT, and subsequently defined significant genes. Significant genes combined with variants shared between the cases were defined as disease-related genes. We also performed pathway analysis for disease-related genes using Reactome. We identified 2,695,244 variants shared between cases; after excluding polymorphisms and noise, 74,640 variants were detected. We identified 540 disease-related genes, including 1,893 variants. Furthermore, we identified 32 significant pathways. Our results indicate that the detected genes and pathways in this study may be involved in PR pathogenesis.
Collapse
Affiliation(s)
- TAKETO KAWARA
- Division of Medical Biophysics, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - KOJI INOUE
- Shichikawa Arthritis Research Center, Osaka Rehabilitation Hospital, Hannan, Japan
| | | | - KAYO OSAWA
- Department of Medical Technology, Kobe Tokiwa University, Kobe, Japan
| | - KOICHIRO KOMAI
- Division of Medical Biophysics, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
4
|
Singer A, Ramos A, Keating AE. Elaboration of the Homer1 Recognition Landscape Reveals Incomplete Divergence of Paralogous EVH1 Domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576863. [PMID: 38645240 PMCID: PMC11030225 DOI: 10.1101/2024.01.23.576863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Short sequences that mediate interactions with modular binding domains are ubiquitous throughout eukaryotic proteomes. Networks of Short Linear Motifs (SLiMs) and their corresponding binding domains orchestrate many cellular processes, and the low mutational barrier to evolving novel interactions provides a way for biological systems to rapidly sample selectable phenotypes. Mapping SLiM binding specificity and the rules that govern SLiM evolution is fundamental to uncovering the pathways regulated by these networks and developing the tools to manipulate them. We used high-throughput screening of the human proteome to identify sequences that bind to the Enabled/VASP homology 1 (EVH1) domain of the postsynaptic density scaffolding protein Homer1. In doing so, we expanded current understanding of the determinants of Homer EVH1 binding preferences and defined a new motif that can facilitate the discovery of additional Homer-mediated interactions. Interestingly, the Homer1 EVH1 domain preferentially binds to sequences containing an N-terminally overlapping motif that is bound by the paralogous family of Ena/VASP actin polymerases, and many of these sequences can bind to EVH1 domains from both protein families. We provide evidence from orthologous EVH1 domains in pre-metazoan organisms that the overlap in human Ena/VASP and Homer binding preferences corresponds to an incomplete divergence from a common Ena/VASP ancestor. Given this overlap in binding profiles, promiscuous sequences that can be recognized by both families either achieve specificity through extrinsic regulatory strategies or may provide functional benefits via multi-specificity. This may explain why these paralogs incompletely diverged despite the accessibility of further diverged isoforms.
Collapse
Affiliation(s)
- Avinoam Singer
- MIT Department of Biology, Cambridge, Massachusetts, USA
| | | | - Amy E. Keating
- MIT Department of Biology, Cambridge, Massachusetts, USA
- MIT Department of Biological Engineering, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Gál L, Fóthi Á, Orosz G, Nagy S, Than NG, Orbán TI. Exosomal small RNA profiling in first-trimester maternal blood explores early molecular pathways of preterm preeclampsia. Front Immunol 2024; 15:1321191. [PMID: 38455065 PMCID: PMC10917917 DOI: 10.3389/fimmu.2024.1321191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction Preeclampsia (PE) is a severe obstetrical syndrome characterized by new-onset hypertension and proteinuria and it is often associated with fetal intrauterine growth restriction (IUGR). PE leads to long-term health complications, so early diagnosis would be crucial for timely prevention. There are multiple etiologies and subtypes of PE, and this heterogeneity has hindered accurate identification in the presymptomatic phase. Recent investigations have pointed to the potential role of small regulatory RNAs in PE, and these species, which travel in extracellular vesicles (EVs) in the circulation, have raised the possibility of non-invasive diagnostics. The aim of this study was to investigate the behavior of exosomal regulatory small RNAs in the most severe subtype of PE with IUGR. Methods We isolated exosomal EVs from first-trimester peripheral blood plasma samples of women who later developed preterm PE with IUGR (n=6) and gestational age-matched healthy controls (n=14). The small RNA content of EVs and their differential expression were determined by next-generation sequencing and further validated by quantitative real-time PCR. We also applied the rigorous exceRpt bioinformatics pipeline for small RNA identification, followed by target verification and Gene Ontology analysis. Results Overall, >2700 small RNAs were identified in all samples and, of interest, the majority belonged to the RNA interference (RNAi) pathways. Among the RNAi species, 16 differentially expressed microRNAs were up-regulated in PE, whereas up-regulated and down-regulated members were equally found among the six identified Piwi-associated RNAs. Gene ontology analysis of the predicted small RNA targets showed enrichment of genes in pathways related to immune processes involved in decidualization, placentation and embryonic development, indicating that dysregulation of the induced small RNAs is connected to the impairment of immune pathways in preeclampsia development. Finally, the subsequent validation experiments revealed that the hsa_piR_016658 piRNA is a promising biomarker candidate for preterm PE associated with IUGR. Discussion Our rigorously designed study in a homogeneous group of patients unraveled small RNAs in circulating maternal exosomes that act on physiological pathways dysregulated in preterm PE with IUGR. Therefore, our small RNA hits are not only suitable biomarker candidates, but the revealed biological pathways may further inform us about the complex pathology of this severe PE subtype.
Collapse
Affiliation(s)
- Luca Gál
- Gene Regulation Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ábel Fóthi
- Gene Regulation Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Gergő Orosz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Nagy
- Department of Obstetrics and Gynecology, Petz Aladár University Teaching Hospital, Győr, Hungary
- Faculty of Health and Sport Sciences, Széchenyi István University, Győr, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
- Genesis Theranostix Group, Budapest, Hungary
| | - Tamás I. Orbán
- Gene Regulation Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
6
|
Zheng C, Wang F, Sun Y, Zhou Z, You Y, He D, Zhu X, Jiang L, Lu C, Wu L, Wang H, Mei H, Zeng T, Zheng H, Teng J, Liu H, Cheng X, Su Y, Shi H, Hu Q, Jian X, Fahira A, Yang Q, Wang K, Wen Y, Wang Z, Huang J, Yang C, Shi Y, Ye J. Identification of Distinct Genetic Profiles of Palindromic Rheumatism Using Whole-Exome Sequencing. Arthritis Rheumatol 2023; 75:1947-1957. [PMID: 37219934 DOI: 10.1002/art.42614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE Previous studies have underlined the genetic susceptibility in the pathogenesis of palindromic rheumatism (PR), but the known PR loci only partially explain the disease's genetic background. We aimed to genetically identify PR by whole-exome sequencing (WES). METHODS This multicenter prospective study was conducted in 10 Chinese specialized rheumatology centers between September 2015 and January 2020. WES was performed in 185 patients with PR and in 272 healthy controls. PR patients were divided into PR subgroups who were negative for anti-citrullinated protein antibody (ACPA-) and positive for ACPA (ACPA+) according to ACPA titer (cutoff value 20 IU/liter). We conducted whole-exome association analysis for the WES data. We used HLA imputation to type HLA genes. In addition, we used the polygenic risk score to measure the genetic correlations between PR and rheumatoid arthritis (RA) and the genetic correlations between ACPA- PR and ACPA+ PR. RESULTS Among 185 patients with PR enrolled in our study, 50 patients (27.02%) were ACPA+ and 135 PR patients (72.98%) were ACPA-. We identified 8 novel loci (in the ACPA- PR group: ZNF503, RPS6KL1, HOMER3, HLA-DRA; in the ACPA+ PR group: RPS6KL1, TNPO2, WASH2P, FANK1) and 3 HLA alleles (in the ACPA- PR group: HLA-DRB1*0803 and HLA-DQB1; in the ACPA+ PR group: HLA-DPA1*0401) that were associated with PR and that surpassed genome-wide significance (P < 5 × 10-8 ). Furthermore, polygenic risk score analysis showed that PR and RA were not similar (R2 < 0.025), whereas ACPA+ PR and ACPA- PR showed a moderate genetic correlation (0.38 < R2 < 0.8). CONCLUSION This study demonstrated the distinct genetic background between ACPA- and ACPA+ PR patients. Additionally, our findings strengthened that PR and RA were not genetically similar.
Collapse
Affiliation(s)
- Chenxiang Zheng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuochao Zhou
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijun You
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongyi He
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxia Zhu
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lindi Jiang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cui Lu
- Department of Haematology and Rheumatology, Shanghai Songjiang District Central Hospital, Shanghai, PR China
| | - Lijun Wu
- Department of Rheumatology and Immunology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Hongzhi Wang
- Department of Rheumatology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Hanying Mei
- Department of Rheumatology and Immunology, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, Jiangxi, China
| | - Ting Zeng
- Rheumatology Department, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Hui Zheng
- The Second Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jialing Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueming Jian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Aamir Fahira
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqin Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyan Huang
- Biomedical Big Data Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Massart A, Danger R, Olsen C, Emond MJ, Viklicky O, Jacquemin V, Soblet J, Duerinckx S, Croes D, Perazzolo C, Hruba P, Daneels D, Caljon B, Sever MS, Pascual J, Miglinas M, the Renal Tolerance Investigators, Pirson I, Ghisdal L, Smits G, Giral M, Abramowicz D, Abramowicz M, Brouard S. An exome-wide study of renal operational tolerance. Front Med (Lausanne) 2023; 9:976248. [PMID: 37265662 PMCID: PMC10230038 DOI: 10.3389/fmed.2022.976248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/31/2022] [Indexed: 06/03/2023] Open
Abstract
Background Renal operational tolerance is a rare and beneficial state of prolonged renal allograft function in the absence of immunosuppression. The underlying mechanisms are unknown. We hypothesized that tolerance might be driven by inherited protein coding genetic variants with large effect, at least in some patients. Methods We set up a European survey of over 218,000 renal transplant recipients and collected DNAs from 40 transplant recipients who maintained good allograft function without immunosuppression for at least 1 year. We performed an exome-wide association study comparing the distribution of moderate to high impact variants in 36 tolerant patients, selected for genetic homogeneity using principal component analysis, and 192 controls, using an optimal sequence-kernel association test adjusted for small samples. Results We identified rare variants of HOMER2 (3/36, FDR 0.0387), IQCH (5/36, FDR 0.0362), and LCN2 (3/36, FDR 0.102) in 10 tolerant patients vs. 0 controls. One patient carried a variant in both HOMER2 and LCN2. Furthermore, the three genes showed an identical variant in two patients each. The three genes are expressed at the primary cilium, a key structure in immune responses. Conclusion Rare protein coding variants are associated with operational tolerance in a sizable portion of patients. Our findings have important implications for a better understanding of immune tolerance in transplantation and other fields of medicine.ClinicalTrials.gov, identifier: NCT05124444.
