1
|
Lee CSK, Weiβ M, Hamperl S. Where and when to start: Regulating DNA replication origin activity in eukaryotic genomes. Nucleus 2023; 14:2229642. [PMID: 37469113 PMCID: PMC10361152 DOI: 10.1080/19491034.2023.2229642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
In eukaryotic genomes, hundreds to thousands of potential start sites of DNA replication named origins are dispersed across each of the linear chromosomes. During S-phase, only a subset of origins is selected in a stochastic manner to assemble bidirectional replication forks and initiate DNA synthesis. Despite substantial progress in our understanding of this complex process, a comprehensive 'identity code' that defines origins based on specific nucleotide sequences, DNA structural features, the local chromatin environment, or 3D genome architecture is still missing. In this article, we review the genetic and epigenetic features of replication origins in yeast and metazoan chromosomes and highlight recent insights into how this flexibility in origin usage contributes to nuclear organization, cell growth, differentiation, and genome stability.
Collapse
Affiliation(s)
- Clare S K Lee
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Weiβ
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Stephan Hamperl
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
2
|
Tang M, Chen J, Zeng T, Ye DM, Li YK, Zou J, Zhang YP. Systemic analysis of the DNA replication regulator origin recognition complex in lung adenocarcinomas identifies prognostic and expression significance. Cancer Med 2023; 12:5035-5054. [PMID: 36205357 PMCID: PMC9972100 DOI: 10.1002/cam4.5238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/30/2022] [Accepted: 09/01/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND DNA replication alteration is a hallmark of patients with lung adenocarcinoma (LUAD) and is frequently observed in LUAD progression. Origin recognition complex (ORC) 1, ORC2, ORC3, ORC4, ORC5, and ORC6 form a replication-initiator complex to mediate DNA replication, which plays a key role in carcinogenesis, while their roles in LUAD remain poorly understood. METHODS The mRNA and protein expression of ORCs was confirmed by the GEPIA, HPA, CPTAC, and TCGA databases. The protein-protein interaction network was analyzed by the GeneMANIA database. Functional enrichment was confirmed by the Metascape database. The effects of ORCs on immune infiltration were validated by the TIMER database. The prognostic significance of ORCs in LUAD was confirmed by the KM-plot and GENT2 databases. DNA alteration and protein structure were determined in the cBioProtal and PDB databases. Moreover, the protein expression and prognostic value of ORCs were confirmed in our LUAD data sets by immunohistochemistry (IHC) staining. RESULTS ORC mRNA and protein were significantly increased in patients with LUAD compared with corresponding normal tissue samples. The results of IHC staining analysis were similar result to those of the above bioinformatics analysis. Furthermore, ORC1 and ORC6 had significant prognostic values for LUAD patients. Furthermore, the ORC cooperatively promoted LUAD development by driving DNA replication, cellular senescence, and metabolic processes. CONCLUSION The ORC, especially ORC1/6, has important prognostic and expression significance for LUAD patients.
Collapse
Affiliation(s)
- Min Tang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, People's Republic of China
| | - Juan Chen
- Department of Radiotherapy, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, People's Republic of China
| | - Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, People's Republic of China
| | - Dong-Mei Ye
- Department of Pathology, The First Hospital of Nanchang City, Nanchang, Jiangxi, People's Republic of China
| | - Yu-Kun Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, People's Republic of China
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, People's Republic of China
| | - Yu-Ping Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, People's Republic of China
| |
Collapse
|
3
|
Sun F, Zhu G, He P, Wei E, Wang R, Wang Q, Tang X, Zhang Y, Shen Z. Identification, expression and subcellular localization of Orc1 in the microsporidian Nosema bombycis. Gene X 2022; 834:146607. [PMID: 35609797 DOI: 10.1016/j.gene.2022.146607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
As a typical species of microsporidium, Nosema bombycis is the pathogen causing the pébrine disease of silkworm. Rapid proliferation of N. bombycis in host cells requires replication of genetic material. As eukaryotic origin recognition protein, origin recognition complex (ORC) plays an important role in regulating DNA replication, and Orc1 is a key subunit of the origin recognition complex. In this study, we identified the Orc1 in the microsporidian N. bombycis (NbOrc1) for the first time. The NbOrc1 gene contains a complete ORF of 987 bp in length that encodes a 328 amino acid polypeptide. Indirect immunofluorescence results showed that NbOrc1 were colocalized with Nbactin and NbSAS-6 in the nuclei of N. bombycis. Subsequently, we further identified the interaction between the NbOrc1 and Nbactin by CO-IP and Western blot. These results imply that Orc1 may be involved in the proliferation of the microsporidian N. bombycis through interacting with actin.
Collapse
Affiliation(s)
- Fuzhen Sun
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Guanyu Zhu
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Ping He
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Erjun Wei
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Runpeng Wang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Qiang Wang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericulture Research Institute of Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China
| | - Xudong Tang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericulture Research Institute of Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China
| | - Yiling Zhang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericulture Research Institute of Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China
| | - Zhongyuan Shen
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericulture Research Institute of Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China.
| |
Collapse
|
4
|
Tingler M, Philipp M, Burkhalter MD. DNA Replication proteins in primary microcephaly syndromes. Biol Cell 2022; 114:143-159. [PMID: 35182397 DOI: 10.1111/boc.202100061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
SCOPE Improper expansion of neural stem and progenitor cells during brain development manifests in primary microcephaly. It is characterized by a reduced head circumference, which correlates with a reduction in brain size. This often corresponds to a general underdevelopment of the brain and entails cognitive, behavioral and motoric retardation. In the past decade significant research efforts have been undertaken to identify genes and the molecular mechanisms underlying microcephaly. One such gene set encompasses factors required for DNA replication. Intriguingly, a growing body of evidence indicates that a substantial number of these genes mediate faithful centrosome and cilium function in addition to their canonical function in genome duplication. Here, we summarize, which DNA replication factors are associated with microcephaly syndromes and to which extent they impact on centrosomes and cilia. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Melanie Tingler
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| |
Collapse
|
5
|
Mei L, Kedziora KM, Song EA, Purvis JE, Cook J. The consequences of differential origin licensing dynamics in distinct chromatin environments. Nucleic Acids Res 2022; 50:9601-9620. [PMID: 35079814 PMCID: PMC9508807 DOI: 10.1093/nar/gkac003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Eukaryotic chromosomes contain regions of varying accessibility, yet DNA replication factors must access all regions. The first replication step is loading MCM complexes to license replication origins during the G1 cell cycle phase. It is not yet known how mammalian MCM complexes are adequately distributed to both accessible euchromatin regions and less accessible heterochromatin regions. To address this question, we combined time-lapse live-cell imaging with immunofluorescence imaging of single human cells to quantify the relative rates of MCM loading in euchromatin and heterochromatin throughout G1. We report here that MCM loading in euchromatin is faster than that in heterochromatin in early G1, but surprisingly, heterochromatin loading accelerates relative to euchromatin loading in middle and late G1. This differential acceleration allows both chromatin types to begin S phase with similar concentrations of loaded MCM. The different loading dynamics require ORCA-dependent differences in origin recognition complex distribution. A consequence of heterochromatin licensing dynamics is that cells experiencing a truncated G1 phase from premature cyclin E expression enter S phase with underlicensed heterochromatin, and DNA damage accumulates preferentially in heterochromatin in the subsequent S/G2 phase. Thus, G1 length is critical for sufficient MCM loading, particularly in heterochromatin, to ensure complete genome duplication and to maintain genome stability.
Collapse
Affiliation(s)
- Liu Mei
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Katarzyna M Kedziora
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Bioinformatics and Analytics Research Collaborative (BARC), University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eun-Ah Song
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Sufu negatively regulates both initiations of centrosome duplication and DNA replication. Proc Natl Acad Sci U S A 2021; 118:2026421118. [PMID: 34260378 DOI: 10.1073/pnas.2026421118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centrosome duplication and DNA replication are two pivotal events that higher eukaryotic cells use to initiate proliferation. While DNA replication is initiated through origin licensing, centrosome duplication starts with cartwheel assembly and is partly controlled by CP110. However, the upstream coordinator for both events has been, until now, a mystery. Here, we report that suppressor of fused protein (Sufu), a negative regulator of the Hedgehog (Hh) pathway playing a significant role in restricting the trafficking and function of glioma-related (Gli) proteins, acts as an upstream switch by facilitating CP110 phosphorylation by CDK2, promoting intranuclear Cdt1 degradation and excluding prereplication complex (pre-RC) components from chromosomes, independent of its canonical function in the Hh pathway. We found that Sufu localizes to both the centrosome and the nucleus and that knockout of Sufu induces abnormalities including centrosome amplification, increased nuclear size, multipolar spindle formation, and polyploidy. Serum stimulation promotes the elimination of Sufu from the centrosome by vesicle release at the ciliary tip and from the nucleus via protein degradation, which allows centrosome duplication and DNA replication to proceed. Collectively, this work reveals a mechanism through which Sufu negatively regulates the G1-S transition.
Collapse
|
7
|
Lovera M, Lüders J. The ciliary impact of nonciliary gene mutations. Trends Cell Biol 2021; 31:876-887. [PMID: 34183231 DOI: 10.1016/j.tcb.2021.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/15/2023]
Abstract
Mutations in genes encoding centriolar or ciliary proteins cause diseases collectively known as 'ciliopathies'. Interestingly, the Human Phenotype Ontology database lists numerous disorders that display clinical features reminiscent of ciliopathies but do not involve defects in the centriole-cilium proteome. Instead, defects in different cellular compartments may impair cilia indirectly and cause additional, nonciliopathy phenotypes. This phenotypic heterogeneity, perhaps combined with the field's centriole-cilium-centric view, may have hindered the recognition of ciliary contributions. Identifying these diseases and dissecting how the underlying gene mutations impair cilia not only will add to our understanding of cilium assembly and function but also may open up new therapeutic avenues.
