1
|
De Matteis MA, Fico M, Venditti R. Regulation and function of PI4P at the Golgi complex. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159626. [PMID: 40350028 DOI: 10.1016/j.bbalip.2025.159626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Fifty years after Bob Michell's visionary prediction, phosphatidylinositol 4-phosphate (PI4P) has emerged as a central regulator of Golgi function, influencing membrane trafficking, lipid metabolism, and signaling. PI4P homeostasis is tightly controlled by phosphatidylinositol 4-kinases (PI4Ks), phosphatidylinositol transfer proteins (PITPs), and the phosphatase SAC1, ensuring precise regulation across Golgi subdomains. Beyond its classical role in vesicular transport, PI4P orchestrates lipid exchange at membrane contact sites, enabling dynamic Golgi maturation and functional specialization. The interplay between PI4P, lipid transfer proteins, and Golgi adaptors underlies cargo sorting, glycosylation, and organelle architecture. Emerging evidence also highlights PI4P's role in oncogenesis and cellular signaling, positioning the Golgi as a critical hub beyond secretion. Yet, key questions remain regarding PI4P compartmentalization and its broader physiological impact. This review revisits PI4P's essential functions, integrating historical insights with recent discoveries to illuminate its pivotal role in Golgi biology and beyond.
Collapse
Affiliation(s)
- Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Marianna Fico
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy
| | - Rossella Venditti
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Meneghetti MCZ, Cavalheiro RP, Yates EA, Nader HB, Lima MA. Involvement of GTPases and vesicle adapter proteins in Heparan sulfate biosynthesis: role of Rab1A, Rab2A and GOLPH3. FEBS J 2025; 292:2237-2250. [PMID: 39804811 PMCID: PMC12062774 DOI: 10.1111/febs.17398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/16/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Vesicle trafficking is pivotal in heparan sulfate (HS) biosynthesis, influencing its spatial and temporal regulation within distinct Golgi compartments. This regulation modulates the sulfation pattern of HS, which is crucial for governing various biological processes. Here, we investigate the effects of silencing Rab1A and Rab2A expression on the localisation of 3-O-sulfotransferase-5 (3OST5) within Golgi compartments and subsequent alterations in HS structure and levels. Interestingly, silencing Rab1A led to a shift in 3OST5 localization towards the trans-Golgi, resulting in increased HS levels within 24 and 48 h, while silencing Rab2A caused 3OST5 accumulation in the cis-Golgi, with a delayed rise in HS content observed after 48 h. Furthermore, a compensatory mechanism was evident in Rab2A-silenced cells, where increased Rab1A protein expression was detected. This suggests a dynamic interplay between Rab1A and Rab2A in maintaining the fine balance of vesicle trafficking processes involved in HS biosynthesis. Additionally, we demonstrate that the trafficking of 3OST5 in COPI vesicles is facilitated by GOLPH3 protein. These findings identify novel vesicular transport mechanisms regulating HS biosynthesis and reveal a compensatory relationship between Rab1A and Rab2A in maintaining baseline HS production.
Collapse
Affiliation(s)
- Maria C. Z. Meneghetti
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de MedicinaUniversidade Federal de São PauloBrazil
| | - Renan P. Cavalheiro
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de MedicinaUniversidade Federal de São PauloBrazil
| | - Edwin A. Yates
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de MedicinaUniversidade Federal de São PauloBrazil
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolUK
| | - Helena B. Nader
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de MedicinaUniversidade Federal de São PauloBrazil
| | - Marcelo A. Lima
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de MedicinaUniversidade Federal de São PauloBrazil
- Centre for GlycoscienceKeele UniversityUK
| |
Collapse
|
3
|
Frappaolo A, Zaccagnini G, Giansanti MG. GOLPH3-mTOR Crosstalk and Glycosylation: A Molecular Driver of Cancer Progression. Cells 2025; 14:439. [PMID: 40136688 PMCID: PMC11941073 DOI: 10.3390/cells14060439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Originally identified in proteomic-based studies of the Golgi, Golgi phosphoprotein 3 (GOLPH3) is a highly conserved protein from yeast to humans. GOLPH3 localizes to the Golgi through the interaction with phosphatidylinositol-4-phosphate and is required for Golgi architecture and vesicular trafficking. Many studies revealed that the overexpression of GOLPH3 is associated with tumor metastasis and a poor prognosis in several cancer types, including breast cancer, glioblastoma multiforme, and colon cancer. The purpose of this review article is to provide the current progress of our understanding of GOLPH3 molecular and cellular functions, which may potentially reveal therapeutic avenues to inhibit its activity. Specifically, recent papers have demonstrated that GOLPH3 protein functions as a cargo adaptor for COP I-coated intra Golgi vesicles and impinges on Golgi glycosylation pathways. In turn, GOLPH3-dependent defects have been associated with malignant phenotypes in cancer cells. Additionally, the oncogenic activity of GOLPH3 has been linked with enhanced signaling downstream of mechanistic target of rapamycin (mTOR) in several cancer types. Consistent with these data, GOLPH3 controls organ growth in Drosophila by associating with mTOR signaling proteins. Finally, compelling evidence demonstrates that GOLPH3 is essential for cytokinesis, a process required for the maintenance of genomic stability.
Collapse
Affiliation(s)
| | | | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy; (A.F.); (G.Z.)
| |
Collapse
|
4
|
Zhang N, Julian JD, Zabotina OA. Multiprotein Complexes of Plant Glycosyltransferases Involved in Their Function and Trafficking. PLANTS (BASEL, SWITZERLAND) 2025; 14:350. [PMID: 39942912 PMCID: PMC11820401 DOI: 10.3390/plants14030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Plant cells utilize protein oligomerization for their functions in numerous important cellular processes. Protein-protein interactions are necessary to stabilize, optimize, and activate enzymes, as well as localize proteins to specific organelles and membranes. Glycosyltransferases-enzymes that attach sugars to polysaccharides, proteins, lipids, and RNA-across multiple plant biosynthetic processes have been demonstrated to interact with one another. The mechanisms behind these interactions are still unknown, but recent research has highlighted extensive examples of protein-protein interactions, specifically in the plant cell wall hemicellulose and pectin biosynthesis that takes place in the Golgi apparatus. In this review, we will discuss what is known so far about the interactions among Golgi-localized glycosyltransferases that are important for their functioning, trafficking, as well as structural aspects.
Collapse
Affiliation(s)
| | | | - Olga A. Zabotina
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (N.Z.); (J.D.J.)
| |
Collapse
|
5
|
Yu X, Mousley CJ, Bankaitis VA, Iyer P. A budding yeast-centric view of oxysterol binding protein family function. Adv Biol Regul 2025; 95:101061. [PMID: 39613716 DOI: 10.1016/j.jbior.2024.101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
The Trans Golgi Network (TGN)/endosomal system is a sorting center for cargo brought via the anterograde secretory pathway and the endocytic pathway that internalizes material from the plasma membrane. As many of the cargo that transit this central trafficking hub are components of key homeostatic signaling pathways, TGN/endosomes define a critical signaling hub for cellular growth control. A particularly interesting yet incompletely understood aspect of regulation of TGN/endosome function is control of this system by two families of lipid exchange/lipid transfer proteins. The phosphatidylinositol transfer proteins promote pro-trafficking phosphoinositide (i.e. phosphatidylinositol-4-phosphate) signaling pathways whereas proteins of the oxysterol binding protein family play reciprocal roles in antagonizing those arms of phosphoinositide signaling. The precise mechanisms for how these lipid binding proteins execute their functions remain to be resolved. Moreover, information regarding the coupling of individual members of the oxysterol binding protein family to specific biological activities is particularly sparse. Herein, we review what is being learned regarding functions of the oxysterol binding protein family in the yeast model system. Focus is primarily directed at a discussion of the Kes1/Osh4 protein for which the most information is available.
Collapse
Affiliation(s)
- Xiaohan Yu
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Carl J Mousley
- School of Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Vytas A Bankaitis
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
| | - Prasanna Iyer
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
6
|
Yang X, Doray B, Venkatarangan V, Jennings BC, Henn D, Liang J, Zhao H, Zhang W, Zhang B, Yu L, Chen L, Kornfeld S, Li M. Molecular Insights into the Regulation of GNPTAB by TMEM251. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627003. [PMID: 39677738 PMCID: PMC11643035 DOI: 10.1101/2024.12.05.627003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
In vertebrates, newly synthesized lysosomal enzymes traffick to lysosomes through the mannose-6-phosphate (M6P) pathway. The Golgi membrane protein TMEM251 was recently discovered to regulate lysosome biogenesis by controlling the level of GlcNAc-1-phosphotransferase (GNPT). However, its precise function remained unclear. In this study, we demonstrate that TMEM251 is a two-transmembrane protein indispensable for GNPT stability, cleavage by Site-1-Protease (S1P), and enzymatic activity. We reconcile conflicting models by showing that TMEM251 enhances GNPT cleavage and prevents its mislocalization to lysosomes for degradation. We further establish that TMEM251 achieves this by interacting with GOLPH3 and retromer complexes to anchor the TMEM251-GNPT complex at the Golgi. Alanine mutagenesis identified F4XXR7 motif in TMEM251's N-tail for GOLPH3 binding. Together, our findings uncover TMEM251's multi-faceted role in stabilizing GNPT, retaining it at the Golgi, and ensuring the fidelity of the M6P pathway, thereby providing insights into its molecular function.