Collapse
Affiliation(s)
- Annick Massart
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Department of Nephrology, Antwerp University Hospital and Laboratory of Experimental Medicine, University of Antwerp, Antwerp, Belgium
| | - Richard Danger
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, CR2TI, UMR 1064, ITUN, Nantes, France
| | - Catharina Olsen
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), VUB-ULB, Brussels, Belgium
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Mary J. Emond
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Ondrej Viklicky
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Valérie Jacquemin
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
| | - Julie Soblet
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah Duerinckx
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
| | - Didier Croes
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), VUB-ULB, Brussels, Belgium
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
- Center for Human Genetics, Clinique Universitaires Saint Luc, Brussels, Belgium
| | - Camille Perazzolo
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Petra Hruba
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Dorien Daneels
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), VUB-ULB, Brussels, Belgium
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Ben Caljon
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), VUB-ULB, Brussels, Belgium
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Mehmet Sukru Sever
- Istanbul Tip Fakültesi, Istanbul School of Medicine, Internal Medicine, Nephrology, Istanbul, Türkiye
| | - Julio Pascual
- Department of Nephrology, Hospital del Mar, Institute Mar for Medical Research, Barcelona, Spain
- Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marius Miglinas
- Nephrology Center, Santaros Klinikos, Medical Faculty, Vilnius University, Vilnius, Lithuania
| | | | - Isabelle Pirson
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Lidia Ghisdal
- Department of Nephrology, Hospital Centre EpiCURA, Baudour, Belgium
| | - Guillaume Smits
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Magali Giral
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, CR2TI, UMR 1064, ITUN, Nantes, France
- CHU Nantes, Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Daniel Abramowicz
- Department of Nephrology, Antwerp University Hospital and Laboratory of Experimental Medicine, University of Antwerp, Antwerp, Belgium
| | - Marc Abramowicz
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Department of Genetic Medicine and Development, Faculty of Medicine, Université de Geneve, Geneva, Switzerland
| | - Sophie Brouard
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, CR2TI, UMR 1064, ITUN, Nantes, France
- CHU Nantes, Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| |
Collapse
|
8
|
Eschke M, Moore PF, Chang H, Alber G, Keller SM. Canine peripheral blood TCRαβ T cell atlas: Identification of diverse subsets including CD8A + MAIT-like cells by combined single-cell transcriptome and V(D)J repertoire analysis. Front Immunol 2023; 14:1123366. [PMID: 36911660 PMCID: PMC9995359 DOI: 10.3389/fimmu.2023.1123366] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/25/2023] Open
Abstract
The dog is valued as a companion animal and increasingly recognized as a model for human disorders. Given the importance of T cells in health and disease, comprehensive knowledge of canine T cells can contribute to our understanding of pathogenesis mechanisms and inform the development of new treatment strategies. However, the diversity of canine T cells is still poorly understood mainly due to the lack of species-reactive antibodies for use in flow cytometry. The aim of this study was to generate a detailed atlas of peripheral blood TCRαβ+ T cells of healthy dogs using single-cell RNA-sequencing (scRNAseq) combined with immune repertoire sequencing. A total of 22 TCRαβ+ T cell clusters were identified, which were classified into three major groups: CD4-dominant (11 clusters), CD8A-dominant (8 clusters), and CD4/CD8A-mixed (3 clusters). Based on differential gene expression, distinct differentiation states (naïve, effector, memory, exhausted) and lineages (e.g. CD4 T helper and regulatory T cells) could be distinguished. Importantly, several T cell populations were identified, which have not been described in dogs before. Of particular note, our data provide first evidence for the existence of canine mucosa-associated invariant T cell (MAIT)-like cells, representing one of three newly identified FCER1G+ innate-like CD8A+ T cell populations in the peripheral blood of healthy dogs. In conclusion, using scRNAseq combined with immune repertoire sequencing we were able to resolve canine TCRαβ+ T cell populations at unprecedented resolution. The peripheral blood TCRαβ+ T cell atlas of healthy dogs generated here represents an important reference data set for future studies and is of relevance for identifying new targets for T cell-specific therapies.
Collapse
Affiliation(s)
- Maria Eschke
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Peter F Moore
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Haiyang Chang
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada
| | - Gottfried Alber
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Stefan M Keller
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| |
Collapse
|
9
|
Yu S, Wang G, Yao B, Xiao L, Tuo H. Arc and Homer1 are involved in comorbid epilepsy and depression: A microarray data analysis. Epilepsy Behav 2022; 132:108738. [PMID: 35665606 DOI: 10.1016/j.yebeh.2022.108738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Depression is one of the most common comorbid psychiatric condition associated with epilepsy. It has a negative impact on the patient's quality of life. However, the underlying molecular mechanisms leading to depression are currently unclear. The aim of this study was to determine the hub genes associated with epilepsy and depression. METHODS Gene expression profiles (GSE47752 and GSE20388) were downloaded from the gene expression omnibus (GEO) database. Differentially expressed genes (DEGs) for epilepsy and depression groups were separately searched. Subsequently, network analyses methods were employed to establish protein-protein interaction (PPI) networks, and to perform Gene Ontology (GO) terms and pathway enrichment analyses for co-expressed DEGs. RESULTS A total of 772 genes were upregulated in patients with epilepsy whereas 91 genes were up-regulated in patients with depression. In addition, 1304 genes were down-regulated in epilepsy whereas 141 genes were down-regulated in patients with depression. Among co-expressed DEGs, 5 DEGs were up-regulated and 19 were down-regulated. Further analysis revealed that the co-expressed DEGs were involved in regulation of vasculature development, regulation of angiogenesis, glutamate receptor signaling pathway, cellular response to interleukin-1 and positive regulation of protein kinase B signaling. The Arc and Homer1 genes were identified as the common candidate genes involved in the pathogenesis of epilepsy and depression. CONCLUSIONS Arc and Homer1 may contribute to the comorbidity of epilepsy and depression.
Collapse
Affiliation(s)
- Shiqian Yu
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hu Tuo
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Vo DHT, McGleave G, Overton IM. Immune Cell Networks Uncover Candidate Biomarkers of Melanoma Immunotherapy Response. J Pers Med 2022; 12:jpm12060958. [PMID: 35743743 PMCID: PMC9225330 DOI: 10.3390/jpm12060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
The therapeutic activation of antitumour immunity by immune checkpoint inhibitors (ICIs) is a significant advance in cancer medicine, not least due to the prospect of long-term remission. However, many patients are unresponsive to ICI therapy and may experience serious side effects; companion biomarkers are urgently needed to help inform ICI prescribing decisions. We present the IMMUNETS networks of gene coregulation in five key immune cell types and their application to interrogate control of nivolumab response in advanced melanoma cohorts. The results evidence a role for each of the IMMUNETS cell types in ICI response and in driving tumour clearance with independent cohorts from TCGA. As expected, ‘immune hot’ status, including T cell proliferation, correlates with response to first-line ICI therapy. Genes regulated in NK, dendritic, and B cells are the most prominent discriminators of nivolumab response in patients that had previously progressed on another ICI. Multivariate analysis controlling for tumour stage and age highlights CIITA and IKZF3 as candidate prognostic biomarkers. IMMUNETS provide a resource for network biology, enabling context-specific analysis of immune components in orthogonal datasets. Overall, our results illuminate the relationship between the tumour microenvironment and clinical trajectories, with potential implications for precision medicine.
Collapse
Affiliation(s)
- Duong H. T. Vo
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (D.H.T.V.); (G.M.)
- Health Data Research Wales and Northern Ireland, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Gerard McGleave
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (D.H.T.V.); (G.M.)
- Health Data Research Wales and Northern Ireland, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Ian M. Overton
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (D.H.T.V.); (G.M.)
- Health Data Research Wales and Northern Ireland, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
- Correspondence:
| |
Collapse
|
11
|
de Bartolomeis A, Barone A, Buonaguro EF, Tomasetti C, Vellucci L, Iasevoli F. The Homer1 family of proteins at the crossroad of dopamine-glutamate signaling: An emerging molecular "Lego" in the pathophysiology of psychiatric disorders. A systematic review and translational insight. Neurosci Biobehav Rev 2022; 136:104596. [PMID: 35248676 DOI: 10.1016/j.neubiorev.2022.104596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/17/2022]
Abstract
Once considered only scaffolding proteins at glutamatergic postsynaptic density (PSD), Homer1 proteins are increasingly emerging as multimodal adaptors that integrate different signal transduction pathways within PSD, involved in motor and cognitive functions, with putative implications in psychiatric disorders. Regulation of type I metabotropic glutamate receptor trafficking, modulation of calcium signaling, tuning of long-term potentiation, organization of dendritic spines' growth, as well as meta- and homeostatic plasticity control are only a few of the multiple endocellular and synaptic functions that have been linked to Homer1. Findings from preclinical studies, as well as genetic studies conducted in humans, suggest that both constitutive (Homer1b/c) and inducible (Homer1a) isoforms of Homer1 play a role in the neurobiology of several psychiatric disorders, including psychosis, mood disorders, neurodevelopmental disorders, and addiction. On this background, Homer1 has been proposed as a putative novel target in psychopharmacological treatments. The aim of this review is to summarize and systematize the growing body of evidence on Homer proteins, highlighting the role of Homer1 in the pathophysiology and therapy of mental diseases.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy.
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta Filomena Buonaguro
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| |
Collapse
|
12
|
Genetic program activity delineates risk, relapse, and therapy responsiveness in multiple myeloma. NPJ Precis Oncol 2021; 5:60. [PMID: 34183722 PMCID: PMC8239045 DOI: 10.1038/s41698-021-00185-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 05/13/2021] [Indexed: 01/19/2023] Open
Abstract
Despite recent advancements in the treatment of multiple myeloma (MM), nearly all patients ultimately relapse and many become refractory to multiple lines of therapies. Therefore, we not only need the ability to predict which patients are at high risk for disease progression but also a means to understand the mechanisms underlying their risk. Here, we report a transcriptional regulatory network (TRN) for MM inferred from cross-sectional multi-omics data from 881 patients that predicts how 124 chromosomal abnormalities and somatic mutations causally perturb 392 transcription regulators of 8549 genes to manifest in distinct clinical phenotypes and outcomes. We identified 141 genetic programs whose activity profiles stratify patients into 25 distinct transcriptional states and proved to be more predictive of outcomes than did mutations. The coherence of these programs and accuracy of our network-based risk prediction was validated in two independent datasets. We observed subtype-specific vulnerabilities to interventions with existing drugs and revealed plausible mechanisms for relapse, including the establishment of an immunosuppressive microenvironment. Investigation of the t(4;14) clinical subtype using the TRN revealed that 16% of these patients exhibit an extreme-risk combination of genetic programs (median progression-free survival of 5 months) that create a distinct phenotype with targetable genes and pathways.
Collapse
|
13
|
Luo P, Liang C, Jing W, Zhu M, Zhou H, Chai H, Worley PF, Tu J. Homer2 and Homer3 Act as Novel Biomarkers in Diagnosis of hepatitis B virus-induced Hepatocellular Carcinoma. J Cancer 2021; 12:3439-3447. [PMID: 33995622 PMCID: PMC8120171 DOI: 10.7150/jca.52118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common causes of cancer‐related mortality worldwide. Early detection of HCC can significantly improve patients' outcomes. An increasing number of studies have validated that Homer is dysregulated in cancers and may serve as diagnostic markers. In the present study, we investigated the expression profile and diagnostic significance of Homer2 and Homer3 in hepatitis B virus-induced HCC (HBV-HCC). Methods: Quantitative real-time PCR (QRT-PCR), western blot analysis and immunohistochemistry analysis. Results: Homer2 and Homer3 were downregulated in HCC. The expression of Homer2 was associated with tumor differentiation grade (P= 0.012) and total protein (TP) level (P= 0.032). Homer3 was related to tumor size (P= 0.010), tumor nodes (P= 0.026) and γ-glutamyl transferase (GGT) level (P= 0.001). The receiver operating characteristic curve analyses indicated that the combination of Homer2, Homer3 and AFP possessed a high accuracy (AUC=0.900) to diagnose HCC cases from healthy controls. Conclusion: Our data indicated that Homer2 and Homer3 were downregulated in HCC and might be potential diagnostic marker for HCC.
Collapse
Affiliation(s)
- Ping Luo
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chunzi Liang
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Jing
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine of Henan, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Man Zhu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Hu Zhou
- Department of Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Hongyan Chai
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Paul F Worley
- Department of Neuroscience, School of Medicine, The Johns Hopkins University, Baltimore, MD 20205, USA
| | - Jiancheng Tu
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
14
|
Kim C, Beilina A, Smith N, Li Y, Kim M, Kumaran R, Kaganovich A, Mamais A, Adame A, Iba M, Kwon S, Lee WJ, Shin SJ, Rissman RA, You S, Lee SJ, Singleton AB, Cookson MR, Masliah E. LRRK2 mediates microglial neurotoxicity via NFATc2 in rodent models of synucleinopathies. Sci Transl Med 2020; 12:eaay0399. [PMID: 33055242 PMCID: PMC8100991 DOI: 10.1126/scitranslmed.aay0399] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/04/2019] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
Synucleinopathies are neurodegenerative disorders characterized by abnormal α-synuclein deposition that include Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. The pathology of these conditions also includes neuronal loss and neuroinflammation. Neuron-released α-synuclein has been shown to induce neurotoxic, proinflammatory microglial responses through Toll-like receptor 2, but the molecular mechanisms involved are poorly understood. Here, we show that leucine-rich repeat kinase 2 (LRRK2) plays a critical role in the activation of microglia by extracellular α-synuclein. Exposure to α-synuclein was found to enhance LRRK2 phosphorylation and activity in mouse primary microglia. Furthermore, genetic and pharmacological inhibition of LRRK2 markedly diminished α-synuclein-mediated microglial neurotoxicity via lowering of tumor necrosis factor-α and interleukin-6 expression in mouse cultures. We determined that LRRK2 promoted a neuroinflammatory cascade by selectively phosphorylating and inducing nuclear translocation of the immune transcription factor nuclear factor of activated T cells, cytoplasmic 2 (NFATc2). NFATc2 activation was seen in patients with synucleinopathies and in a mouse model of synucleinopathy, where administration of an LRRK2 pharmacological inhibitor restored motor behavioral deficits. Our results suggest that modulation of LRRK2 and its downstream signaling mediator NFATc2 might be therapeutic targets for treating synucleinopathies.