Collapse
Affiliation(s)
- Marta Lovera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain.
| |
Collapse
|
8
|
The γ-tubulin meshwork assists in the recruitment of PCNA to chromatin in mammalian cells. Commun Biol 2021; 4:767. [PMID: 34158617 PMCID: PMC8219688 DOI: 10.1038/s42003-021-02280-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
Changes in the location of γ-tubulin ensure cell survival and preserve genome integrity. We investigated whether the nuclear accumulation of γ-tubulin facilitates the transport of proliferating cell nuclear antigen (PCNA) between the cytosolic and the nuclear compartment in mammalian cells. We found that the γ-tubulin meshwork assists in the recruitment of PCNA to chromatin. Also, decreased levels of γ-tubulin reduce the nuclear pool of PCNA. In addition, the γ-tubulin C terminus encodes a PCNA-interacting peptide (PIP) motif, and a γ-tubulin–PIP-mutant affects the nuclear accumulation of PCNA. In a cell-free system, PCNA and γ-tubulin formed a complex. In tumors, there is a significant positive correlation between TUBG1 and PCNA expression. Thus, we report a novel mechanism that constitutes the basis for tumor growth by which the γ-tubulin meshwork maintains indefinite proliferation by acting as an opportune scaffold for the transport of PCNA from the cytosol to the chromatin. Corvaisier et al discover that γ-tubulin and replication protein PCNA forms a complex and that this facilitates recruitment of PCNA to chromatin both during cell division and during the DSB repair response. They identify a PCNA binding motif in γ-tubulin, which when mutated affects replication fork progression, providing insights into the role of the nuclear γ-tubulin meshwork.
Collapse
|
9
|
Cabral D, Forero Ballesteros H, de Melo BP, Lourenço-Tessutti IT, Simões de Siqueira KM, Obicci L, Grossi-de-Sa MF, Hemerly AS, de Almeida Engler J. The Armadillo BTB Protein ABAP1 Is a Crucial Player in DNA Replication and Transcription of Nematode-Induced Galls. FRONTIERS IN PLANT SCIENCE 2021; 12:636663. [PMID: 33995437 PMCID: PMC8121025 DOI: 10.3389/fpls.2021.636663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
The biogenesis of root-knot nematode (Meloidogyne spp.)-induced galls requires the hyperactivation of the cell cycle with controlled balance of mitotic and endocycle programs to keep its homeostasis. To better understand gall functioning and to develop new control strategies for this pest, it is essential to find out how the plant host cell cycle programs are responding and integrated during the nematode-induced gall formation. This work investigated the spatial localization of a number of gene transcripts involved in the pre-replication complex during DNA replication in galls and report their akin colocation with the cell cycle S-phase regulator Armadillo BTB Arabidopsis Protein 1 (ABAP1). ABAP1 is a negative regulator of pre-replication complex controlling DNA replication of genes involved in control of cell division and proliferation; therefore, its function has been investigated during gall ontogenesis. Functional analysis was performed upon ABAP1 knockdown and overexpression in Arabidopsis thaliana. We detected ABAP1 promoter activity and localized ABAP1 protein in galls during development, and its overexpression displayed significantly reduced gall sizes containing atypical giant cells. Profuse ABAP1 expression also impaired gall induction and hindered nematode reproduction. Remarkably, ABAP1 knockdown likewise negatively affected gall and nematode development, suggesting its involvement in the feeding site homeostasis. Microscopy analysis of cleared and nuclei-stained whole galls revealed that ABAP1 accumulation resulted in aberrant giant cells displaying interconnected nuclei filled with enlarged heterochromatic regions. Also, imbalanced ABAP1 expression caused changes in expression patterns of genes involved in the cell division control as demonstrated by qRT-PCR. CDT1a, CDT1b, CDKA;1, and CYCB1;1 mRNA levels were significantly increased in galls upon ABAP1 overexpression, possibly contributing to the structural changes in galls during nematode infection. Overall, data obtained in galls reinforced the role of ABAP1 controlling DNA replication and mitosis and, consequently, cell proliferation. ABAP1 expression might likely take part of a highly ordered mechanism balancing of cell cycle control to prevent gall expansion. ABAP1 expression might prevent galls to further expand, limiting excessive mitotic activity. Our data strongly suggest that ABAP1 as a unique plant gene is an essential component for cell cycle regulation throughout gall development during nematode infection and is required for feeding site homeostasis.
Collapse
Affiliation(s)
- Danila Cabral
- INRAE, Université Côte d’Azur, CNRS, ISA, Sophia Antipolis, France
| | - Helkin Forero Ballesteros
- INRAE, Université Côte d’Azur, CNRS, ISA, Sophia Antipolis, France
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Paes de Melo
- INRAE, Université Côte d’Azur, CNRS, ISA, Sophia Antipolis, France
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Isabela Tristan Lourenço-Tessutti
- INRAE, Université Côte d’Azur, CNRS, ISA, Sophia Antipolis, France
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | | | - Luciana Obicci
- INRAE, Université Côte d’Azur, CNRS, ISA, Sophia Antipolis, France
| | - Maria Fatima Grossi-de-Sa
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Adriana S. Hemerly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
10
|
Multiple, short protein binding motifs in ORC1 and CDC6 control the initiation of DNA replication. Mol Cell 2021; 81:1951-1969.e6. [PMID: 33761311 DOI: 10.1016/j.molcel.2021.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/18/2021] [Accepted: 02/27/2021] [Indexed: 12/18/2022]
Abstract
The initiation of DNA replication involves cell cycle-dependent assembly and disassembly of protein complexes, including the origin recognition complex (ORC) and CDC6 AAA+ ATPases. We report that multiple short linear protein motifs (SLiMs) within intrinsically disordered regions (IDRs) in ORC1 and CDC6 mediate cyclin-CDK-dependent and independent protein-protein interactions, conditional on the cell cycle phase. A domain within the ORC1 IDR is required for interaction between the ORC1 and CDC6 AAA+ domains in G1, whereas the same domain prevents CDC6-ORC1 interaction during mitosis. Then, during late G1, this domain facilitates ORC1 destruction by a SKP2-cyclin A-CDK2-dependent mechanism. During G1, the CDC6 Cy motif cooperates with cyclin E-CDK2 to promote ORC1-CDC6 interactions. The CDC6 IDR regulates self-interaction by ORC1, thereby controlling ORC1 protein levels. Protein phosphatase 1 binds directly to a SLiM in the ORC1 IDR, causing ORC1 de-phosphorylation upon mitotic exit, increasing ORC1 protein, and promoting pre-RC assembly.
Collapse
|
11
|
Chou HC, Bhalla K, Demerdesh OE, Klingbeil O, Hanington K, Aganezov S, Andrews P, Alsudani H, Chang K, Vakoc CR, Schatz MC, McCombie WR, Stillman B. The human origin recognition complex is essential for pre-RC assembly, mitosis, and maintenance of nuclear structure. eLife 2021; 10:61797. [PMID: 33522487 PMCID: PMC7877914 DOI: 10.7554/elife.61797] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/30/2021] [Indexed: 12/23/2022] Open
Abstract
The origin recognition complex (ORC) cooperates with CDC6, MCM2-7, and CDT1 to form pre-RC complexes at origins of DNA replication. Here, using tiling-sgRNA CRISPR screens, we report that each subunit of ORC and CDC6 is essential in human cells. Using an auxin-inducible degradation system, we created stable cell lines capable of ablating ORC2 rapidly, revealing multiple cell division cycle phenotypes. The primary defects in the absence of ORC2 were cells encountering difficulty in initiating DNA replication or progressing through the cell division cycle due to reduced MCM2-7 loading onto chromatin in G1 phase. The nuclei of ORC2-deficient cells were also large, with decompacted heterochromatin. Some ORC2-deficient cells that completed DNA replication entered into, but never exited mitosis. ORC1 knockout cells also demonstrated extremely slow cell proliferation and abnormal cell and nuclear morphology. Thus, ORC proteins and CDC6 are indispensable for normal cellular proliferation and contribute to nuclear organization.
Collapse
Affiliation(s)
- Hsiang-Chen Chou
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, United States
| | - Kuhulika Bhalla
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Sergey Aganezov
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| | - Peter Andrews
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Habeeb Alsudani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Michael C Schatz
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| | | | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| |
Collapse
|
12
|
Ocaña-Pallarès E, Vergara Z, Desvoyes B, Tejada-Jimenez M, Romero-Jurado A, Galván A, Fernández E, Ruiz-Trillo I, Gutierrez C. Origin Recognition Complex (ORC) Evolution Is Influenced by Global Gene Duplication/Loss Patterns in Eukaryotic Genomes. Genome Biol Evol 2020; 12:3878-3889. [PMID: 31990293 PMCID: PMC7058166 DOI: 10.1093/gbe/evaa011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2020] [Indexed: 12/29/2022] Open
Abstract
The conservation of orthologs of most subunits of the origin recognition complex (ORC) has served to propose that the whole complex is common to all eukaryotes. However, various uncertainties have arisen concerning ORC subunit composition in a variety of lineages. Also, it is unclear whether the ancestral diversification of ORC in eukaryotes was accompanied by the neofunctionalization of some subunits, for example, role of ORC1 in centriole homeostasis. We have addressed these questions by reconstructing the distribution and evolutionary history of ORC1-5/CDC6 in a taxon-rich eukaryotic data set. First, we identified ORC subunits previously undetected in divergent lineages, which allowed us to propose a series of parsimonious scenarios for the origin of this multiprotein complex. Contrary to previous expectations, we found a global tendency in eukaryotes to increase or decrease the number of subunits as a consequence of genome duplications or streamlining, respectively. Interestingly, parasites show significantly lower number of subunits than free-living eukaryotes, especially those with the lowest genome size and gene content metrics. We also investigated the evolutionary origin of the ORC1 role in centriole homeostasis mediated by the PACT region in human cells. In particular, we tested the consequences of reducing ORC1 levels in the centriole-containing green alga Chlamydomonas reinhardtii. We found that the proportion of centrioles to flagella and nuclei was not dramatically affected. This, together with the PACT region not being significantly more conserved in centriole-bearing eukaryotes, supports the notion that this neofunctionalization of ORC1 would be a recent acquisition rather than an ancestral eukaryotic feature.