Collapse
Affiliation(s)
- Xi Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Current address: Department of Biological Sciences, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA
| | - Balraj Doray
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Mo 63110, USA
| | - Varsha Venkatarangan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin C. Jennings
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Mo 63110, USA
| | - Danielle Henn
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiaxuan Liang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Haikun Zhao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weichao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bokai Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Linchen Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Liang Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Mo 63110, USA
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Brauer BK, Chen Z, Beirow F, Li J, Meisinger D, Capriotti E, Schweizer M, Wagner L, Wienberg J, Hobohm L, Blume L, Qiao W, Narimatsu Y, Carette JE, Clausen H, Winter D, Braulke T, Jabs S, Voss M. GOLPH3 and GOLPH3L maintain Golgi localization of LYSET and a functional mannose 6-phosphate transport pathway. EMBO J 2024; 43:6264-6290. [PMID: 39587297 PMCID: PMC11649813 DOI: 10.1038/s44318-024-00305-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Glycosylation, which plays an important role in modifying lipids and sorting of proteins, is regulated by asymmetric intra-Golgi distribution and SPPL3-mediated cleavage of Golgi enzymes. We found that cells lacking LYSET/TMEM251, a retention factor for Golgi N-acetylglucosamine-1-phosphotransferase (GNPT), display SPPL3-dependent hypersecretion of the Golgi membrane protein B4GALT5. We demonstrate that in wild-type cells B4GALT5 is tagged with mannose 6-phosphate (M6P), a sorting tag typical of soluble lysosomal hydrolases. Hence, M6P-tagging of B4GALT5 may represent a novel degradative lysosomal pathway. We also observed B4GALT5 hypersecretion and prominent destabilization of LYSET-GNPT complexes, impaired M6P-tagging, and disturbed maturation and trafficking of lysosomal enzymes in multiple human cell lines lacking the COPI adaptors GOLPH3 and GOLPH3L. Mechanistically, we identified LYSET as a novel, atypical client of GOLPH3/GOLPH3L. Thus, by ensuring the cis-Golgi localization of the LYSET-GNPT complex and maintaining its Golgi polarity, GOLPH3/GOLPH3L is essential for the integrity of the M6P-tagging machinery and homeostasis of lysosomes.
Collapse
Affiliation(s)
- Berit K Brauer
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Zilei Chen
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Felix Beirow
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Jiaran Li
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | | | - Emanuela Capriotti
- Department of Osteology and Biomechanics, Cell Biology of Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Morphology and Electron Microscopy, University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH), Hamburg, Germany
| | - Lea Wagner
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | | | - Laura Hobohm
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Lukas Blume
- Institute of Biochemistry, Kiel University, Kiel, Germany
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yoshiki Narimatsu
- Faculty of Health Sciences, Centre for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Henrik Clausen
- Faculty of Health Sciences, Centre for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Thomas Braulke
- Department of Osteology and Biomechanics, Cell Biology of Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Jabs
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Matthias Voss
- Institute of Biochemistry, Kiel University, Kiel, Germany.
| |
Collapse
|
8
|
Ishida M, Golding AE, Keren-Kaplan T, Li Y, Balla T, Bonifacino JS. ARMH3 is an ARL5 effector that promotes PI4KB-catalyzed PI4P synthesis at the trans-Golgi network. Nat Commun 2024; 15:10168. [PMID: 39580461 PMCID: PMC11585589 DOI: 10.1038/s41467-024-54410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024] Open
Abstract
ARL5 is a member of the ARF family of small GTPases that is recruited to the trans-Golgi network (TGN) by another ARF-family member, ARFRP1, in complex with the transmembrane protein SYS1. ARL5 recruits its effector, the multisubunit tethering complex GARP, to promote SNARE-dependent fusion of endosome-derived retrograde transport carriers with the TGN. To further investigate the function of ARL5, we sought to identify additional effectors. Using proximity biotinylation and protein interaction assays, we found that the armadillo-repeat protein ARMH3 (C10orf76) binds to active, but not inactive, ARL5, and that it is recruited to the TGN in a SYS1-ARFRP1-ARL5-dependent manner. Unlike GARP, ARMH3 is not required for the retrograde transport of various cargo proteins. Instead, ARMH3 functions to activate phosphatidylinositol 4-kinase IIIβ (PI4KB), accounting for the main pool of phosphatidylinositol 4-phosphate (PI4P) at the TGN. This function contributes to recruitment of the oncoprotein GOLPH3 and glycan modifications at the TGN. These studies thus identify the SYS1-ARFRP1-ARL5-ARMH3 axis as a regulator of PI4KB-dependent generation of PI4P at the TGN.
Collapse
Affiliation(s)
- Morié Ishida
- Division of Neurosciences and Cellular Structure, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Adriana E Golding
- Division of Neurosciences and Cellular Structure, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tal Keren-Kaplan
- Division of Neurosciences and Cellular Structure, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Juan S Bonifacino
- Division of Neurosciences and Cellular Structure, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Sou YS, Yamaguchi J, Masuda K, Uchiyama Y, Maeda Y, Koike M. Golgi pH homeostasis stabilizes the lysosomal membrane through N-glycosylation of membrane proteins. Life Sci Alliance 2024; 7:e202402677. [PMID: 39079741 PMCID: PMC11289521 DOI: 10.26508/lsa.202402677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Protein glycosylation plays a vital role in various cellular functions, many of which occur within the Golgi apparatus. The Golgi pH regulator (GPHR) is essential for the proper functioning of the Golgi apparatus. The lysosomal membrane contains highly glycosylated membrane proteins in abundance. This study investigated the role of the Golgi luminal pH in N-glycosylation of lysosomal membrane proteins and the effect of this protein modification on membrane stability using Gphr-deficient MEFs. We showed that Gphr deficiency causes an imbalance in the Golgi luminal pH, resulting in abnormal protein N-glycosylation, indicated by a reduction in sialylated glycans and markedly reduced molecular weight of glycoproteins. Further experiments using FRAP and PLA revealed that Gphr deficiency prevented the trafficking dynamics and proximity condition of glycosyltransferases in the Golgi apparatus. In addition, incomplete N-glycosylation of lysosomal membrane proteins affected lysosomal membrane stability, as demonstrated by the increased susceptibility to lysosomal damage. Thus, this study highlights the critical role of Golgi pH regulation in controlling protein glycosylation and the impact of Golgi dysfunction on lysosomal membrane stability.
Collapse
Affiliation(s)
- Yu-Shin Sou
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Junji Yamaguchi
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Bunkyo, Japan
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Keisuke Masuda
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Yusuke Maeda
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| |
Collapse
|
10
|
Voss M. Proteolytic cleavage of Golgi glycosyltransferases by SPPL3 and other proteases and its implications for cellular glycosylation. Biochim Biophys Acta Gen Subj 2024; 1868:130668. [PMID: 38992482 DOI: 10.1016/j.bbagen.2024.130668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Glycosylation of proteins and lipids is of fundamental importance in multicellular eukaryotes. The vast diversity of glycan structures observed is generated in the Golgi apparatus by the concerted activity of >100 distinct enzymes, which include glycosyltransferases and other glycan-modifying enzymes. Well-known for decades, the majority of these enzymes is released from the Golgi apparatus and subsequently secreted into the extracellular space following endoproteolytic cleavage, but the underlying molecular mechanisms and the physiological implications have remained unexplored. This review will summarize our current knowledge of Golgi enzyme proteolysis and secretion and will discuss its conceptual implications for the regulation of cellular glycosylation and the organization of the Golgi apparatus. A particular focus will lie on the intramembrane protease SPPL3, which recently emerged as key protease facilitating Golgi enzyme release and has since been shown to affect a multitude of glycosylation-dependent physiological processes.
Collapse
Affiliation(s)
- Matthias Voss
- Institute of Biochemistry, Kiel University, Kiel, Germany.
| |
Collapse
|
11
|
Welch LG, Muschalik N, Munro S. The FAM114A proteins are adaptors for the recycling of Golgi enzymes. J Cell Sci 2024; 137:jcs262160. [PMID: 39129673 PMCID: PMC11441981 DOI: 10.1242/jcs.262160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
Golgi-resident enzymes remain in place while their substrates flow through from the endoplasmic reticulum to elsewhere in the cell. COPI-coated vesicles bud from the Golgi to recycle Golgi residents to earlier cisternae. Different enzymes are present in different parts of the stack, and one COPI adaptor protein, GOLPH3, acts to recruit enzymes into vesicles in part of the stack. Here, we used proximity biotinylation to identify further components of intra-Golgi vesicles and found FAM114A2, a cytosolic protein. Affinity chromatography with FAM114A2, and its paralogue FAM114A1, showed that they bind to Golgi-resident membrane proteins, with membrane-proximal basic residues in the cytoplasmic tail being sufficient for the interaction. Deletion of both proteins from U2OS cells did not cause substantial defects in Golgi function. However, a Drosophila orthologue of these proteins (CG9590/FAM114A) is also localised to the Golgi and binds directly to COPI. Drosophila mutants lacking FAM114A have defects in glycosylation of glue proteins in the salivary gland. Thus, the FAM114A proteins bind Golgi enzymes and are candidate adaptors to contribute specificity to COPI vesicle recycling in the Golgi stack.