Collapse
Affiliation(s)
- Changyoun Kim
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alexandria Beilina
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan Smith
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Yan Li
- Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Minhyung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ravindran Kumaran
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alice Kaganovich
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adamantios Mamais
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony Adame
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michiyo Iba
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Somin Kwon
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Won-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Soo-Jean Shin
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Robert A Rissman
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sungyong You
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Zheng J, Lu T, Zhou C, Cai J, Zhang X, Liang J, Sui X, Chen X, Chen L, Sun Y, Zhang J, Chen W, Zhang Y, Yao J, Chen G, Yang Y. Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells Protect Liver Ischemia/Reperfusion Injury by Reducing CD154 Expression on CD4+ T Cells via CCT2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903746. [PMID: 32999825 PMCID: PMC7509664 DOI: 10.1002/advs.201903746] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/14/2020] [Indexed: 05/07/2023]
Abstract
As a cause of postoperative complications and early hepatic failure after liver transplantation, liver ischemia/reperfusion injury (IRI) still has no effective treatment during clinical administration. Although the therapeutic potential of mesenchymal stem cells (MSCs) for liver IRI has been previously shown, the underlying mechanisms are not completely clear. It is accepted that MSC-derived extracellular vesicles (MSC-EVs) are newly uncovered messengers for intercellular communication. Herein, it is reported that umbilical cord-derived MSCs (UC-MSCs) improve liver IRI in mice through their secreted EVs. It is also visualized that UC-MSC-EVs mainly concentrate in liver after 6 h of reperfusion. Furthermore, UC-MSC-EVs are found to significantly modulate the membranous expression of CD154 of intrahepatic CD4+ T cells, which is an initiation of inflammatory response in liver and can aggravate liver IRI. Mechanistically, protein mass spectrum analysis is performed and it is revealed that Chaperonin containing TCP1 subunit 2 (CCT2) enriches in UC-MSC-EVs, which regulates the calcium channels to affect Ca2+ influx and suppress CD154 synthesis in CD4+ T cells. In conclusion, these results highlight the therapeutic potential of UC-MSC-EVs in attenuating liver IRI. This finding suggests that CCT2 from UC-MSC-EVs can modulate CD154 expression of intrahepatic CD4+ T cells during liver IRI through the Ca2+-calcineurin-NFAT1 signaling pathway.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Tongyu Lu
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Chaorong Zhou
- Department of Hepatic Surgery and Liver Transplantation CenterThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
- The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510630China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Xiaomei Zhang
- Organ Transplantation Research Center of Guangdong ProvinceKey Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Jinliang Liang
- Organ Transplantation Research Center of Guangdong ProvinceKey Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Xin Sui
- Surgical ICUThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Xiaoyan Chen
- Biological Treatment CenterThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Liang Chen
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Yao Sun
- Surgical ICUThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Wenjie Chen
- Biological Treatment CenterThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| |
Collapse
|
16
|
Han P, Yosinski S, Kobos ZA, Chaudhury R, Lee JS, Fahmy TM, Reed MA. Continuous Label-Free Electronic Discrimination of T Cells by Activation State. ACS NANO 2020; 14:8646-8657. [PMID: 32530598 DOI: 10.1021/acsnano.0c03018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The sensitivity and speed with which the immune system reacts to host disruption is unrivaled by any detection method for pathogenic biomarkers or infectious signatures. Engagement of cellular immunity in response to infections or cancer is contingent upon activation and subsequent cytotoxic activity by T cells. Thus, monitoring T cell activation can reliably serve as a metric for disease diagnosis as well as therapeutic prognosis. Rapid and direct quantification of T cell activation states, however, has been hindered by challenges associated with antigen target identification, labeling requirements, and assay duration. Here we present an electronic, label-free method for simultaneous separation and evaluation of T cell activation states. Our device utilizes a microfluidic design integrated with nanolayered electrode structures for dielectrophoresis (DEP)-driven discrimination of activated vs naïve T cells at single-cell resolution and demonstrates rapid (<2 min) separation of T cells at high single-pass efficiency as quantified by an on-chip Coulter counter module. Our device represents a microfluidic tool for electronic assessment of immune activation states and, hence, a portable diagnostic for quantitative evaluation of immunity and disease state. Further, its ability to achieve label-free enrichment of activated immune cells promises clinical utility in cell-based immunotherapies.
Collapse
Affiliation(s)
- Patrick Han
- Department of Chemical & Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Shari Yosinski
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Zachary A Kobos
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Rabib Chaudhury
- Department of Chemical & Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Jung Seok Lee
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Tarek M Fahmy
- Department of Chemical & Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Mark A Reed
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
17
|
Ding L, Li M, Guo X, Tang M, Cao J, Wang Z, Liu R, Zhu K, Guo L, Liu S, Tan X. Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1255-1270. [PMID: 31693306 PMCID: PMC7152613 DOI: 10.1111/pbi.13289] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 05/18/2023]
Abstract
Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is a devastating disease of rapeseed (Brassica napus L.). To date, the genetic mechanisms of rapeseed' interactions with S. sclerotiorum are not fully understood, and molecular-based breeding is still the most effective control strategy for this disease. Here, Arabidopsis thaliana GDSL1 was characterized as an extracellular GDSL lipase gene functioning in Sclerotinia resistance. Loss of AtGDSL1 function resulted in enhanced susceptibility to S. sclerotiorum. Conversely, overexpression of AtGDSL1 in B. napus enhanced resistance, which was associated with increased reactive oxygen species (ROS) and salicylic acid (SA) levels, and reduced jasmonic acid levels. In addition, AtGDSL1 can cause an increase in lipid precursor phosphatidic acid levels, which may lead to the activation of downstream ROS/SA defence-related pathways. However, the rapeseed BnGDSL1 with highest sequence similarity to AtGDSL1 had no effect on SSR resistance. A candidate gene association study revealed that only one AtGDSL1 homolog from rapeseed, BnaC07g35650D (BnGLIP1), significantly contributed to resistance traits in a natural B. napus population, and the resistance function was also confirmed by a transient expression assay in tobacco leaves. Moreover, genomic analyses revealed that BnGLIP1 locus was embedded in a selected region associated with SSR resistance during the breeding process, and its elite allele type belonged to a minor allele in the population. Thus, BnGLIP1 is the functional equivalent of AtGDSL1 and has a broad application in rapeseed S. sclerotiorum-resistance breeding.
Collapse
Affiliation(s)
- Li‐Na Ding
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Ming Li
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Xiao‐Juan Guo
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Min‐Qiang Tang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jun Cao
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Zheng Wang
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Rui Liu
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Ke‐Ming Zhu
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Sheng‐Yi Liu
- The Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Xiao‐Li Tan
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| |
Collapse
|
18
|
The Supernatant of Tonsil-Derived Mesenchymal Stem Cell Has Antiallergic Effects in Allergic Rhinitis Mouse Model. Mediators Inflamm 2020; 2020:6982438. [PMID: 32322164 PMCID: PMC7166282 DOI: 10.1155/2020/6982438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/12/2020] [Indexed: 01/09/2023] Open
Abstract
Methods We isolated T-MSCs from human palatine tonsil and evaluated the ingredients of T-MSCs-CM. The effect of T-MSCs-CM was evaluated in the AR mouse model that was randomly divided into five groups (negative control, positive control, and T-MSCs-CM treated (0.1 mg, 1 mg, and 10 mg)). To investigate the therapeutic effect, we analyzed rhinitis symptoms, serum immunoglobulin (Ig), inflammatory cells, and cytokine expression. We also assessed T cell receptor signal, including MAP kinase (ERK/JNK), p65, and NFAT1. Results We identified the increment of TGF-β1, PGE2, and HGF in the T-MSCs-CM. In an animal study, the T-MSCs-CM-treated group showed significantly reduced allergic symptoms and infiltration of eosinophils and neutrophils in the nasal mucosa, whereas there was no significant difference in total IgE and the OVA-specific IgE level. Additionally, we found that the 10 mg T-MSCs-CM-treated group showed a significantly decreased IL-4 mRNA expression, compared to the (+) Con group. In the analysis of T cell receptor signal, the phosphorylation of MAP kinases, translocation of p65, and activation of NFAT1 were inhibited after T-MSCs-CM. Conclusions Our findings suggest that T-MSCs-CM showed a partial immunomodulatory effect on the AR mouse model by the inhibition of T cell activation via MAP kinase, p65, and NFAT1.
Collapse
|
19
|
Reibring CG, Hallberg K, Linde A, Gritli-Linde A. Distinct and Overlapping Expression Patterns of the Homer Family of Scaffolding Proteins and Their Encoding Genes in Developing Murine Cephalic Tissues. Int J Mol Sci 2020; 21:ijms21041264. [PMID: 32070057 PMCID: PMC7072945 DOI: 10.3390/ijms21041264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
In mammals Homer1, Homer2 and Homer3 constitute a family of scaffolding proteins with key roles in Ca2+ signaling and Ca2+ transport. In rodents, Homer proteins and mRNAs have been shown to be expressed in various postnatal tissues and to be enriched in brain. However, whether the Homers are expressed in developing tissues is hitherto largely unknown. In this work, we used immunohistochemistry and in situ hybridization to analyze the expression patterns of Homer1, Homer2 and Homer3 in developing cephalic structures. Our study revealed that the three Homer proteins and their encoding genes are expressed in a wide range of developing tissues and organs, including the brain, tooth, eye, cochlea, salivary glands, olfactory and respiratory mucosae, bone and taste buds. We show that although overall the three Homers exhibit overlapping distribution patterns, the proteins localize at distinct subcellular domains in several cell types, that in both undifferentiated and differentiated cells Homer proteins are concentrated in puncta and that the vascular endothelium is enriched with Homer3 mRNA and protein. Our findings suggest that Homer proteins may have differential and overlapping functions and are expected to be of value for future research aiming at deciphering the roles of Homer proteins during embryonic development.
Collapse
Affiliation(s)
- Claes-Göran Reibring
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
- Public Dental Service, Region Västra Götaland, SE-45131 Uddevalla, Sweden
| | - Kristina Hallberg
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
| | - Anders Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
| | - Amel Gritli-Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
- Correspondence: ; Tel.: +46-31-7863392
| |
Collapse
|
20
|
Xia S, Chen Q, Niu B. CD28: A New Drug Target for Immune Disease. Curr Drug Targets 2019; 21:589-598. [PMID: 31729942 DOI: 10.2174/1389450120666191114102830] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND CD28, a cell surface glycoprotein receptor, predominantly expressed on activated T cells, belongs to the Ig superfamily and provides a critical co-stimulatory signal. CTLA-4 has sequence homology to CD28, and is expressed on T cells after activation. It provides an inhibition signal coordinated with CD28 to regulate T cell activation. Both of them regulate T cell proliferation and differentiation and play an important role in the immune response pathway in vivo. OBJECTIVE We studied the special role of different structural sites of CD28 in producing costimulatory signals. METHODS We reviewed the relevant literature, mainly regarding the structure of CD28 to clarify its biological function, and its role in the immune response. RESULTS In recent years, increasingly attention has been paid to CD28, which is considered as a key therapeutic target for many modern diseases, especially some immune diseases. CONCLUSION In this paper, we mainly introduce the structure of CD28 and its related biological functions, as well as the application of costimulatory pathways targeting CD28 in disease treatment.
Collapse
Affiliation(s)
- Sijing Xia
- College of Life Science, Shanghai University, Shanghai, China
| | - Qin Chen
- College of Life Science, Shanghai University, Shanghai, China
| | - Bing Niu
- College of Life Science, Shanghai University, Shanghai, China
| |
Collapse
|
21
|
Son A, Kang N, Oh SY, Kim KW, Muallem S, Yang YM, Shin DM. Homer2 and Homer3 modulate RANKL-induced NFATc1 signaling in osteoclastogenesis and bone metabolism. J Endocrinol 2019; 242:241-249. [PMID: 31319381 PMCID: PMC9883806 DOI: 10.1530/joe-19-0123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/18/2019] [Indexed: 01/31/2023]
Abstract
The receptor activator of nuclear factor-kappa B ligand (RANKL) induces osteoclastogenesis by induction of Ca2+ oscillation, calcineurin activation and translocation into the nucleus of nuclear factor of activated T cells type c1 (NFATc1). Homer proteins are scaffold proteins. They regulate Ca2+ signaling by modulating the activity of multiple Ca2+ signaling proteins. Homers 2 and 3, but not Homer1, also independently affect the interaction between NFATc1 and calcineurin. However, to date, whether and how the Homers are involved in osteoclastogenesis remains unknown. In the present study, we investigated Homer2 and Homer3 roles in Ca2+ signaling and NFATc1 function during osteoclast differentiation. Deletion of Homer2/Homer3 (Homer2/3) markedly decreased the bone density of the tibia, resulting in bone erosion. RANKL-induced osteoclast differentiation is greatly facilitated in Homer2/3 DKO bone marrow-derived monocytes/macrophages (BMMs) due to increased NFATc1 expression and nuclear translocation. However, these findings did not alter RANKL-induced Ca2+ oscillations. Of note, RANKL treatment inhibited Homer proteins interaction with NFATc1, but it was restored by cyclosporine A treatment to inhibit calcineurin. Finally, RANKL treatment of Homer2/3 DKO BMMs significantly increased the formation of multinucleated cells. These findings suggest a novel potent mode of bone homeostasis regulation through osteoclasts differentiation. Specifically, we found that Homer2 and Homer3 regulate NFATc1 function through its interaction with calcineurin to regulate RANKL-induced osteoclastogenesis and bone metabolism.
