1
|
Sarrazin DH, Gardner W, Marchese C, Balzinger M, Ramanathan C, Schott M, Rozov S, Veleanu M, Vestring S, Normann C, Rantamäki T, Antoine B, Barrot M, Challet E, Bourgin P, Serchov T. Prefrontal cortex molecular clock modulates development of depression-like phenotype and rapid antidepressant response in mice. Nat Commun 2024; 15:7257. [PMID: 39179578 PMCID: PMC11344080 DOI: 10.1038/s41467-024-51716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
Depression is associated with dysregulated circadian rhythms, but the role of intrinsic clocks in mood-controlling brain regions remains poorly understood. We found increased circadian negative loop and decreased positive clock regulators expression in the medial prefrontal cortex (mPFC) of a mouse model of depression, and a subsequent clock countermodulation by the rapid antidepressant ketamine. Selective Bmal1KO in CaMK2a excitatory neurons revealed that the functional mPFC clock is an essential factor for the development of a depression-like phenotype and ketamine effects. Per2 silencing in mPFC produced antidepressant-like effects, while REV-ERB agonism enhanced the depression-like phenotype and suppressed ketamine action. Pharmacological potentiation of clock positive modulator ROR elicited antidepressant-like effects, upregulating plasticity protein Homer1a, synaptic AMPA receptors expression and plasticity-related slow wave activity specifically in the mPFC. Our data demonstrate a critical role for mPFC molecular clock in regulating depression-like behavior and the therapeutic potential of clock pharmacological manipulations influencing glutamatergic-dependent plasticity.
Collapse
Affiliation(s)
- David H Sarrazin
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
| | - Wilf Gardner
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), University of Strasbourg, Strasbourg, France
| | - Carole Marchese
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), University of Strasbourg, Strasbourg, France
| | - Martin Balzinger
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), University of Strasbourg, Strasbourg, France
| | | | - Marion Schott
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
| | - Stanislav Rozov
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maxime Veleanu
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Vestring
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Neuromodulation, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tomi Rantamäki
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Benedicte Antoine
- Sorbonne Université, INSERM, Centre de Recherches St-Antoine (CRSA), Paris, France
| | - Michel Barrot
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), University of Strasbourg, Strasbourg, France
| | - Etienne Challet
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
| | - Patrice Bourgin
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, Strasbourg, France
| | - Tsvetan Serchov
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France.
- University of Strasbourg Institute for Advanced Study (USIAS), University of Strasbourg, Strasbourg, France.
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Huang Z. Evidence that Alzheimer's Disease Is a Disease of Competitive Synaptic Plasticity Gone Awry. J Alzheimers Dis 2024; 99:447-470. [PMID: 38669548 PMCID: PMC11119021 DOI: 10.3233/jad-240042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Mounting evidence indicates that a physiological function of amyloid-β (Aβ) is to mediate neural activity-dependent homeostatic and competitive synaptic plasticity in the brain. I have previously summarized the lines of evidence supporting this hypothesis and highlighted the similarities between Aβ and anti-microbial peptides in mediating cell/synapse competition. In cell competition, anti-microbial peptides deploy a multitude of mechanisms to ensure both self-protection and competitor elimination. Here I review recent studies showing that similar mechanisms are at play in Aβ-mediated synapse competition and perturbations in these mechanisms underpin Alzheimer's disease (AD). Specifically, I discuss evidence that Aβ and ApoE, two crucial players in AD, co-operate in the regulation of synapse competition. Glial ApoE promotes self-protection by increasing the production of trophic monomeric Aβ and inhibiting its assembly into toxic oligomers. Conversely, Aβ oligomers, once assembled, promote the elimination of competitor synapses via direct toxic activity and amplification of "eat-me" signals promoting the elimination of weak synapses. I further summarize evidence that neuronal ApoE may be part of a gene regulatory network that normally promotes competitive plasticity, explaining the selective vulnerability of ApoE expressing neurons in AD brains. Lastly, I discuss evidence that sleep may be key to Aβ-orchestrated plasticity, in which sleep is not only induced by Aβ but is also required for Aβ-mediated plasticity, underlining the link between sleep and AD. Together, these results strongly argue that AD is a disease of competitive synaptic plasticity gone awry, a novel perspective that may promote AD research.
Collapse
Affiliation(s)
- Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Højgaard K, Szöllősi B, Henningsen K, Minami N, Nakanishi N, Kaadt E, Tamura M, Morris RGM, Takeuchi T, Elfving B. Novelty-induced memory consolidation is accompanied by increased Agap3 transcription: a cross-species study. Mol Brain 2023; 16:69. [PMID: 37749596 PMCID: PMC10521532 DOI: 10.1186/s13041-023-01056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
Novelty-induced memory consolidation is a well-established phenomenon that depends on the activation of a locus coeruleus-hippocampal circuit. It is associated with the expression of activity-dependent genes that may mediate initial or cellular memory consolidation. Several genes have been identified to date, however, to fully understand the mechanisms of memory consolidation, additional candidates must be identified. In this cross-species study, we used a contextual novelty-exploration paradigm to identify changes in gene expression in the dorsal hippocampus of both mice and rats. We found that changes in gene expression following contextual novelty varied between the two species, with 9 genes being upregulated in mice and 3 genes in rats. Comparison across species revealed that ArfGAP with a GTPase domain, an ankyrin repeat and PH domain 3 (Agap3) was the only gene being upregulated in both, suggesting a potentially conserved role for Agap3. AGAP3 is known to regulate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor trafficking in the synapse, which suggests that increased transcription of Agap3 may be involved in maintaining functional plasticity. While we identified several genes affected by contextual novelty exploration, we were unable to fully reverse these changes using SCH 23390, a dopamine D1/D5 receptor antagonist. Further research on the role of AGAP3 in novelty-induced memory consolidation could lead to better understanding of this process and guide future research.
Collapse
Affiliation(s)
- Kristoffer Højgaard
- Translational Neuropsychiatry Unit, Department of Clinical medicine, Aarhus University, Aarhus N, DK8200, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, DK8000, Denmark
| | - Bianka Szöllősi
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, DK8000, Denmark
| | - Kim Henningsen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, DK8000, Denmark
| | - Natsumi Minami
- Neuroscience Research Unit, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan
| | - Nobuhiro Nakanishi
- Data Science Department, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan
| | - Erik Kaadt
- Translational Neuropsychiatry Unit, Department of Clinical medicine, Aarhus University, Aarhus N, DK8200, Denmark
| | - Makoto Tamura
- Neuroscience Research Unit, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan
- NeuroDiscovery Lab, Mitsubishi Tanabe Pharma Holdings America Inc, Cambridge, MA, 02139, USA
| | - Richard G M Morris
- Laboratory for Cognitive Neuroscience, Edinburgh Neuroscience, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Tomonori Takeuchi
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, DK8000, Denmark.
- Center for Proteins in Memory - PROMEMO, Department of Biomedicine, Danish National Research Foundation, Aarhus University, Aarhus C, DK8000, Denmark.
- Gftd DeSci, Gftd DAO, Tokyo, 162-0044, Japan.
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical medicine, Aarhus University, Aarhus N, DK8200, Denmark.
| |
Collapse
|
4
|
Nakamura NH, Furue H, Kobayashi K, Oku Y. Hippocampal ensemble dynamics and memory performance are modulated by respiration during encoding. Nat Commun 2023; 14:4391. [PMID: 37500646 PMCID: PMC10374532 DOI: 10.1038/s41467-023-40139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
During offline brain states, such as sleep and memory consolidation, respiration coordinates hippocampal activity. However, the role of breathing during online memory traces remains unclear. Here, we show that respiration can be recruited during online memory encoding. Optogenetic manipulation was used to control activation of the primary inspiratory rhythm generator PreBötzinger complex (PreBötC) in transgenic mice. When intermittent PreBötC-induced apnea covered the object exploration time during encoding, novel object detection was impaired. Moreover, the mice did not exhibit freezing behavior during presentation of fear-conditioned stimuli (CS+) when PreBötC-induced apnea occurred at the exact time of encoding. This apnea did not evoke changes in CA3 cell ensembles between presentations of CS+ and conditioned inhibition (CS-), whereas in normal breathing, CS+ presentations produced dynamic changes. Our findings demonstrate that components of central respiratory activity (e.g., frequency) during online encoding strongly contribute to shaping hippocampal ensemble dynamics and memory performance.
Collapse
Affiliation(s)
- Nozomu H Nakamura
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hidemasa Furue
- Division of Neurophysiology, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Yoshitaka Oku
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo, 663-8501, Japan
| |
Collapse
|
5
|
Malakasis N, Chavlis S, Poirazi P. Synaptic turnover promotes efficient learning in bio-realistic spiking neural networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541722. [PMID: 37292929 PMCID: PMC10245885 DOI: 10.1101/2023.05.22.541722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While artificial machine learning systems achieve superhuman performance in specific tasks such as language processing, image and video recognition, they do so use extremely large datasets and huge amounts of power. On the other hand, the brain remains superior in several cognitively challenging tasks while operating with the energy of a small lightbulb. We use a biologically constrained spiking neural network model to explore how the neural tissue achieves such high efficiency and assess its learning capacity on discrimination tasks. We found that synaptic turnover, a form of structural plasticity, which is the ability of the brain to form and eliminate synapses continuously, increases both the speed and the performance of our network on all tasks tested. Moreover, it allows accurate learning using a smaller number of examples. Importantly, these improvements are most significant under conditions of resource scarcity, such as when the number of trainable parameters is halved and when the task difficulty is increased. Our findings provide new insights into the mechanisms that underlie efficient learning in the brain and can inspire the development of more efficient and flexible machine learning algorithms.