Collapse
Affiliation(s)
- Lawrence G. Welch
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Nadine Muschalik
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
12
|
Lujan P, Garcia-Cabau C, Wakana Y, Vera Lillo J, Rodilla-Ramírez C, Sugiura H, Malhotra V, Salvatella X, Garcia-Parajo MF, Campelo F. Sorting of secretory proteins at the trans-Golgi network by human TGN46. eLife 2024; 12:RP91708. [PMID: 38466628 PMCID: PMC10928510 DOI: 10.7554/elife.91708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Secretory proteins are sorted at the trans-Golgi network (TGN) for export into specific transport carriers. However, the molecular players involved in this fundamental process remain largely elusive. Here, we identified the human transmembrane protein TGN46 as a receptor for the export of secretory cargo protein PAUF in CARTS - a class of protein kinase D-dependent TGN-to-plasma membrane carriers. We show that TGN46 is necessary for cargo sorting and loading into nascent carriers at the TGN. By combining quantitative fluorescence microscopy and mutagenesis approaches, we further discovered that the lumenal domain of TGN46 encodes for its cargo sorting function. In summary, our results define a cellular function of TGN46 in sorting secretory proteins for export from the TGN.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Javier Vera Lillo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Carmen Rodilla-Ramírez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Hideaki Sugiura
- School of Life Sciences, Tokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
13
|
Abstract
The sorting and trafficking of lipids between organelles gives rise to a dichotomy of bulk membrane properties between organelles of the secretory and endolysosome networks, giving rise to two "membrane territories" based on differences in lipid-packing density, net membrane charge, and bilayer leaflet asymmetries. The cellular organelle membrane dichotomy emerges from ER-to-PM anterograde membrane trafficking and the synthesis of sphingolipids and cholesterol flux at the trans-Golgi network, which constitutes the interface between the two membrane territories. Organelle homeostasis is maintained by vesicle-mediated retrieval of bulk membrane from the distal organelles of each territory to the endoplasmic reticulum or plasma membrane and by soluble lipid transfer proteins that traffic particular lipids. The concept of cellular membrane territories emphasizes the contrasting features of organelle membranes of the secretory and endolysosome networks and the essential roles of lipid-sorting pathways that maintain organelle function.
Collapse
Affiliation(s)
- Yeongho Kim
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Christopher G Burd
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
14
|
Zhu X, Yin J, Guo H, Wang Y, Ma B. Vesicle trafficking in rice: too little is known. FRONTIERS IN PLANT SCIENCE 2023; 14:1263966. [PMID: 37790794 PMCID: PMC10543891 DOI: 10.3389/fpls.2023.1263966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023]
Abstract
The vesicle trafficking apparatus is a fundamental machinery to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. Thus, it is broadly conserved in eukaryotes including plants. Intensive studies in the model organisms have produced a comprehensive picture of vesicle trafficking in yeast and human. However, with respect to the vesicle trafficking of plants including rice, our understanding of the components and their coordinated regulation is very limited. At present, several vesicle trafficking apparatus components and cargo proteins have been identified and characterized in rice, but there still remain large unknowns concerning the organization and function of the rice vesicle trafficking system. In this review, we outline the main vesicle trafficking pathways of rice based on knowledge obtained in model organisms, and summarize current advances of rice vesicle trafficking. We also propose to develop methodologies applicable to rice and even other crops for further exploring the mysteries of vesicle trafficking in plants.
Collapse
Affiliation(s)
- Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Hongming Guo
- Environment-friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yuping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Bingtian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Rosenkranz AA, Slastnikova TA. Prospects of Using Protein Engineering for Selective Drug Delivery into a Specific Compartment of Target Cells. Pharmaceutics 2023; 15:pharmaceutics15030987. [PMID: 36986848 PMCID: PMC10055131 DOI: 10.3390/pharmaceutics15030987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
A large number of proteins are successfully used to treat various diseases. These include natural polypeptide hormones, their synthetic analogues, antibodies, antibody mimetics, enzymes, and other drugs based on them. Many of them are demanded in clinical settings and commercially successful, mainly for cancer treatment. The targets for most of the aforementioned drugs are located at the cell surface. Meanwhile, the vast majority of therapeutic targets, which are usually regulatory macromolecules, are located inside the cell. Traditional low molecular weight drugs freely penetrate all cells, causing side effects in non-target cells. In addition, it is often difficult to elaborate a small molecule that can specifically affect protein interactions. Modern technologies make it possible to obtain proteins capable of interacting with almost any target. However, proteins, like other macromolecules, cannot, as a rule, freely penetrate into the desired cellular compartment. Recent studies allow us to design multifunctional proteins that solve these problems. This review considers the scope of application of such artificial constructs for the targeted delivery of both protein-based and traditional low molecular weight drugs, the obstacles met on the way of their transport to the specified intracellular compartment of the target cells after their systemic bloodstream administration, and the means to overcome those difficulties.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
16
|
Sumya FT, Pokrovskaya ID, D'Souza Z, Lupashin VV. Acute COG complex inactivation unveiled its immediate impact on Golgi and illuminated the nature of intra-Golgi recycling vesicles. Traffic 2023; 24:52-75. [PMID: 36468177 PMCID: PMC9969905 DOI: 10.1111/tra.12876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Conserved Oligomeric Golgi (COG) complex controls Golgi trafficking and glycosylation, but the precise COG mechanism is unknown. The auxin-inducible acute degradation system was employed to investigate initial defects resulting from COG dysfunction. We found that acute COG inactivation caused a massive accumulation of COG-dependent (CCD) vesicles that carry the bulk of Golgi enzymes and resident proteins. v-SNAREs (GS15, GS28) and v-tethers (giantin, golgin84, and TMF1) were relocalized into CCD vesicles, while t-SNAREs (STX5, YKT6), t-tethers (GM130, p115), and most of Rab proteins remained Golgi-associated. Airyscan microscopy and velocity gradient analysis revealed that different Golgi residents are segregated into different populations of CCD vesicles. Acute COG depletion significantly affected three Golgi-based vesicular coats-COPI, AP1, and GGA, suggesting that COG uniquely orchestrates tethering of multiple types of intra-Golgi CCD vesicles produced by different coat machineries. This study provided the first detailed view of primary cellular defects associated with COG dysfunction in human cells.
Collapse
Affiliation(s)
- Farhana Taher Sumya
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Irina D. Pokrovskaya
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Zinia D'Souza
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Vladimir V. Lupashin
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
17
|
Khakurel A, Kudlyk T, Pokrovskaya I, D’Souza Z, Lupashin VV. GARP dysfunction results in COPI displacement, depletion of Golgi v-SNAREs and calcium homeostasis proteins. Front Cell Dev Biol 2022; 10:1066504. [PMID: 36578782 PMCID: PMC9791199 DOI: 10.3389/fcell.2022.1066504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Golgi-associated retrograde protein (GARP) is an evolutionary conserved heterotetrameric protein complex that tethers endosome-derived vesicles and is vital for Golgi glycosylation. Microscopy and proteomic approaches were employed to investigate defects in Golgi physiology in RPE1 cells depleted for the GARP complex. Both cis and trans-Golgi compartments were significantly enlarged in GARP-knock-out (KO) cells. Proteomic analysis of Golgi-enriched membranes revealed significant depletion of a subset of Golgi residents, including Ca2+ binding proteins, enzymes, and SNAREs. Validation of proteomics studies revealed that SDF4 and ATP2C1, related to Golgi calcium homeostasis, as well as intra-Golgi v-SNAREs GOSR1 and BET1L, were significantly depleted in GARP-KO cells. Finding that GARP-KO is more deleterious to Golgi physiology than deletion of GARP-sensitive v-SNAREs, prompted a detailed investigation of COPI trafficking machinery. We discovered that in GARP-KO cells COPI is significantly displaced from the Golgi and partially relocalized to the ER-Golgi intermediate compartment (ERGIC). Moreover, COPI accessory proteins GOLPH3, ARFGAP1, GBF1, and BIG1 are also relocated to off-Golgi compartments. We propose that the dysregulation of COPI machinery, along with the depletion of Golgi v-SNAREs and alteration of Golgi Ca2+ homeostasis, are the major driving factors for the depletion of Golgi resident proteins, structural alterations, and glycosylation defects in GARP deficient cells.
Collapse
Affiliation(s)
| | | | | | | | - Vladimir V. Lupashin
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
18
|
Truberg J, Hobohm L, Jochimsen A, Desel C, Schweizer M, Voss M. Endogenous tagging reveals a mid-Golgi localization of the glycosyltransferase-cleaving intramembrane protease SPPL3. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119345. [PMID: 36007678 DOI: 10.1016/j.bbamcr.2022.119345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Numerous Golgi-resident enzymes implicated in glycosylation are regulated by the conserved intramembrane protease SPPL3. SPPL3-catalyzed endoproteolysis separates Golgi enzymes from their membrane anchors, enabling subsequent release from the Golgi and secretion. Experimentally altered SPPL3 expression changes glycosylation patterns, yet the regulation of SPPL3-mediated Golgi enzyme cleavage is not understood and conflicting results regarding the subcellular localization of SPPL3 have been reported. Here, we used precise genome editing to generate isogenic cell lines expressing N- or C-terminally tagged SPPL3 from its endogenous locus. Using these cells, we conducted co-localization analyses of tagged endogenous SPPL3 and Golgi markers under steady-state conditions and upon treatment with drugs disrupting Golgi organization. Our data demonstrate that endogenous SPPL3 is Golgi-resident and found predominantly in the mid-Golgi. We find that endogenous SPPL3 co-localizes with its substrates but similarly with non-substrate type II proteins, demonstrating that in addition to co-localization in the Golgi other substrate-intrinsic properties govern SPPL3-mediated intramembrane proteolysis. Given the prevalence of SPPL3-mediated cleavage among Golgi-resident proteins our results have important implications for the regulation of SPPL3 and its role in the organization of the Golgi glycosylation machinery.