Collapse
Affiliation(s)
| | - Zaida Vergara
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Manuel Tejada-Jimenez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| | - Ainoa Romero-Jurado
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| | - Aurora Galván
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| | - Emilio Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.,Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| |
Collapse
|
13
|
Shibata E, Dutta A. A human cancer cell line initiates DNA replication normally in the absence of ORC5 and ORC2 proteins. J Biol Chem 2020; 295:16949-16959. [PMID: 32989049 PMCID: PMC7863895 DOI: 10.1074/jbc.ra120.015450] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/23/2020] [Indexed: 01/03/2023] Open
Abstract
The origin recognition complex (ORC), composed of six subunits, ORC1-6, binds to origins of replication as a ring-shaped heterohexameric ATPase that is believed to be essential to recruit and load MCM2-7, the minichromosome maintenance protein complex, around DNA and initiate DNA replication. We previously reported the creation of viable cancer cell lines that lacked detectable ORC1 or ORC2 protein without a reduction in the number of origins firing. Here, using CRISPR-Cas9-mediated mutations, we report that human HCT116 colon cancer cells also survive when ORC5 protein expression is abolished via a mutation in the initiator ATG of the ORC5 gene. Even if an internal methionine is used to produce an undetectable, N terminally deleted ORC5, the protein would lack 80% of the AAA+ ATPase domain, including the Walker A motif. The ORC5-depleted cells show normal chromatin binding of MCM2-7 and initiate replication from a similar number of origins as WT cells. In addition, we introduced a second mutation in ORC2 in the ORC5 mutant cells, rendering both ORC5 and ORC2 proteins undetectable in the same cells and destabilizing the ORC1, ORC3, and ORC4 proteins. Yet the double mutant cells grow, recruit MCM2-7 normally to chromatin, and initiate DNA replication with normal number of origins. Thus, in these selected cancer cells, either a crippled ORC lacking ORC2 and ORC5 and present at minimal levels on the chromatin can recruit and load enough MCM2-7 to initiate DNA replication, or human cell lines can sometimes recruit MCM2-7 to origins independent of ORC.
Collapse
Affiliation(s)
- Etsuko Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
14
|
Kim SJ, Wie M, Park SH, Kim TM, Park JH, Kim S, Myung K, Lee KY. ATAD5 suppresses centrosome over-duplication by regulating UAF1 and ID1. Cell Cycle 2020; 19:1952-1968. [PMID: 32594826 PMCID: PMC7469630 DOI: 10.1080/15384101.2020.1785724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Centrosomes are the primary microtubule-organizing centers that are important for mitotic spindle assembly. Centrosome amplification is commonly observed in human cancer cells and contributes to genomic instability. However, it is not clear how centrosome duplication is dysregulated in cancer cells. Here, we report that ATAD5, a replisome protein that unloads PCNA from chromatin as a replication factor C-like complex (RLC), plays an important role in regulating centrosome duplication. ATAD5 is present at the centrosome, specifically at the base of the mother and daughter centrioles that undergo duplication. UAF1, which interacts with ATAD5 and regulates PCNA deubiquitination as a complex with ubiquitin-specific protease 1, is also localized at the centrosome. Depletion of ATAD5 or UAF1 increases cells with over-duplicated centrosome whereas ATAD5 overexpression reduces such cells. Consistently, the proportion of cells showing the multipolar mode of chromosome segregation is increased among ATAD5-depleted cells. The localization and function of ATAD5 at the centrosomes do not require other RLC subunits. UAF1 interacts and co-localizes with ID1, a protein that increases centrosome amplification upon overexpression. ATAD5 depletion reduces interactions between UAF1 and ID1 and increases ID1 signal at the centrosome, providing a mechanistic framework for understanding the role of ATAD5 in centrosome duplication.
Collapse
Affiliation(s)
- Seong-Jung Kim
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology , Ulsan, Korea
| | - Minwoo Wie
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology , Ulsan, Korea
| | - Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea
| | - Tae Moon Kim
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea
| | - Jun Hong Park
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea.,Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine , Naju-si, Republic of Korea
| | - Shinseog Kim
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology , Ulsan, Korea
| | - Kyoo-Young Lee
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea
| |
Collapse
|
15
|
Wang XK, Wang QQ, Huang JL, Zhang LB, Zhou X, Liu JQ, Chen ZJ, Liao XW, Huang R, Yang CK, Zhu GZ, Han CY, Ye XP, Peng T. Novel candidate biomarkers of origin recognition complex 1, 5 and 6 for survival surveillance in patients with hepatocellular carcinoma. J Cancer 2020; 11:1869-1882. [PMID: 32194798 PMCID: PMC7052853 DOI: 10.7150/jca.39163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/20/2019] [Indexed: 01/02/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) has high morbidity and mortality and lacks effective biomarkers for early diagnosis and survival surveillance. Origin recognition complex (ORC), consisting of ORC1-6 isoforms, was examined to assess the potential significance of ORC isoforms for HCC prognosis. Methods: Oncomine and Gene Expression Profiling Interactive Analysis (GEPIA) databases were used to examine differential isoform expression, stage-specific expression, calculate Pearson correlations and perform survival analysis. A human protein atlas database was utilized to evaluate the protein expression of ORCs in liver tissue. The cBioPortal database was used to assess isoform mutations and the survival significance of ORCs in HCC. Cytoscape software was employed to construct gene ontologies, metabolic pathways and gene-gene interaction networks. Results: Differential expression analysis indicated that ORC1 and ORC3-6 were highly expressed in tumor tissues in the Oncomine and GEPIA databases, while ORC2 was not. All the ORCs were showed positive and statistically significant correlations with each other (all P<0.001). ORC1-2 and ORC4-6 expressions were associated with disease stages I-IV (all P<0.05), but ORC3 was not. Survival analysis found that ORC1 and ORC4-6 expressions were associated with overall survival (OS), and ORC1-3 and ORC5-6 expression were associated with recurrence-free survival (RFS; all P<0.05). In addition, low expression of these ORC genes consistently indicated better prognosis compared with high expression. Protein expression analysis revealed that ORC1 and ORC3-6 were expressed in normal liver tissues, whereas ORC2 was not. Enrichment analysis indicated that ORCs were associated with DNA metabolic process, sequence-specific DNA binding and were involved in DNA replication, cell cycle, E2F-enabled inhibition of pre-replication complex formation and G1/S transition. Conclusions: Differentially expressed ORC1, 5 and 6 are candidate biomarkers for survival prediction and recurrence surveillance in HCC.
Collapse
Affiliation(s)
- Xiang-Kun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Qiao-Qi Wang
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Province, China
| | - Jian-Lu Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi Province, China
| | - Lin-Bo Zhang
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Jun-Qi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Zi-Jun Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Cheng-Kun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Chuang-Ye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Xin-Ping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| |
Collapse
|
16
|
Masai H. For 60th birthday of BBRC: DNA replication factors outside S phase. Biochem Biophys Res Commun 2019; 520:685-686. [PMID: 31761077 DOI: 10.1016/j.bbrc.2019.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
17
|
Parker MW, Bell M, Mir M, Kao JA, Darzacq X, Botchan MR, Berger JM. A new class of disordered elements controls DNA replication through initiator self-assembly. eLife 2019; 8:e48562. [PMID: 31560342 PMCID: PMC6764820 DOI: 10.7554/elife.48562] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
The initiation of DNA replication in metazoans occurs at thousands of chromosomal sites known as origins. At each origin, the Origin Recognition Complex (ORC), Cdc6, and Cdt1 co-assemble to load the Mcm2-7 replicative helicase onto chromatin. Current replication models envisage a linear arrangement of isolated origins functioning autonomously; the extent of inter-origin organization and communication is unknown. Here, we report that the replication initiation machinery of D. melanogaster unexpectedly undergoes liquid-liquid phase separation (LLPS) upon binding DNA in vitro. We find that ORC, Cdc6, and Cdt1 contain intrinsically disordered regions (IDRs) that drive LLPS and constitute a new class of phase separating elements. Initiator IDRs are shown to regulate multiple functions, including chromosome recruitment, initiator-specific co-assembly, and Mcm2-7 loading. These data help explain how CDK activity controls replication initiation and suggest that replication programs are subject to higher-order levels of inter-origin organization.
Collapse
Affiliation(s)
- Matthew W Parker
- Department of Biophysics and Biophysical ChemistryJohns Hopkins School of MedicineBaltimoreUnited States
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Maren Bell
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Mustafa Mir
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Jonchee A Kao
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Xavier Darzacq
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Michael R Botchan
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - James M Berger
- Department of Biophysics and Biophysical ChemistryJohns Hopkins School of MedicineBaltimoreUnited States
| |
Collapse
|
18
|
Wang B, Song J. Structural basis for the ORC1-Cyclin A association. Protein Sci 2019; 28:1727-1733. [PMID: 31309634 PMCID: PMC6699096 DOI: 10.1002/pro.3689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
Progression of cell cycle is regulated by sequential expression of cyclins, which associate with distinct cyclin kinases to drive the transition between different cell cycle phases. The complex of Cyclin A with cyclin-dependent kinase 2 (CDK2) controls the DNA replication activity through phosphorylation of a set of chromatin factors, which critically influences the S phase transition. It has been shown that the direct interaction between the Cyclin A-CDK2 complex and origin recognition complex subunit 1 (ORC1) mediates the localization of ORC1 to centrosomes, where ORC1 inhibits cyclin E-mediated centrosome reduplication. However, the molecular basis underlying the specific recognition between ORC1 and cyclins remains elusive. Here we report the crystal structure of Cyclin A-CDK2 complex bound to a peptide derived from ORC1 at 2.54 å resolution. The structure revealed that the ORC1 peptide interacts with a hydrophobic groove, termed cyclin binding groove (CBG), of Cyclin A via a KXL motif. Distinct from other identified CBG-binding sequences, an arginine residue flanking the KXL motif of ORC1 inserts into a neighboring acidic pocket, contributing to the strong ORC1-Cyclin A association. Furthermore, structural and sequence analysis of cyclins reveals divergence on the ORC1-binding sites, which may underpin their differential ORC1-binding activities. This study provides a structural basis of the specific ORC1-cyclins recognition, with implication in development of novel inhibitors against the cyclin/CDK complexes.