Collapse
Affiliation(s)
- Nikos Malakasis
- School of Medicine, University of Crete, Heraklion 70013, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| |
Collapse
|
6
|
Diering GH. Remembering and forgetting in sleep: Selective synaptic plasticity during sleep driven by scaling factors Homer1a and Arc. Neurobiol Stress 2022; 22:100512. [PMID: 36632309 PMCID: PMC9826981 DOI: 10.1016/j.ynstr.2022.100512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/01/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023] Open
Abstract
Sleep is a conserved and essential process that supports learning and memory. Synapses are a major target of sleep function and a locus of sleep need. Evidence in the literature suggests that the need for sleep has a cellular or microcircuit level basis, and that sleep need can accumulate within localized brain regions as a function of waking activity. Activation of sleep promoting kinases and accumulation of synaptic phosphorylation was recently shown to be part of the molecular basis for the localized sleep need. A prominent hypothesis in the field suggests that some benefits of sleep are mediated by a broad but selective weakening, or scaling-down, of synaptic strength during sleep in order to offset increased excitability from synaptic potentiation during wake. The literature also shows that synapses can be strengthened during sleep, raising the question of what molecular mechanisms may allow for selection of synaptic plasticity types during sleep. Here I describe mechanisms of action of the scaling factors Arc and Homer1a in selective plasticity and links with sleep need. Arc and Homer1a are induced in neurons in response to waking neuronal activity and accumulate with time spent awake. I suggest that during sleep, Arc and Homer1a drive broad weakening of synapses through homeostatic scaling-down, but in a manner that is sensitive to the plasticity history of individual synapses, based on patterned phosphorylation of synaptic proteins. Therefore, Arc and Homer1a may offer insights into the intricate links between a cellular basis of sleep need and memory consolidation during sleep.
Collapse
Affiliation(s)
- Graham H. Diering
- Department of Cell Biology and Physiology and the UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Carolina Institute for Developmental Disabilities, USA,111 Mason Farm Road, 5200 Medical and Biomolecular Research Building, Chapel Hill, NC, 27599-7545, USA.
| |
Collapse
|
7
|
Anyachor CP, Dooka DB, Orish CN, Amadi CN, Bocca B, Ruggieri F, Senofonte M, Frazzoli C, Orisakwe OE. Mechanistic considerations and biomarkers level in nickel-induced neurodegenerative diseases: An updated systematic review. IBRO Neurosci Rep 2022; 13:136-146. [PMID: 35989698 PMCID: PMC9382260 DOI: 10.1016/j.ibneur.2022.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/30/2022] [Indexed: 10/27/2022] Open
Abstract
The environment has been implicated to be a strong determinant of brain health with higher risk of neurodegeneration. The drastic rise in the prevalence of neurodegenerative diseases (NDDs) including Alzheimer's disease (AD), Parkinson's disease (PD), autism spectrum disorder (ASD), multiple sclerosis (MS) etc., supports the idea that environmental factors may play a major role in NDDs aetiology. Nickel is one of the listed environmental metals reported to pose a serious threat to human health. This paper reported available studies on nickel level in NDDs covering both animal and human studies. Different databases were searched for articles reporting the main neurotoxicity mechanisms and the concentration of nickel in fluids and tissues of NDDs patients compared to controls. Data were extracted and synthesized by ensuring the articles were related to nickel and NDDs. Various mechanisms were reported as oxidative stress, disturbances in mitochondrial membrane potential, trace elements homeostasis destabilization, etc. Nickel was found elevated in biological fluids as blood, serum/plasma and CSF and in the brain of NDDs, as a consequence of unintentional exposure thorough nickel-contaminated air, food, water, and skin contact. In addition, after exposure to nickel, the concentration of markers of lipid peroxidation were increased, while some antioxidant defence systems decreased. Thus, the reduction in the exposure to nickel contaminant may hold a promise in reducing the incidence of NDDs.
Collapse
Affiliation(s)
- Chidinma Promise Anyachor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Donatus Baridoo Dooka
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Chinna Nneka Orish
- Department of Anatomy, College of Health Sciences University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Cecilia Nwadiuto Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marta Senofonte
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Frazzoli
- Department for Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Istituto Superiore di Sanità, Rome Viale Regina Elena, 29900161 Roma, Italy
| | - Orish E. Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
- Department of Anatomy, College of Health Sciences University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
8
|
Nambu MF, Lin YJ, Reuschenbach J, Tanaka KZ. What does engram encode?: Heterogeneous memory engrams for different aspects of experience. Curr Opin Neurobiol 2022; 75:102568. [PMID: 35660988 DOI: 10.1016/j.conb.2022.102568] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/26/2022] [Accepted: 05/01/2022] [Indexed: 01/03/2023]
Abstract
Long-lasting synaptic changes within the neuronal network mediate memory. Neurons bearing such physical traces of memory (memory engram cells) are often equated with neurons expressing immediate early genes (IEGs) during a specific experience. However, past studies observed the expression of different IEGs in non-overlapping neurons or synaptic plasticity in neurons that do not express a particular IEG. Importantly, recent studies revealed that distinct subsets of neurons expressing different IEGs or even IEG negative-(yet active) neurons support different aspects of memory or computation, suggesting a more complex nature of memory engram cells than previously thought. In this short review, we introduce studies revealing such heterogeneous composition of the memory engram and discuss how the memory system benefits from it.
Collapse
Affiliation(s)
- Miyu F Nambu
- Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan. https://twitter.com/meowmiyu
| | - Yu-Ju Lin
- Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan. https://twitter.com/linyuru25199808
| | - Josefine Reuschenbach
- Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan. https://twitter.com/Jausefine
| | - Kazumasa Z Tanaka
- Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
9
|
Chronic neuronal excitation leads to dual metaplasticity in the signaling for structural long-term potentiation. Cell Rep 2022; 38:110153. [PMID: 34986356 DOI: 10.1016/j.celrep.2021.110153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/06/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Synaptic plasticity is long-lasting changes in synaptic currents and structure. When neurons are exposed to signals that induce aberrant neuronal excitation, they increase the threshold for the induction of long-term potentiation (LTP), known as metaplasticity. However, the metaplastic regulation of structural LTP (sLTP) remains unclear. We investigate glutamate uncaging/photoactivatable (pa)CaMKII-dependent sLTP induction in hippocampal CA1 neurons after chronic neuronal excitation by GABAA receptor antagonists. We find that the neuronal excitation decreases the glutamate uncaging-evoked Ca2+ influx mediated by GluN2B-containing NMDA receptors and suppresses sLTP induction. In addition, single-spine optogenetic stimulation using paCaMKII indicates the suppression of CaMKII signaling. While the inhibition of Ca2+ influx is protein synthesis independent, the paCaMKII-induced sLTP suppression depends on it. Our findings demonstrate that chronic neuronal excitation suppresses sLTP in two independent ways (i.e., dual inhibition of Ca2+ influx and CaMKII signaling). This dual inhibition mechanism may contribute to robust neuronal protection in excitable environments.
Collapse
|
10
|
Hippocampal neurons' cytosolic and membrane-bound ribosomal transcript profiles are differentially regulated by learning and subsequent sleep. Proc Natl Acad Sci U S A 2021; 118:2108534118. [PMID: 34819370 PMCID: PMC8640746 DOI: 10.1073/pnas.2108534118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
Sleep loss disrupts consolidation of hippocampus-dependent memory. To understand the cellular basis for this effect, we quantified RNAs associated with translating ribosomes in cytosol and on cellular membranes of different hippocampal neuron populations. Our analysis suggests that while sleep loss (but not learning) alters numerous ribosomal transcripts in cytosol, learning has dramatic effects on transcript profiles for less–well-characterized membrane-bound ribosomes. We demonstrate that postlearning sleep deprivation occludes already minimal learning-driven changes on cytosolic ribosomes. It simultaneously alters transcripts associated with metabolic and biosynthetic processes in membrane-bound ribosomes in excitatory hippocampal neurons and highly active, putative “engram” neurons, respectively. Together, these findings provide insights into the cellular mechanisms altered by learning and their disruption by subsequent sleep loss. The hippocampus is essential for consolidating transient experiences into long-lasting memories. Memory consolidation is facilitated by postlearning sleep, although the underlying cellular mechanisms are largely unknown. We took an unbiased approach to this question by using a mouse model of hippocampally mediated, sleep-dependent memory consolidation (contextual fear memory). Because synaptic plasticity is associated with changes to both neuronal cell membranes (e.g., receptors) and cytosol (e.g., cytoskeletal elements), we characterized how these cell compartments are affected by learning and subsequent sleep or sleep deprivation (SD). Translating ribosome affinity purification was used to profile ribosome-associated RNAs in different subcellular compartments (cytosol and membrane) and in different cell populations (whole hippocampus, Camk2a+ neurons, or highly active neurons with phosphorylated ribosomal subunit S6 [pS6+]). We examined how transcript profiles change as a function of sleep versus SD and prior learning (contextual fear conditioning; CFC). While sleep loss altered many cytosolic ribosomal transcripts, CFC altered almost none, and CFC-driven changes were occluded by subsequent SD. In striking contrast, SD altered few transcripts on membrane-bound (MB) ribosomes, while learning altered many more (including long non-coding RNAs [lncRNAs]). The cellular pathways most affected by CFC were involved in structural remodeling. Comparisons of post-CFC MB transcript profiles between sleeping and SD mice implicated changes in cellular metabolism in Camk2a+ neurons and protein synthesis in highly active pS6+ (putative “engram”) neurons as biological processes disrupted by SD. These findings provide insights into how learning affects hippocampal neurons and suggest that the effects of SD on memory consolidation are cell type and subcellular compartment specific.
