1
|
Sato H, Adachi N, Kondo S, Kitayama C, Tokita M. Turtle skull development unveils a molecular basis for amniote cranial diversity. SCIENCE ADVANCES 2023; 9:eadi6765. [PMID: 37967181 PMCID: PMC10651123 DOI: 10.1126/sciadv.adi6765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Amniote skulls display diverse architectural patterns including remarkable variations in the number of temporal arches surrounding the upper and lower temporal fenestrae. However, the cellular and molecular basis underlying this diversification remains elusive. Turtles are a useful model to understand skull diversity due to the presence of secondarily closed temporal fenestrae and different extents of temporal emarginations (marginal reduction of dermal bones). Here, we analyzed embryos of three turtle species with varying degrees of temporal emargination and identified shared widespread coexpression of upstream osteogenic genes Msx2 and Runx2 and species-specific expression of more downstream osteogenic genes Sp7 and Sparc in the head. Further analysis of representative amniote embryos revealed differential expression patterns of osteogenic genes in the temporal region, suggesting that the spatiotemporal regulation of Msx2, Runx2, and Sp7 distinguishes the temporal skull morphology among amniotes. Moreover, the presence of Msx2- and/or Runx2-positive temporal mesenchyme with osteogenic potential may have contributed to their extremely diverse cranial morphology in reptiles.
Collapse
Affiliation(s)
- Hiromu Sato
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Noritaka Adachi
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Satomi Kondo
- Everlasting Nature of Asia (ELNA), Ogasawara Marine Center, Byobudani, Chichi-Jima, Ogasawara, Tokyo 100-2101, Japan
| | - Chiyo Kitayama
- Everlasting Nature of Asia (ELNA), Ogasawara Marine Center, Byobudani, Chichi-Jima, Ogasawara, Tokyo 100-2101, Japan
| | - Masayoshi Tokita
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
2
|
Mizukami K, Higashiyama H, Arima Y, Ando K, Okada N, Kose K, Yamada S, Takeuchi JK, Koshiba-Takeuchi K, Fukuhara S, Miyagawa-Tomita S, Kurihara H. Coronary artery established through amniote evolution. eLife 2023; 12:e83005. [PMID: 37605519 PMCID: PMC10444023 DOI: 10.7554/elife.83005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 07/17/2023] [Indexed: 08/23/2023] Open
Abstract
Coronary arteries are a critical part of the vascular system and provide nourishment to the heart. In humans, even minor defects in coronary arteries can be lethal, emphasizing their importance for survival. However, some teleosts survive without coronary arteries, suggesting that there may have been some evolutionary changes in the morphology and function of coronary arteries in the tetrapod lineage. Here, we propose that the true ventricular coronary arteries were newly established during amniote evolution through remodeling of the ancestral coronary vasculature. In mouse (Mus musculus) and Japanese quail (Coturnix japonica) embryos, the coronary arteries unique to amniotes are established by the reconstitution of transient vascular plexuses: aortic subepicardial vessels (ASVs) in the outflow tract and the primitive coronary plexus on the ventricle. In contrast, amphibians (Hyla japonica, Lithobates catesbeianus, Xenopus laevis, and Cynops pyrrhogaster) retain the ASV-like vasculature as truncal coronary arteries throughout their lives and have no primitive coronary plexus. The anatomy and development of zebrafish (Danio rerio) and chondrichthyans suggest that their hypobranchial arteries are ASV-like structures serving as the root of the coronary vasculature throughout their lives. Thus, the ventricular coronary artery of adult amniotes is a novel structure that has acquired a new remodeling process, while the ASVs, which occur transiently during embryonic development, are remnants of the ancestral coronary vessels. This evolutionary change may be related to the modification of branchial arteries, indicating considerable morphological changes underlying the physiological transition during amniote evolution.