Collapse
Affiliation(s)
- Jule Truberg
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, D-24118 Kiel, Germany
| | - Laura Hobohm
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, D-24118 Kiel, Germany
| | - Alexander Jochimsen
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, D-24118 Kiel, Germany
| | - Christine Desel
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, D-24118 Kiel, Germany
| | - Michaela Schweizer
- Morphology and Electron Microscopy, University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH), 20251 Hamburg, Germany
| | - Matthias Voss
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, D-24118 Kiel, Germany.
| |
Collapse
|
19
|
Ruggiero FM, Martínez-Koteski N, Fidelio GD, Vilcaes AA, Daniotti JL. Golgi Phosphoprotein 3 Regulates the Physical Association of Glycolipid Glycosyltransferases. Int J Mol Sci 2022; 23:10354. [PMID: 36142273 PMCID: PMC9499508 DOI: 10.3390/ijms231810354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/20/2022] Open
Abstract
Glycolipid glycosylation is an intricate process that mainly takes place in the Golgi by the complex interplay between glycosyltransferases. Several features such as the organization, stoichiometry and composition of these complexes may modify their sorting properties, sub-Golgi localization, enzymatic activity and in consequence, the pattern of glycosylation at the plasma membrane. In spite of the advance in our comprehension about physiological and pathological cellular states of glycosylation, the molecular basis underlying the metabolism of glycolipids and the players involved in this process remain not fully understood. In the present work, using biochemical and fluorescence microscopy approaches, we demonstrate the existence of a physical association between two ganglioside glycosyltransferases, namely, ST3Gal-II (GD1a synthase) and β3GalT-IV (GM1 synthase) with Golgi phosphoprotein 3 (GOLPH3) in mammalian cultured cells. After GOLPH3 knockdown, the localization of both enzymes was not affected, but the fomation of ST3Gal-II/β3GalT-IV complex was compromised and glycolipid expression pattern changed. Our results suggest a novel control mechanism of glycolipid expression through the regulation of the physical association between glycolipid glycosyltransferases mediated by GOLPH3.
Collapse
Affiliation(s)
- Fernando M. Ruggiero
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Natalia Martínez-Koteski
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Gerardo D. Fidelio
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Aldo A. Vilcaes
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Jose L. Daniotti
- CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| |
Collapse
|
20
|
Sahu P, Balakrishnan A, Di Martino R, Luini A, Russo D. Role of the Mosaic Cisternal Maturation Machinery in Glycan Synthesis and Oncogenesis. Front Cell Dev Biol 2022; 10:842448. [PMID: 35465326 PMCID: PMC9019784 DOI: 10.3389/fcell.2022.842448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/24/2022] [Indexed: 12/20/2022] Open
Abstract
Tumorigenesis is associated with the deregulation of multiple processes, among which the glycosylation of lipids and proteins is one of the most extensively affected. However, in most cases, it remains unclear whether aberrant glycosylation is a cause, a link in the pathogenetic chain, or a mere consequence of tumorigenesis. In other cases, instead, studies have shown that aberrant glycans can promote oncogenesis. To comprehend how aberrant glycans are generated it is necessary to clarify the underlying mechanisms of glycan synthesis at the Golgi apparatus, which are still poorly understood. Important factors that determine the glycosylation potential of the Golgi apparatus are the levels and intra-Golgi localization of the glycosylation enzymes. These factors are regulated by the process of cisternal maturation which transports the cargoes through the Golgi apparatus while retaining the glycosylation enzymes in the organelle. This mechanism has till now been considered a single, house-keeping and constitutive function. Instead, we here propose that it is a mosaic of pathways, each controlling specific set of functionally related glycosylation enzymes. This changes the conception of cisternal maturation from a constitutive to a highly regulated function. In this new light, we discuss potential new groups oncogenes among the cisternal maturation machinery that can contribute to aberrant glycosylation observed in cancer cells. Further, we also discuss the prospects of novel anticancer treatments targeting the intra-Golgi trafficking process, particularly the cisternal maturation mechanism, to control/inhibit the production of pro-tumorigenic glycans.
Collapse
Affiliation(s)
| | | | | | - A. Luini
- *Correspondence: A. Luini, ; D. Russo,
| | - D. Russo
- *Correspondence: A. Luini, ; D. Russo,
| |
Collapse
|
21
|
Zhang N, Zabotina OA. Critical Determinants in ER-Golgi Trafficking of Enzymes Involved in Glycosylation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030428. [PMID: 35161411 PMCID: PMC8840164 DOI: 10.3390/plants11030428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 05/03/2023]
Abstract
All living cells generate structurally complex and compositionally diverse spectra of glycans and glycoconjugates, critical for organismal evolution, development, functioning, defense, and survival. Glycosyltransferases (GTs) catalyze the glycosylation reaction between activated sugar and acceptor substrate to synthesize a wide variety of glycans. GTs are distributed among more than 130 gene families and are involved in metabolic processes, signal pathways, cell wall polysaccharide biosynthesis, cell development, and growth. Glycosylation mainly takes place in the endoplasmic reticulum (ER) and Golgi, where GTs and glycosidases involved in this process are distributed to different locations of these compartments and sequentially add or cleave various sugars to synthesize the final products of glycosylation. Therefore, delivery of these enzymes to the proper locations, the glycosylation sites, in the cell is essential and involves numerous secretory pathway components. This review presents the current state of knowledge about the mechanisms of protein trafficking between ER and Golgi. It describes what is known about the primary components of protein sorting machinery and trafficking, which are recognition sites on the proteins that are important for their interaction with the critical components of this machinery.
Collapse
|
22
|
N-acetylglucosaminyltransferase-V requires a specific noncatalytic luminal domain for its activity toward glycoprotein substrates. J Biol Chem 2022; 298:101666. [PMID: 35104505 PMCID: PMC8889256 DOI: 10.1016/j.jbc.2022.101666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 01/11/2023] Open
Abstract
N-acetylglucosaminyltransferase-V (GnT-V or MGAT5) catalyzes the formation of an N-glycan β1,6-GlcNAc branch on selective target proteins in the Golgi apparatus and is involved in cancer malignancy and autoimmune disease etiology. Several three-dimensional structures of GnT-V were recently solved, and the recognition mechanism of the oligosaccharide substrate was clarified. However, it is still unclear how GnT-V selectively acts on glycoprotein substrates. In this study, we focused on an uncharacterized domain at the N-terminal side of the luminal region (N domain) of GnT-V, which was previously identified in a crystal structure, and aimed to reveal its role in GnT-V action. Using lectin blotting and fluorescence assisted cell sorting analysis, we found that a GnT-VΔN mutant lacking the N domain showed impaired biosynthetic activity in cells, indicating that the N domain is required for efficient glycosylation. To clarify this mechanism, we measured the in vitro activity of purified GnT-VΔN toward various kinds of substrates (oligosaccharide, glycohexapeptide, and glycoprotein) using HPLC and a UDP-Glo assay. Surprisingly, GnT-VΔN showed substantially reduced activity toward the glycoprotein substrates, whereas it almost fully maintained its activity toward the oligosaccharides and the glycopeptide substrates. Finally, docking models of GnT-V with substrate glycoproteins suggested that the N domain could interact with the substrate polypeptide directly. Our findings suggest that the N domain of GnT-V plays a critical role in the recognition of glycoprotein substrates, providing new insights into the mechanism of substrate-selective biosynthesis of N-glycans.
Collapse
|
23
|
Araki E, Hane M, Hatanaka R, Kimura R, Tsuda K, Konishi M, Komura N, Ando H, Kitajima K, Sato C. Analysis of biochemical features of ST8 α-N-acetyl-neuraminide α2,8-sialyltransferase (St8sia) 5 isoforms. Glycoconj J 2022; 39:291-302. [PMID: 34982351 DOI: 10.1007/s10719-021-10034-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
Gangliosides are important components of the membrane and are involved in many biological activities. St8sia5 is an α2,8-sialyltransferase involved in ganglioside synthesis, and has three isoforms. In this study, we analyzed the features of three isoforms, St8sia5-S, -M, and -L that had not been analyzed, and found that only St8sia5-L was localized in the Golgi, while the majority of St8sia5-M and -S were localized in the ER. The localization of Golgi of St8sia5 depended on the stem region. In addition, the incorporation of exogenous GD3 was upregulated only in St8sia5-L expressing cells. Taken together, the localization of St8sia5 is important for the activity of the enzyme.
Collapse
Affiliation(s)
- Erino Araki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Masaya Hane
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Rina Hatanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ryota Kimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Kana Tsuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Miku Konishi
- Institute for Glyco-Core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Naoko Komura
- Institute for Glyco-Core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hiromune Ando
- Institute for Glyco-Core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Ken Kitajima
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Chihiro Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
- Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
24
|
Hellicar J, Stevenson NL, Stephens DJ, Lowe M. Supply chain logistics - the role of the Golgi complex in extracellular matrix production and maintenance. J Cell Sci 2022; 135:273996. [PMID: 35023559 PMCID: PMC8767278 DOI: 10.1242/jcs.258879] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The biomechanical and biochemical properties of connective tissues are determined by the composition and quality of their extracellular matrix. This, in turn, is highly dependent on the function and organisation of the secretory pathway. The Golgi complex plays a vital role in directing matrix output by co-ordinating the post-translational modification and proteolytic processing of matrix components prior to their secretion. These modifications have broad impacts on the secretion and subsequent assembly of matrix components, as well as their function in the extracellular environment. In this Review, we highlight the role of the Golgi in the formation of an adaptable, healthy matrix, with a focus on proteoglycan and procollagen secretion as example cargoes. We then discuss the impact of Golgi dysfunction on connective tissue in the context of human disease and ageing.