Collapse
|
11
|
Reshetnikov VV, Bondar NP. The Role of Stress-Induced Changes of Homer1 Expression in Stress Susceptibility. BIOCHEMISTRY (MOSCOW) 2021; 86:613-626. [PMID: 34225586 DOI: 10.1134/s0006297921060018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Stress negatively affects processes of synaptic plasticity and is a major risk factor of various psychopathologies such as depression and anxiety. HOMER1 is an important component of the postsynaptic density: constitutively expressed long isoforms HOMER1b and HOMER1c bind to group I metabotropic glutamate receptors MGLUR1 (GRM1) and MGLUR5 and to other effector proteins, thereby forming a postsynaptic protein scaffold. Activation of the GLUR1-HOMER1b,c and/or GLUR5-HOMER1b,c complex regulates activity of the NMDA and AMPA receptors and Ca2+ homeostasis, thus modulating various types of synaptic plasticity. Dominant negative transcript Homer1a is formed as a result of activity-induced alternative termination of transcription. Expression of this truncated isoform in response to neuronal activation impairs interactions of HOMER1b,c with adaptor proteins, triggers ligand-independent signal transduction through MGLUR1 and/or MGLUR5, leads to suppression of the AMPA- and NMDA-mediated signal transmission, and thereby launches remodeling of the postsynaptic protein scaffold and inhibits long-term potentiation. The studies on animal models confirm that the HOMER1a-dependent remodeling most likely plays an important part in the stress susceptibility, whereas HOMER1a itself can be regarded as a neuroprotector. In this review article, we consider the effects of different stressors in various animal models on HOMER1 expression as well as impact of different HOMER1 variants on human behavior as well as structural and functional characteristics of the brain.
Collapse
Affiliation(s)
- Vasiliy V Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Natalia P Bondar
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
12
|
Bockaert J, Perroy J, Ango F. The Complex Formed by Group I Metabotropic Glutamate Receptor (mGluR) and Homer1a Plays a Central Role in Metaplasticity and Homeostatic Synaptic Scaling. J Neurosci 2021; 41:5567-5578. [PMID: 34193623 PMCID: PMC8244974 DOI: 10.1523/jneurosci.0026-21.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022] Open
Abstract
G-protein-coupled receptors can be constitutively activated following physical interaction with intracellular proteins. The first example described was the constitutive activation of Group I metabotropic glutamate receptors (mGluR: mGluR1,5) following their interaction with Homer1a, an activity-inducible early-termination variant of the scaffolding protein Homer that lacks dimerization capacity (Ango et al., 2001). Homer1a disrupts the links, maintained by the long form of Homer (cross-linking Homers), between mGluR1,5 and the Shank-GKAP-PSD-95-ionotropic glutamate receptor network. Two characteristics of the constitutive activation of the Group I mGluR-Homer1a complex are particularly interesting: (1) it affects a large number of synapses in which Homer1a is upregulated following enhanced, long-lasting neuronal activity; and (2) it mainly depends on Homer1a protein turnover. The constitutively active Group I mGluR-Homer1a complex is involved in the two main forms of non-Hebbian neuronal plasticity: "metaplasticity" and "homeostatic synaptic scaling," which are implicated in a large series of physiological and pathologic processes. Those include non-Hebbian plasticity observed in visual system, synapses modulated by addictive drugs (rewarded synapses), chronically overactivated synaptic networks, normal sleep, and sleep deprivation.
Collapse
Affiliation(s)
- Joël Bockaert
- Institut de Génomique Fonctionnelle, Université Montpellier, Center National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 34094 Montpellier, France
| | - Julie Perroy
- Institut de Génomique Fonctionnelle, Université Montpellier, Center National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 34094 Montpellier, France
| | - Fabrice Ango
- Institut des Neurosciences de Montpellier, Université Montpellier, Center National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 34295 Montpellier, France
| |
Collapse
|
13
|
Furuichi T, Muto Y, Sadakata T, Sato Y, Hayashi K, Shiraishi-Yamaguchi Y, Shinoda Y. The physiological role of Homer2a and its novel short isoform, Homer2e, in NMDA receptor-mediated apoptosis in cerebellar granule cells. Mol Brain 2021; 14:90. [PMID: 34118975 PMCID: PMC8199691 DOI: 10.1186/s13041-021-00804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 11/10/2022] Open
Abstract
Homer is a postsynaptic scaffold protein, which has long and short isoforms. The long form of Homer consists of an N-terminal target-binding domain and a C-terminal multimerization domain, linking multiple proteins within a complex. The short form of Homer only has the N-terminal domain and likely acts as a dominant negative regulator. Homer2a, one of the long form isoforms of the Homer family, expresses with a transient peak in the early postnatal stage of mouse cerebellar granule cells (CGCs); however, the functions of Homer2a in CGCs are not fully understood yet. In this study, we investigated the physiological roles of Homer2a in CGCs using recombinant adenovirus vectors. Overexpression of the Homer2a N-terminal domain construct, which was made structurally reminiscent with Homer1a, altered NMDAR1 localization, decreased NMDA currents, and promoted the survival of CGCs. These results suggest that the Homer2a N-terminal domain acts as a dominant negative protein to attenuate NMDAR-mediated excitotoxicity. Moreover, we identified a novel short form N-terminal domain-containing Homer2, named Homer2e, which was induced by apoptotic stimulation such as ischemic brain injury. Our study suggests that the long and short forms of Homer2 are involved in apoptosis of CGCs.
Collapse
Affiliation(s)
- Teiichi Furuichi
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.
- JST-CREST, Kawaguchi, Saitama, 332-0012, Japan.
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan.
| | - Yuko Muto
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Tetsushi Sadakata
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- JST-CREST, Kawaguchi, Saitama, 332-0012, Japan
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Yumi Sato
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Laboratory of Proteome Research, Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Kanehiro Hayashi
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- JST-CREST, Kawaguchi, Saitama, 332-0012, Japan
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoko Shiraishi-Yamaguchi
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department of Developing Human Resources for R&D Programs, Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-8666, Japan
| | - Yo Shinoda
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.
- JST-CREST, Kawaguchi, Saitama, 332-0012, Japan.
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
14
|
Bin Ibrahim MZ, Benoy A, Sajikumar S. Long-term plasticity in the hippocampus: maintaining within and 'tagging' between synapses. FEBS J 2021; 289:2176-2201. [PMID: 34109726 DOI: 10.1111/febs.16065] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Synapses between neurons are malleable biochemical structures, strengthening and diminishing over time dependent on the type of information they receive. This phenomenon known as synaptic plasticity underlies learning and memory, and its different forms, long-term potentiation (LTP) and long-term depression (LTD), perform varied cognitive roles in reinforcement, relearning and associating memories. Moreover, both LTP and LTD can exist in an early transient form (early-LTP/LTD) or a late persistent form (late-LTP/LTD), which are triggered by different induction protocols, and also differ in their dependence on protein synthesis and the involvement of key molecular players. Beyond homosynaptic modifications, synapses can also interact with one another. This is encapsulated in the synaptic tagging and capture hypothesis (STC), where synapses expressing early-LTP/LTD present a 'tag' that can capture the protein synthesis products generated during a temporally proximal late-LTP/LTD induction. This 'tagging' phenomenon forms the framework of synaptic interactions in various conditions and accounts for the cellular basis of the time-dependent associativity of short-lasting and long-lasting memories. All these synaptic modifications take place under controlled neuronal conditions, regulated by subcellular elements such as epigenetic regulation, proteasomal degradation and neuromodulatory signals. Here, we review current understanding of the different forms of synaptic plasticity and its regulatory mechanisms in the hippocampus, a brain region critical for memory formation. We also discuss expression of plasticity in hippocampal CA2 area, a long-overlooked narrow hippocampal subfield and the behavioural correlate of STC. Lastly, we put forth perspectives for an integrated view of memory representation in synapses.
Collapse
Affiliation(s)
- Mohammad Zaki Bin Ibrahim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| | - Amrita Benoy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
15
|
Hoang TH, Böge J, Manahan-Vaughan D. Hippocampal subfield-specific Homer1a expression is triggered by learning-facilitated long-term potentiation and long-term depression at medial perforant path synapses. Hippocampus 2021; 31:897-915. [PMID: 33964041 DOI: 10.1002/hipo.23333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/22/2021] [Accepted: 04/11/2021] [Indexed: 12/23/2022]
Abstract
Learning about general aspects, or content details, of space results in differentiated neuronal information encoding within the proximodistal axis of the hippocampus. These processes are tightly linked to long-term potentiation (LTP) and long-term depression (LTD). Here, we explored the precise sites of encoding of synaptic plasticity in the hippocampus that are mediated by information throughput from the perforant path. We assessed nuclear Homer1a-expression that was triggered by electrophysiological induction of short and long forms of hippocampal synaptic plasticity, and compared it to Homer1a-expression that was triggered by LTP and LTD enabled by different forms of spatial learning. Plasticity responses were induced by patterned stimulation of the perforant path and were recorded in the dentate gyrus (DG) of freely behaving rats. We used fluorescence in situ hybridization to detect experience-dependent nuclear encoding of Homer1a in proximodistal hippocampal subfields. Induction of neither STP nor STD resulted in immediate early gene (IEG) encoding. Electrophysiological induction of robust LTP, or LTD, resulted in highly significant and widespread induction of nuclear Homer1a in all hippocampal subfields. LTP that was facilitated by novel spatial exploration triggered similar widespread Homer1a-expression. The coupling of synaptic depression with the exploration of a novel configuration of landmarks resulted in localized IEG expression in the proximal CA3 region and the lower (infrapyramidal) blade of the DG. Our findings support that synaptic plasticity induction via perforant path inputs promotes widespread hippocampal information encoding. Furthermore, novel spatial exploration promotes the selection of a hippocampal neuronal network by means of LTP that is distributed in an experience-dependent manner across all hippocampus subfields. This network may be modified during spatial content learning by LTD in specific hippocampal subfields. Thus, long-term plasticity-inducing events result in IEG expression that supports establishment and/or restructuring of neuronal networks that are necessary for long-term information storage.