Collapse
Affiliation(s)
- Kaoru Mizukami
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Hiroki Higashiyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Yuichiro Arima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
- Developmental Cardiology Laboratory, International Research Center for Medical Science, Kumamoto UniversityKumamotoJapan
| | - Koji Ando
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | | | - Katsumi Kose
- Institute of Applied Physics, University of TsukubaTsukubaJapan
| | - Shigehito Yamada
- Congenital Anomaly Research Center, Kyoto University Graduate School of MedicineKyotoJapan
| | - Jun K Takeuchi
- Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental UniversityTokyoJapan
| | | | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Sachiko Miyagawa-Tomita
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
- Heart Center, Department of Pediatric Cardiology, Tokyo Women’s Medical UniversityTokyoJapan
- Department of Animal Nursing Science, Yamazaki University of Animal Health TechnologyTokyoJapan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
| |
Collapse
|
3
|
Vélez-García JF, Miglino MA. Evolutionary comparative analysis of the extrinsic thoracic limb muscles in three procyonids (Procyon cancrivorus Cuvier, 1798, Nasua nasua Linnaeus, 1766, and Potos flavus Schreber, 1774) based on their attachments and innervation. Anat Sci Int 2023; 98:273-292. [PMID: 36463570 DOI: 10.1007/s12565-022-00696-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022]
Abstract
The procyonids (Procyon cancrivorus, Nasua nasua and Potos flavus) are Neotropical carnivorans with the ability to climb trees; however, each one has different locomotor preferences. Thereby, P. flavus is highly arboreal, P. cancrivorus is mainly terrestrial with abilities to swim, and N. nasua is also fossorial. These activities not only require movements of the hands but stabilize the thoracic limb, an action performed by the extrinsic muscles. Besides, former descriptions performed in procyonid species have obsolete terms for these muscles, generating confusion about the comparison among species. Thereby, muscle innervation has also been used to support the evolutionary derivation of the muscles. Therefore, this study aimed to describe the attachments and innervations of these muscles in three procyonids. There were intra- and interspecific anatomical variations in the attachments of all extrinsic thoracic limb muscles. However, based on the innervation, several evolutionary derivations in procyonids could be found, such as: the cleidobrachialis muscle derived from the deltoideus muscle; the atlantoscapularis muscle of P. flavus derived from the serratus ventralis cervicis muscle; the pectoralis transversus muscle derived from the pectoralis profundus and superficiales muscles; and the pectoralis abdominalis muscle derived from the cutaneus trunci muscle. Some functions could be associated with locomotor habits, among them a highly developed pectoralis abdominalis in Nasua for its fossorial habits and the atlantoscapularis in Potos for its arboreal and prehensile habits. Thus, the extrinsic muscles in procyonids have evolved for locomotor preferences, but mainly due to their phylogenetic relationship within the family Procyonidae.
Collapse
Affiliation(s)
- Juan Fernando Vélez-García
- Department of Animal Health, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Barrio Santa Helena Parte Alta Cl 42 1-02, 730006299, Ibagué, Tolima, Colombia. .,Anatomy of the Domestic and Wild Animals Posgraduate Program, Department of Surgery, Faculty of Veterinary Medicine and Zootechnics, Universidade de São Paulo, Av. Prof. Orlando Marques de Paiva, 87-Cidade Universitária Armando de Sales Oliveira, São Paulo, SP, Brazil.
| | - Maria Angélica Miglino
- Anatomy of the Domestic and Wild Animals Posgraduate Program, Department of Surgery, Faculty of Veterinary Medicine and Zootechnics, Universidade de São Paulo, Av. Prof. Orlando Marques de Paiva, 87-Cidade Universitária Armando de Sales Oliveira, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Gene Regulation during Carapacial Ridge Development of Mauremys reevesii: The Development of Carapacial Ridge, Ribs and Scutes. Genes (Basel) 2022; 13:genes13091676. [PMID: 36140843 PMCID: PMC9498798 DOI: 10.3390/genes13091676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The unique topological structure of a turtle shell, including the special ribs-scapula relationship, is an evolutionarily novelty of amniotes. The carapacial ridge is a key embryonic tissue for inducing turtle carapace morphologenesis. However, the gene expression profiles and molecular regulatory mechanisms that occur during carapacial ridge development, including the regulation mechanism of rib axis arrest, the development mechanism of the carapacial ridge, and the differentiation between soft-shell turtles and hard-shell turtles, are not fully understood. In this study, we obtained genome-wide gene expression profiles during the carapacial ridge development of Mauremys reevesii using RNA-sequencing by using carapacial ridge tissues from stage 14, 15 and 16 turtle embryos. In addition, a differentially expressed genes (DEGs) analysis and a gene set enrichment analysis (GSEA) of three comparison groups were performed. Furthermore, a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was used to analyze the pathway enrichment of the differentially expressed genes of the three comparative groups. The result displayed that the Wnt signaling