Collapse
Affiliation(s)
- Aran Son
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - Namju Kang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Sue Young Oh
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - Ki Woo Kim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Yu-Mi Yang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
22
|
Zhang Y, Liu RB, Cao Q, Fan KQ, Huang LJ, Yu JS, Gao ZJ, Huang T, Zhong JY, Mao XT, Wang F, Xiao P, Zhao Y, Feng XH, Li YY, Jin J. USP16-mediated deubiquitination of calcineurin A controls peripheral T cell maintenance. J Clin Invest 2019; 129:2856-2871. [PMID: 31135381 DOI: 10.1172/jci123801] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Calcineurin acts as a calcium-activated phosphatase that dephosphorylates various substrates, including members of the nuclear factor of activated T cells (NFAT) family, to trigger their nuclear translocation and transcriptional activity. However, the detailed mechanism regulating the recruitment of NFATs to calcineurin remains poorly understood. Here, we report that calcineurin A (CNA), encoded by PPP3CB or PPP3CC, is constitutively ubiquitinated on lysine 327, and this polyubiquitin chain is rapidly removed by ubiquitin carboxyl-terminal hydrolase 16 (USP16) in response to intracellular calcium stimulation. The K29-linked ubiquitination of CNA impairs NFAT recruitment and transcription of NFAT-targeted genes. USP16 deficiency prevents calcium-triggered deubiquitination of CNA in a manner consistent with defective maintenance and proliferation of peripheral T cells. T cell-specific USP16 knockout mice exhibit reduced severity of experimental autoimmune encephalitis and inflammatory bowel disease. Our data reveal the physiological function of CNA ubiquitination and its deubiquitinase USP16 in peripheral T cells. Notably, our results highlight a critical mechanism for the regulation of calcineurin activity and a novel immunosuppressive drug target for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yu Zhang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| | - Rong-Bei Liu
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| | - Qian Cao
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| | - Ke-Qi Fan
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ling-Jie Huang
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| | - Jian-Shuai Yu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zheng-Jun Gao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Tao Huang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jiang-Yan Zhong
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xin-Tao Mao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fei Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Peng Xiao
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| | - Yuan Zhao
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| | - Xin-Hua Feng
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yi-Yuan Li
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jin Jin
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Zhu Y, Zhang M, Wang F, Sun J, Lu J, Chen R, Xie Q, Xue J, Hao C, Lin S. Calcineurin B1 subunit in human peripheral blood mononuclear cells and its role in idiopathic membranous nephropathy. Medicine (Baltimore) 2019; 98:e15231. [PMID: 30985728 PMCID: PMC6485772 DOI: 10.1097/md.0000000000015231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The immune responses involved in the pathogenesis of idiopathic membranous nephropathy (IMN) have not been fully understood. Calcineurin, a key signaling enzyme in T-cell activation, may be implicated in IMN. The present study aimed to investigate the role of calcineurin B1 subunit (CnB1) in IMN and the potential mechanism.A total of 59 biopsy-proven IMN patients and 28 healthy controls were recruited. The CnB1 expression in human peripheral blood mononuclear cells (PBMCs) was assessed by Western blotting. Knockdown and overexpression of CnB1 in Jurkat T cell line were achieved by small interference RNA (siRNA) transfection and lentiviral transduction, respectively.It was found that PBMCs CnB1 expression was significantly increased in IMN patients (P = .002), but unrelated to the severity and prognosis of IMN. Knockdown of CnB1 in Jurkat cells inhibited the nuclear factor of activated T cells (NFAT)-regulated gene expression required for T-cell activation.Our study suggested the potential role of CnB1 in the occurrence of IMN. The mechanism maybe involved the effect of CnB1 on the T-cell activation mediated by calcineurin-NFAT signaling.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai
| | - Min Zhang
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai
| | - Fan Wang
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai
| | - Jing Sun
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jianda Lu
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai
| | - Ruiying Chen
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai
| | - Qionghong Xie
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai
| | - Jun Xue
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai
| | - Chuanming Hao
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai
| | - Shanyan Lin
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai
| |
Collapse
|
24
|
Wei J, Wu X, Luo P, Yue K, Yu Y, Pu J, Zhang L, Dai S, Han D, Fei Z. Homer1a Attenuates Endoplasmic Reticulum Stress-Induced Mitochondrial Stress After Ischemic Reperfusion Injury by Inhibiting the PERK Pathway. Front Cell Neurosci 2019; 13:101. [PMID: 30930751 PMCID: PMC6428733 DOI: 10.3389/fncel.2019.00101] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/27/2019] [Indexed: 12/17/2022] Open
Abstract
Homer1a is the short form of a scaffold protein that plays a protective role in many forms of stress. However, the role of Homer1a in cerebral ischemia/reperfusion (I/R) injury and its potential mechanism is still unknown. In this study, we found that Homer1a was upregulated by oxygen and glucose deprivation (OGD) and that overexpression of Homer1a alleviated OGD-induced lactate dehydrogenase (LDH) release and cell death in cultured cortical neurons. After OGD treatment, the overexpression of Homer1a preserved mitochondrial function, as evidenced by less cytochrome c release, less reactive oxygen species (ROS) production, less ATP and mitochondrial membrane potential (MMP) loss, less caspase-9 activation, and inhibition of endoplasmic reticulum (ER) stress confirmed by the decreased expression of phosphate-PKR-like ER Kinase (p-PERK)/PERK and phosphate- inositol-requiring enzyme 1 (p-IRE1)/IRE1 and immunofluorescence (IF) staining. In addition, mitochondrial protection of Homer1a was blocked by the ER stress activator Tunicamycin (TM) with a re-escalated ROS level, increasing ATP and MMP loss. Furthermore, Homer1a overexpression-induced mitochondrial stress attenuation was significantly reversed by activating the PERK pathway with TM and p-IRE1 inhibitor 3,5-dibromosalicylaldehyde (DBSA), as evidenced by increased cytochrome c release, increased ATP loss and a higher ROS level. However, activating the IRE1 pathway with TM and p-PERK inhibitor GSK2656157 showed little change in cytochrome c release and exhibited a moderate upgrade of ATP loss and ROS production in neurons. In summary, these findings demonstrated that Homer1a protects against OGD-induced injury by preserving mitochondrial function through inhibiting the PERK pathway. Our finding may reveal a promising target of protecting neurons from cerebral I/R injury.
Collapse
Affiliation(s)
- Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Health Services, Fourth Military Medical University, Xi'an, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kangyi Yue
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Yu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingnan Pu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuhui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
25
|
Gross C, Banerjee A, Tiwari D, Longo F, White AR, Allen AG, Schroeder-Carter LM, Krzeski JC, Elsayed NA, Puckett R, Klann E, Rivero RA, Gourley SL, Bassell GJ. Isoform-selective phosphoinositide 3-kinase inhibition ameliorates a broad range of fragile X syndrome-associated deficits in a mouse model. Neuropsychopharmacology 2019; 44:324-333. [PMID: 30061744 PMCID: PMC6300538 DOI: 10.1038/s41386-018-0150-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/07/2018] [Accepted: 07/01/2018] [Indexed: 12/19/2022]
Abstract
Defects in the phosphoinositide 3-kinase (PI3K) pathway are shared characteristics in several brain disorders, including the inherited intellectual disability and autism spectrum disorder, fragile X syndrome (FXS). PI3K signaling therefore could serve as a therapeutic target for FXS and other brain disorders. However, broad inhibition of such a central signal transduction pathway involved in essential cellular functions may produce deleterious side effects. Pharmacological strategies that selectively correct the overactive components of the PI3K pathway while leaving other parts of the pathway intact may overcome these challenges. Here, we provide the first evidence that disease mechanism-based PI3K isoform-specific inhibition may be a viable treatment option for FXS. FXS is caused by loss of the fragile X mental retardation protein (FMRP), which translationally represses specific messenger RNAs, including the PI3K catalytic isoform p110β. FMRP deficiency increases p110β protein levels and activity in FXS mouse models and in cells from subjects with FXS. Here, we show that a novel, brain-permeable p110β-specific inhibitor, GSK2702926A, ameliorates FXS-associated phenotypes on molecular, cellular, behavioral, and cognitive levels in two different FMRP-deficient mouse models. Rescued phenotypes included increased PI3K downstream signaling, protein synthesis rates, and dendritic spine density, as well as impaired social interaction and higher-order cognition. Several p110β-selective inhibitors, for example, a molecule from the same chemotype as GSK2702926A, are currently being evaluated in clinical trials to treat cancer. Our results suggest that repurposing p110β inhibitors to treat cognitive and behavioral defects may be a promising disease-modifying strategy for FXS and other brain disorders.
Collapse
Affiliation(s)
- Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA.
| | - Anwesha Banerjee
- 0000 0001 0941 6502grid.189967.8Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Durgesh Tiwari
- 0000 0000 9025 8099grid.239573.9Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Francesco Longo
- 0000 0004 1936 8753grid.137628.9Center for Neural Science, New York University, New York, NY 10003 USA
| | - Angela R. White
- 0000 0000 9025 8099grid.239573.9Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - A. G. Allen
- 0000 0001 0941 6502grid.189967.8Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322 USA ,0000 0001 0941 6502grid.189967.8Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Lindsay M. Schroeder-Carter
- 0000 0000 9025 8099grid.239573.9Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Joseph C. Krzeski
- 0000 0000 9025 8099grid.239573.9Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Nada A. Elsayed
- 0000 0000 9025 8099grid.239573.9Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Rosemary Puckett
- 0000 0004 1936 8753grid.137628.9Center for Neural Science, New York University, New York, NY 10003 USA
| | - Eric Klann
- 0000 0004 1936 8753grid.137628.9Center for Neural Science, New York University, New York, NY 10003 USA
| | - Ralph A. Rivero
- 0000 0004 0393 4335grid.418019.5GlaxoSmithKline, Collegeville, PA 19426 USA
| | - Shannon L. Gourley
- 0000 0001 0941 6502grid.189967.8Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322 USA ,0000 0001 0941 6502grid.189967.8Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322 USA ,0000 0001 0941 6502grid.189967.8Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329 USA
| | - Gary J. Bassell
- 0000 0001 0941 6502grid.189967.8Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322 USA ,0000 0001 0941 6502grid.189967.8Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
26
|
Hishida A, Nakatochi M, Akiyama M, Kamatani Y, Nishiyama T, Ito H, Oze I, Nishida Y, Hara M, Takashima N, Turin TC, Watanabe M, Suzuki S, Ibusuki R, Shimoshikiryo I, Nakamura Y, Mikami H, Ikezaki H, Furusyo N, Kuriki K, Endoh K, Koyama T, Matsui D, Uemura H, Arisawa K, Sasakabe T, Okada R, Kawai S, Naito M, Momozawa Y, Kubo M, Wakai K. Genome-Wide Association Study of Renal Function Traits: Results from the Japan Multi-Institutional Collaborative Cohort Study. Am J Nephrol 2018; 47:304-316. [PMID: 29779033 DOI: 10.1159/000488946] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/29/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a rapidly growing, worldwide public health problem. Recent advances in genome-wide-association studies (GWAS) revealed several genetic loci associated with renal function traits worldwide. METHODS We investigated the association of genetic factors with the levels of serum creatinine (SCr) and the estimated glomerular filtration rate (eGFR) in Japanese population-based cohorts analyzing the GWAS imputed data with 11,221 subjects and 12,617,569 variants, and replicated the findings with the 148,829 hospital-based Japanese subjects. RESULTS In the discovery phase, 28 variants within 4 loci (chromosome [chr] 2 with 8 variants including rs3770636 in the LDL receptor related protein 2 gene locus, on chr 5 with 2 variants including rs270184, chr 17 with 15 variants including rs3785837 in the BCAS3 gene locus, and chr 18 with 3 variants including rs74183647 in the nuclear factor of -activated T-cells 1 gene locus) reached the suggestive level of p < 1 × 10-6 in association with eGFR and SCr, and 2 variants on chr 4 (including rs78351985 in the microsomal triglyceride transfer protein gene locus) fulfilled the suggestive level in association with the risk of CKD. In the replication phase, 25 variants within 3 loci (chr 2 with 7 variants, chr 17 with 15 variants and chr 18 with 3 variants) in association with eGFR and SCr, and 2 variants on chr 4 associated with the risk of CKD became nominally statistically significant after Bonferroni correction, among which 15 variants on chr 17 and 3 variants on chr 18 reached genome-wide significance of p < 5 × 10-8 in the combined study meta-analysis. The associations of the loci on chr 2 and 18 with eGFR and SCr as well as that on chr 4 with CKD risk have not been previously reported in the Japanese and East Asian populations. CONCLUSION Although the present GWAS of renal function traits included the largest sample of Japanese participants to date, we did not identify novel loci for renal traits. However, we identified the novel associations of the genetic loci on chr 2, 4, and 18 with renal function traits in the Japanese population, suggesting these are transethnic loci. Further investigations of these associations are expected to further validate our findings for the potential establishment of personalized prevention of renal disease in the Japanese and East Asian populations.