Collapse
Affiliation(s)
- Thu-Huong Hoang
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Juliane Böge
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
16
|
Okuda K, Højgaard K, Privitera L, Bayraktar G, Takeuchi T. Initial memory consolidation and the synaptic tagging and capture hypothesis. Eur J Neurosci 2020; 54:6826-6849. [PMID: 32649022 DOI: 10.1111/ejn.14902] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 01/05/2023]
Abstract
Everyday memories are retained automatically in the hippocampus and then decay very rapidly. Memory retention can be boosted when novel experiences occur shortly before or shortly after the time of memory encoding via a memory stabilization process called "initial memory consolidation." The dopamine release and new protein synthesis in the hippocampus during a novel experience are crucial for this novelty-induced memory boost. The mechanisms underlying initial memory consolidation are not well-understood, but the synaptic tagging and capture (STC) hypothesis provides a conceptual basis of synaptic plasticity events occurring during initial memory consolidation. In this review, we provide an overview of the STC hypothesis and its relevance to dopaminergic signalling, in order to explore the cellular and molecular mechanisms underlying initial memory consolidation in the hippocampus. We summarize electrophysiological STC processes based on the evidence from two-pathway experiments and a behavioural tagging hypothesis, which translates the STC hypothesis into a related behavioural hypothesis. We also discuss the function of two types of molecules, "synaptic tags" and "plasticity-related proteins," which have a crucial role in the STC process and initial memory consolidation. We describe candidate molecules for the roles of synaptic tag and plasticity-related proteins and interpret their candidacy based on evidence from two-pathway experiments ex vivo, behavioural tagging experiments in vivo and recent cutting-edge optical imaging experiments. Lastly, we discuss the direction of future studies to advance our understanding of molecular mechanisms underlying the STC process, which are critical for initial memory consolidation in the hippocampus.
Collapse
Affiliation(s)
- Kosuke Okuda
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Kristoffer Højgaard
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Lucia Privitera
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - Gülberk Bayraktar
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,Institut für Klinische Neurobiologie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Tomonori Takeuchi
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
17
|
Dukes MP, Rowe RK, Harvey T, Rangel W, Pedigo S. Nickel reduces calcium dependent dimerization in neural cadherin. Metallomics 2020; 11:475-482. [PMID: 30624456 DOI: 10.1039/c8mt00349a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cadherins are the transmembrane component in adherens junctions, structures that link the actin cytoskeletons in adjacent cells within solid tissues including neurological synapses, epithelium and endothelium. Cell-cell adhesion by cadherins requires the binding of calcium ions to specific sites in the extracellular region. Given the complexity of the cell adhesion microenvironment, we are investigating whether other divalent cations might affect calcium-dependent dimerization of neural (N) cadherin. The studies reported herein characterize the impact of binding physiological magnesium(ii) or neurotoxic nickel(ii) on calcium-dependent N-cadherin function. Physiological levels of magnesium have only a small effect on the calcium-binding affinity and calcium-induced dimerization of N-cadherin. However, a tenfold lower concentration of nickel decreases the apparent calcium-binding affinity and calcium-induced dimerization of N-cadherin. Competitive binding studies indicate that the apparent dissociation constants for nickel and magnesium are 0.2 mM and 2.5 mM, respectively. These Kd values are consistent with concentrations observed for a range of divalent cations in the extracellular space. Results from these studies indicate that calcium-induced dimerization by N-cadherin is attenuated by natural and non-physiological divalent cations in the extracellular microenvironment.
Collapse
Affiliation(s)
- M P Dukes
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA.
| | | | | | | | | |
Collapse
|
18
|
Mikuni T, Uchigashima M. Methodological approaches to understand the molecular mechanism of structural plasticity of dendritic spines. Eur J Neurosci 2020; 54:6902-6911. [PMID: 32248570 DOI: 10.1111/ejn.14734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
Dendritic spines are tiny protrusions emanating from the neuronal dendrites, typically housing single excitatory postsynapses. Structural plasticity of dendritic spines is considered to be essential for synaptic functional plasticity and also reorganization of neural circuits during learning and memory. Structural plasticity of spines is mediated by complex biochemical signaling with various spatial and temporal scales. A variety of methods based on pharmacological, genetic, molecular, imaging and optical approaches has been developed and applied to dissect the complex signal transduction pathways. In this review, we overview both conventional and new methodological approaches to identify, monitor and manipulate key molecules for structural plasticity of dendritic spines, ultimately aiming to understand the molecular mechanism of learning and memory in behaving animals.
Collapse
Affiliation(s)
- Takayasu Mikuni
- Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan.,Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Motokazu Uchigashima
- Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
19
|
Nihonmatsu I, Ohkawa N, Saitoh Y, Okubo-Suzuki R, Inokuchi K. Selective targeting of mRNA and the following protein synthesis of CaMKIIα at the long-term potentiation-induced site. Biol Open 2020; 9:bio.042861. [PMID: 31874853 PMCID: PMC6994928 DOI: 10.1242/bio.042861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Late-phase long-term potentiation (L-LTP) in hippocampus, thought to be the cellular basis of long-term memory, requires new protein synthesis. Neural activity enhances local protein synthesis in dendrites, which in turn mediates long-lasting synaptic plasticity. Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) is a locally synthesized protein crucial for this plasticity, as L-LTP is impaired when its local synthesis is eliminated. However, the distribution of Camk2a mRNA during L-LTP induction remains unclear. In this study, we investigated the dendritic targeting of Camk2a mRNA after high-frequency stimulation, which induces L-LTP in synapses of perforant path and granule cells in the dentate gyrus in vivo. In situ hybridization studies revealed that Camk2a mRNA was immediately but transiently targeted to the site receiving high-frequency stimulation. This was associated with an increase in de novo protein synthesis of CaMKIIα. These results suggest that dendritic translation of CaMKIIα is locally mediated where L-LTP is induced. This phenomenon may be one of the essential processes for memory establishment. Summary: Selective targeting of mRNA and the following protein synthesis of CaMKIIalpha at neuronal plasticity-induced sites may be one of important processes for establishment of long-term memory.
Collapse
Affiliation(s)
- Itsuko Nihonmatsu
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | - Noriaki Ohkawa
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-8511, Japan .,Division for Memory and Cognitive Function, Research Center for Advanced Medical Science, Comprehensive Research Facilities for Advanced Medical Science, Dokkyo Medical University, 880 Kita-kobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan.,Department of Biochemistry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.,CREST, JST, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshito Saitoh
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-8511, Japan.,Division for Memory and Cognitive Function, Research Center for Advanced Medical Science, Comprehensive Research Facilities for Advanced Medical Science, Dokkyo Medical University, 880 Kita-kobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan.,Department of Biochemistry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.,CREST, JST, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Reiko Okubo-Suzuki
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-8511, Japan.,Department of Biochemistry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan.,CREST, JST, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kaoru Inokuchi
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-8511, Japan.,Department of Biochemistry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan.,CREST, JST, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
20
|
Holz A, Mülsch F, Schwarz MK, Hollmann M, Döbrössy MD, Coenen VA, Bartos M, Normann C, Biber K, van Calker D, Serchov T. Enhanced mGlu5 Signaling in Excitatory Neurons Promotes Rapid Antidepressant Effects via AMPA Receptor Activation. Neuron 2019; 104:338-352.e7. [DOI: 10.1016/j.neuron.2019.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/14/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
|
21
|
Chokshi V, Gao M, Grier BD, Owens A, Wang H, Worley PF, Lee HK. Input-Specific Metaplasticity in the Visual Cortex Requires Homer1a-Mediated mGluR5 Signaling. Neuron 2019; 104:736-748.e6. [PMID: 31563294 DOI: 10.1016/j.neuron.2019.08.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 06/24/2019] [Accepted: 08/09/2019] [Indexed: 11/17/2022]
Abstract
Effective sensory processing depends on sensory experience-dependent metaplasticity, which allows homeostatic maintenance of neural network activity and preserves feature selectivity. Following a strong increase in sensory drive, plasticity mechanisms that decrease the strength of excitatory synapses are preferentially engaged to maintain stability in neural networks. Such adaptation has been demonstrated in various model systems, including mouse primary visual cortex (V1), where excitatory synapses on layer 2/3 (L2/3) neurons undergo rapid reduction in strength when visually deprived mice are reexposed to light. Here, we report that this form of plasticity is specific to intracortical inputs to V1 L2/3 neurons and depends on the activity of NMDA receptors (NMDARs) and group I metabotropic glutamate receptor 5 (mGluR5). Furthermore, we found that expression of the immediate early gene (IEG) Homer1a (H1a) and its subsequent interaction with mGluR5s are necessary for this input-specific metaplasticity.