pathway was substantially enriched in the CrTK14 vs. the CrTK15 comparison group, while the Hedgehog signaling pathway was significantly enriched in the CrTK15 vs. the CrTK16 group. Moreover, the regulatory network of the Wnt signaling pathway showed that Wnt signaling pathways might interact with Fgfs, Bmps, and Shh to form a regulatory network to regulate the carapacial ridge development. Next, WGCNA was used to cluster and analyze the expression genes during the carapacial ridge development of M. reevesii and P. sinensis. Further, a KEGG functional enrichment analysis of the carapacial ridge correlation gene modules was performed. Interesting, these results indicated that the Wnt signaling pathway and the MAPK signaling pathway were significantly enriched in the gene modules that were highly correlated with the stage 14 and stage 15 carapacial ridge samples of the two species. The Hedgehog signaling pathway was significantly enriched in the modules that were strongly correlated with the stage 16 carapacial ridge samples of M. reevesii, however, the PI3K-Akt signaling and the TGF-β signaling pathways were significantly enriched in the modules that were strongly correlated with the stage 16 carapacial ridge samples of P. sinensis. Furthermore, we found that those modules that were strongly correlated with the stage 14 carapacial ridge samples of M. reevesii and P. sinensis contained Wnts and Lef1. While the navajo white 3 module which was strongly correlated with the stage 16 carapacial ridge samples of M. reevesii contained Shh and Ptchs. The dark green module strongly correlated with the stage 16 carapacial ridge samples of P. sinensis which contained Col1a1, Col1a2, and Itga8. Consequently, this study systematically revealed the signaling pathways and genes that regulate the carapacial ridge development of M. reevesii and P. sinensis, which provides new insights for revealing the molecular mechanism that is underlying the turtle's body structure.
Collapse
|
5
|
Tekko T, Lozovska A, Nóvoa A, Mallo M. Assessing Myf5 and Lbx1 contribution to carapace development by reproducing their turtle-specific signatures in mouse embryos. Dev Dyn 2022; 251:1698-1710. [PMID: 35618666 DOI: 10.1002/dvdy.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The turtle carapace is an evolutionary novelty resulting from changes in the processes that build ribs and their associated muscles in most tetrapod species. Turtle embryos have several unique features that might play a role in this process, including the carapacial ridge, a Myf5 gene with shorter coding region that generates an alternative splice variant lacking exon 2, and unusual expression patterns of Lbx1 and HGF. RESULTS We investigated these turtle-specific expression differences using genetic approaches in mouse embryos. At mid gestation, mouse embryos producing Myf5 transcripts lacking exon 2 replicated some early properties of turtle somites, but still developed into viable and fertile mice. Extending Lbx1 expression into the hypaxial dermomyotomal lip of trunk somites to mimic the turtle Lbx1 expression pattern, produced fusions in the distal part of the ribs. CONCLUSIONS Turtle-like Myf5 activity might generate a plastic state in developing trunk somites under which they can either enter carapace morphogenetic routes, possibly triggered by signals from the carapacial ridge, or still engage in the development of a standard tetrapod ribcage in the absence of those signals. In addition, trunk Lbx1 expression might play a later role in the formation of the lateral border of the carapace. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Triin Tekko
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Anastasiia Lozovska
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
6
|
Smith-Paredes D, Vergara-Cereghino ME, Lord A, Moses MM, Behringer RR, Bhullar BAS. Embryonic muscle splitting patterns reveal homologies of amniote forelimb muscles. Nat Ecol Evol 2022; 6:604-613. [PMID: 35314784 PMCID: PMC9090950 DOI: 10.1038/s41559-022-01699-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 12/06/2021] [Indexed: 11/09/2022]
Abstract
Limb muscles are remarkably complex and evolutionarily labile. Although their anatomy is of great interest for studies of the evolution of form and function, their homologies among major amniote clades have remained obscure. Studies of adult musculature are inconclusive owing to the highly derived morphology of modern amniote limbs but correspondences become increasingly evident earlier in ontogeny. We followed the embryonic development of forelimb musculature in representatives of six major amniote clades and found, contrary to current consensus, that these early splitting patterns are highly conserved across Amniota. Muscle mass cleavage patterns and topology are highly conserved in reptiles including birds, irrespective of their skeletal modifications: the avian flight apparatus results from slight early topological modifications that are exaggerated during ontogeny. Therian mammals, while conservative in their cleavage patterns, depart drastically from the ancestral amniote musculoskeletal organization in terms of topology. These topological changes occur through extension, translocation and displacement of muscle groups later in development. Overall, the simplicity underlying the apparent complexity of forelimb muscle development allows us to resolve conflicting hypotheses about homology and to trace the history of each individual forelimb muscle throughout the amniote radiations.