Collapse
Affiliation(s)
- Boxiao Wang
- Department of BiochemistryUniversity of CaliforniaRiversideCalifornia
| | - Jikui Song
- Department of BiochemistryUniversity of CaliforniaRiversideCalifornia
| |
Collapse
|
19
|
Casar Tena T, Maerz LD, Szafranski K, Groth M, Blätte TJ, Donow C, Matysik S, Walther P, Jeggo PA, Burkhalter MD, Philipp M. Resting cells rely on the DNA helicase component MCM2 to build cilia. Nucleic Acids Res 2019; 47:134-151. [PMID: 30329080 PMCID: PMC6326816 DOI: 10.1093/nar/gky945] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022] Open
Abstract
Minichromosome maintenance (MCM) proteins facilitate replication by licensing origins and unwinding the DNA double strand. Interestingly, the number of MCM hexamers greatly exceeds the number of firing origins suggesting additional roles of MCMs. Here we show a hitherto unanticipated function of MCM2 in cilia formation in human cells and zebrafish that is uncoupled from replication. Zebrafish depleted of MCM2 develop ciliopathy-phenotypes including microcephaly and aberrant heart looping due to malformed cilia. In non-cycling human fibroblasts, loss of MCM2 promotes transcription of a subset of genes, which cause cilia shortening and centriole overduplication. Chromatin immunoprecipitation experiments show that MCM2 binds to transcription start sites of cilia inhibiting genes. We propose that such binding may block RNA polymerase II-mediated transcription. Depletion of a second MCM (MCM7), which functions in complex with MCM2 during its canonical functions, reveals an overlapping cilia-deficiency phenotype likely unconnected to replication, although MCM7 appears to regulate a distinct subset of genes and pathways. Our data suggests that MCM2 and 7 exert a role in ciliogenesis in post-mitotic tissues.
Collapse
Affiliation(s)
- Teresa Casar Tena
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Lars D Maerz
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Karol Szafranski
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Tamara J Blätte
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Cornelia Donow
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Sabrina Matysik
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Martin D Burkhalter
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Melanie Philipp
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
20
|
Iwai K, Nambu T, Dairiki R, Ohori M, Yu J, Burke K, Gotou M, Yamamoto Y, Ebara S, Shibata S, Hibino R, Nishizawa S, Miyazaki T, Homma M, Oguro Y, Imada T, Cho N, Uchiyama N, Kogame A, Takeuchi T, Kurasawa O, Yamanaka K, Niu H, Ohashi A. Molecular mechanism and potential target indication of TAK-931, a novel CDC7-selective inhibitor. SCIENCE ADVANCES 2019; 5:eaav3660. [PMID: 31131319 PMCID: PMC6531005 DOI: 10.1126/sciadv.aav3660] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/17/2019] [Indexed: 05/02/2023]
Abstract
Replication stress (RS) is a cancer hallmark; chemotherapeutic drugs targeting RS are widely used as treatments for various cancers. To develop next-generation RS-inducing anticancer drugs, cell division cycle 7 (CDC7) has recently attracted attention as a target. We have developed an oral CDC7-selective inhibitor, TAK-931, as a candidate clinical anticancer drug. TAK-931 induced S phase delay and RS. TAK-931-induced RS caused mitotic aberrations through centrosome dysregulation and chromosome missegregation, resulting in irreversible antiproliferative effects in cancer cells. TAK-931 exhibited significant antiproliferative activity in preclinical animal models. Furthermore, in indication-seeking studies using large-scale cell panel data, TAK-931 exhibited higher antiproliferative activities in RAS-mutant versus RAS-wild-type cells; this finding was confirmed in pancreatic patient-derived xenografts. Comparison analysis of cell panel data also demonstrated a unique efficacy spectrum for TAK-931 compared with currently used chemotherapeutic drugs. Our findings help to elucidate the molecular mechanisms for TAK-931 and identify potential target indications.
Collapse
Affiliation(s)
- Kenichi Iwai
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Tadahiro Nambu
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Ryo Dairiki
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Momoko Ohori
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Jie Yu
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - Kristine Burke
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - Masamitsu Gotou
- Integrated Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Yukiko Yamamoto
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shunsuke Ebara
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Sachio Shibata
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Ryosuke Hibino
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Satoru Nishizawa
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Tohru Miyazaki
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Misaki Homma
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Yuya Oguro
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Takashi Imada
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Nobuo Cho
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Noriko Uchiyama
- Biomolecular Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Akifumi Kogame
- DMPK Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Toshiyuki Takeuchi
- DMPK Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Osamu Kurasawa
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Kazunori Yamanaka
- Integrated Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Huifeng Niu
- Translational and Biomarker Research, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - Akihiro Ohashi
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
- Corresponding author.
| |
Collapse
|
21
|
Maerz LD, Casar Tena T, Gerhards J, Donow C, Jeggo PA, Philipp M. Analysis of cilia dysfunction phenotypes in zebrafish embryos depleted of Origin recognition complex factors. Eur J Hum Genet 2019; 27:772-782. [PMID: 30696958 DOI: 10.1038/s41431-019-0338-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 12/15/2022] Open
Abstract
Meier-Gorlin syndrome (MGS) is a rare, congenital primordial microcephalic dwarfism disorder. MGS is caused by genetic variants of components of the origin recognition complex (ORC) consisting of ORC1-6 and the pre-replication complex, which together enable origin firing and hence genome replication. In addition, ORC1 has previously been shown to play a role in ciliogenesis. Here, we extend this work and investigate the function of ORC1 and two other members of the complex on cilia at an organismal level. Knockdown experiments in zebrafish confirmed the impact of ORC1 on cilia. ORC1-deficiency confers defects anticipated to arise from impaired cilia function such as formation of oedema, kidney cysts, curved bodies and left-right asymmetry defects. We found ORC1 furthermore required for cilium formation in zebrafish and demonstrate that ciliopathy phenotypes in ORC1-depleted zebrafish could not be rescued by reconstitution with ORC1 bearing a genetic variant previously identified in MGS patients. Loss-of-function of Orc4 and Orc6, respectively, conferred similar ciliopathy phenotypes and cilium shortening in zebrafish, suggesting that several, if not all, components of the ORC regulate ciliogenesis downstream to or in addition to their canonical function in replication initiation. This study presents the first in vivo evidence of an influence of the MGS genes of the ORC family on cilia, and consolidates the possibility that cilia dysfunction could contribute to the clinical manifestation of ORC-deficient MGS.
Collapse
Affiliation(s)
- Lars D Maerz
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Teresa Casar Tena
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Julian Gerhards
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Cornelia Donow
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Melanie Philipp
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
22
|
Rosselló CA, Lindström L, Eklund G, Corvaisier M, Kristensson MA. γ-Tubulin⁻γ-Tubulin Interactions as the Basis for the Formation of a Meshwork. Int J Mol Sci 2018; 19:ijms19103245. [PMID: 30347727 PMCID: PMC6214090 DOI: 10.3390/ijms19103245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
In cytoplasm, protein γ-tubulin joins with various γ-tubulin complex proteins (GCPs) to form a heterotetramer γ-tubulin small complex (γ-TuSC) that can grow into a ring-shaped structure called the γ-tubulin ring complex (γ-TuRC). Both γ-TuSC and γ-TuRC are required for microtubule nucleation. Recent knowledge on γ-tubulin with regard to its cellular functions beyond participation in its creation of microtubules suggests that this protein forms a cellular meshwork. The present review summarizes the recognized functions of γ-tubulin and aims to unite the current views on this protein.
Collapse
Affiliation(s)
- Catalina Ana Rosselló
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Lisa Lindström
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Greta Eklund
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Matthieu Corvaisier
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Maria Alvarado Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| |
Collapse
|
23
|
Alvarado-Kristensson M. γ-tubulin as a signal-transducing molecule and meshwork with therapeutic potential. Signal Transduct Target Ther 2018; 3:24. [PMID: 30221013 PMCID: PMC6137058 DOI: 10.1038/s41392-018-0021-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/23/2018] [Accepted: 05/06/2018] [Indexed: 01/05/2023] Open
Abstract
Knowledge of γ-tubulin is increasing with regard to the cellular functions of this protein beyond its participation in microtubule nucleation. γ-Tubulin expression is altered in various malignancies, and changes in the TUBG1 gene have been found in patients suffering from brain malformations. This review recapitulates the known functions of γ-tubulin in cellular homeostasis and discusses the possible influence of the protein on disease development and cancer.
Collapse
Affiliation(s)
- Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, 20502 Sweden
| |
Collapse
|
24
|
The Temporal Regulation of S Phase Proteins During G 1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:335-369. [PMID: 29357066 DOI: 10.1007/978-981-10-6955-0_16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Successful DNA replication requires intimate coordination with cell-cycle progression. Prior to DNA replication initiation in S phase, a series of essential preparatory events in G1 phase ensures timely, complete, and precise genome duplication. Among the essential molecular processes are regulated transcriptional upregulation of genes that encode replication proteins, appropriate post-transcriptional control of replication factor abundance and activity, and assembly of DNA-loaded protein complexes to license replication origins. In this chapter we describe these critical G1 events necessary for DNA replication and their regulation in the context of both cell-cycle entry and cell-cycle progression.
Collapse
|
25
|
Solomon VR, Pundir S, Le HT, Lee H. Design and synthesis of novel quinacrine-[1,3]-thiazinan-4-one hybrids for their anti-breast cancer activity. Eur J Med Chem 2018; 143:1028-1038. [PMID: 29232580 DOI: 10.1016/j.ejmech.2017.11.097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 11/29/2022]
Abstract
In an attempt to develop effective and safe anticancer agents, we designed, synthesized and examined 23 novel quinacrine (QC) derivatives by combining the 9-aminoacridine scaffold and the [1,3]thiazinan-4-ones group. Most of these hybrids showed strong anticancer activities, among which 3-(3-(6-chloro-2-methoxyacridin-9-ylamino)propyl)-2-(thiophen-2-yl)-1,3-thiazinan-4-one (25; VR151) effectively killed many different cancer cell types, including eight breast cancer cell lines with different genetic background, two prostate cancer and two lung cancer cell lines. In contrast, compound 25 is less effective against non-cancer cells, suggesting it may be less toxic to humans. Our data showed that cancer cells are arrested in S phase for a prolonged period due to the down-regulation of DNA replication, leading to eventual cell death. We have also shown that the S phase arrest may be resulted by the down-regulation of cyclin A coupled with the continued up-regulation of cyclin E, which coincide with the down-regulation of mTor-S6K and mTor-4EBP1 pathways.