Collapse
MESH Headings
- Adult
- Aged
- Asian People/genetics
- Chromosomes, Human, Pair 18/genetics
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 4/genetics
- Cohort Studies
- Creatinine/blood
- Female
- Genetic Loci
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Glomerular Filtration Rate
- Humans
- Japan/epidemiology
- Kidney/physiopathology
- Male
- Middle Aged
- Polymorphism, Single Nucleotide
- Prevalence
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/epidemiology
- Renal Insufficiency, Chronic/genetics
Collapse
Affiliation(s)
- Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Nakatochi
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Masato Akiyama
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Nishiyama
- Department of Public Health, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hidemi Ito
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Isao Oze
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Naoyuki Takashima
- Department of Health Science, Shiga University of Medical Science, Otsu, Japan
| | - Tanvir Chowdhury Turin
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Miki Watanabe
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Rie Ibusuki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ippei Shimoshikiryo
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yohko Nakamura
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Haruo Mikami
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Hiroaki Ikezaki
- Department of Geriatric Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norihiro Furusyo
- Department of Geriatric Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kaori Endoh
- Laboratory of Public Health, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Matsui
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirokazu Uemura
- Department of Preventive Medicine, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Kokichi Arisawa
- Department of Preventive Medicine, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Tae Sasakabe
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sayo Kawai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
27
|
Abstract
Nuclear factor of activated T cells (NFAT) was first described almost three decades ago as a Ca
2+/calcineurin-regulated transcription factor in T cells. Since then, a large body of research uncovered the regulation and physiological function of different NFAT homologues in the immune system and many other tissues. In this review, we will discuss novel roles of NFAT in T cells, focusing mainly on its function in humoral immune responses, immunological tolerance, and the regulation of immune metabolism.
Collapse
Affiliation(s)
- Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
28
|
Abstract
The evolutionary origin of synapses and neurons is an enigmatic subject that inspires much debate. Non-bilaterian metazoans, both with and without neurons and their closest relatives already contain many components of the molecular toolkits for synapse functions. The origin of these components and their assembly into ancient synaptic signaling machineries are particularly important in light of recent findings on the phylogeny of non-bilaterian metazoans. The evolution of synapses and neurons are often discussed only from a metazoan perspective leaving a considerable gap in our understanding. By taking an integrative approach we highlight the need to consider different, but extremely relevant phyla and to include the closest unicellular relatives of metazoans, the ichthyosporeans, filastereans and choanoflagellates, to fully understand the evolutionary origin of synapses and neurons. This approach allows for a detailed understanding of when and how the first pre- and postsynaptic signaling machineries evolved.
Collapse
Affiliation(s)
- Pawel Burkhardt
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, United Kingdom
| | - Simon G Sprecher
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
29
|
Goulding SP, Szumlinski KK, Contet C, MacCoss MJ, Wu CC. A mass spectrometry-based proteomic analysis of Homer2-interacting proteins in the mouse brain. J Proteomics 2017; 166:127-137. [PMID: 28728878 DOI: 10.1016/j.jprot.2017.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 07/08/2017] [Accepted: 07/12/2017] [Indexed: 11/26/2022]
Abstract
In the brain, the Homer protein family modulates excitatory signal transduction and receptor plasticity through interactions with other proteins in dendritic spines. Homer proteins are implicated in a variety of psychiatric disorders such as schizophrenia and addiction. Since long Homers serve as scaffolding proteins, identifying their interacting partners is an important first step in understanding their biological function and could help to guide the design of new therapeutic strategies. The present study set out to document Homer2-interacting proteins in the mouse brain using a co-immunoprecipitation-based mass spectrometry approach where Homer2 knockout samples were used to filter out non-specific interactors. We found that in the mouse brain, Homer2 interacts with a limited subset of its previously reported interacting partners (3 out of 31). Importantly, we detected an additional 15 novel Homer2-interacting proteins, most of which are part of the N-methyl-D-aspartate receptor signaling pathway. These results corroborate the central role Homer2 plays in glutamatergic transmission and expand the network of proteins potentially contributing to the behavioral abnormalities associated with altered Homer2 expression. SIGNIFICANCE Long Homer proteins are scaffolding proteins that regulate signal transduction in neurons. Identifying their interacting partners is key to understanding their function. We used co-immunoprecipitation in combination with mass spectrometry to establish the first comprehensive list of Homer2-interacting partners in the mouse brain. The specificity of interactions was evaluated using Homer2 knockout brain tissue as a negative control. The set of proteins that we identified minimally overlaps with previously reported interacting partners of Homer2; however, we identified novel interactors that are part of a signaling cascade activated by glutamatergic transmission, which improves our mechanistic understanding of the role of Homer2 in behavior.
Collapse
Affiliation(s)
- Scott P Goulding
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States; Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States.
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, Molecular, Cellular and Developmental Biology, The Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Candice Contet
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Christine C Wu
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
30
|
Jia S, Rodriguez M, Williams AG, Yuan JP. Homer binds to Orai1 and TRPC channels in the neointima and regulates vascular smooth muscle cell migration and proliferation. Sci Rep 2017; 7:5075. [PMID: 28698564 PMCID: PMC5506012 DOI: 10.1038/s41598-017-04747-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/22/2017] [Indexed: 11/25/2022] Open
Abstract
The molecular components of store-operated Ca2+ influx channels (SOCs) in proliferative and migratory vascular smooth muscle cells (VSMCs) are quite intricate with many channels contributing to SOCs. They include the Ca2+-selective Orai1 and members of the transient receptor potential canonical (TRPC) channels, which are activated by the endoplasmic reticulum Ca2+ sensor STIM1. The scaffolding protein Homer assembles SOC complexes, but its role in VSMCs is not well understood. Here, we asked whether these SOC components and Homer1 are present in the same complex in VSMCs and how Homer1 contributes to VSMC SOCs, proliferation, and migration leading to neointima formation. Homer1 expression levels are upregulated in balloon-injured vs. uninjured VSMCs. Coimmunoprecipitation assays revealed the presence and interaction of all SOC components in the injured VSMCs, where Homer1 interacts with Orai1 and various TRPC channels. Accordingly, knockdown of Homer1 in cultured VSMCs partially inhibited SOCs, VSMC migration, and VSMC proliferation. Neointimal area was reduced after treatment with an adeno-associated viral vector expressing a short hairpin RNA against Homer1 mRNA (AAV-shHomer1). These findings stress the role of multiple Ca2+ influx channels in VSMCs and are the first to show the role of Homer proteins in VSMCs and its importance in neointima formation.
Collapse
Affiliation(s)
- Shuping Jia
- Institute for Cardiovascular & Metabolic Diseases, University of North Texas Health Sciences Center, Fort Worth, TX, 76107, USA
| | - Miguel Rodriguez
- Institute for Cardiovascular & Metabolic Diseases, University of North Texas Health Sciences Center, Fort Worth, TX, 76107, USA
| | - Arthur G Williams
- Institute for Cardiovascular & Metabolic Diseases, University of North Texas Health Sciences Center, Fort Worth, TX, 76107, USA
| | - Joseph P Yuan
- Institute for Cardiovascular & Metabolic Diseases, University of North Texas Health Sciences Center, Fort Worth, TX, 76107, USA.
| |
Collapse
|
31
|
Li C, Sun XN, Zeng MR, Zheng XJ, Zhang YY, Wan Q, Zhang WC, Shi C, Du LJ, Ai TJ, Liu Y, Liu Y, Du LL, Yi Y, Yu Y, Duan SZ. Mineralocorticoid Receptor Deficiency in T Cells Attenuates Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction Through Modulating T-Cell Activation. Hypertension 2017; 70:137-147. [PMID: 28559389 DOI: 10.1161/hypertensionaha.117.09070] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 01/25/2017] [Accepted: 04/28/2017] [Indexed: 12/11/2022]
Abstract
Although antagonists of mineralocorticoid receptor (MR) have been widely used to treat heart failure, the underlying mechanisms are incompletely understood. Recent reports show that T cells play important roles in pathologic cardiac hypertrophy and heart failure. However, it is unclear whether and how MR functions in T cells under these pathologic conditions. We found that MR antagonist suppressed abdominal aortic constriction-induced cardiac hypertrophy and decreased the accumulation and activation of CD4+ and CD8+ T cells in mouse heart. T-cell MR knockout mice manifested suppressed cardiac hypertrophy, fibrosis, and dysfunction compared with littermate control mice after abdominal aortic constriction. T-cell MR knockout mice had less cardiac inflammatory response, which was illustrated by decreased accumulation of myeloid cells and reduced expression of inflammatory cytokines. Less amounts and activation of T cells were observed in the heart of T-cell MR knockout mice after abdominal aortic constriction. In vitro studies showed that both MR antagonism and deficiency repressed activation of T cells, whereas MR overexpression elevated activation of T cells. These results demonstrated that MR blockade in T cells protected against abdominal aortic constriction-induced cardiac hypertrophy and dysfunction. Mechanistically, MR directly regulated T-cell activation and modulated cardiac inflammation. Targeting MR in T cells specifically may be a feasible strategy for more effective treatment of pathologic cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Chao Li
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., L.-J.D., T.A, Yuan Liu, Yan Liu, S.-Z.D.), and Shanghai Key Laboratory of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., C.S., L.-J.D., T.-J.A., Yuan Liu, Yan Liu, S.-Z.D.), Shanghai Jiao Tong University School of Medicine, China; Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, China (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., Q.W., L.-J.D., T.-J.A., Yuan Liu); Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, China (L.-L.D., Y. Yi); and Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (Y. Yu)
| | - Xue-Nan Sun
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., L.-J.D., T.A, Yuan Liu, Yan Liu, S.-Z.D.), and Shanghai Key Laboratory of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., C.S., L.-J.D., T.-J.A., Yuan Liu, Yan Liu, S.-Z.D.), Shanghai Jiao Tong University School of Medicine, China; Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, China (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., Q.W., L.-J.D., T.-J.A., Yuan Liu); Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, China (L.-L.D., Y. Yi); and Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (Y. Yu)
| | - Meng-Ru Zeng
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., L.-J.D., T.A, Yuan Liu, Yan Liu, S.-Z.D.), and Shanghai Key Laboratory of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., C.S., L.-J.D., T.-J.A., Yuan Liu, Yan Liu, S.-Z.D.), Shanghai Jiao Tong University School of Medicine, China; Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, China (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., Q.W., L.-J.D., T.-J.A., Yuan Liu); Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, China (L.-L.D., Y. Yi); and Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (Y. Yu)
| | - Xiao-Jun Zheng
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., L.-J.D., T.A, Yuan Liu, Yan Liu, S.-Z.D.), and Shanghai Key Laboratory of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., C.S., L.-J.D., T.-J.A., Yuan Liu, Yan Liu, S.-Z.D.), Shanghai Jiao Tong University School of Medicine, China; Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, China (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., Q.W., L.-J.D., T.-J.A., Yuan Liu); Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, China (L.-L.D., Y. Yi); and Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (Y. Yu)
| | - Yu-Yao Zhang
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., L.-J.D., T.A, Yuan Liu, Yan Liu, S.-Z.D.), and Shanghai Key Laboratory of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., C.S., L.-J.D., T.-J.A., Yuan Liu, Yan Liu, S.-Z.D.), Shanghai Jiao Tong University School of Medicine, China; Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, China (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., Q.W., L.-J.D., T.-J.A., Yuan Liu); Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, China (L.-L.D., Y. Yi); and Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (Y. Yu)