Collapse
Affiliation(s)
- John Hellicar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673
| | - Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
25
|
Chen L, Tu L, Yang G, Banfield DK. Remodeling-defective GPI-anchored proteins on the plasma membrane activate the spindle assembly checkpoint. Cell Rep 2021; 37:110120. [PMID: 34965437 DOI: 10.1016/j.celrep.2021.110120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 10/18/2021] [Accepted: 11/19/2021] [Indexed: 01/15/2023] Open
Abstract
Newly synthesized glycosylphosphatidylinositol-anchored proteins (GPI-APs) undergo extensive remodeling prior to transport to the plasma membrane. GPI-AP remodeling events serve as quality assurance signatures, and complete remodeling of the anchor functions as a transport warrant. Using a genetic approach in yeast cells, we establish that one remodeling event, the removal of ethanolamine-phosphate from mannose 2 via Ted1p (yPGAP5), is essential for cell viability in the absence of the Golgi-localized putative phosphodiesterase Dcr2p. While GPI-APs in which mannose 2 has not been remodeled in dcr2 ted1-deficient cells can still be delivered to the plasma membrane, their presence elicits a unique stress response. Stress is sensed by Mid2p, a constituent of the cell wall integrity pathway, whereupon signal promulgation culminates in activation of the spindle assembly checkpoint. Our results are consistent with a model in which cellular stress response and chromosome segregation checkpoint pathways are functionally interconnected.
Collapse
Affiliation(s)
- Li Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | - Linna Tu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | - Gege Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | - David K Banfield
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China.
| |
Collapse
|
26
|
Ford C, Parchure A, von Blume J, Burd CG. Cargo sorting at the trans-Golgi network at a glance. J Cell Sci 2021; 134:jcs259110. [PMID: 34870705 PMCID: PMC8714066 DOI: 10.1242/jcs.259110] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Golgi functions principally in the biogenesis and trafficking of glycoproteins and lipids. It is compartmentalized into multiple flattened adherent membrane sacs termed cisternae, which each contain a distinct repertoire of resident proteins, principally enzymes that modify newly synthesized proteins and lipids sequentially as they traffic through the stack of Golgi cisternae. Upon reaching the final compartments of the Golgi, the trans cisterna and trans-Golgi network (TGN), processed glycoproteins and lipids are packaged into coated and non-coated transport carriers derived from the trans Golgi and TGN. The cargoes of clathrin-coated vesicles are chiefly residents of endo-lysosomal organelles, while uncoated carriers ferry cargo to the cell surface. There are outstanding questions regarding the mechanisms of protein and lipid sorting within the Golgi for export to different organelles. Nonetheless, conceptual advances have begun to define the key molecular features of cargo clients and the mechanisms underlying their sorting into distinct export pathways, which we have collated in this Cell Science at a Glance article and the accompanying poster.
Collapse
Affiliation(s)
| | | | - Julia von Blume
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Christopher G. Burd
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
27
|
Sardana R, Highland CM, Straight BE, Chavez CF, Fromme JC, Emr SD. Golgi membrane protein Erd1 Is essential for recycling a subset of Golgi glycosyltransferases. eLife 2021; 10:e70774. [PMID: 34821548 PMCID: PMC8616560 DOI: 10.7554/elife.70774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
Protein glycosylation in the Golgi is a sequential process that requires proper distribution of transmembrane glycosyltransferase enzymes in the appropriate Golgi compartments. Some of the cytosolic machinery required for the steady-state localization of some Golgi enzymes are known but existing models do not explain how many of these enzymes are localized. Here, we uncover the role of an integral membrane protein in yeast, Erd1, as a key facilitator of Golgi glycosyltransferase recycling by directly interacting with both the Golgi enzymes and the cytosolic receptor, Vps74. Loss of Erd1 function results in mislocalization of Golgi enzymes to the vacuole/lysosome. We present evidence that Erd1 forms an integral part of the recycling machinery and ensures productive recycling of several early Golgi enzymes. Our work provides new insights on how the localization of Golgi glycosyltransferases is spatially and temporally regulated, and is finely tuned to the cues of Golgi maturation.
Collapse
Affiliation(s)
- Richa Sardana
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
- Department of Molecular Medicine, Cornell UniversityIthacaUnited States
| | - Carolyn M Highland
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Beth E Straight
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Christopher F Chavez
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Scott D Emr
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| |
Collapse
|
28
|
D’Souza Z, Sumya FT, Khakurel A, Lupashin V. Getting Sugar Coating Right! The Role of the Golgi Trafficking Machinery in Glycosylation. Cells 2021; 10:cells10123275. [PMID: 34943782 PMCID: PMC8699264 DOI: 10.3390/cells10123275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022] Open
Abstract
The Golgi is the central organelle of the secretory pathway and it houses the majority of the glycosylation machinery, which includes glycosylation enzymes and sugar transporters. Correct compartmentalization of the glycosylation machinery is achieved by retrograde vesicular trafficking as the secretory cargo moves forward by cisternal maturation. The vesicular trafficking machinery which includes vesicular coats, small GTPases, tethers and SNAREs, play a major role in coordinating the Golgi trafficking thereby achieving Golgi homeostasis. Glycosylation is a template-independent process, so its fidelity heavily relies on appropriate localization of the glycosylation machinery and Golgi homeostasis. Mutations in the glycosylation enzymes, sugar transporters, Golgi ion channels and several vesicle tethering factors cause congenital disorders of glycosylation (CDG) which encompass a group of multisystem disorders with varying severities. Here, we focus on the Golgi vesicle tethering and fusion machinery, namely, multisubunit tethering complexes and SNAREs and their role in Golgi trafficking and glycosylation. This review is a comprehensive summary of all the identified CDG causing mutations of the Golgi trafficking machinery in humans.
Collapse
|
29
|
Pothukuchi P, Agliarulo I, Pirozzi M, Rizzo R, Russo D, Turacchio G, Nüchel J, Yang JS, Gehin C, Capolupo L, Hernandez-Corbacho MJ, Biswas A, Vanacore G, Dathan N, Nitta T, Henklein P, Thattai M, Inokuchi JI, Hsu VW, Plomann M, Obeid LM, Hannun YA, Luini A, D'Angelo G, Parashuraman S. GRASP55 regulates intra-Golgi localization of glycosylation enzymes to control glycosphingolipid biosynthesis. EMBO J 2021; 40:e107766. [PMID: 34516001 PMCID: PMC8521277 DOI: 10.15252/embj.2021107766] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
The Golgi apparatus, the main glycosylation station of the cell, consists of a stack of discontinuous cisternae. Glycosylation enzymes are usually concentrated in one or two specific cisternae along the cis‐trans axis of the organelle. How such compartmentalized localization of enzymes is achieved and how it contributes to glycosylation are not clear. Here, we show that the Golgi matrix protein GRASP55 directs the compartmentalized localization of key enzymes involved in glycosphingolipid (GSL) biosynthesis. GRASP55 binds to these enzymes and prevents their entry into COPI‐based retrograde transport vesicles, thus concentrating them in the trans‐Golgi. In genome‐edited cells lacking GRASP55, or in cells expressing mutant enzymes without GRASP55 binding sites, these enzymes relocate to the cis‐Golgi, which affects glycosphingolipid biosynthesis by changing flux across metabolic branch points. These findings reveal a mechanism by which a matrix protein regulates polarized localization of glycosylation enzymes in the Golgi and controls competition in glycan biosynthesis.