Collapse
Affiliation(s)
- V Raja Solomon
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, Ontario P3E 5J1, Canada.
| | - Sheetal Pundir
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, Ontario P3E 5J1, Canada
| | - Hoang-Thanh Le
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, Ontario P3E 5J1, Canada
| | - Hoyun Lee
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, Ontario P3E 5J1, Canada; Departments of Medicine, The Faculty of Medicine, The University of Ottawa, Ottawa, Ontario K1H 5M8, Canada.
| |
Collapse
|
26
|
Popova VV, Brechalov AV, Georgieva SG, Kopytova DV. Nonreplicative functions of the origin recognition complex. Nucleus 2018; 9:460-473. [PMID: 30196754 PMCID: PMC6244734 DOI: 10.1080/19491034.2018.1516484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/04/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022] Open
Abstract
Origin recognition complex (ORC), a heteromeric six-subunit complex, is the central component of the eukaryotic pre-replication complex. Recent data from yeast, frogs, flies and mammals present compelling evidence that ORC and its individual subunits have nonreplicative functions as well. The majority of these functions, such as heterochromatin formation, chromosome condensation, and segregation are dependent on ORC-DNA interactions. Furthermore, ORC is involved in the control of cell division via its participation in centrosome duplication and cytokinesis. Recent findings have also demonstrated a direct interaction between ORC and mRNPs and highlighted an essential role of ORC in mRNA nuclear export. Along with the growth of evolutionary complexity of organisms, ORC complex functions become more elaborate and new functions of the ORC sub-complexes and individual subunits have emerged.
Collapse
Affiliation(s)
- Varvara V. Popova
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander V. Brechalov
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sofia G. Georgieva
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daria V. Kopytova
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
27
|
Kim GS, Lee I, Kim JH, Hwang DS. The Replication Protein Cdc6 Suppresses Centrosome Over-Duplication in a Manner Independent of Its ATPase Activity. Mol Cells 2017; 40:925-934. [PMID: 29237113 PMCID: PMC5750711 DOI: 10.14348/molcells.2017.0191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 11/27/2022] Open
Abstract
The Cdc6 protein is essential for the initiation of chromosomal replication and functions as a licensing factor to maintain chromosome integrity. During the S and G2 phases of the cell cycle, Cdc6 has been found to inhibit the recruitment of pericentriolar material (PCM) proteins to the centrosome and to suppress centrosome over-duplication. In this report, we analyzed the correlation between these two functions of Cdc6 at the centrosome. Cdc6 depletion increased the population of cells showing centrosome over-duplication and premature centrosome separation; Cdc6 expression reversed these changes. Deletion and fusion experiments revealed that the 18 amino acid residues (197-214) of Cdc6, which were fused to the Cdc6-centrosomal localization signal, suppressed centrosome over-duplication and premature centrosome separation. Cdc6 mutant proteins that showed defective ATP binding or hydrolysis did not exhibit a significant difference in suppressing centrosome over-duplication, compared to the wild type protein. In contrast to the Cdc6-mediated inhibition of PCM protein recruitment to the centrosome, the independence of Cdc6 on its ATPase activity for suppressing centrosome over-duplication, along with the difference between the Cdc6 protein regions participating in the two functions, suggested that Cdc6 controls centrosome duplication in a manner independent of its recruitment of PCM proteins to the centrosome.
Collapse
Affiliation(s)
- Gwang Su Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| | - Inyoung Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| | - Deog Su Hwang
- Department of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
28
|
Sld5 Ensures Centrosomal Resistance to Congression Forces by Preserving Centriolar Satellites. Mol Cell Biol 2017; 38:MCB.00371-17. [PMID: 29061732 DOI: 10.1128/mcb.00371-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/11/2017] [Indexed: 11/20/2022] Open
Abstract
The migration of chromosomes during mitosis is mediated primarily by kinesins that bind to the chromosomes and move along the microtubules, exerting pulling and pushing forces on the centrosomes. We report that a DNA replication protein, Sld5, localizes to the centrosomes, resisting the microtubular pulling forces experienced during chromosome congression. In the absence of Sld5, centriolar satellites, which normally cluster around the centrosomes, are dissipated throughout the cytoplasm, resulting in the loss of their known function of recruiting the centrosomal protein, pericentrin. We observed that Sld5-deficient centrosomes lacking pericentrin were unable to endure the CENP-E- and Kid-mediated microtubular forces that converge on the centrosomes during chromosome congression, resulting in monocentriolar and acentriolar spindle poles. The minus-end-directed kinesin-14 motor protein, HSET, sustains the traction forces that mediate centrosomal fragmentation in Sld5-depleted cells. Thus, we report that a DNA replication protein has an as yet unknown function of ensuring spindle pole resistance to traction forces exerted during chromosome congression.
Collapse
|
29
|
Arbi M, Pefani DE, Taraviras S, Lygerou Z. Controlling centriole numbers: Geminin family members as master regulators of centriole amplification and multiciliogenesis. Chromosoma 2017; 127:151-174. [PMID: 29243212 DOI: 10.1007/s00412-017-0652-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/18/2023]
Abstract
To ensure that the genetic material is accurately passed down to daughter cells during mitosis, dividing cells must duplicate their chromosomes and centrosomes once and only once per cell cycle. The same key steps-licensing, duplication, and segregation-control both the chromosome and the centrosome cycle, which must occur in concert to safeguard genome integrity. Aberrations in genome content or centrosome numbers lead to genomic instability and are linked to tumorigenesis. Such aberrations, however, can also be part of the normal life cycle of specific cell types. Multiciliated cells best exemplify the deviation from a normal centrosome cycle. They are post-mitotic cells which massively amplify their centrioles, bypassing the rule for once-per-cell-cycle centriole duplication. Hundreds of centrioles dock to the apical cell surface and generate motile cilia, whose concerted movement ensures fluid flow across epithelia. The early steps that control the generation of multiciliated cells have lately started to be elucidated. Geminin and the vertebrate-specific GemC1 and McIdas are distantly related coiled-coil proteins, initially identified as cell cycle regulators associated with the chromosome cycle. Geminin is required to ensure once-per-cell-cycle genome replication, while McIdas and GemC1 bind to Geminin and are implicated in DNA replication control. Recent findings highlight Geminin family members as early regulators of multiciliogenesis. GemC1 and McIdas specify the multiciliate cell fate by forming complexes with the E2F4/5 transcription factors to switch on a gene expression program leading to centriole amplification and cilia formation. Positive and negative interactions among Geminin family members may link cell cycle control to centriole amplification and multiciliogenesis, acting close to the point of transition from proliferation to differentiation. We review key steps of centrosome duplication and amplification, present the role of Geminin family members in the centrosome and chromosome cycle, and discuss links with disease.
Collapse
Affiliation(s)
- Marina Arbi
- Laboratory of Biology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece
| | - Dafni-Eleftheria Pefani
- Laboratory of Biology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece.,CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Stavros Taraviras
- Laboratory of Physiology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece.
| |
Collapse
|
30
|
Lee I, Kim GS, Bae JS, Kim J, Rhee K, Hwang DS. The DNA replication protein Cdc6 inhibits the microtubule-organizing activity of the centrosome. J Biol Chem 2017; 292:16267-16276. [PMID: 28827311 DOI: 10.1074/jbc.m116.763680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 08/14/2017] [Indexed: 11/06/2022] Open
Abstract
The centrosome serves as a major microtubule-organizing center (MTOC). The Cdc6 protein is a component of the pre-replicative complex and a licensing factor for the initiation of chromosome replication and localizes to centrosomes during the S and G2 phases of the cfell cycle of human cells. This cell cycle-dependent localization of Cdc6 to the centrosome motivated us to investigate whether Cdc6 negatively regulates MTOC activity and to determine the integral proteins that comprise the pericentriolar material (PCM). Time-lapse live-cell imaging of microtubule regrowth revealed that Cdc6 depletion increased microtubule nucleation at the centrosomes and that expression of Cdc6 in Cdc6-depleted cells reversed this effect. This increase and decrease in microtubule nucleation correlated with the centrosomal intensities of PCM proteins such as γ-tubulin, pericentrin, CDK5 regulatory subunit-associated protein 2 (CDK5RAP2), and centrosomal protein 192 (Cep192). The regulation of microtubule nucleation and the recruitment of PCM proteins to the centrosome required Cdc6 ATPase activity, as well as a centrosomal localization of Cdc6. These results suggest a novel function for Cdc6 in coordinating centrosome assembly and function.
Collapse
Affiliation(s)
- Inyoung Lee
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Gwang Su Kim
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jun Sung Bae
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jaeyoun Kim
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunsoo Rhee
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Deog Su Hwang
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
31
|
Centrosomal MCM7 strengthens the Cep68-VHL interaction and excessive MCM7 leads to centrosome splitting resulting from increase in Cep68 ubiquitination and proteasomal degradation. Biochem Biophys Res Commun 2017; 489:497-502. [DOI: 10.1016/j.bbrc.2017.05.180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 05/30/2017] [Indexed: 12/11/2022]
|
32
|
The PLK4-STIL-SAS-6 module at the core of centriole duplication. Biochem Soc Trans 2017; 44:1253-1263. [PMID: 27911707 PMCID: PMC5095913 DOI: 10.1042/bst20160116] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/09/2016] [Accepted: 06/24/2016] [Indexed: 11/17/2022]
Abstract
Centrioles are microtubule-based core components of centrosomes and cilia. They are duplicated exactly once during S-phase progression. Central to formation of each new (daughter) centriole is the formation of a nine-fold symmetrical cartwheel structure onto which microtubule triplets are deposited. In recent years, a module comprising the protein kinase polo-like kinase 4 (PLK4) and the two proteins STIL and SAS-6 have been shown to stay at the core of centriole duplication. Depletion of any one of these three proteins blocks centriole duplication and, conversely, overexpression causes centriole amplification. In this short review article, we summarize recent insights into how PLK4, STIL and SAS-6 co-operate in space and time to form a new centriole. These advances begin to shed light on the very first steps of centriole biogenesis.