Collapse
Affiliation(s)
- Varun Chokshi
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Cell Molecular Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ming Gao
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bryce D Grier
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ashley Owens
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui Wang
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Paul F Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Hey-Kyoung Lee
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Cell Molecular Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
22
|
Sossin WS, Costa-Mattioli M. Translational Control in the Brain in Health and Disease. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032912. [PMID: 30082469 DOI: 10.1101/cshperspect.a032912] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Translational control in neurons is crucially required for long-lasting changes in synaptic function and memory storage. The importance of protein synthesis control to brain processes is underscored by the large number of neurological disorders in which translation rates are perturbed, such as autism and neurodegenerative disorders. Here we review the general principles of neuronal translation, focusing on the particular relevance of several key regulators of nervous system translation, including eukaryotic initiation factor 2α (eIF2α), the mechanistic (or mammalian) target of rapamycin complex 1 (mTORC1), and the eukaryotic elongation factor 2 (eEF2). These pathways regulate the overall rate of protein synthesis in neurons and have selective effects on the translation of specific messenger RNAs (mRNAs). The importance of these general and specific translational control mechanisms is considered in the normal functioning of the nervous system, particularly during synaptic plasticity underlying memory, and in the context of neurological disorders.
Collapse
Affiliation(s)
- Wayne S Sossin
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A-2B4, Canada
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
23
|
Clifton NE, Trent S, Thomas KL, Hall J. Regulation and Function of Activity-Dependent Homer in Synaptic Plasticity. MOLECULAR NEUROPSYCHIATRY 2019; 5:147-161. [PMID: 31312636 DOI: 10.1159/000500267] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
Abstract
Alterations in synaptic signaling and plasticity occur during the refinement of neural circuits over the course of development and the adult processes of learning and memory. Synaptic plasticity requires the rearrangement of protein complexes in the postsynaptic density (PSD), trafficking of receptors and ion channels and the synthesis of new proteins. Activity-induced short Homer proteins, Homer1a and Ania-3, are recruited to active excitatory synapses, where they act as dominant negative regulators of constitutively expressed, longer Homer isoforms. The expression of Homer1a and Ania-3 initiates critical processes of PSD remodeling, the modulation of glutamate receptor-mediated functions, and the regulation of calcium signaling. Together, available data support the view that Homer1a and Ania-3 are responsible for the selective, transient destabilization of postsynaptic signaling complexes to facilitate plasticity of the excitatory synapse. The interruption of activity-dependent Homer proteins disrupts disease-relevant processes and leads to memory impairments, reflecting their likely contribution to neurological disorders.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Simon Trent
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
24
|
Abstract
To date, there is no clear evidence for memory formation. In this article, we provide a framework to understand how memory is formed. The information collected by sensory organs is converted to a digital current that enters the presynaptic neuron through axonal conductance. Digital waves are converted to analog waves in the synapses. The analog current of information flows into the postsynapse. The degree of Ca2+ influx in the postsynapse is proportional to the voltage of each wave of analog current. The activation (via dephosphorylation) of the phosphorylated phosphatase, Slingshot, is regulated by Ca2+ concentration in the spine. After dephosphorylation by Slingshot, activated cofilin binds the parallel actin bundle. The wide helical twist angle of an actin filament that has been decorated with cofilin confers high electric potential to the filament. Phosphorylation results in the deactivation of the actin filament bound to cofilin, which in turn results in the cleavage of cofilin and actin filament, followed by a decrease in the twist angle of the actin filament. Next, the electric potential energy is discharged by the actin filament as it returns to its non-cofilin bound state, resulting in the formation of additional analog waves in the postsynapse.
Collapse
Affiliation(s)
- Bompei Yasui
- Nara-ken, Ikoma-shi, Tsuji-machi 882-16, 6300212, Japan.
| |
Collapse
|
25
|
Park P, Kang H, Sanderson TM, Bortolotto ZA, Georgiou J, Zhuo M, Kaang BK, Collingridge GL. On the Role of Calcium-Permeable AMPARs in Long-Term Potentiation and Synaptic Tagging in the Rodent Hippocampus. Front Synaptic Neurosci 2019; 11:4. [PMID: 30923499 PMCID: PMC6426746 DOI: 10.3389/fnsyn.2019.00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Classically, long-term potentiation (LTP) at hippocampal CA1 synapses is triggered by the synaptic activation of NMDA receptors (NMDARs). More recently, it has been shown that calcium-permeable (CP)-AMPARs can also trigger synaptic plasticity at these synapses. Specifically, their activation is required for the PKA and protein synthesis dependent component of LTP that is typically induced by delivery of spaced trains of high frequency stimulation. Here we present new data that build upon these ideas, including the requirement for low frequency synaptic activation and NMDAR dependence. We also show that a spaced theta burst stimulation (sTBS) protocol induces a heterosynaptic potentiation of baseline responses via activation of CP-AMPARs. Finally, we present data that implicate CP-AMPARs in synaptic tagging and capture, a fundamental process that is associated with the protein synthesis-dependent component of LTP. We have studied how a sTBS can augment the level of LTP generated by a weak TBS (wTBS), delivered 30 min later to an independent input. We show that inhibition of CP-AMPARs during the sTBS eliminates, and that inhibition of CP-AMPARs during the wTBS reduces, this facilitation of LTP. These data suggest that CP-AMPARs are crucial for the protein synthesis-dependent component of LTP and its heterosynaptic nature.
Collapse
Affiliation(s)
- Pojeong Park
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Heather Kang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Thomas M Sanderson
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Zuner A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Min Zhuo
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Graham L Collingridge
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
26
|
Seibt J, Frank MG. Primed to Sleep: The Dynamics of Synaptic Plasticity Across Brain States. Front Syst Neurosci 2019; 13:2. [PMID: 30774586 PMCID: PMC6367653 DOI: 10.3389/fnsys.2019.00002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/09/2019] [Indexed: 11/13/2022] Open
Abstract
It is commonly accepted that brain plasticity occurs in wakefulness and sleep. However, how these different brain states work in concert to create long-lasting changes in brain circuitry is unclear. Considering that wakefulness and sleep are profoundly different brain states on multiple levels (e.g., cellular, molecular and network activation), it is unlikely that they operate exactly the same way. Rather it is probable that they engage different, but coordinated, mechanisms. In this article we discuss how plasticity may be divided across the sleep-wake cycle, and how synaptic changes in each brain state are linked. Our working model proposes that waking experience triggers short-lived synaptic events that are necessary for transient plastic changes and mark (i.e., 'prime') circuits and synapses for further processing in sleep. During sleep, synaptic protein synthesis at primed synapses leads to structural changes necessary for long-term information storage.
Collapse
Affiliation(s)
- Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
| | - Marcos G. Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, United States
| |
Collapse
|
27
|
Recent insights into antidepressant therapy: Distinct pathways and potential common mechanisms in the treatment of depressive syndromes. Neurosci Biobehav Rev 2018; 88:63-72. [DOI: 10.1016/j.neubiorev.2018.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/07/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022]
|
28
|
Abstract
Behavioral tagging is the transformation of a short-term memory induced by a weak experience into a long-term memory through temporal association with a novel experience. This phenomenon was discovered to recapitulate synaptic tagging and capture at the behavioral level. Significant progress has been made in determining the molecular machinery associated with synaptic tagging and capture and behavioral tagging theories. However, the tag setting and recruitment of plasticity-related proteins that occur within the spatiotemporally constrained cell ensemble at the network level (cellular tagging) in the brain where multimodal sensory information is input are just beginning to be understood. Here, we review the evidence for behavioral tagging and the mechanism underlying memory allocation at the network level leading to the overlap of cell ensembles. We also discuss the functional significance of overlapping cell ensembles in association of standard Pavlovian conditioning and distinct memories. Finally, we describe the role of neuronal ensemble overlap in behavioral tagging.
Collapse
Affiliation(s)
- Masanori Nomoto
- Department of Biochemistry, Faculty of Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kaoru Inokuchi
- Department of Biochemistry, Faculty of Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
29
|
Zobel K, Choi SE, Minakova R, Gocyla M, Offenhäusser A. N-Cadherin modified lipid bilayers promote neural network formation and circuitry. SOFT MATTER 2017; 13:8096-8107. [PMID: 29085948 DOI: 10.1039/c7sm01214d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Neural adhesion, maturation, and the correct wiring of the brain to establish each neuron's intended connectivity are controlled by complex interactions of bioactive molecules such as ligands, growth factors, or enzymes. The correct pairing of adjacent neurons is thought to be highly regulated by ligand-mediated cell-cell adhesion proteins, which are known to induce signaling activities. We developed a new platform consisting of supported lipid bilayers incorporated with Fc-chimera synaptic proteins like ephrinA5 or N-cadherin. We extensively characterized their function employing a quartz crystal microbalance with dissipation (QCM-D), calcium imaging, and immunofluorescence analysis. Our biomimetic platform has been shown to promote neural cell adhesion and to improve neural maturation at day in vitro 7 (DIV7) as indicated by an elevated expression of synaptophysin.