Collapse
Affiliation(s)
- Prathyush Pothukuchi
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Ilenia Agliarulo
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Marinella Pirozzi
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Riccardo Rizzo
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Domenico Russo
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Gabriele Turacchio
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Julian Nüchel
- Medical Faculty, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Jia-Shu Yang
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charlotte Gehin
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laura Capolupo
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Ansuman Biswas
- National Center of Biological Sciences, Bengaluru, India
| | - Giovanna Vanacore
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Nina Dathan
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Takahiro Nitta
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Petra Henklein
- Universitätsmedizin Berlin Institut für Biochemie Charité CrossOver Charitéplatz 1 / Sitz, Berlin, Germany
| | - Mukund Thattai
- National Center of Biological Sciences, Bengaluru, India
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Victor W Hsu
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Markus Plomann
- Medical Faculty, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Lina M Obeid
- Stony Brook University Medical Center, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Stony Brook University Medical Center, Stony Brook, NY, USA
| | - Alberto Luini
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Giovanni D'Angelo
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy.,École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | |
Collapse
|
30
|
Sun X, Mahajan D, Chen B, Song Z, Lu L. A quantitative study of the Golgi retention of glycosyltransferases. J Cell Sci 2021; 134:272560. [PMID: 34533190 DOI: 10.1242/jcs.258564] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
How Golgi glycosyltransferases and glycosidases (hereafter glycosyltransferases) localize to the Golgi is still unclear. Here, we first investigated the post-Golgi trafficking of glycosyltransferases. We found that glycosyltransferases can escape the Golgi to the plasma membrane, where they are subsequently endocytosed to the endolysosome. Post-Golgi glycosyltransferases are probably degraded by ectodomain shedding. We discovered that most glycosyltransferases are not retrieved from post-Golgi sites, indicating that retention rather than retrieval is the primary mechanism for their Golgi localization. We therefore used the Golgi residence time to study Golgi retention of glycosyltransferases quantitatively and systematically. Quantitative analysis of chimeras of ST6GAL1 and either transferrin receptor or tumor necrosis factor α revealed the contributions of three regions of ST6GAL1, namely the N-terminal cytosolic tail, the transmembrane domain and the ectodomain, to Golgi retention. We found that each of the three regions is sufficient for Golgi retention in an additive manner. N-terminal cytosolic tail length negatively affects the Golgi retention of ST6GAL1, similar to effects observed for the transmembrane domain. Therefore, the long N-terminal cytosolic tail and transmembrane domain could act as Golgi export signals for transmembrane secretory cargos. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xiuping Sun
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| | - Divyanshu Mahajan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| | - Bing Chen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| | - Zhiwei Song
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore138668
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| |
Collapse
|
31
|
Welch LG, Peak-Chew SY, Begum F, Stevens TJ, Munro S. GOLPH3 and GOLPH3L are broad-spectrum COPI adaptors for sorting into intra-Golgi transport vesicles. J Cell Biol 2021; 220:e202106115. [PMID: 34473204 PMCID: PMC8421267 DOI: 10.1083/jcb.202106115] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
The fidelity of Golgi glycosylation is, in part, ensured by compartmentalization of enzymes within the stack. The COPI adaptor GOLPH3 has been shown to interact with the cytoplasmic tails of a subset of Golgi enzymes and direct their retention. However, other mechanisms of retention, and other roles for GOLPH3, have been proposed, and a comprehensive characterization of the clientele of GOLPH3 and its paralogue GOLPH3L is lacking. GOLPH3's role is of particular interest as it is frequently amplified in several solid tumor types. Here, we apply two orthogonal proteomic methods to identify GOLPH3+3L clients and find that they act in diverse glycosylation pathways or have other roles in the Golgi. Binding studies, bioinformatics, and a Golgi retention assay show that GOLPH3+3L bind the cytoplasmic tails of their clients through membrane-proximal positively charged residues. Furthermore, deletion of GOLPH3+3L causes multiple defects in glycosylation. Thus, GOLPH3+3L are major COPI adaptors that impinge on most, if not all, of the glycosylation pathways of the Golgi.
Collapse
Affiliation(s)
| | | | | | | | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
32
|
Abstract
In this issue of JCB, Welch et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202106115) show that GOLPH3 mediates the sorting of numerous Golgi proteins into recycling COPI transport vesicles. This explains how many resident proteins are retained at the Golgi and reveals a key role for GOLPH3 in maintaining Golgi homeostasis.
Collapse
Affiliation(s)
- Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
33
|
Sechi S, Karimpour-Ghahnavieh A, Frappaolo A, Di Francesco L, Piergentili R, Schininà E, D’Avino PP, Giansanti MG. Identification of GOLPH3 Partners in Drosophila Unveils Potential Novel Roles in Tumorigenesis and Neural Disorders. Cells 2021; 10:cells10092336. [PMID: 34571985 PMCID: PMC8468827 DOI: 10.3390/cells10092336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a highly conserved peripheral membrane protein localized to the Golgi apparatus and the cytosol. GOLPH3 binding to Golgi membranes depends on phosphatidylinositol 4-phosphate [PI(4)P] and regulates Golgi architecture and vesicle trafficking. GOLPH3 overexpression has been correlated with poor prognosis in several cancers, but the molecular mechanisms that link GOLPH3 to malignant transformation are poorly understood. We recently showed that PI(4)P-GOLPH3 couples membrane trafficking with contractile ring assembly during cytokinesis in dividing Drosophila spermatocytes. Here, we use affinity purification coupled with mass spectrometry (AP-MS) to identify the protein-protein interaction network (interactome) of Drosophila GOLPH3 in testes. Analysis of the GOLPH3 interactome revealed enrichment for proteins involved in vesicle-mediated trafficking, cell proliferation and cytoskeleton dynamics. In particular, we found that dGOLPH3 interacts with the Drosophila orthologs of Fragile X mental retardation protein and Ataxin-2, suggesting a potential role in the pathophysiology of disorders of the nervous system. Our findings suggest novel molecular targets associated with GOLPH3 that might be relevant for therapeutic intervention in cancers and other human diseases.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Angela Karimpour-Ghahnavieh
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Laura Di Francesco
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Roberto Piergentili
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Eugenia Schininà
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Pier Paolo D’Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK;
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
- Correspondence: ; Tel.: +39-064-991-2555
| |
Collapse
|
34
|
Lujan P, Campelo F. Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. Arch Biochem Biophys 2021; 707:108921. [PMID: 34038703 DOI: 10.1016/j.abb.2021.108921] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
The Golgi complex is the membrane-bound organelle that lies at the center of the secretory pathway. Its main functions are to maintain cellular lipid homeostasis, to orchestrate protein processing and maturation, and to mediate protein sorting and export. These functions are not independent of one another, and they all require that the membranes of the Golgi complex have a well-defined biochemical composition. Importantly, a finely-regulated spatiotemporal organization of the Golgi membrane components is essential for the correct performance of the organelle. In here, we review our current mechanistic and molecular understanding of how Golgi membranes are spatially organized in the lateral and axial directions to fulfill their functions. In particular, we highlight the current evidence and proposed models of intra-Golgi transport, as well as the known mechanisms for the retention of Golgi residents and for the sorting and export of transmembrane cargo proteins. Despite the controversies, conflicting evidence, clashes between models, and technical limitations, the field has moved forward and we have gained extensive knowledge in this fascinating topic. However, there are still many important questions that remain to be completely answered. We hope that this review will help boost future investigations on these issues.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| |
Collapse
|
35
|
Abstract
The Golgi complex plays a central role in protein secretion by regulating cargo sorting and trafficking. As these processes are of functional importance to cell polarity, motility, growth, and division, there is considerable interest in achieving a comprehensive understanding of Golgi complex biology. However, the unique stack structure of this organelle has been a major hurdle to our understanding of how proteins are secreted through the Golgi apparatus. Herein, we summarize available relevant research to gain an understanding of protein secretion via the Golgi complex. This includes the molecular mechanisms of intra-Golgi trafficking and cargo export in the trans-Golgi network. Moreover, we review recent insights on signaling pathways regulated by the Golgi complex and their physiological significance.
Collapse
Affiliation(s)
- Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Nari Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
36
|
Highland CM, Fromme JC. Arf1 directly recruits the Pik1-Frq1 PI4K complex to regulate the final stages of Golgi maturation. Mol Biol Cell 2021; 32:1064-1080. [PMID: 33788598 PMCID: PMC8101487 DOI: 10.1091/mbc.e21-02-0069] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
Proper Golgi complex function depends on the activity of Arf1, a GTPase whose effectors assemble and transport outgoing vesicles. Phosphatidylinositol 4-phosphate (PI4P) generated at the Golgi by the conserved PI 4-kinase Pik1 (PI4KIIIβ) is also essential for Golgi function, although its precise roles in vesicle formation are less clear. Arf1 has been reported to regulate PI4P production, but whether Pik1 is a direct Arf1 effector is not established. Using a combination of live-cell time-lapse imaging analyses, acute PI4P depletion experiments, and in vitro protein-protein interaction assays on Golgi-mimetic membranes, we present evidence for a model in which Arf1 initiates the final stages of Golgi maturation by tightly controlling PI4P production through direct recruitment of the Pik1-Frq1 PI4-kinase complex. This PI4P serves as a critical signal for AP-1 and secretory vesicle formation, the final events at maturing Golgi compartments. This work therefore establishes the regulatory and temporal context surrounding Golgi PI4P production and its precise roles in Golgi maturation.
Collapse
Affiliation(s)
- Carolyn M. Highland
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - J. Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
37
|
Abstract
Glycosphingolipids are a structurally diverse class of lipids that regulate plasma membrane protein function. Rizzo et al (2021) now show that GOLPH3 promotes intra-Golgi transport of several enzymes that function at branching points of sphingolipid biosynthesis. By regulating the cellular sphingolipidome, GOLPH3 promotes growth factor signaling and cell proliferation, which may explain its oncogenic properties.
Collapse
Affiliation(s)
- Wilhelm Palm
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
38
|
Rizzo R, Russo D, Kurokawa K, Sahu P, Lombardi B, Supino D, Zhukovsky MA, Vocat A, Pothukuchi P, Kunnathully V, Capolupo L, Boncompain G, Vitagliano C, Zito Marino F, Aquino G, Montariello D, Henklein P, Mandrich L, Botti G, Clausen H, Mandel U, Yamaji T, Hanada K, Budillon A, Perez F, Parashuraman S, Hannun YA, Nakano A, Corda D, D'Angelo G, Luini A. Golgi maturation-dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3. EMBO J 2021; 40:e107238. [PMID: 33749896 DOI: 10.15252/embj.2020107238] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/24/2021] [Accepted: 02/10/2021] [Indexed: 01/08/2023] Open
Abstract
Glycosphingolipids are important components of the plasma membrane where they modulate the activities of membrane proteins including signalling receptors. Glycosphingolipid synthesis relies on competing reactions catalysed by Golgi-resident enzymes during the passage of substrates through the Golgi cisternae. The glycosphingolipid metabolic output is determined by the position and levels of the enzymes within the Golgi stack, but the mechanisms that coordinate the intra-Golgi localisation of the enzymes are poorly understood. Here, we show that a group of sequentially-acting enzymes operating at the branchpoint among glycosphingolipid synthetic pathways binds the Golgi-localised oncoprotein GOLPH3. GOLPH3 sorts these enzymes into vesicles for intra-Golgi retro-transport, acting as a component of the cisternal maturation mechanism. Through these effects, GOLPH3 controls the sub-Golgi localisation and the lysosomal degradation rate of specific enzymes. Increased GOLPH3 levels, as those observed in tumours, alter glycosphingolipid synthesis and plasma membrane composition thereby promoting mitogenic signalling and cell proliferation. These data have medical implications as they outline a novel oncogenic mechanism of action for GOLPH3 based on glycosphingolipid metabolism.