Collapse
|
33
|
Xu X, Huang S, Zhang B, Huang F, Chi W, Fu J, Wang G, Li S, Jiang Q, Zhang C. DNA replication licensing factor Cdc6 and Plk4 kinase antagonistically regulate centrosome duplication via Sas-6. Nat Commun 2017; 8:15164. [PMID: 28447620 PMCID: PMC5414174 DOI: 10.1038/ncomms15164] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 03/03/2017] [Indexed: 12/12/2022] Open
Abstract
Centrosome number is tightly controlled during the cell cycle to ensure proper spindle assembly and cell division. However, the underlying mechanism that controls centrosome number remains largely unclear. We show herein that the DNA replication licensing factor Cdc6 is recruited to the proximal side of the centrioles via cyclin A to negatively regulate centrosome duplication by binding and inhibiting the cartwheel protein Sas-6 from forming a stable complex with another centriole duplication core protein, STIL. We further demonstrate that Cdc6 colocalizes with Plk4 at the centrosome, and interacts with Plk4 during S phase. Plk4 disrupts the interaction between Sas-6 and Cdc6, and suppresses the inhibitory role of Cdc6 on Sas-6 by phosphorylating Cdc6. Overexpressing wild-type Cdc6 or Plk4-unphosphorylatable Cdc6 mutant 2A reduces centrosome over-duplication caused by Plk4 overexpression or hydroxyurea treatment. Taken together, our data demonstrate that Cdc6 and Plk4 antagonistically control proper centrosome duplication during the cell cycle. Centrosome duplication is synchronized with cell cycle events but how this is regulated at a molecular level is unclear. Here, the authors show that the DNA replication licensing factor Cdc6 restrains centrosome duplication via binding and inhibiting Sas-6, and the inhibition of Cdc6 on Sas-6 is negatively regulated by Plk4 phosphorylation.
Collapse
Affiliation(s)
- Xiaowei Xu
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shijiao Huang
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Boyan Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fan Huang
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Wangfei Chi
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jingyan Fu
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Gang Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Si Li
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qing Jiang
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
34
|
Brasil JN, Costa CNM, Cabral LM, Ferreira PCG, Hemerly AS. The plant cell cycle: Pre-Replication complex formation and controls. Genet Mol Biol 2017; 40:276-291. [PMID: 28304073 PMCID: PMC5452130 DOI: 10.1590/1678-4685-gmb-2016-0118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/16/2016] [Indexed: 01/07/2023] Open
Abstract
The multiplication of cells in all living organisms requires a tight regulation of DNA replication. Several mechanisms take place to ensure that the DNA is replicated faithfully and just once per cell cycle in order to originate through mitoses two new daughter cells that contain exactly the same information from the previous one. A key control mechanism that occurs before cells enter S phase is the formation of a pre-replication complex (pre-RC) that is assembled at replication origins by the sequential association of the origin recognition complex, followed by Cdt1, Cdc6 and finally MCMs, licensing DNA to start replication. The identification of pre-RC members in all animal and plant species shows that this complex is conserved in eukaryotes and, more importantly, the differences between kingdoms might reflect their divergence in strategies on cell cycle regulation, as it must be integrated and adapted to the niche, ecosystem, and the organism peculiarities. Here, we provide an overview of the knowledge generated so far on the formation and the developmental controls of the pre-RC mechanism in plants, analyzing some particular aspects in comparison to other eukaryotes.
Collapse
Affiliation(s)
- Juliana Nogueira Brasil
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Centro Universitário Christus, Fortaleza, CE, Brazil
| | - Carinne N Monteiro Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Centro de Genômica e Biologia de Sistemas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Luiz Mors Cabral
- Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Paulo C G Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adriana S Hemerly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
35
|
McKinley KL, Cheeseman IM. Large-Scale Analysis of CRISPR/Cas9 Cell-Cycle Knockouts Reveals the Diversity of p53-Dependent Responses to Cell-Cycle Defects. Dev Cell 2017; 40:405-420.e2. [PMID: 28216383 DOI: 10.1016/j.devcel.2017.01.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/23/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022]
Abstract
Defining the genes that are essential for cellular proliferation is critical for understanding organismal development and identifying high-value targets for disease therapies. However, the requirements for cell-cycle progression in human cells remain incompletely understood. To elucidate the consequences of acute and chronic elimination of cell-cycle proteins, we generated and characterized inducible CRISPR/Cas9 knockout human cell lines targeting 209 genes involved in diverse cell-cycle processes. We performed single-cell microscopic analyses to systematically establish the effects of the knockouts on subcellular architecture. To define variations in cell-cycle requirements between cultured cell lines, we generated knockouts across cell lines of diverse origins. We demonstrate that p53 modulates the phenotype of specific cell-cycle defects through distinct mechanisms, depending on the defect. This work provides a resource to broadly facilitate robust and long-term depletion of cell-cycle proteins and reveals insights into the requirements for cell-cycle progression.
Collapse
Affiliation(s)
- Kara L McKinley
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
36
|
Role of Cdc6 During Oogenesis and Early Embryo Development in Mouse and Xenopus laevis. Results Probl Cell Differ 2017; 59:201-211. [PMID: 28247050 DOI: 10.1007/978-3-319-44820-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cdc6 is an important player in cell cycle regulation. It is involved in the regulation of both S-phase and M-phase. Its role during oogenesis is crucial for repression of the S-phase between the first and the second meiotic M-phases, and it also regulates, via CDK1 inhibition, the M-phase entry and exit. This is of special importance for the reactivation of the major M-phase-regulating kinase CDK1 (Cyclin-Dependent Kinase 1) in oocytes entering metaphase II of meiosis and in embryo cleavage divisions, in which precise timing allows coordination between cell cycle events and developmental program of the embryo. In this chapter, we discuss the role of Cdc6 protein in oocytes and early embryos.
Collapse
|
37
|
Nano M, Basto R. Consequences of Centrosome Dysfunction During Brain Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:19-45. [PMID: 28600781 DOI: 10.1007/978-3-319-57127-0_2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Development requires cell proliferation, differentiation and spatial organization of daughter cells to occur in a highly controlled manner. The mode of cell division, the extent of proliferation and the spatial distribution of mitosis allow the formation of tissues of the right size and with the correct structural organization. All these aspects depend on cell cycle duration, correct chromosome segregation and spindle orientation. The centrosome, which is the main microtubule-organizing centre (MTOC) of animal cells, contributes to all these processes. As one of the most structurally complex organs in our body, the brain is particularly susceptible to centrosome dysfunction. Autosomal recessive primary microcephaly (MCPH), primordial dwarfism disease Seckel syndrome (SCKS) and microcephalic osteodysplastic primordial dwarfism type II (MOPD-II) are often connected to mutations in centrosomal genes. In this chapter, we discuss the consequences of centrosome dysfunction during development and how they can contribute to the etiology of human diseases.
Collapse
Affiliation(s)
- Maddalena Nano
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France
| | - Renata Basto
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France.
| |
Collapse
|
38
|
Pozo PN, Cook JG. Regulation and Function of Cdt1; A Key Factor in Cell Proliferation and Genome Stability. Genes (Basel) 2016; 8:genes8010002. [PMID: 28025526 PMCID: PMC5294997 DOI: 10.3390/genes8010002] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022] Open
Abstract
Successful cell proliferation requires efficient and precise genome duplication followed by accurate chromosome segregation. The Cdc10-dependent transcript 1 protein (Cdt1) is required for the first step in DNA replication, and in human cells Cdt1 is also required during mitosis. Tight cell cycle controls over Cdt1 abundance and activity are critical to normal development and genome stability. We review here recent advances in elucidating Cdt1 molecular functions in both origin licensing and kinetochore–microtubule attachment, and we describe the current understanding of human Cdt1 regulation.
Collapse
Affiliation(s)
- Pedro N Pozo
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jeanette Gowen Cook
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
39
|
Fernández-Álvarez A, Bez C, O'Toole ET, Morphew M, Cooper JP. Mitotic Nuclear Envelope Breakdown and Spindle Nucleation Are Controlled by Interphase Contacts between Centromeres and the Nuclear Envelope. Dev Cell 2016; 39:544-559. [PMID: 27889481 DOI: 10.1016/j.devcel.2016.10.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/02/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
Abstract
Faithful genome propagation requires coordination between nuclear envelope (NE) breakdown, spindle formation, and chromosomal events. The conserved linker of nucleoskeleton and cytoskeleton (LINC) complex connects fission yeast centromeres and the centrosome, across the NE, during interphase. During meiosis, LINC connects the centrosome with telomeres rather than centromeres. We previously showed that loss of telomere-LINC contacts compromises meiotic spindle formation. Here, we define the precise events regulated by telomere-LINC contacts and address the analogous possibility that centromeres regulate mitotic spindle formation. We develop conditionally inactivated LINC complexes in which the conserved SUN-domain protein Sad1 remains stable but severs interphase centromere-LINC contacts. Strikingly, the loss of such contacts abolishes spindle formation. We pinpoint the defect to a failure in the partial NE breakdown required for centrosome insertion into the NE, a step analogous to mammalian NE breakdown. Thus, interphase chromosome-LINC contacts constitute a cell-cycle control device linking nucleoplasmic and cytoplasmic events.