| | - Qiangyou Wan
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., L.-J.D., T.A, Yuan Liu, Yan Liu, S.-Z.D.), and Shanghai Key Laboratory of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., C.S., L.-J.D., T.-J.A., Yuan Liu, Yan Liu, S.-Z.D.), Shanghai Jiao Tong University School of Medicine, China; Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, China (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., Q.W., L.-J.D., T.-J.A., Yuan Liu); Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, China (L.-L.D., Y. Yi); and Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (Y. Yu)
| | - Wu-Chang Zhang
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., L.-J.D., T.A, Yuan Liu, Yan Liu, S.-Z.D.), and Shanghai Key Laboratory of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., C.S., L.-J.D., T.-J.A., Yuan Liu, Yan Liu, S.-Z.D.), Shanghai Jiao Tong University School of Medicine, China; Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, China (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., Q.W., L.-J.D., T.-J.A., Yuan Liu); Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, China (L.-L.D., Y. Yi); and Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (Y. Yu)
| | - Chaoji Shi
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., L.-J.D., T.A, Yuan Liu, Yan Liu, S.-Z.D.), and Shanghai Key Laboratory of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., C.S., L.-J.D., T.-J.A., Yuan Liu, Yan Liu, S.-Z.D.), Shanghai Jiao Tong University School of Medicine, China; Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, China (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., Q.W., L.-J.D., T.-J.A., Yuan Liu); Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, China (L.-L.D., Y. Yi); and Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (Y. Yu)
| | - Lin-Juan Du
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., L.-J.D., T.A, Yuan Liu, Yan Liu, S.-Z.D.), and Shanghai Key Laboratory of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., C.S., L.-J.D., T.-J.A., Yuan Liu, Yan Liu, S.-Z.D.), Shanghai Jiao Tong University School of Medicine, China; Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, China (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., Q.W., L.-J.D., T.-J.A., Yuan Liu); Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, China (L.-L.D., Y. Yi); and Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (Y. Yu)
| | - Tang-Jun Ai
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., L.-J.D., T.A, Yuan Liu, Yan Liu, S.-Z.D.), and Shanghai Key Laboratory of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., C.S., L.-J.D., T.-J.A., Yuan Liu, Yan Liu, S.-Z.D.), Shanghai Jiao Tong University School of Medicine, China; Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, China (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., Q.W., L.-J.D., T.-J.A., Yuan Liu); Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, China (L.-L.D., Y. Yi); and Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (Y. Yu)
| | - Yuan Liu
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., L.-J.D., T.A, Yuan Liu, Yan Liu, S.-Z.D.), and Shanghai Key Laboratory of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., C.S., L.-J.D., T.-J.A., Yuan Liu, Yan Liu, S.-Z.D.), Shanghai Jiao Tong University School of Medicine, China; Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, China (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., Q.W., L.-J.D., T.-J.A., Yuan Liu); Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, China (L.-L.D., Y. Yi); and Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (Y. Yu)
| | - Yan Liu
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., L.-J.D., T.A, Yuan Liu, Yan Liu, S.-Z.D.), and Shanghai Key Laboratory of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., C.S., L.-J.D., T.-J.A., Yuan Liu, Yan Liu, S.-Z.D.), Shanghai Jiao Tong University School of Medicine, China; Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, China (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., Q.W., L.-J.D., T.-J.A., Yuan Liu); Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, China (L.-L.D., Y. Yi); and Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (Y. Yu)
| | - Li-Li Du
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., L.-J.D., T.A, Yuan Liu, Yan Liu, S.-Z.D.), and Shanghai Key Laboratory of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., C.S., L.-J.D., T.-J.A., Yuan Liu, Yan Liu, S.-Z.D.), Shanghai Jiao Tong University School of Medicine, China; Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, China (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., Q.W., L.-J.D., T.-J.A., Yuan Liu); Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, China (L.-L.D., Y. Yi); and Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (Y. Yu)
| | - Yi Yi
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., L.-J.D., T.A, Yuan Liu, Yan Liu, S.-Z.D.), and Shanghai Key Laboratory of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., C.S., L.-J.D., T.-J.A., Yuan Liu, Yan Liu, S.-Z.D.), Shanghai Jiao Tong University School of Medicine, China; Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, China (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., Q.W., L.-J.D., T.-J.A., Yuan Liu); Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, China (L.-L.D., Y. Yi); and Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (Y. Yu)
| | - Ying Yu
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., L.-J.D., T.A, Yuan Liu, Yan Liu, S.-Z.D.), and Shanghai Key Laboratory of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., C.S., L.-J.D., T.-J.A., Yuan Liu, Yan Liu, S.-Z.D.), Shanghai Jiao Tong University School of Medicine, China; Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, China (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., Q.W., L.-J.D., T.-J.A., Yuan Liu); Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, China (L.-L.D., Y. Yi); and Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (Y. Yu)
| | - Sheng-Zhong Duan
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., L.-J.D., T.A, Yuan Liu, Yan Liu, S.-Z.D.), and Shanghai Key Laboratory of Stomatology (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., W.-C.Z., C.S., L.-J.D., T.-J.A., Yuan Liu, Yan Liu, S.-Z.D.), Shanghai Jiao Tong University School of Medicine, China; Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, China (C.L., X.-N.S., M.-R.Z., X.-J.Z., Y.-Y.Z., Q.W., L.-J.D., T.-J.A., Yuan Liu); Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, China (L.-L.D., Y. Yi); and Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (Y. Yu).
| |
Collapse
|
32
|
Zimmermann J, Neuhuber WL, Raab M. Homer1 (VesL-1) in the rat esophagus: focus on myenteric plexus and neuromuscular junction. Histochem Cell Biol 2017; 148:189-206. [PMID: 28337539 DOI: 10.1007/s00418-017-1555-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
Abstract
Homer1, a scaffolding protein of the postsynaptic density (PSD), enriched at excitatory synapses is known to anchor and modulate group I metabotropic glutamate receptors (mGluRs) and different channel- and receptor-proteins. Homer proteins are expressed in neurons of different brain regions, but also in non-neuronal tissues like skeletal muscle. Occurrence and location of Homer1 and mGluR5 in myenteric plexus and neuromuscular junctions (NMJ) of rat esophagus have yet not been characterized. We located Homer1 and mGluR5 immunoreactivity (-iry) in rat esophagus and focused on myenteric neurons, intraganglionic laminar endings (IGLEs) and NMJs, using double- and triple-label immunohistochemistry and confocal laser scanning microscopy. Homer1-iry was found in a subpopulation of vesicular glutamate transporter 2 (VGLUT2) positive IGLEs and cholinergic varicosities within myenteric ganglia, but neither in nitrergic nor cholinergic myenteric neuronal cell bodies. Homer1-iry was detected in 63% of esophageal and, for comparison, in 35% of sternomastoid NMJs. Besides the location in the PSD, Homer1-iry colocalized with cholinergic markers, indicating a presynaptic location in coarse VAChT/CGRP/NF200- immunoreactive (-ir) terminals of nucleus ambiguus neurons supplying striated esophageal muscle. mGluR5-iry was found in subpopulations of myenteric neuronal cell bodies, VGLUT2-ir IGLEs and cholinergic varicosities within the myenteric neuropil and NMJs of esophagus and sternomastoid muscles. Thus, Homer1 may anchor mGluR5 at presynaptic sites of cholinergic boutons at esophageal motor endplates, in a small subpopulation of VGLUT2-ir IGLEs and cholinergic varicosities within myenteric ganglia possibly modulating Ca2+-currents and neurotransmitter release.
Collapse
Affiliation(s)
- J Zimmermann
- Institut für Anatomie, Lehrstuhl I, Friedrich-Alexander-Universität, Krankenhausstr. 9, 91054, Erlangen, Germany
| | - W L Neuhuber
- Institut für Anatomie, Lehrstuhl I, Friedrich-Alexander-Universität, Krankenhausstr. 9, 91054, Erlangen, Germany
| | - M Raab
- Institut für Anatomie, Lehrstuhl I, Friedrich-Alexander-Universität, Krankenhausstr. 9, 91054, Erlangen, Germany.
| |
Collapse
|
33
|
Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants. Oncotarget 2016; 7:7497-533. [PMID: 26848775 PMCID: PMC4884935 DOI: 10.18632/oncotarget.7120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/25/2022] Open
Abstract
Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue--obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT)--and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the "canonical" way of thymus functioning. Conversely, DS networks represent a "non-canonical" way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes.
Collapse
|
34
|
Kannambath S. Micro-RNA Feedback Loops Modulating the Calcineurin/NFAT Signaling Pathway. Noncoding RNA 2016; 2:E3. [PMID: 29657261 PMCID: PMC5831902 DOI: 10.3390/ncrna2020003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/22/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
Nuclear factor of activated T cells (NFAT) is a family of transcription factors important for innate and adaptive immune responses. NFAT activation is tightly regulated through the calcineurin/NFAT signaling pathway. There is increasing evidence on non-coding RNAs such as miRNAs playing a crucial role in regulating transcription factors and signaling pathways. However, not much is known about microRNAs (miRNAs) targeting the calcineurin/NFAT signaling pathway involved in immune response in human. In this study, a comprehensive pathway level analysis has been carried out to identify miRNAs regulating the calcineurin/NFAT signaling pathway. Firstly, by incorporating experimental data and computational predictions, 191 unique miRNAs were identified to be targeting the calcineurin/NFAT signaling pathway in humans. Secondly, combining miRNA expression data from activated T cells and computational predictions, 32 miRNAs were observed to be induced by NFAT transcription factors. Finally, 11 miRNAs were identified to be involved in a feedback loop to modulate the calcineurin/NFAT signaling pathway activity. This data demonstrate the potential role of miRNAs as regulators of the calcineurin/NFAT signaling pathway. The present study thus emphasizes the importance of pathway level analysis to identify miRNAs and understands their role in modulating signaling pathways and transcription factor activity.
Collapse
Affiliation(s)
- Shichina Kannambath
- Infection and Immunity, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK.
| |
Collapse
|
35
|
Vihma H, Luhakooder M, Pruunsild P, Timmusk T. Regulation of different human NFAT isoforms by neuronal activity. J Neurochem 2016; 137:394-408. [PMID: 26851544 DOI: 10.1111/jnc.13568] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/04/2016] [Accepted: 01/29/2016] [Indexed: 12/30/2022]
Abstract
Nuclear factor of activated T-cells (NFAT) is a family of transcription factors comprising four calcium-regulated members: NFATc1, NFATc2, NFATc3, and NFATc4. Upon activation by the calcium-dependent phosphatase calcineurin (CaN), NFATs translocate from cytosol to the nucleus and regulate their target genes, which in the nervous system are involved in axon growth, synaptic plasticity, and neuronal survival. We have shown previously that there are a number of different splice variants of NFAT genes expressed in the brain. Here, we studied the subcellular localizations and transactivation capacities of alternative human NFAT isoforms in rat primary cortical or hippocampal neurons in response to membrane depolarization and compared the induced transactivation levels in neurons to those obtained from HEK293 cells in response to calcium signaling. We confirm that in neurons the translocation to the nucleus of all NFAT isoforms is reliant on the activity of CaN. However, our results suggest that both the regulation of subcellular localization and transcriptional activity of NFAT proteins in neurons is isoform specific. We show that in primary hippocampal neurons NFATc2 isoforms have very fast translocation kinetics, whereas NFATc4 isoforms translocate relatively slowly to the nucleus. Moreover, we demonstrate that the strongest transcriptional activators in HEK293 cells are NFATc1 and NFATc3, but in neurons NFATc3 and NFATc4 lead to the highest induction, and NFATc2 and NFATc1 display isoform-specific transcription activation capacities. Altogether, our results indicate that the effects of calcium signaling on the action of NFAT proteins are isoform-specific and can differ between cell types. We show that the effects of calcium signaling on the action of NFAT proteins are isoform-specific and differ between cell types. Although nuclear localization of all NFAT isoforms in neurons requires calcineurin, the subcellular distributions, neuronal activity-induced nuclear translocation extent and kinetics, and transcription activation capacities of alternative NFAT proteins vary.