Collapse
Affiliation(s)
- Riccardo Rizzo
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.,Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Lecce, Italy
| | - Domenico Russo
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Pranoy Sahu
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Bernadette Lombardi
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Domenico Supino
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Mikhail A Zhukovsky
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Anthony Vocat
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Prathyush Pothukuchi
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Vidya Kunnathully
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Laura Capolupo
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Carlo Vitagliano
- Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | | | - Gabriella Aquino
- Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | - Daniela Montariello
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Petra Henklein
- Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Berlin, Germany
| | - Luigi Mandrich
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Gerardo Botti
- Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | - Henrik Clausen
- Faculty of Health Sciences, Centre for Glycomics, Department of Cellular and Molecular Medicine Nørre Alle 20, University of Copenhagen, Copenhagen N, Denmark
| | - Ulla Mandel
- Faculty of Health Sciences, Centre for Glycomics, Department of Cellular and Molecular Medicine Nørre Alle 20, University of Copenhagen, Copenhagen N, Denmark
| | - Toshiyuki Yamaji
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Alfredo Budillon
- Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | - Franck Perez
- Institute Curie - CNRS UMR1 44, Research Center, Paris, France
| | | | - Yusuf A Hannun
- Stony Brook University Medical Center, New York, NY, USA
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Giovanni D'Angelo
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.,École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alberto Luini
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
39
|
Zabotina OA, Zhang N, Weerts R. Polysaccharide Biosynthesis: Glycosyltransferases and Their Complexes. FRONTIERS IN PLANT SCIENCE 2021; 12:625307. [PMID: 33679837 PMCID: PMC7933479 DOI: 10.3389/fpls.2021.625307] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/14/2021] [Indexed: 05/04/2023]
Abstract
Glycosyltransferases (GTs) are enzymes that catalyze reactions attaching an activated sugar to an acceptor substrate, which may be a polysaccharide, peptide, lipid, or small molecule. In the past decade, notable progress has been made in revealing and cloning genes encoding polysaccharide-synthesizing GTs. However, the vast majority of GTs remain structurally and functionally uncharacterized. The mechanism by which they are organized in the Golgi membrane, where they synthesize complex, highly branched polysaccharide structures with high efficiency and fidelity, is also mostly unknown. This review will focus on current knowledge about plant polysaccharide-synthesizing GTs, specifically focusing on protein-protein interactions and the formation of multiprotein complexes.
Collapse
|
40
|
Yang G, Banfield DK. Cdc1p is a Golgi-localized glycosylphosphatidylinositol-anchored protein remodelase. Mol Biol Cell 2020; 31:2883-2891. [PMID: 33112703 PMCID: PMC7927193 DOI: 10.1091/mbc.e20-08-0539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) undergo extensive posttranslational modifications and remodeling, including the addition and subsequent removal of phosphoethanolamine (EtNP) from mannose 1 (Man1) and mannose 2 (Man2) of the glycan moiety. Removal of EtNP from Man1 is catalyzed by Cdc1p, an event that has previously been considered to occur in the endoplasmic reticulum (ER). We establish that Cdc1p is in fact a cis/medial Golgi membrane protein that relies on the COPI coatomer for its retention in this organelle. We also determine that Cdc1p does not cycle between the Golgi and the ER, and consistent with this finding, when expressed at endogenous levels ER-localized Cdc1p-HDEL is unable to support the growth of cdc1Δ cells. Our cdc1 temperature-sensitive alleles are defective in the transport of a prototypical GPI-AP-Gas1p to the cell surface, a finding we posit reveals a novel Golgi-localized quality control warrant. Thus, yeast cells scrutinize GPI-APs in the ER and also in the Golgi, where removal of EtNP from Man2 (via Ted1p in the ER) and from Man1 (by Cdc1p in the Golgi) functions as a quality assurance signal.
Collapse
Affiliation(s)
- Gege Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, SAR of China
| | - David K. Banfield
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, SAR of China
| |
Collapse
|
41
|
The Close Relationship between the Golgi Trafficking Machinery and Protein Glycosylation. Cells 2020; 9:cells9122652. [PMID: 33321764 PMCID: PMC7764369 DOI: 10.3390/cells9122652] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glycosylation is the most common post-translational modification of proteins; it mediates their correct folding and stability, as well as their transport through the secretory transport. Changes in N- and O-linked glycans have been associated with multiple pathological conditions including congenital disorders of glycosylation, inflammatory diseases and cancer. Glycoprotein glycosylation at the Golgi involves the coordinated action of hundreds of glycosyltransferases and glycosidases, which are maintained at the correct location through retrograde vesicle trafficking between Golgi cisternae. In this review, we describe the molecular machinery involved in vesicle trafficking and tethering at the Golgi apparatus and the effects of mutations in the context of glycan biosynthesis and human diseases.
Collapse
|
42
|
Golgi localization of glycosyltransferases requires Gpp74p in Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2020; 104:8897-8909. [DOI: 10.1007/s00253-020-10881-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
|
43
|
Human Golgi phosphoprotein 3 is an effector of RAB1A and RAB1B. PLoS One 2020; 15:e0237514. [PMID: 32790781 PMCID: PMC7425898 DOI: 10.1371/journal.pone.0237514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a peripheral membrane protein localized at the trans-Golgi network that is also distributed in a large cytosolic pool. GOLPH3 has been involved in several post-Golgi protein trafficking events, but its precise function at the molecular level is not well understood. GOLPH3 is also considered the first oncoprotein of the Golgi apparatus, with important roles in several types of cancer. Yet, it is unknown how GOLPH3 is regulated to achieve its contribution in the mechanisms that lead to tumorigenesis. Binding of GOLPH3 to Golgi membranes depends on its interaction to phosphatidylinositol-4-phosphate. However, an early finding showed that GTP promotes the binding of GOLPH3 to Golgi membranes and vesicles. Nevertheless, it remains largely unknown whether this response is consequence of the function of GTP-dependent regulatory factors, such as proteins of the RAB family of small GTPases. Interestingly, in Drosophila melanogaster the ortholog of GOLPH3 interacts with- and behaves as effector of the ortholog of RAB1. However, there is no experimental evidence implicating GOLPH3 as a possible RAB1 effector in mammalian cells. Here, we show that human GOLPH3 interacted directly with either RAB1A or RAB1B, the two isoforms of RAB1 in humans. The interaction was nucleotide dependent and it was favored with GTP-locked active state variants of these GTPases, indicating that human GOLPH3 is a bona fide effector of RAB1A and RAB1B. Moreover, the expression in cultured cells of the GTP-locked variants resulted in less distribution of GOLPH3 in the Golgi apparatus, suggesting an intriguing model of GOLPH3 regulation.
Collapse
|
44
|
Wang P, Ye Z, Banfield DK. A novel mechanism for the retention of Golgi membrane proteins mediated by the Bre5p/Ubp3p deubiquitinase complex. Mol Biol Cell 2020; 31:2139-2155. [PMID: 32673164 PMCID: PMC7530903 DOI: 10.1091/mbc.e20-03-0168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mechanisms employed in the retention of Golgi resident membrane proteins are diverse and include features such as the composition and length of the protein’s transmembrane domain and motifs that mediate direct or indirect associations with COPI-coatomer. However, in sum the current compendium of mechanisms cannot account for the localization of all Golgi membrane proteins, and this is particularly the case for proteins such as the glycosyltransferases. Here we describe a novel mechanism that mediates the steady-state retention of a subset of glycosyltransferases in the Golgi of budding yeast cells. This mechanism is mediated by a deubiquitinase complex composed of Bre5p and Ubp3p. We show that in the absence of this deubiquitinase certain glycosyltransferases are mislocalized to the vacuole, where they are degraded. We also show that Bre5p/Ubp3p clients bind to COPI-coatomer via a series of positively charged amino acids in their cytoplasmically exposed N-termini. Furthermore, we identify two proteins (Ktr3p and Mnn4p) that show a requirement for both Bre5p/Ubp3p as well as the COPI-coatomer–affiliated sorting receptor Vps74p. We also establish that some proteins show a nutrient-dependent role for Vps74p in their Golgi retention. This study expands the repertoire of mechanisms mediating the retention of Golgi membrane proteins.