Collapse
Affiliation(s)
- K Zobel
- Institute of Bioelectronics (ICS-8), Forschungszentrum Juelich, Wilhelm-Johnen Straße, 52425 Juelich, Germany.
| | | | | | | | | |
Collapse
|
30
|
Hippocampal Regulation of Postsynaptic Density Homer1 by Associative Learning. Neural Plast 2017; 2017:5959182. [PMID: 29238619 PMCID: PMC5697134 DOI: 10.1155/2017/5959182] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/18/2017] [Accepted: 10/10/2017] [Indexed: 11/18/2022] Open
Abstract
Genes involved in synaptic plasticity, particularly genes encoding postsynaptic density proteins, have been recurrently linked to psychiatric disorders including schizophrenia and autism. Postsynaptic density Homer1 proteins contribute to synaptic plasticity through the competing actions of short and long isoforms. The activity-induced expression of short Homer1 isoforms, Homer1a and Ania-3, is thought to be related to processes of learning and memory. However, the precise regulation of Homer1a and Ania-3 with different components of learning has not been investigated. Here, we used in situ hybridization to quantify short and long Homer1 expression in the hippocampus following consolidation, retrieval, and extinction of associative fear memory, using contextual fear conditioning in rats. Homer1a and Ania-3, but not long Homer1, were regulated by contextual fear learning or novelty detection, although their precise patterns of expression in hippocampal subregions were dependent on the isoform. We also show for the first time that the two short Homer1 isoforms are regulated after the retrieval and extinction of contextual fear memory, albeit with distinct temporal and spatial profiles. These findings support a role of activity-induced Homer1 isoforms in learning and memory processes in discrete hippocampal subregions and suggest that Homer1a and Ania-3 may play separable roles in synaptic plasticity.
Collapse
|
31
|
Locus Coeruleus and Dopamine-Dependent Memory Consolidation. Neural Plast 2017; 2017:8602690. [PMID: 29123927 PMCID: PMC5662828 DOI: 10.1155/2017/8602690] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/06/2017] [Accepted: 06/18/2017] [Indexed: 12/12/2022] Open
Abstract
Most everyday memories including many episodic-like memories that we may form automatically in the hippocampus (HPC) are forgotten, while some of them are retained for a long time by a memory stabilization process, called initial memory consolidation. Specifically, the retention of everyday memory is enhanced, in humans and animals, when something novel happens shortly before or after the time of encoding. Converging evidence has indicated that dopamine (DA) signaling via D1/D5 receptors in HPC is required for persistence of synaptic plasticity and memory, thereby playing an important role in the novelty-associated memory enhancement. In this review paper, we aim to provide an overview of the key findings related to D1/D5 receptor-dependent persistence of synaptic plasticity and memory in HPC, especially focusing on the emerging evidence for a role of the locus coeruleus (LC) in DA-dependent memory consolidation. We then refer to candidate brain areas and circuits that might be responsible for detection and transmission of the environmental novelty signal and molecular and anatomical evidence for the LC-DA system. We also discuss molecular mechanisms that might mediate the environmental novelty-associated memory enhancement, including plasticity-related proteins that are involved in initial memory consolidation processes in HPC.
Collapse
|
32
|
Fukuchi M. Studies of Neuronal Gene Regulation Controlling the Molecular Mechanisms Underlying Neural Plasticity. YAKUGAKU ZASSHI 2017; 137:1103-1115. [PMID: 28867697 DOI: 10.1248/yakushi.17-00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of the development and function of the nervous system is not preprogramed but responds to environmental stimuli to change neural development and function flexibly. This neural plasticity is a characteristic property of the nervous system. For example, strong synaptic activation evoked by environmental stimuli leads to changes in synaptic functions (known as synaptic plasticity). Long-lasting synaptic plasticity is one of the molecular mechanisms underlying long-term learning and memory. Since discovering the role of the transcription factor cAMP-response element-binding protein in learning and memory, it has been widely accepted that gene regulation in neurons contributes to long-lasting changes in neural functions. However, it remains unclear how synaptic activation is converted into gene regulation that results in long-lasting neural functions like long-term memory. We continue to address this question. This review introduces our recent findings on the gene regulation of brain-derived neurotrophic factor and discusses how regulation of the gene participates in long-lasting changes in neural functions.
Collapse
Affiliation(s)
- Mamoru Fukuchi
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
33
|
Cellular tagging as a neural network mechanism for behavioural tagging. Nat Commun 2016; 7:12319. [PMID: 27477539 PMCID: PMC4974651 DOI: 10.1038/ncomms12319] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 06/21/2016] [Indexed: 12/16/2022] Open
Abstract
Behavioural tagging is the transformation of a short-term memory, induced by a weak experience, into a long-term memory (LTM) due to the temporal association with a novel experience. The mechanism by which neuronal ensembles, each carrying a memory engram of one of the experiences, interact to achieve behavioural tagging is unknown. Here we show that retrieval of a LTM formed by behavioural tagging of a weak experience depends on the degree of overlap with the neuronal ensemble corresponding to a novel experience. The numbers of neurons activated by weak training in a novel object recognition (NOR) task and by a novel context exploration (NCE) task, denoted as overlapping neurons, increases in the hippocampal CA1 when behavioural tagging is successfully achieved. Optical silencing of an NCE-related ensemble suppresses NOR–LTM retrieval. Thus, a population of cells recruited by NOR is tagged and then preferentially incorporated into the memory trace for NCE to achieve behavioural tagging. Short-term memories (STM) can become long-term memories when occurring alongside novel experiences. Here, the authors investigate the neural mechanisms behind such 'behavioural tagging' and find STM neural populations are preferentially incorporated into the ensembles encoding novel experiences.
Collapse
|
34
|
Korte M, Schmitz D. Cellular and System Biology of Memory: Timing, Molecules, and Beyond. Physiol Rev 2016; 96:647-93. [PMID: 26960344 DOI: 10.1152/physrev.00010.2015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The storage of information in the mammalian nervous systems is dependent on a delicate balance between change and stability of neuronal networks. The induction and maintenance of processes that lead to changes in synaptic strength to a multistep process which can lead to long-lasting changes, which starts and ends with a highly choreographed and perfectly timed dance of molecules in different cell types of the central nervous system. This is accompanied by synchronization of specific networks, resulting in the generation of characteristic "macroscopic" rhythmic electrical fields, whose characteristic frequencies correspond to certain activity and information-processing states of the brain. Molecular events and macroscopic fields influence each other reciprocally. We review here cellular processes of synaptic plasticity, particularly functional and structural changes, and focus on timing events that are important for the initial memory acquisition, as well as mechanisms of short- and long-term memory storage. Then, we cover the importance of epigenetic events on the long-time range. Furthermore, we consider how brain rhythms at the network level participate in processes of information storage and by what means they participating in it. Finally, we examine memory consolidation at the system level during processes of sleep.
Collapse
Affiliation(s)
- Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
35
|
Increased Signaling via Adenosine A1 Receptors, Sleep Deprivation, Imipramine, and Ketamine Inhibit Depressive-like Behavior via Induction of Homer1a. Neuron 2015; 87:549-62. [PMID: 26247862 DOI: 10.1016/j.neuron.2015.07.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 05/26/2015] [Accepted: 07/16/2015] [Indexed: 12/25/2022]
Abstract
Major depressive disorder is among the most commonly diagnosed disabling mental diseases. Several non-pharmacological treatments of depression upregulate adenosine concentration and/or adenosine A1 receptors (A1R) in the brain. To test whether enhanced A1R signaling mediates antidepressant effects, we generated a transgenic mouse with enhanced doxycycline-regulated A1R expression, specifically in forebrain neurons. Upregulating A1R led to pronounced acute and chronic resilience toward depressive-like behavior in various tests. Conversely, A1R knockout mice displayed an increased depressive-like behavior and were resistant to the antidepressant effects of sleep deprivation (SD). Various antidepressant treatments increase homer1a expression in medial prefrontal cortex (mPFC). Specific siRNA knockdown of homer1a in mPFC enhanced depressive-like behavior and prevented the antidepressant effects of A1R upregulation, SD, imipramine, and ketamine treatment. In contrast, viral overexpression of homer1a in the mPFC had antidepressant effects. Thus, increased expression of homer1a is a final common pathway mediating the antidepressant effects of different antidepressant treatments.
Collapse
|
36
|
Nihonmatsu I, Ohkawa N, Saitoh Y, Inokuchi K. Targeting of ribosomal protein S6 to dendritic spines by in vivo high frequency stimulation to induce long-term potentiation in the dentate gyrus. Biol Open 2015; 4:1387-94. [PMID: 26432888 PMCID: PMC4728348 DOI: 10.1242/bio.013243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Late phase long-term potentiation (L-LTP) in the hippocampus is believed to be the cellular basis of long-term memory. Protein synthesis is required for persistent forms of synaptic plasticity, including L-LTP. Neural activity is thought to enhance local protein synthesis in dendrites, and one of the mechanisms required to induce or maintain the long-lasting synaptic plasticity is protein translation in the dendrites. One regulator of translational processes is ribosomal protein S6 (rpS6), a component of the small 40S ribosomal subunit. Although polyribosomes containing rpS6 are observed in dendritic spines, it remains unclear whether L-LTP induction triggers selective targeting of the translational machinery to activated synapses in vivo. Therefore, we investigated synaptic targeting of the translational machinery by observing rpS6 immunoreactivity during high frequency stimulation (HFS) for L-LTP induction in vivo. Immunoelectron microscopic analysis revealed a selective but transient increase in rpS6 immunoreactivity occurring as early as 15 min after the onset of HFS in dendritic spine heads at synaptic sites receiving HFS. Concurrently, levels of the rpS6 protein rapidly declined in somata of granule cells, as determined using immunofluorescence microscopy. These results suggest that the translational machinery is rapidly targeted to activated spines and that this targeting mechanism may contribute to the establishment of L-LTP.