Collapse
Affiliation(s)
- Alfonso Fernández-Álvarez
- Telomere Biology Section, LBMB, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; Telomere Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| | - Cécile Bez
- Telomere Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Eileen T O'Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Mary Morphew
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Julia Promisel Cooper
- Telomere Biology Section, LBMB, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; Telomere Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
40
|
Hossain M, Stillman B. Opposing roles for DNA replication initiator proteins ORC1 and CDC6 in control of Cyclin E gene transcription. eLife 2016; 5. [PMID: 27458800 PMCID: PMC4987141 DOI: 10.7554/elife.12785] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/18/2016] [Indexed: 12/28/2022] Open
Abstract
Newly born cells either continue to proliferate or exit the cell division cycle. This decision involves delaying expression of Cyclin E that promotes DNA replication. ORC1, the Origin Recognition Complex (ORC) large subunit, is inherited into newly born cells after it binds to condensing chromosomes during the preceding mitosis. We demonstrate that ORC1 represses Cyclin E gene (CCNE1) transcription, an E2F1 activated gene that is also repressed by the Retinoblastoma (RB) protein. ORC1 binds to RB, the histone methyltransferase SUV39H1 and to its repressive histone H3K9me3 mark. ORC1 cooperates with SUV39H1 and RB protein to repress E2F1-dependent CCNE1 transcription. In contrast, the ORC1-related replication protein CDC6 binds Cyclin E-CDK2 kinase and in a feedback loop removes RB from ORC1, thereby hyper-activating CCNE1 transcription. The opposing effects of ORC1 and CDC6 in controlling the level of Cyclin E ensures genome stability and a mechanism for linking directly DNA replication and cell division commitment. DOI:http://dx.doi.org/10.7554/eLife.12785.001 Living cells must replicate their DNA before they divide so that the newly formed cells can each receive an identical copy of the genetic material. Before DNA replication can begin, a number of proteins must come together to form so-called pre-replicative complexes at many locations along the DNA molecules. These protein complexes then serve as landing pads for many other DNA replication proteins. One component of the pre-replicative complex, a protein called ORC1, helps to recruit another protein called CDC6 that in turn acts with Cyclin E to promote the replication of the DNA. Cyclin E is a protein that is only expressed when cells commit to divide. Previous research has shown that a lack of ORC1 causes the levels of Cyclin E to rise in human cells, but it was not understood how cells regulate the levels of Cyclin E. Now, Hossain and Stillman show that the ORC1 protein switches off the gene that encodes Cyclin E early on in newly born cells, and therefore prevents the Cyclin E protein from being produced. The experiments show that ORC1 does this by binding near one end of the gene for Cyclin E and interacting with two other proteins to inactivate the gene. Thus, ORC1 establishes a period when Cyclin E is absent from a newly formed cell. This essentially gives the cell time to ‘decide’ (based on external cues and its own signaling) whether it will divide again or enter into a non-dividing state. When a cell does decide to divide, the levels of CDC6 rise. CDC6 is another component of the pre-replicative complex and Hossain and Stillman find that CDC6 works to counteract the effects of ORC1 and reactivate the gene for Cyclin E. This activity leads to a dramatic increase in the production of Cyclin E, which in turn allows the cells to commit to another round of DNA replication and division. The opposing effects of ORC1 and CDC6 control the levels of Cyclin E and provide a link between DNA replication and a cell’s decision to divide. Further work is now needed to see whether ORC1 inactivates other genes in addition to the one that encodes Cyclin E. DOI:http://dx.doi.org/10.7554/eLife.12785.002
Collapse
Affiliation(s)
- Manzar Hossain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| |
Collapse
|
41
|
Bendris N, Lemmers B, Blanchard JM. Cell cycle, cytoskeleton dynamics and beyond: the many functions of cyclins and CDK inhibitors. Cell Cycle 2016; 14:1786-98. [PMID: 25789852 DOI: 10.1080/15384101.2014.998085] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
While targeting experiments carried out on the genes encoding many cell cycle regulators have challenged our views of cell cycle control, they also suggest that redundancy might not be the only explanation for the observed perplexing phenotypes. Indeed, several observations hint at functions of cyclins and CDK inhibitors that cannot be accounted for by their sole role as kinase regulators. They are found involved in many cellular transactions, depending or not on CDKs that are not directly linked to cell cycle control, but participating to general mechanisms such as transcription, DNA repair or cytoskeleton dynamics. In this review we discuss the roles that these alternative functions might have in cancer cell proliferation and migration that sometime even challenge their definition as proliferation markers.
Collapse
Affiliation(s)
- Nawal Bendris
- a Institut de Génétique Moléculaire de Montpellier; CNRS; Montpellier; France; Université Montpellier 2 ; Place Eugène Bataillon; Montpellier , France
| | | | | |
Collapse
|
42
|
Opposing post-translational modifications regulate Cep76 function to suppress centriole amplification. Oncogene 2016; 35:5377-5387. [PMID: 27065328 PMCID: PMC5125818 DOI: 10.1038/onc.2016.74] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 02/03/2016] [Accepted: 02/19/2016] [Indexed: 02/07/2023]
Abstract
Centrioles are critical for many cellular processes including cell division and cilia assembly. The number of centrioles within a cell is under strict control, and deregulation of centriole copy number is a hallmark of cancer. The molecular mechanisms that halt centriole amplification have not been fully elucidated. Here, we found that centrosomal protein of 76 kDa (Cep76), previously shown to restrain centriole amplification, interacts with cyclin-dependent kinase 2 (CDK2) and is a bona fide substrate of this kinase. Cep76 is preferentially phosphorylated by cyclin A/CDK2 at a single site S83, and this event is crucial to suppress centriole amplification in S phase. A novel Cep76 mutation S83C identified in a cancer patient fails to prevent centriole amplification. Mechanistically, Cep76 phosphorylation inhibits activation of polo-like kinase 1 (Plk1), thereby blocking premature centriole disengagement and subsequent amplification. Cep76 can also be acetylated, and enforced acetylation at K279 dampens the protein’s ability to inhibit amplification and precludes S83 phosphorylation. Acetylation of Cep76 normally occurs in G2 phase and correlates with loss of protein function. Our data suggest that temporal changes in posttranslational modifications of Cep76 during the cell cycle regulate its capacity to suppress centriole amplification, and its deregulation may contribute to malignancy.
Collapse
|
43
|
Kalfalah FM, Berg E, Christensen MO, Linka RM, Dirks WG, Boege F, Mielke C. Spatio-temporal regulation of the human licensing factor Cdc6 in replication and mitosis. Cell Cycle 2016; 14:1704-15. [PMID: 25875233 PMCID: PMC4614858 DOI: 10.1080/15384101.2014.1000182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To maintain genome stability, the thousands of replication origins of mammalian genomes must only initiate replication once per cell cycle. This is achieved by a strict temporal separation of ongoing replication in S phase, and the formation of pre-replicative complexes in the preceding G1 phase, which "licenses" each origin competent for replication. The contribution of the loading factor Cdc6 to the timing of the licensing process remained however elusive due to seemingly contradictory findings concerning stabilization, degradation and nuclear export of Cdc6. Using fluorescently tagged Cdc6 (Cdc6-YFP) expressed in living cycling cells, we demonstrate here that Cdc6-YFP is stable and chromatin-associated during mitosis and G1 phase. It undergoes rapid proteasomal degradation during S phase initiation followed by active export to the cytosol during S and G2 phases. Biochemical fractionation abolishes this nuclear exclusion, causing aberrant chromatin association of Cdc6-YFP and, likely, endogenous Cdc6, too. In addition, we demonstrate association of Cdc6 with centrosomes in late G2 and during mitosis. These results show that multiple Cdc6-regulatory mechanisms coexist but are tightly controlled in a cell cycle-specific manner.
Collapse
Affiliation(s)
- Faiza M Kalfalah
- a Institute of Clinical Chemistry and Laboratory Diagnostics; University Düsseldorf; Medical Faculty , Düsseldorf , Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Ortega MA, Ko M, Marh J, Finberg A, Oshiro M, Ward WS. Presence of the Paternal Pronucleus Assists Embryo in Overcoming Cycloheximide Induced Abnormalities in Zygotic Mitosis. J Cell Biochem 2016; 117:1806-12. [PMID: 26729559 DOI: 10.1002/jcb.25480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/04/2016] [Indexed: 11/10/2022]
Abstract
After fertilization, the maternal and paternal chromosomes independently proceed through pronuclear formation. These chromatin reconfigurations occur within a shared cytoplasm thus exposing both gametes to the same factors. Here, we report that continuous cycloheximide [40 μg/mL] treatment of parthenogenotes, androgenotes, and ICSI embryos reveals ORC2 pronuclear instability in the maternal (MPN) but not the paternal pronucleus (PPN). When released from CHX after 8 h, the MPN can recover ORC2 and proceed through replication, however, parthenogenotes encounter severe mitotic defects while both ICSI embryos and androgenotes are able to recover and develop at significantly higher rates. Taken together, these data suggest cycloheximide treatment promotes an environment that asymmetrically affects the stability of ORC2 on the MPN, and the ability of the MPN to develop. Furthermore, the presence of the PPN in the zygote can ameliorate both effects. These data suggest further evidence for crosstalk between the two pronuclei during the first cell cycle of the embryo. J. Cell. Biochem. 117: 1806-1812, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael A Ortega
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Myungjun Ko
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Joel Marh
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Ariel Finberg
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Marissa Oshiro
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - W Steven Ward
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| |
Collapse
|
45
|
Abstract
The origin recognition complex (ORC) proteins, ORC1-6, are the first known proteins that bind DNA replication origins to mark the competency for the initiation of DNA synthesis. These proteins have complex mechanisms of assembly into the ORC complex and unexpected localizations in the mitotic chromosomes, cytoplasm, and nuclear structures. The mammalian zygote is a potentially important model that may contribute to our understanding of the mechanisms and features influencing origin establishment and in the identification of other functions of the ORC proteins. Together with expected localizations to the chromatin during G1, we found an unexpected distribution in the cytoplasm that appeared to accumulate ORC proteins suggesting potential roles for ORC subunits in mitosis and chromatin segregation. ORC1, 2, 3, and 5 all localize to the area between the separating maternal chromosomes shortly after fertilization. ORC4 forms a cage around the set of chromosomes that will be extruded during polar body formation before it binds to the chromatin shortly before zygotic DNA replication. These data suggest that the ORC proteins may also play roles in preparing the cell for DNA replication in addition to their direct role in establishing functional replication origins.
Collapse
|
46
|
Van de Mark D, Kong D, Loncarek J, Stearns T. MDM1 is a microtubule-binding protein that negatively regulates centriole duplication. Mol Biol Cell 2015; 26:3788-802. [PMID: 26337392 PMCID: PMC4626064 DOI: 10.1091/mbc.e15-04-0235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/28/2015] [Indexed: 12/03/2022] Open
Abstract
MDM1 is a microtubule-binding protein that localizes to centrioles. 3D-SIM microscopy shows MDM1 to be closely associated with the centriole barrel, likely residing in the centriole lumen. MDM1 overexpression and depletion experiments suggest that MDM1 is a negative regulator of centriole duplication. Mouse double-minute 1 (Mdm1) was originally identified as a gene amplified in transformed mouse cells and more recently as being highly up-regulated during differentiation of multiciliated epithelial cells, a specialized cell type having hundreds of centrioles and motile cilia. Here we show that the MDM1 protein localizes to centrioles of dividing cells and differentiating multiciliated cells. 3D-SIM microscopy showed that MDM1 is closely associated with the centriole barrel, likely residing in the centriole lumen. Overexpression of MDM1 suppressed centriole duplication, whereas depletion of MDM1 resulted in an increase in granular material that likely represents early intermediates in centriole formation. We show that MDM1 binds microtubules in vivo and in vitro. We identified a repeat motif in MDM1 that is required for efficient microtubule binding and found that these repeats are also present in CCSAP, another microtubule-binding protein. We propose that MDM1 is a negative regulator of centriole duplication and that its function is mediated through microtubule binding.