Collapse
Affiliation(s)
- Peng Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ziyun Ye
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - David K Banfield
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
45
|
Best JT, Xu P, McGuire JG, Leahy SN, Graham TR. Yeast synaptobrevin, Snc1, engages distinct routes of postendocytic recycling mediated by a sorting nexin, Rcy1-COPI, and retromer. Mol Biol Cell 2020; 31:944-962. [PMID: 32074001 PMCID: PMC7185969 DOI: 10.1091/mbc.e19-05-0290] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
The budding yeast v-SNARE, Snc1, mediates fusion of exocytic vesicles to the plasma membrane (PM) and is subsequently recycled back to the Golgi. Postendocytic recycling of Snc1 requires a phospholipid flippase (Drs2-Cdc50), an F-box protein (Rcy1), a sorting nexin (Snx4-Atg20), and the COPI coat complex. A portion of the endocytic tracer FM4-64 is also recycled back to the PM after internalization. However, the relationship between Snx4, Drs2, Rcy1, and COPI in recycling Snc1 or FM4-64 is unclear. Here we show that rcy1∆ and drs2∆ single mutants, or a COPI mutant deficient in ubiquitin binding, display a defect in recycling FM4-64 while snx4∆ cells recycle FM4-64 normally. The addition of latrunculin A to acutely inhibit endocytosis shows that rcy1∆ and snx4∆ single mutants retain the ability to recycle Snc1, but a snx4∆rcy1∆ mutant substantially blocks export. Additional deletion of a retromer subunit completely eliminates recycling of Snc1 in the triple mutant (snx4∆rcy1∆vps35∆). A minor role for retromer in Snc1 recycling can also be observed in single and double mutants harboring vps35∆. These data support the existence of three distinct and parallel recycling pathways mediated by Drs2/Rcy1/COPI, Snx4-Atg20, and retromer that retrieve an exocytic v-SNARE from the endocytic pathway to the Golgi.
Collapse
Affiliation(s)
- Jordan T. Best
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
| | - Peng Xu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
| | - Jack G. McGuire
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
| | - Shannon N. Leahy
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
| | - Todd R. Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
46
|
Stalder D, Gershlick DC. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Semin Cell Dev Biol 2020; 107:112-125. [PMID: 32317144 PMCID: PMC7152905 DOI: 10.1016/j.semcdb.2020.04.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
In eukaryotic cells, protein sorting is a highly regulated mechanism important for many physiological events. After synthesis in the endoplasmic reticulum and trafficking to the Golgi apparatus, proteins sort to many different cellular destinations including the endolysosomal system and the extracellular space. Secreted proteins need to be delivered directly to the cell surface. Sorting of secreted proteins from the Golgi apparatus has been a topic of interest for over thirty years, yet there is still no clear understanding of the machinery that forms the post-Golgi carriers. Most evidence points to these post-Golgi carriers being tubular pleomorphic structures that bud from the trans-face of the Golgi. In this review, we present the background studies and highlight the key components of this pathway, we then discuss the machinery implicated in the formation of these carriers, their translocation across the cytosol, and their fusion at the plasma membrane.
Collapse
Key Words
- ATP, adenosine triphosphate
- BFA, Brefeldin A
- CARTS, CARriers of the TGN to the cell Surface
- CI-MPR, cation-independent mannose-6 phosphate receptor
- Constitutive Secretion
- CtBP3/BARS, C-terminus binding protein 3/BFA adenosine diphosphate–ribosylated substrate
- ER, endoplasmic reticulum
- GPI-anchored proteins, glycosylphosphatidylinositol-anchored proteins
- GlcCer, glucosylceramidetol
- Golgi to plasma membrane sorting
- PAUF, pancreatic adenocarcinoma up-regulated factor
- PKD, Protein Kinase D
- RUSH, retention using selective hooks
- SBP, streptavidin-binding peptide
- SM, sphingomyelin
- SNARE, soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor
- SPCA1, secretory pathway calcium ATPase 1
- Secretion
- TGN, trans-Golgi Network
- TIRF, total internal reflection fluorescence
- VSV, vesicular stomatitis virus
- pleomorphic tubular carriers
- post-Golgi carriers
- ts, temperature sensitive
Collapse
Affiliation(s)
- Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
47
|
Oncogenic Roles of GOLPH3 in the Physiopathology of Cancer. Int J Mol Sci 2020; 21:ijms21030933. [PMID: 32023813 PMCID: PMC7037725 DOI: 10.3390/ijms21030933] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3), a Phosphatidylinositol 4-Phosphate [PI(4)P] effector at the Golgi, is required for Golgi ribbon structure maintenance, vesicle trafficking and Golgi glycosylation. GOLPH3 has been validated as an oncoprotein through combining integrative genomics with clinopathological and functional analyses. It is frequently amplified in several solid tumor types including melanoma, lung cancer, breast cancer, glioma, and colorectal cancer. Overexpression of GOLPH3 correlates with poor prognosis in multiple tumor types including 52% of breast cancers and 41% to 53% of glioblastoma. Roles of GOLPH3 in tumorigenesis may correlate with several cellular activities including: (i) regulating Golgi-to-plasma membrane trafficking and contributing to malignant secretory phenotypes; (ii) controlling the internalization and recycling of key signaling molecules or increasing the glycosylation of cancer relevant glycoproteins; and (iii) influencing the DNA damage response and maintenance of genomic stability. Here we summarize current knowledge on the oncogenic pathways involving GOLPH3 in human cancer, GOLPH3 influence on tumor metabolism and surrounding stroma, and its possible role in tumor metastasis formation.
Collapse
|
48
|
Gao G, Banfield DK. Multiple features within the syntaxin Sed5p mediate its Golgi localization. Traffic 2020; 21:274-296. [DOI: 10.1111/tra.12720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Guanbin Gao
- The Division of Life ScienceThe Hong Kong University of Science and Technology Hong Kong
| | - David K. Banfield
- The Division of Life ScienceThe Hong Kong University of Science and Technology Hong Kong
| |
Collapse
|
49
|
Boncompain G, Gareil N, Tessier S, Lescure A, Jones TR, Kepp O, Kroemer G, Del Nery E, Perez F. BML-265 and Tyrphostin AG1478 Disperse the Golgi Apparatus and Abolish Protein Transport in Human Cells. Front Cell Dev Biol 2019; 7:232. [PMID: 31681765 PMCID: PMC6797785 DOI: 10.3389/fcell.2019.00232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/27/2019] [Indexed: 11/28/2022] Open
Abstract
The steady-state localization of Golgi-resident glycosylation enzymes in the Golgi apparatus depends on a balance between anterograde and retrograde transport. Using the Retention Using Selective Hooks (RUSH) assay and high-content screening, we identified small molecules that perturb the localization of Mannosidase II (ManII) used as a model cargo for Golgi resident enzymes. In particular, we found that two compounds known as EGFR tyrosine kinase inhibitors, namely BML-265 and Tyrphostin AG1478 disrupt Golgi integrity and abolish secretory protein transport of diverse cargos, thus inducing brefeldin A-like effects. Interestingly, BML-265 and Tyrphostin AG1478 affect Golgi integrity and transport in human cells but not in rodent cells. The effects of BML-265 are reversible since Golgi integrity and protein transport are quickly restored upon washout of the compounds. BML-265 and Tyrphostin AG1478 do not lead to endosomal tubulation suggesting that, contrary to brefeldin A, they do not target the trans-Golgi ARF GEF BIG1 and BIG2. They quickly induce COPI dissociation from Golgi membranes suggesting that, in addition to EGFR kinase, the cis-Golgi ARF GEF GBF1 might also be a target of these molecules. Accordingly, overexpression of GBF1 prevents the effects of BML-265 and Tyrphostin AG1478 on Golgi integrity.
Collapse
Affiliation(s)
- Gaelle Boncompain
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Nelly Gareil
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Sarah Tessier
- BioPhenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, PSL Research University, Translational Research Department, Paris, France
| | - Aurianne Lescure
- BioPhenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, PSL Research University, Translational Research Department, Paris, France
| | - Thouis R. Jones
- BioPhenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, PSL Research University, Translational Research Department, Paris, France
| | - Oliver Kepp
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Elaine Del Nery
- BioPhenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, PSL Research University, Translational Research Department, Paris, France
| | - Franck Perez
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| |
Collapse
|
50
|
The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer). Biochem J 2019; 476:2321-2346. [DOI: 10.1042/bcj20180622] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is a membrane glycerophospholipid and a major regulator of the characteristic appearance of the Golgi complex as well as its vesicular trafficking, signalling and metabolic functions. Phosphatidylinositol 4-kinases, and in particular the PI4KIIIβ isoform, act in concert with PI4P to recruit macromolecular complexes to initiate the biogenesis of trafficking vesicles for several Golgi exit routes. Dysregulation of Golgi PI4P metabolism and the PI4P protein interactome features in many cancers and is often associated with tumour progression and a poor prognosis. Increased expression of PI4P-binding proteins, such as GOLPH3 or PITPNC1, induces a malignant secretory phenotype and the release of proteins that can remodel the extracellular matrix, promote angiogenesis and enhance cell motility. Aberrant Golgi PI4P metabolism can also result in the impaired post-translational modification of proteins required for focal adhesion formation and cell–matrix interactions, thereby potentiating the development of aggressive metastatic and invasive tumours. Altered expression of the Golgi-targeted PI 4-kinases, PI4KIIIβ, PI4KIIα and PI4KIIβ, or the PI4P phosphate Sac1, can also modulate oncogenic signalling through effects on TGN-endosomal trafficking. A Golgi trafficking role for a PIP 5-kinase has been recently described, which indicates that PI4P is not the only functionally important phosphoinositide at this subcellular location. This review charts new developments in our understanding of phosphatidylinositol 4-kinase function at the Golgi and how PI4P-dependent trafficking can be deregulated in malignant disease.
Collapse
|