Collapse
Affiliation(s)
- Itsuko Nihonmatsu
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-8511, Japan Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Honcho 4-1-8, Kawaguchi 332-0012, Japan
| | - Noriaki Ohkawa
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-8511, Japan Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Honcho 4-1-8, Kawaguchi 332-0012, Japan Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshito Saitoh
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-8511, Japan Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Honcho 4-1-8, Kawaguchi 332-0012, Japan Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kaoru Inokuchi
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-8511, Japan Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Honcho 4-1-8, Kawaguchi 332-0012, Japan Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
37
|
Abstract
The structural plasticity of dendritic spines is considered to be essential for various forms of synaptic plasticity, learning, and memory. The process is mediated by a complex signaling network consisting of numerous species of molecules. Furthermore, the spatiotemporal dynamics of the biochemical signaling are regulated in a complicated manner because of geometrical restrictions from the unique morphology of the dendritic branches and spines. Recent advances in optical techniques have enabled the exploration of the spatiotemporal aspects of the signal regulations in spines and dendrites and have provided many insights into the principle of the biochemical computation that underlies spine structural plasticity.
Collapse
Affiliation(s)
- Jun Nishiyama
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458, USA
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458, USA.
| |
Collapse
|
38
|
Hayashi-Takagi A, Yagishita S, Nakamura M, Shirai F, Wu YI, Loshbaugh AL, Kuhlman B, Hahn KM, Kasai H. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 2015; 525:333-8. [PMID: 26352471 PMCID: PMC4634641 DOI: 10.1038/nature15257] [Citation(s) in RCA: 456] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/03/2015] [Indexed: 01/07/2023]
Abstract
Dendritic spines are the major loci of synaptic plasticity and are considered as possible structural correlates of memory. Nonetheless, systematic manipulation of specific subsets of spines in the cortex has been unattainable, and thus, the link between spines and memory has been correlational. We developed a novel synaptic optoprobe, AS-PaRac1 (activated synapse targeting photoactivatable Rac1), that can label recently potentiated spines specifically, and induce the selective shrinkage of AS-PaRac1-containing spines. In vivo imaging of AS-PaRac1 revealed that a motor learning task induced substantial synaptic remodelling in a small subset of neurons. The acquired motor learning was disrupted by the optical shrinkage of the potentiated spines, whereas it was not affected by the identical manipulation of spines evoked by a distinct motor task in the same cortical region. Taken together, our results demonstrate that a newly acquired motor skill depends on the formation of a task-specific dense synaptic ensemble.
Collapse
Affiliation(s)
- Akiko Hayashi-Takagi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033.,CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Mayumi Nakamura
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033
| | - Fukutoshi Shirai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033
| | - Yi I Wu
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | - Amanda L Loshbaugh
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Brian Kuhlman
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Klaus M Hahn
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033.,CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
39
|
Behavioral Tagging: A Translation of the Synaptic Tagging and Capture Hypothesis. Neural Plast 2015; 2015:650780. [PMID: 26380117 PMCID: PMC4562088 DOI: 10.1155/2015/650780] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/12/2015] [Indexed: 11/18/2022] Open
Abstract
Similar molecular machinery is activated in neurons following an electrical stimulus that induces synaptic changes and after learning sessions that trigger memory formation. Then, to achieve perdurability of these processes protein synthesis is required for the reinforcement of the changes induced in the network. The synaptic tagging and capture theory provided a strong framework to explain synaptic specificity and persistence of electrophysiological induced plastic changes. Ten years later, the behavioral tagging hypothesis (BT) made use of the same argument, applying it to learning and memory models. The hypothesis postulates that the formation of lasting memories relies on at least two processes: the setting of a learning tag and the synthesis of plasticity related proteins, which once captured at tagged sites allow memory consolidation. BT explains how weak events, only capable of inducing transient forms of memories, can result in lasting memories when occurring close in time with other behaviorally relevant experiences that provide proteins. In this review, we detail the findings supporting the existence of BT process in rodents, leading to the consolidation, persistence, and interference of a memory. We focus on the molecular machinery taking place in these processes and describe the experimental data supporting the BT in humans.
Collapse
|
40
|
Marton TM, Hussain Shuler MG, Worley PF. Homer 1a and mGluR5 phosphorylation in reward-sensitive metaplasticity: A hypothesis of neuronal selection and bidirectional synaptic plasticity. Brain Res 2015; 1628:17-28. [PMID: 26187757 DOI: 10.1016/j.brainres.2015.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 05/29/2015] [Accepted: 06/23/2015] [Indexed: 12/31/2022]
Abstract
Drug addiction and reward learning both involve mechanisms in which reinforcing neuromodulators participate in changing synaptic strength. For example, dopamine receptor activation modulates corticostriatal plasticity through a mechanism involving the induction of the immediate early gene Homer 1a, the phosphorylation of metabotropic glutamate receptor 5 (mGluR5)'s Homer ligand, and the enhancement of an NMDA receptor-dependent current. Inspired by hypotheses that Homer 1a functions selectively in recently-active synapses, we propose that Homer 1a is recruited by a synaptic tag to functionally discriminate between synapses that predict reward and those that do not. The involvement of Homer 1a in this mechanism further suggests that decaminutes-old firing patterns can define which synapses encode new information.
Collapse
Affiliation(s)
- Tanya M Marton
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Marshall G Hussain Shuler
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Paul F Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
41
|
Mitsushima D. Contextual Learning Requires Functional Diversity at Excitatory and Inhibitory Synapses onto CA1 Pyramidal Neurons. AIMS Neurosci 2015. [DOI: 10.3934/neuroscience.2015.1.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Caroni P, Chowdhury A, Lahr M. Synapse rearrangements upon learning: from divergent-sparse connectivity to dedicated sub-circuits. Trends Neurosci 2014; 37:604-14. [PMID: 25257207 DOI: 10.1016/j.tins.2014.08.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 01/24/2023]
Abstract
Learning can involve formation of new synapses and loss of synapses, providing memory traces of learned skills. Recent findings suggest that these synapse rearrangements reflect assembly of task-related sub-circuits from initially broadly distributed and sparse connectivity in the brain. These local circuit remodeling processes involve rapid emergence of synapses upon learning, followed by protracted validation involving strengthening of some new synapses, and selective elimination of others. The timing of these consolidation processes can vary. Here, we review these findings, focusing on how molecular/cellular mechanisms of synapse assembly, strengthening, and elimination might interface with circuit/system mechanisms of learning and memory consolidation. An integrated understanding of these learning-related processes should provide a better basis to elucidate how experience, genetic background, and disease influence brain function.
Collapse
Affiliation(s)
- Pico Caroni
- Friedrich Miescher Institut, Basel, Switzerland.
| | | | - Maria Lahr
- Friedrich Miescher Institut, Basel, Switzerland
| |
Collapse
|
43
|
Campbell J, Singh D, Hollett G, Dravid SM, Sailor MJ, Arikkath J. Spatially selective photoconductive stimulation of live neurons. Front Cell Neurosci 2014; 8:142. [PMID: 24904287 PMCID: PMC4033187 DOI: 10.3389/fncel.2014.00142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/02/2014] [Indexed: 12/22/2022] Open
Abstract
Synaptic activity is intimately linked to neuronal structure and function. Stimulation of live cultured primary neurons, coupled with fluorescent indicator imaging, is a powerful technique to assess the impact of synaptic activity on neuronal protein trafficking and function. Current technology for neuronal stimulation in culture include chemical techniques or microelectrode or optogenetic based techniques. While technically powerful, chemical stimulation has limited spatial resolution and microelectrode and optogenetic techniques require specialized equipment and expertise. We report an optimized and improved technique for laser based photoconductive stimulation of live neurons using an inverted confocal microscope that overcomes these limitations. The advantages of this approach include its non-invasive nature and adaptability to temporal and spatial manipulation. We demonstrate that the technique can be manipulated to achieve spatially selective stimulation of live neurons. Coupled with live imaging of fluorescent indicators, this simple and efficient technique should allow for significant advances in neuronal cell biology.
Collapse
Affiliation(s)
- Jacob Campbell
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center Omaha, NE, USA
| | - Dipika Singh
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center Omaha, NE, USA
| | - Geoffrey Hollett
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | | | - Michael J Sailor
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA ; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Jyothi Arikkath
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center Omaha, NE, USA
| |
Collapse
|
44
|
Nonaka M, Fujii H, Kim R, Kawashima T, Okuno H, Bito H. Untangling the two-way signalling route from synapses to the nucleus, and from the nucleus back to the synapses. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130150. [PMID: 24298152 DOI: 10.1098/rstb.2013.0150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During learning and memory, it has been suggested that the coordinated electrical activity of hippocampal neurons translates information about the external environment into internal neuronal representations, which then are stored initially within the hippocampus and subsequently into other areas of the brain. A widely held hypothesis posits that synaptic plasticity is a key feature that critically modulates the triggering and the maintenance of such representations, some of which are thought to persist over time as traces or tags. However, the molecular and cell biological basis for these traces and tags has remained elusive. Here, we review recent findings that help clarify some of the molecular and cellular mechanisms critical for these events, by untangling a two-way signalling crosstalk route between the synapses and the neuronal soma. In particular, a detailed interrogation of the soma-to-synapse delivery of immediate early gene product Arc/Arg3.1, whose induction is triggered by heightened synaptic activity in many brain areas, teases apart an unsuspected 'inverse' synaptic tagging mechanism that likely contributes to maintaining the contrast of synaptic weight between strengthened and weak synapses within an active ensemble.