Collapse
Affiliation(s)
- Hanna Vihma
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Mirjam Luhakooder
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Priit Pruunsild
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Tõnis Timmusk
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
36
|
Guo W, Ceolin L, Collins KA, Perroy J, Huber KM. Elevated CaMKIIα and Hyperphosphorylation of Homer Mediate Circuit Dysfunction in a Fragile X Syndrome Mouse Model. Cell Rep 2015; 13:2297-311. [PMID: 26670047 DOI: 10.1016/j.celrep.2015.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/09/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022] Open
Abstract
Abnormal metabotropic glutamate receptor 5 (mGluR5) function, as a result of disrupted scaffolding with its binding partner Homer, contributes to the pathophysiology of fragile X syndrome, a common inherited form of intellectual disability and autism caused by mutations in Fmr1. How loss of Fmr1 disrupts mGluR5-Homer scaffolds is unknown, and little is known about the dynamic regulation of mGluR5-Homer scaffolds in wild-type neurons. Here, we demonstrate that brief (minutes-long) elevations in neural activity cause CaMKIIα-mediated phosphorylation of long Homer proteins and dissociation from mGluR5 at synapses. In Fmr1 knockout (KO) cortex, Homers are hyperphosphorylated as a result of elevated CaMKIIα protein. Genetic or pharmacological inhibition of CaMKIIα or replacement of Homers with dephosphomimetics restores mGluR5-Homer scaffolds and multiple Fmr1 KO phenotypes, including circuit hyperexcitability and/or seizures. This work links translational control of an FMRP target mRNA, CaMKIIα, to the molecular-, cellular-, and circuit-level brain dysfunction in a complex neurodevelopmental disorder.
Collapse
Affiliation(s)
- Weirui Guo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura Ceolin
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, 34000 Montpellier, France; INSERM, U1191, 34000 Montpellier, France; Universites de Montpellier 1 & 2, UMR-5203, 34000 Montpellier, France
| | - Katie A Collins
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julie Perroy
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, 34000 Montpellier, France; INSERM, U1191, 34000 Montpellier, France; Universites de Montpellier 1 & 2, UMR-5203, 34000 Montpellier, France
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
37
|
Burkhardt P. The origin and evolution of synaptic proteins - choanoflagellates lead the way. ACTA ACUST UNITED AC 2015; 218:506-14. [PMID: 25696814 DOI: 10.1242/jeb.110247] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The origin of neurons was a key event in evolution, allowing metazoans to evolve rapid behavioral responses to environmental cues. Reconstructing the origin of synaptic proteins promises to reveal their ancestral functions and might shed light on the evolution of the first neuron-like cells in metazoans. By analyzing the genomes of diverse metazoans and their closest relatives, the evolutionary history of diverse presynaptic and postsynaptic proteins has been reconstructed. These analyses revealed that choanoflagellates, the closest relatives of metazoans, possess diverse synaptic protein homologs. Recent studies have now begun to investigate their ancestral functions. A primordial neurosecretory apparatus in choanoflagellates was identified and it was found that the mechanism, by which presynaptic proteins required for secretion of neurotransmitters interact, is conserved in choanoflagellates and metazoans. Moreover, studies on the postsynaptic protein homolog Homer revealed unexpected localization patterns in choanoflagellates and new binding partners, both which are conserved in metazoans. These findings demonstrate that the study of choanoflagellates can uncover ancient and previously undescribed functions of synaptic proteins.
Collapse
Affiliation(s)
- Pawel Burkhardt
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
38
|
Azaiez H, Decker AR, Booth KT, Simpson AC, Shearer AE, Huygen PLM, Bu F, Hildebrand MS, Ranum PT, Shibata SB, Turner A, Zhang Y, Kimberling WJ, Cornell RA, Smith RJH. HOMER2, a stereociliary scaffolding protein, is essential for normal hearing in humans and mice. PLoS Genet 2015; 11:e1005137. [PMID: 25816005 PMCID: PMC4376867 DOI: 10.1371/journal.pgen.1005137] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/10/2015] [Indexed: 12/29/2022] Open
Abstract
Hereditary hearing loss is a clinically and genetically heterogeneous disorder. More than 80 genes have been implicated to date, and with the advent of targeted genomic enrichment and massively parallel sequencing (TGE+MPS) the rate of novel deafness-gene identification has accelerated. Here we report a family segregating post-lingual progressive autosomal dominant non-syndromic hearing loss (ADNSHL). After first excluding plausible variants in known deafness-causing genes using TGE+MPS, we completed whole exome sequencing in three hearing-impaired family members. Only a single variant, p.Arg185Pro in HOMER2, segregated with the hearing-loss phenotype in the extended family. This amino acid change alters a highly conserved residue in the coiled-coil domain of HOMER2 that is essential for protein multimerization and the HOMER2-CDC42 interaction. As a scaffolding protein, HOMER2 is involved in intracellular calcium homeostasis and cytoskeletal organization. Consistent with this function, we found robust expression in stereocilia of hair cells in the murine inner ear and observed that over-expression of mutant p.Pro185 HOMER2 mRNA causes anatomical changes of the inner ear and neuromasts in zebrafish embryos. Furthermore, mouse mutants homozygous for the targeted deletion of Homer2 present with early-onset rapidly progressive hearing loss. These data provide compelling evidence that HOMER2 is required for normal hearing and that its sequence alteration in humans leads to ADNSHL through a dominant-negative mode of action. The most frequent sensory disorder worldwide is hearing impairment. It impacts over 5% of the world population (360 million persons), and is characterized by extreme genetic heterogeneity. Over 80 genes have been implicated in isolated (also referred to as ‘non-syndromic’) hearing loss, and abundant evidence supports the existence of many more ‘deafness-causing’ genes. In this study, we used a sequential screening strategy to first exclude causal mutations in known deafness-causing genes in a family segregating autosomal dominant non-syndromic hearing loss. We next turned to whole exome sequencing and identified a single variant—p.Arg185Pro in HOMER2—that segregated with the phenotype in the extended family. To validate the pathological significance of this mutation, we studied two animal models. In zebrafish, we overexpressed mutant HOMER2 and observed inner ear defects; and in mice we documented robust expression in stereocilia of cochlear hair cells and demonstrated that its absence causes early-onset progressive deafness. Our data offer novel insights into gene pathways essential for normal auditory function and the maintenance of cochlear hair cells.
Collapse
Affiliation(s)
- Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
| | - Amanda R. Decker
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Kevin T. Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
| | - Allen C. Simpson
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
| | - A. Eliot Shearer
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
| | - Patrick L. M. Huygen
- Department of Otorhinolaryngology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Fengxiao Bu
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
| | - Michael S. Hildebrand
- Austin Health, Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Paul T. Ranum
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
| | - Seiji B. Shibata
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
| | - Ann Turner
- Self-employed physician, Menlo Park, California, United States of America
| | - Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
| | - William J. Kimberling
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
| | - Robert A. Cornell
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Richard J. H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
- Interdepartmental PhD Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
39
|
Ruiz-Lafuente N, Alcaraz-García MJ, Sebastián-Ruiz S, Gómez-Espuch J, Funes C, Moraleda JM, García-Garay MC, Montes-Barqueros N, Minguela A, Álvarez-López MR, Parrado A. The gene expression response of chronic lymphocytic leukemia cells to IL-4 is specific, depends on ZAP-70 status and is differentially affected by an NFκB inhibitor. PLoS One 2014; 9:e109533. [PMID: 25280001 PMCID: PMC4184842 DOI: 10.1371/journal.pone.0109533] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/01/2014] [Indexed: 01/01/2023] Open
Abstract
Interleukin 4 (IL-4), an essential mediator of B cell development, plays a role in survival of chronic lymphocytic leukemia (CLL) cells. To obtain new insights into the function of the IL-4 pathway in CLL, we analyzed the gene expression response to IL-4 in CLL and in normal B cells (NBC) by oligonucleotide microarrays, resulting in the identification of 232 non-redundant entities in CLL and 146 in NBC (95 common, 283 altogether), of which 189 were well-defined genes in CLL and 123 in NBC (83 common, 229 altogether) (p<0.05, 2-fold cut-off). To the best of our knowledge, most of them were novel IL-4 targets for CLL (98%), B cells of any source (83%), or any cell type (70%). Responses were significantly higher for 54 and 11 genes in CLL and NBC compared to each other, respectively. In CLL, ZAP-70 status had an impact on IL-4 response, since different sets of IL-4 targets correlated positively or negatively with baseline expression of ZAP-70. In addition, the NFκB inhibitor 6-Amino-4-(4-phenoxyphenethylamino)quinazoline, which reversed the anti-apoptotic effect of IL-4, preferentially blocked the response of genes positively correlated with ZAP-70 (e.g. CCR2, SUSD2), but enhanced the response of genes negatively correlated with ZAP-70 (e.g. AUH, BCL6, LY75, NFIL3). Dissection of the gene expression response to IL-4 in CLL and NBC contributes to the understanding of the anti-apoptotic response. Initial evidence of a connection between ZAP-70 and NFκB supports further exploration of targeting NFκB in the context of the assessment of inhibition of the IL-4 pathway as a therapeutic strategy in CLL, especially in patients expressing bad prognostic markers.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Blotting, Western
- Case-Control Studies
- Cell Proliferation
- Cells, Cultured
- Gene Expression Profiling
- Humans
- I-kappa B Proteins/genetics
- Interleukin-4/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocytes/cytology
- Lymphocytes/metabolism
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/genetics
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- ZAP-70 Protein-Tyrosine Kinase/genetics
Collapse
Affiliation(s)
- Natalia Ruiz-Lafuente
- Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - María-José Alcaraz-García
- Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Silvia Sebastián-Ruiz
- Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Joaquín Gómez-Espuch
- Servicio de Hematología y Hemoterapia, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Consuelo Funes
- Servicio de Hematología y Hemoterapia, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - José-María Moraleda
- Servicio de Hematología y Hemoterapia, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | | | - Natividad Montes-Barqueros
- Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Alfredo Minguela
- Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - María-Rocío Álvarez-López
- Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Antonio Parrado
- Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
- * E-mail:
| |
Collapse
|
40
|
Yang YM, Lee J, Jo H, Park S, Chang I, Muallem S, Shin DM. Homer2 protein regulates plasma membrane Ca²⁺-ATPase-mediated Ca²⁺ signaling in mouse parotid gland acinar cells. J Biol Chem 2014; 289:24971-9. [PMID: 25049230 DOI: 10.1074/jbc.m114.577221] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homer proteins are scaffold molecules with a domain structure consisting of an N-terminal Ena/VASP homology 1 protein-binding domain and a C-terminal leucine zipper/coiled-coil domain. The Ena/VASP homology 1 domain recognizes proline-rich motifs and binds multiple Ca(2+)-signaling proteins, including G protein-coupled receptors, inositol 1,4,5-triphosphate receptors, ryanodine receptors, and transient receptor potential channels. However, their role in Ca(2+) signaling in nonexcitable cells is not well understood. In this study, we investigated the role of Homer2 on Ca(2+) signaling in parotid gland acinar cells using Homer2-deficient (Homer2(-/-)) mice. Homer2 is localized at the apical pole in acinar cells. Deletion of Homer2 did not affect inositol 1,4,5-triphosphate receptor localization or channel activity and did not affect the expression and activity of sarco/endoplasmic reticulum Ca(2+)-ATPase pumps. In contrast, Homer2 deletion markedly increased expression of plasma membrane Ca(2+)-ATPase (PMCA) pumps, in particular PMCA4, at the apical pole. Accordingly, Homer2 deficiency increased Ca(2+) extrusion by acinar cells. These findings were supported by co-immunoprecipitation of Homer2 and PMCA in wild-type parotid cells and transfected human embryonic kidney 293 (HEK293) cells. We identified a Homer-binding PPXXF-like motif in the N terminus of PMCA that is required for interaction with Homer2. Mutation of the PPXXF-like motif did not affect the interaction of PMCA with Homer1 but inhibited its interaction with Homer2 and increased Ca(2+) clearance by PMCA. These findings reveal an important regulation of PMCA by Homer2 that has a central role on PMCA-mediated Ca(2+) signaling in parotid acinar cells.