Collapse
Affiliation(s)
| | - Dong Kong
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research-Frederick, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research-Frederick, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305 Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| |
Collapse
|
47
|
Pundir S, Vu HY, Solomon VR, McClure R, Lee H. VR23: A Quinoline-Sulfonyl Hybrid Proteasome Inhibitor That Selectively Kills Cancer via Cyclin E-Mediated Centrosome Amplification. Cancer Res 2015; 75:4164-75. [PMID: 26238784 DOI: 10.1158/0008-5472.can-14-3370] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 06/30/2015] [Indexed: 11/16/2022]
Abstract
The proteasome is clinically validated as a target for cancer therapeutics. However, proteasome-inhibitory agents that are cancer selective have yet to be developed. In this study, we report the identification of a safe and effective proteasome inhibitor with selective anticancer properties. We screened a chemical library constructed using a hybrid approach that incorporated a 4-piperazinylquinoline scaffold and a sulfonyl phamarcophore. From this library, we identified 7-chloro-4-(4-(2,4-dinitrophenylsulfonyl)piperazin-1-yl)quinoline (VR23) as a small molecule that potently inhibited the activities of trypsin-like proteasomes (IC50 = 1 nmol/L), chymotrypsin-like proteasomes (IC50 = 50-100 nmol/L), and caspase-like proteasomes (IC50 = 3 μmol/L). Data from molecular docking and substrate competition assays established that the primary molecular target of VR23 was β2 of the 20S proteasome catalytic subunit. Notably, VR23 was structurally distinct from other known proteasome inhibitors and selectively killed cancer cells by apoptosis, with little effect on noncancerous cells. Mechanistic investigations showed that cancer cells exposed to VR23 underwent an abnormal centrosome amplification cycle caused by the accumulation of ubiquitinated cyclin E. In combinations with the clinically approved chymotrypsin-like proteasome inhibitor bortezomib, VR23 produced a synergistic effect in killing multiple myeloma cells, including those that were resistant to bortezomib. VR23 was effective in vivo in controlling multiple myelomas and metastatic breast cancer cells, in the latter case also enhancing the antitumor activity of paclitaxel while reducing its side effects. Overall, our results identify VR23 as a structurally novel proteasome inhibitor with desirable properties as an anticancer agent.
Collapse
Affiliation(s)
- Sheetal Pundir
- Advanced Medical Research Institute of Canada, Sudbury, Ontario, Canada. Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Hai-Yen Vu
- Advanced Medical Research Institute of Canada, Sudbury, Ontario, Canada
| | - V Raja Solomon
- Advanced Medical Research Institute of Canada, Sudbury, Ontario, Canada
| | - Rebecca McClure
- Advanced Medical Research Institute of Canada, Sudbury, Ontario, Canada. Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Hoyun Lee
- Advanced Medical Research Institute of Canada, Sudbury, Ontario, Canada. Department of Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada. Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada. Northern Ontario School of Medicine, Sudbury, Ontario, Canada.
| |
Collapse
|
48
|
Morris-Rosendahl DJ, Kaindl AM. What next-generation sequencing (NGS) technology has enabled us to learn about primary autosomal recessive microcephaly (MCPH). Mol Cell Probes 2015; 29:271-81. [PMID: 26050940 DOI: 10.1016/j.mcp.2015.05.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 11/27/2022]
Abstract
The impact that next-generation sequencing technology (NGS) is having on many aspects of molecular and cell biology, is becoming increasingly apparent. One of the most noticeable outcomes of the new technology in human genetics, has been the accelerated rate of identification of disease-causing genes. Especially for rare, heterogeneous disorders, such as autosomal recessive primary microcephaly (MCPH), the handful of genes previously known to harbour disease-causing mutations, has grown at an unprecedented rate within a few years. Knowledge of new genes mutated in MCPH over the last four years has contributed to our understanding of the disorder at both the clinical and cellular levels. The functions of proteins such as WDR62, CASC5, PHC1, CDK6, CENP-E, CENP-F, CEP63, ZNF335, PLK4 and TUBGPC, have been added to the complex network of critical cellular processes known to be involved in brain growth and size. In addition to the importance of mitotic spindle assembly and structure, centrosome and centriole function and DNA repair and damage response, new mechanisms involving kinetochore-associated proteins and chromatin remodelling complexes have been elucidated. Two of the major contributions to our clinical knowledge are the realisation that primary microcephaly caused by mutations in genes at the MCPH loci is seldom an isolated clinical feature and is often accompanied either by additional cortical malformations or primordial dwarfism. Gene-phenotype correlations are being revisited, with a new dimension of locus heterogeneity and phenotypic variability being revealed.
Collapse
Affiliation(s)
- Deborah J Morris-Rosendahl
- Clinical Genetics and Genomics, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité University Medicine, Berlin, Germany; Institute of Cell Biology and Neurobiology, Charité University Medicine, Berlin, Germany
| |
Collapse
|
49
|
Fennell A, Fernández-Álvarez A, Tomita K, Cooper JP. Telomeres and centromeres have interchangeable roles in promoting meiotic spindle formation. ACTA ACUST UNITED AC 2015; 208:415-28. [PMID: 25688135 PMCID: PMC4332249 DOI: 10.1083/jcb.201409058] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Both centromere–centrosome and telomere–centrosome contacts can promote spindle formation during meiosis. Telomeres and centromeres have traditionally been considered to perform distinct roles. During meiotic prophase, in a conserved chromosomal configuration called the bouquet, telomeres gather to the nuclear membrane (NM), often near centrosomes. We found previously that upon disruption of the fission yeast bouquet, centrosomes failed to insert into the NM at meiosis I and nucleate bipolar spindles. Hence, the trans-NM association of telomeres with centrosomes during prophase is crucial for efficient spindle formation. Nonetheless, in approximately half of bouquet-deficient meiocytes, spindles form properly. Here, we show that bouquet-deficient cells can successfully undergo meiosis using centromere–centrosome contact instead of telomere–centrosome contact to generate spindle formation. Accordingly, forced association between centromeres and centrosomes fully rescued the spindle defects incurred by bouquet disruption. Telomeres and centromeres both stimulate focal accumulation of the SUN domain protein Sad1 beneath the centrosome, suggesting a molecular underpinning for their shared spindle-generating ability. Our observations demonstrate an unanticipated level of interchangeability between the two most prominent chromosomal landmarks.
Collapse
Affiliation(s)
- Alex Fennell
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Telomere Biology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| | - Alfonso Fernández-Álvarez
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Telomere Biology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| | - Kazunori Tomita
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London WC1E 6DD, England, UK
| | - Julia Promisel Cooper
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Telomere Biology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| |
Collapse
|
50
|
Giri S, Aggarwal V, Pontis J, Shen Z, Chakraborty A, Khan A, Mizzen C, Prasanth KV, Ait-Si-Ali S, Ha T, Prasanth SG. The preRC protein ORCA organizes heterochromatin by assembling histone H3 lysine 9 methyltransferases on chromatin. eLife 2015; 4. [PMID: 25922909 PMCID: PMC4442312 DOI: 10.7554/elife.06496] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022] Open
Abstract
Heterochromatic domains are enriched with repressive histone marks, including histone H3 lysine 9 methylation, written by lysine methyltransferases (KMTs). The pre-replication complex protein, origin recognition complex-associated (ORCA/LRWD1), preferentially localizes to heterochromatic regions in post-replicated cells. Its role in heterochromatin organization remained elusive. ORCA recognizes methylated H3K9 marks and interacts with repressive KMTs, including G9a/GLP and Suv39H1 in a chromatin context-dependent manner. Single-molecule pull-down assays demonstrate that ORCA-ORC (Origin Recognition Complex) and multiple H3K9 KMTs exist in a single complex and that ORCA stabilizes H3K9 KMT complex. Cells lacking ORCA show alterations in chromatin architecture, with significantly reduced H3K9 di- and tri-methylation at specific chromatin sites. Changes in heterochromatin structure due to loss of ORCA affect replication timing, preferentially at the late-replicating regions. We demonstrate that ORCA acts as a scaffold for the establishment of H3K9 KMT complex and its association and activity at specific chromatin sites is crucial for the organization of heterochromatin structure. DOI:http://dx.doi.org/10.7554/eLife.06496.001 The genetic material inside cells is contained within molecules of DNA. In animals and other eukaryotes, the DNA is tightly wrapped around proteins called histones to form a compact structure known as chromatin. There are two forms of chromatin: loosely packed chromatin tends to contain genes that are highly active in cells, while tightly packed chromatin—called heterochromatin—tends to contain less-active genes. How tightly DNA is packed in chromatin can be changed by adding small molecules known as methyl tags to individual histone proteins. Enzymes called KMTs are responsible for attaching these methyl tags to a specific site on the histones. Before a cell divides, it duplicates its DNA and these methyl tags, so that they can be passed onto the newly formed cells. This enables the new cells to ‘remember’ which genes were inactive or active in the original cell. A protein known as ORCA associates with heterochromatin, but it is not clear what role it plays in controlling the structure of chromatin. Giri et al. studied ORCA and the KMTs in human cells. The experiments show that ORCA recognizes the methyl tags and binds to the KMTs in regions of heterochromatin, but not in regions where the DNA is more loosely packed. Next, Giri et al. used a technique called single-molecule pull-down, which is able to identify individual proteins within a group. These experiments showed that several KMT enzymes can bind to a single ORCA protein at the same time. ORCA stabilizes the binding of KMTs to chromatin, which enables the KMTs to modify the histones within it. Cells lacking ORCA had fewer methyl tags on their histones, which altered the structure of the chromatin. This also affected the timing with which DNA copying takes place in cells before the cell divides. Giri et al.'s findings suggest that ORCA acts as a scaffold for the KMTs and that its activity at specific sites on chromatin is important for the organization of heterochromatin. The next step is to identify the exact regions in the genome where the timing of DNA copying is regulated by ORCA. DOI:http://dx.doi.org/10.7554/eLife.06496.002
Collapse
Affiliation(s)
- Sumanprava Giri
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, United States
| | - Vasudha Aggarwal
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, United States
| | - Julien Pontis
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique, Paris, France
| | - Zhen Shen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, United States
| | - Arindam Chakraborty
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, United States
| | - Abid Khan
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, United States
| | - Craig Mizzen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, United States
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, United States
| | - Slimane Ait-Si-Ali
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique, Paris, France
| | - Taekjip Ha
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, United States
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, United States
| |
Collapse
|