Collapse
Affiliation(s)
- Mio Nonaka
- Department of Neurochemistry, Graduate School of Medicine, University of Tokyo, , Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Takeuchi T, Duszkiewicz AJ, Morris RGM. The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130288. [PMID: 24298167 DOI: 10.1098/rstb.2013.0288] [Citation(s) in RCA: 362] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The synaptic plasticity and memory hypothesis asserts that activity-dependent synaptic plasticity is induced at appropriate synapses during memory formation and is both necessary and sufficient for the encoding and trace storage of the type of memory mediated by the brain area in which it is observed. Criteria for establishing the necessity and sufficiency of such plasticity in mediating trace storage have been identified and are here reviewed in relation to new work using some of the diverse techniques of contemporary neuroscience. Evidence derived using optical imaging, molecular-genetic and optogenetic techniques in conjunction with appropriate behavioural analyses continues to offer support for the idea that changing the strength of connections between neurons is one of the major mechanisms by which engrams are stored in the brain.
Collapse
Affiliation(s)
- Tomonori Takeuchi
- Centre for Cognitive and Neural Systems, University of Edinburgh, , 1 George Square, Edinburgh EH8 9JZ, UK
| | | | | |
Collapse
|
46
|
Park JM, Hu JH, Milshteyn A, Zhang PW, Moore CG, Park S, Datko MC, Domingo RD, Reyes CM, Wang XJ, Etzkorn FA, Xiao B, Szumlinski KK, Kern D, Linden DJ, Worley PF. A prolyl-isomerase mediates dopamine-dependent plasticity and cocaine motor sensitization. Cell 2013; 154:637-50. [PMID: 23911326 DOI: 10.1016/j.cell.2013.07.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 04/14/2013] [Accepted: 07/01/2013] [Indexed: 01/02/2023]
Abstract
Synaptic plasticity induced by cocaine and other drugs underlies addiction. Here we elucidate molecular events at synapses that cause this plasticity and the resulting behavioral response to cocaine in mice. In response to D1-dopamine-receptor signaling that is induced by drug administration, the glutamate-receptor protein metabotropic glutamate receptor 5 (mGluR5) is phosphorylated by microtubule-associated protein kinase (MAPK), which we show potentiates Pin1-mediated prolyl-isomerization of mGluR5 in instances where the product of an activity-dependent gene, Homer1a, is present to enable Pin1-mGluR5 interaction. These biochemical events potentiate N-methyl-D-aspartate receptor (NMDAR)-mediated currents that underlie synaptic plasticity and cocaine-evoked motor sensitization as tested in mice with relevant mutations. The findings elucidate how a coincidence of signals from the nucleus and the synapse can render mGluR5 accessible to activation with consequences for drug-induced dopamine responses and point to depotentiation at corticostriatal synapses as a possible therapeutic target for treating addiction.
Collapse
Affiliation(s)
- Joo Min Park
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dynes JL, Steward O. Arc mRNA docks precisely at the base of individual dendritic spines indicating the existence of a specialized microdomain for synapse-specific mRNA translation. J Comp Neurol 2013; 520:3105-19. [PMID: 22350812 DOI: 10.1002/cne.23073] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Arc (aka Arg 3.1) is induced by neural activity and learning experience. Arc mRNA is rapidly exported into dendrites where it localizes near activated synapses. By imaging green fluorescent protein (GFP)-tagged mRNA in living neurons in culture, we show that fusion transcripts containing the Arc 30'UTR (untranslated region) localize with remarkable precision in a microdomain at the base of dendritic spines. Transcripts with the Arc 30'UTR that encode a reporter protein rather than Arc show precise localization. Localization persists in the presence of translation inhibitors, indicating that localization does not require ongoing translation. Similarly, polyribosome complexes remained stably positioned at spine bases in brain tissue treated with the translation inhibitor (puromycin) that releases ribosomes from mRNA. Single particle tracking revealed that Arc mRNA particles positioned at spine bases exhibited highly constrained submicron movements. These observations imply the existence of a microdomain at the spine base where Arc mRNA docks in association with a previously unknown mRNA-binding structural element.
Collapse
Affiliation(s)
- Joseph L Dynes
- Reeve-Irvine Research Center, University of California at Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
48
|
Zovkic IB, Guzman-Karlsson MC, Sweatt JD. Epigenetic regulation of memory formation and maintenance. Learn Mem 2013; 20:61-74. [PMID: 23322554 DOI: 10.1101/lm.026575.112] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Understanding the cellular and molecular mechanisms underlying the formation and maintenance of memories is a central goal of the neuroscience community. It is well regarded that an organism's ability to lastingly adapt its behavior in response to a transient environmental stimulus relies on the central nervous system's capability for structural and functional plasticity. This plasticity is dependent on a well-regulated program of neurotransmitter release, post-synaptic receptor activation, intracellular signaling cascades, gene transcription, and subsequent protein synthesis. In the last decade, epigenetic markers like DNA methylation and post-translational modifications of histone tails have emerged as important regulators of the memory process. Their ability to regulate gene transcription dynamically in response to neuronal activation supports the consolidation of long-term memory. Furthermore, the persistent and self-propagating nature of these mechanisms, particularly DNA methylation, suggests a molecular mechanism for memory maintenance. In this review, we will examine the evidence that supports a role of epigenetic mechanisms in learning and memory. In doing so, we hope to emphasize (1) the widespread involvement of these mechanisms across different behavioral paradigms and distinct brain regions, (2) the temporal and genetic specificity of these mechanisms in response to upstream signaling cascades, and (3) the functional outcome these mechanisms may have on structural and functional plasticity. Finally, we consider the future directions of neuroepigenetic research as it relates to neuronal storage of information.
Collapse
Affiliation(s)
- Iva B Zovkic
- Department of Neurobiology and Evelyn F McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
49
|
Li Y, Popko J, Krogh KA, Thayer SA. Epileptiform stimulus increases Homer 1a expression to modulate synapse number and activity in hippocampal cultures. J Neurophysiol 2012; 109:1494-504. [PMID: 23274309 DOI: 10.1152/jn.00580.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons adapt to seizure activity structurally and functionally to attenuate hyperactive neural circuits. Homer proteins provide a scaffold in the postsynaptic density (PSD) by binding to ligands through an EVH1 domain and to other Homer proteins by a coiled-coil domain. The short Homer isoform 1a (H1a) has a ligand-binding domain but lacks a coiled-coil domain and thus acts in a dominant-negative manner to uncouple Homer scaffolds. Here, we show that treating rat hippocampal cultures with bicuculline and 4-aminopyridine (Bic+4-AP) evoked epileptiform activity and synchronized Ca(2+) spiking, measured with whole cell current-clamp and fura-2-based digital imaging; Bic+4-AP increased H1a mRNA through the activation of metabotropic glutamate receptor 5 (mGluR5). Treatment with Bic+4-AP for 4 h attenuated burst firing and induced synapse loss. Synaptic changes were measured using a confocal imaging-based assay that quantified clusters of PSD-95 fused to green fluorescent protein. Treatment with an mGluR5 antagonist blocked H1a expression, synapse loss, and burst attenuation. Overexpression of H1a inhibited burst firing similar to Bic+4-AP treatment. Furthermore, knockdown of H1a using a short hairpin RNA (shRNA) strategy reduced synapse loss and burst attenuation induced by Bic+4-AP treatment. Thus an epileptiform stimulus applied to hippocampal neurons in culture induced burst firing and H1a expression through the activation of mGluR5; a 4-h exposure to this stimulus resulted in synapse loss and burst attenuation. These results suggest that H1a expression functions in a negative-feedback manner to reduce network excitability by regulating the number of synapses.
Collapse
Affiliation(s)
- Yan Li
- Dept. of Pharmacology, Univ. of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
50
|
Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression. J Neurosci 2012; 32:10413-22. [PMID: 22836274 DOI: 10.1523/jneurosci.4533-11.2012] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Many studies have reported the roles played by regulated proteolysis in synaptic plasticity and memory, but the role of autophagy in neurons remains unclear. In mammalian cells, autophagy functions in the clearance of long-lived proteins and organelles and in adaptation to starvation. In neurons, although autophagy-related proteins (ATGs) are highly expressed, autophagic activity markers, autophagosome (AP) number, and light chain protein 3-II (LC3-II) are low compared with other cell types. In contrast, conditional knock-out of ATG5 or ATG7 in mouse brain causes neurodegeneration and behavioral deficits. Therefore, this study aimed to test whether autophagy is especially regulated in neurons to adapt to brain functions. In cultured rat hippocampal neurons, we found that KCl depolarization transiently increased LC3-II and AP number, which was partially inhibited with APV, an NMDA receptor (NMDAR) inhibitor. Brief low-dose NMDA, a model of chemical long-term depression (chem-LTD), increased LC3-II with a time course coincident with Akt and mammalian target of rapamycin (mTOR) dephosphorylation and degradation of GluR1, an AMPA receptor (AMPAR) subunit. Downstream of NMDAR, the protein phosphatase 1 inhibitor okadaic acid, PTEN inhibitor bpV(HOpic), autophagy inhibitor wortmannin, and short hairpin RNA-mediated knockdown of ATG7 blocked chem-LTD-induced autophagy and partially recovered GluR1 levels. After chem-LTD, GFP-LC3 puncta increased in spines and in dendrites when AP-lysosome fusion was blocked. These results indicate that neuronal stimulation induces NMDAR-dependent autophagy through PI3K-Akt-mTOR pathway inhibition, which may function in AMPAR degradation, thus suggesting autophagy as a contributor to NMDAR-dependent synaptic plasticity and brain functions.
Collapse
|