Collapse
Affiliation(s)
- Yu-Mi Yang
- From the Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Jiae Lee
- From the Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Hae Jo
- the College of Life Sciences and Graduate School of Biotechnology, Kyunghee University, Global Campus, Gyeonggi 446-701, Korea, and
| | - Soonhong Park
- From the Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Inik Chang
- From the Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Shmuel Muallem
- the Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Dong Min Shin
- From the Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 120-752, Korea,
| |
Collapse
|
41
|
Wen H, Kwon HN, Park S. A new mechanism in the binding between Homer3 EVH1 domain and inositol 1,4,5 trisphosphate receptor suppressor domain. Biochem Cell Biol 2014; 92:163-71. [PMID: 24901889 DOI: 10.1139/bcb-2013-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The suppressor domain of inositol 1,4,5 trisphosphate receptor (IP3R) has critical roles in regulating the calcium channel by interacting with many binding partners. The residue 49-53 (PPKKF) of the suppressor domain was suggested to be a canonical Homer EVH1 domain binding site and is also the first a part of calmodulin (CaM) binding site. As CaM-binding of the suppressor domain has been shown to involve large-scale conformational changes, we studied the binding characteristics of the Homer EVH1-suppressor domain with NMR spectroscopy and biochemical pull-down assays for mutants. Our data show that the suppressor domain employs the PPKKF motif in a similar but subtly different way compared to previously characterized interactions, and that the suppressor domain does not undergo large-scale conformational changes. Chemical shift assignments of the Homer3 EVH1 domain found that a new set of residues, located at the opposite side of the previously reported binding site, is also involved in binding, which was confirmed by mutant binding assays. Further analysis suggests that F40 in the new binding sites may have a critical role as a conformational lock-switch in Homer-target binding. The proposed mechanism is implicated in the signaling network involving calcium channels.
Collapse
Affiliation(s)
- He Wen
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Shilim-dong, Kwanak-gu, Seoul 151-742, Korea
| | | | | |
Collapse
|
42
|
Burkhardt P, Grønborg M, McDonald K, Sulur T, Wang Q, King N. Evolutionary insights into premetazoan functions of the neuronal protein homer. Mol Biol Evol 2014; 31:2342-55. [PMID: 24899667 PMCID: PMC4137706 DOI: 10.1093/molbev/msu178] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reconstructing the evolution and ancestral functions of synaptic proteins promises to shed light on how neurons first evolved. The postsynaptic density (PSD) protein Homer scaffolds membrane receptors and regulates Ca2+ signaling in diverse metazoan cell types (including neurons and muscle cells), yet its ancestry and core functions are poorly understood. We find that the protein domain organization and essential biochemical properties of metazoan Homer proteins, including their ability to tetramerize, are conserved in the choanoflagellate Salpingoeca rosetta, one of the closest living relatives of metazoans. Unlike in neurons, Homer localizes to the nucleoplasm in S. rosetta and interacts directly with Flotillin, a protein more commonly associated with cell membranes. Surprisingly, we found that the Homer/Flotillin interaction and its localization to the nucleus are conserved in metazoan astrocytes. These findings suggest that Homer originally interacted with Flotillin in the nucleus of the last common ancestor of metazoans and choanoflagellates and was later co-opted to function as a membrane receptor scaffold in the PSD.
Collapse
Affiliation(s)
- Pawel Burkhardt
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley
| | | | - Kent McDonald
- Electron Microscopy Laboratory, University of California, Berkeley
| | - Tara Sulur
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley
| | - Qi Wang
- California Institute for Quantitative Biosciences, University of California, Berkeley
| | - Nicole King
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley
| |
Collapse
|
43
|
Galat A. Functional diversity and pharmacological profiles of the FKBPs and their complexes with small natural ligands. Cell Mol Life Sci 2013; 70:3243-75. [PMID: 23224428 PMCID: PMC11113493 DOI: 10.1007/s00018-012-1206-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 12/25/2022]
Abstract
From 5 to 12 FK506-binding proteins (FKBPs) are encoded in the genomes of disparate marine organisms, which appeared at the dawn of evolutionary events giving rise to primordial multicellular organisms with elaborated internal body plan. Fifteen FKBPs, several FKBP-like proteins and some splicing variants of them are expressed in humans. Human FKBP12 and some of its paralogues bind to different macrocyclic antibiotics such as FK506 or rapamycin and their derivatives. FKBP12/(macrocyclic antibiotic) complexes induce diverse pharmacological activities such as immunosuppression in humans, anticancerous actions and as sustainers of quiescence in certain organisms. Since the FKBPs bind to various assemblies of proteins and other intracellular components, their complexes with the immunosuppressive drugs may differentially perturb miscellaneous cellular functions. Sequence-structure relationships and pharmacological profiles of diverse FKBPs and their involvement in crucial intracellular signalization pathways and modulation of cryptic intercellular communication networks were discussed.
Collapse
Affiliation(s)
- Andrzej Galat
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et de Technologies de Saclay, Service d'Ingénierie Moléculaire des Protéines, Bat. 152, 91191, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
44
|
Salanova M, Volpe P, Blottner D. Homer protein family regulation in skeletal muscle and neuromuscular adaptation. IUBMB Life 2013; 65:769-76. [DOI: 10.1002/iub.1198] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/03/2013] [Accepted: 06/24/2013] [Indexed: 01/28/2023]
Affiliation(s)
- Michele Salanova
- Department of Vegetative Anatomy and Center of Space Medicine Berlin (ZWMB); Neuromuscular Group; Charité Universitätsmedizin Berlin; Berlin; Germany
| | - Pompeo Volpe
- Dipartimento di Scienze Biomediche; Università di Padova, Italy; C.N.R. Institute of Neuroscience; Padova; Italy
| | - Dieter Blottner
- Department of Vegetative Anatomy and Center of Space Medicine Berlin (ZWMB); Neuromuscular Group; Charité Universitätsmedizin Berlin; Berlin; Germany
| |
Collapse
|
45
|
Daniel C, Gerlach K, Väth M, Neurath MF, Weigmann B. Nuclear factor of activated T cells - a transcription factor family as critical regulator in lung and colon cancer. Int J Cancer 2013; 134:1767-75. [PMID: 23775822 DOI: 10.1002/ijc.28329] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/21/2013] [Accepted: 05/28/2013] [Indexed: 01/03/2023]
Abstract
Nuclear factor of activated T cells (NFAT) was first identified as a transcription factor which is activated upon T cell stimulation. Subsequent studies uncovered that a whole family of individual NFAT proteins exists with pleiotropic functions not only in immune but also in nonimmune cells. However, dysregulation of NFAT thereby favors malignant growth and cancer. Summarizing the recent advances in understanding how individual NFAT factors regulate the immune system, this review gives new insights into the critical role of NFAT in cancer development with special focus on inflammation-associated colorectal cancer.
Collapse
Affiliation(s)
- Carolin Daniel
- Institute of Diabetes Research, Helmholtz Zentrum Muenchen,German Research Center for Environmental Health (GmbH), Munich, Germany
| | | | | | | | | |
Collapse
|
46
|
Sadeqzadeh E, de Bock CE, Thorne RF. Sleeping giants: emerging roles for the fat cadherins in health and disease. Med Res Rev 2013; 34:190-221. [PMID: 23720094 DOI: 10.1002/med.21286] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The vertebrate Fat cadherins comprise a small gene family of four members, Fat1-Fat4, all closely related in structure to Drosophila ft and ft2. Over the past decade, knock-out mouse studies, genetic manipulation, and large sequencing projects has aided our understanding of the function of vertebrate Fat cadherins in tissue development and disease. The majority of studies of this family have focused on Fat1, with evidence now showing it can bind enable (ENA)/Vasodilator-stimulated phosphoprotein (VASP), β-catenin and Atrophin proteins to influence cell polarity and motility; HOMER-1 and HOMER-3 proteins to regulate actin accumulation in neuronal synapses; and scribble to influence the Hippo signaling pathway. Fat2 and Fat3 can regulate cell migration in a tissue specific manner and Fat4 appears to influence both planar cell polarity and Hippo signaling recapitulating the activity of Drosophila ft. Knowledge about the exact downstream signaling pathways activated by each family member remains in its infancy, but it is becoming clearer that they have tissue specific and redundant roles in development and may be lost or gained in cancer. In this review, we summarize the recent progress on understanding the role of the Fat cadherin family, integrating the current knowledge of molecular interactions and tissue distributions, together with the accumulating evidence of their changed expression in human disease. The latter is now beginning to promote interest in these molecules as both biomarkers and new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Elham Sadeqzadeh
- Cancer Research Unit, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | | | | |
Collapse
|
47
|
Bhattacharjee A, Oeemig JS, Kolodziejczyk R, Meri T, Kajander T, Lehtinen MJ, Iwaï H, Jokiranta TS, Goldman A. Structural basis for complement evasion by Lyme disease pathogen Borrelia burgdorferi. J Biol Chem 2013; 288:18685-95. [PMID: 23658013 DOI: 10.1074/jbc.m113.459040] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Borrelia burgdorferi spirochetes that cause Lyme borreliosis survive for a long time in human serum because they successfully evade the complement system, an important arm of innate immunity. The outer surface protein E (OspE) of B. burgdorferi is needed for this because it recruits complement regulator factor H (FH) onto the bacterial surface to evade complement-mediated cell lysis. To understand this process at the molecular level, we used a structural approach. First, we solved the solution structure of OspE by NMR, revealing a fold that has not been seen before in proteins involved in complement regulation. Next, we solved the x-ray structure of the complex between OspE and the FH C-terminal domains 19 and 20 (FH19-20) at 2.83 Å resolution. The structure shows that OspE binds FH19-20 in a way similar to, but not identical with, that used by endothelial cells to bind FH via glycosaminoglycans. The observed interaction of OspE with FH19-20 allows the full function of FH in down-regulation of complement activation on the bacteria. This reveals the molecular basis for how B. burgdorferi evades innate immunity and suggests how OspE could be used as a potential vaccine antigen.
Collapse
Affiliation(s)
- Arnab Bhattacharjee
- Haartman Institute, Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jardin I, López JJ, Berna-Erro A, Salido GM, Rosado JA. Homer Proteins in Ca2+Entry. IUBMB Life 2013; 65:497-504. [DOI: 10.1002/iub.1162] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 02/07/2013] [Indexed: 11/08/2022]
|
49
|
Umehara H, Asai A. Tributylhexadecylphosphonium bromide, a novel nuclear factor of activated T cells signaling inhibitor, blocks interleukin-2 induction associated with inhibition of p70 ribosomal protein S6 kinase phosphorylation. Biol Pharm Bull 2012; 35:805-9. [PMID: 22687422 DOI: 10.1248/bpb.35.805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcriptional factors of the nuclear factor of activated T cells (NFAT) family are involved in T cell signaling. Many NFAT signaling inhibitors, such as cyclosporin A (CsA) and tacrolimus, abrogate dephosphorylation of NFAT proteins by inhibiting calcineurin activity. In pursuit of a novel type of NFAT signaling inhibitor, we screened our chemical library using the NFAT-dependent reporter assay and identified tributylhexadecylphosphonium bromide (THPB) as a selective NFAT signaling inhibitor. THPB inhibited NFAT-dependent reporter activity, and the induction of interleukin-2 (IL-2) at both mRNA and protein levels by calcium stimulation. Moreover, THPB had an additive effect on the inhibition of IL-2 induction with CsA. Unlike CsA, THPB did not affect dephosphorylation of NFAT1, but suppressed phosphorylation of p70 ribosomal protein S6 kinase (p70S6K). These results suggest that THPB may be a novel type of NFAT signaling inhibitor that acts in association with inhibition of p70S6K phosphorylation.
Collapse
Affiliation(s)
- Hiroshi Umehara
- Graduate School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | | |
Collapse
|
50
|
Hu JH, Yang L, Kammermeier PJ, Moore CG, Brakeman PR, Tu J, Yu S, Petralia RS, Li Z, Zhang PW, Park JM, Dong X, Xiao B, Worley PF. Preso1 dynamically regulates group I metabotropic glutamate receptors. Nat Neurosci 2012; 15:836-44. [PMID: 22561452 DOI: 10.1038/nn.3103] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/03/2012] [Indexed: 01/13/2023]
Abstract
Group I metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, are G protein–coupled receptors (GPCRs) that are expressed at excitatory synapses in brain and spinal cord. GPCRs are often negatively regulated by specific G protein–coupled receptor kinases and subsequent binding of arrestin-like molecules. Here we demonstrate an alternative mechanism in which group I mGluRs are negatively regulated by proline-directed kinases that phosphorylate the binding site for the adaptor protein Homer, and thereby enhance mGluR–Homer binding to reduce signaling. This mechanism is dependent on a multidomain scaffolding protein, Preso1, that binds mGluR, Homer and proline-directed kinases and that is required for their phosphorylation of mGluR at the Homer binding site. Genetic ablation of Preso1 prevents dynamic phosphorylation of mGluR5, and Preso1(−/−) mice exhibit sustained, mGluR5-dependent inflammatory pain that is linked to enhanced mGluR signaling. Preso1 creates a microdomain for proline-directed kinases with broad substrate specificity to phosphorylate mGluR and to mediate negative regulation.
Collapse
Affiliation(s)
- Jia-Hua Hu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|