Collapse
Affiliation(s)
- Daniel Smith-Paredes
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.
- Yale Peabody Museum of Natural History, New Haven, CT, USA.
| | - Miccaella E Vergara-Cereghino
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, New Haven, CT, USA
| | - Arianna Lord
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, New Haven, CT, USA
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Malcolm M Moses
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.
- Yale Peabody Museum of Natural History, New Haven, CT, USA.
| |
Collapse
|
7
|
Krahl A, Witzel U. Foreflipper and hindflipper muscle reconstructions of Cryptoclidus eurymerus in comparison to functional analogues: introduction of a myological mechanism for flipper twisting. PeerJ 2022; 9:e12537. [PMID: 35003916 PMCID: PMC8684327 DOI: 10.7717/peerj.12537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Plesiosaurs, diapsid crown-group Sauropterygia, inhabited the oceans from the Late Triassic to the Late Cretaceous. Their most exceptional characteristic are four hydrofoil-like flippers. The question whether plesiosaurs employed their four flippers in underwater flight, rowing flight, or rowing has not been settled yet. Plesiosaur locomotory muscles have been reconstructed in the past, but neither the pelvic muscles nor the distal fore- and hindflipper musculature have been reconstructed entirely. METHODS All plesiosaur locomotory muscles were reconstructed in order to find out whether it is possible to identify muscles that are necessary for underwater flight including those that enable flipper rotation and twisting. Flipper twisting has been proven by hydrodynamic studies to be necessary for efficient underwater flight. So, Cryptoclidus eurymerus fore- and hindflipper muscles and ligaments were reconstructed using the extant phylogenetic bracket (Testudines, Crocodylia, and Lepidosauria) and correlated with osteological features and checked for their functionality. Muscle functions were geometrically derived in relation to the glenoid and acetabulum position. Additionally, myology of functionally analogous Chelonioidea, Spheniscidae, Otariinae, and Cetacea is used to extract general myological adaptations of secondary aquatic tetrapods to inform the phylogenetically inferred muscle reconstructions. RESULTS A total of 52 plesiosaur fore- and hindflipper muscles were reconstructed. Amongst these are flipper depressors, elevators, retractors, protractors, and rotators. These muscles enable a fore- and hindflipper downstroke and upstroke, the two sequences that represent an underwater flight flipper beat cycle. Additionally, other muscles were capable of twisting fore- and hindflippers along their length axis during down- and upstroke accordingly. A combination of these muscles that actively aid in flipper twisting and intermetacarpal/intermetatarsal and metacarpodigital/metatarsodigital ligament systems, that passively engage the successive digits, could have accomplished fore-and hindflipper length axis twisting in plesiosaurs that is essential for underwater flight. Furthermore, five muscles that could possibly actively adjust the flipper profiles for efficient underwater flight were found, too.
Collapse
Affiliation(s)
- Anna Krahl
- Biomechanics Research Group, Lehrstuhl für Produktentwicklung, Faculty of Mechanical Engineering, Ruhr-Universität Bochum, Bochum, Germany.,Section of Paleontology, Institute of Geoscience, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.,Paläontologische Sammlung, Fachbereich Geowissenschaften, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Ulrich Witzel
- Biomechanics Research Group, Lehrstuhl für Produktentwicklung, Faculty of Mechanical Engineering, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
8
|
Diaz RE, Taylor-Diaz EA, Trainor PA, Diogo R, Molnar JL. Comparative development of limb musculature in phylogenetically and ecologically divergent lizards. Dev Dyn 2021; 251:1576-1612. [PMID: 34927301 DOI: 10.1002/dvdy.447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Squamate reptiles (lizards, snakes, and amphisbaenians) exhibit incredible diversity in their locomotion, behavior, morphology, and ecological breadth. Although they often are used as models of locomotor diversity, surprisingly little attention has been given to muscle development in squamate reptiles. In fact, the most detailed examination was conducted almost 80 years ago and solely focused on the proximal limb regions. Herein, we present forelimb and hindlimb muscle morphogenesis data for three lizard species with different locomotion and feeding strategies: the desert grassland whiptail lizard, the central bearded dragon, and the veiled chameleon. This study fills critical gaps in our understanding of muscle morphogenesis in squamate reptiles and presents a comparative and temporospatial analysis of muscle development. RESULTS Our results reveal a conserved pattern of early muscle development among lizards with different adult morphologies and ecologies. The variations that exist are concentrated in distal regions, particularly the specialized autopodia of chameleons, where differentiation of muscles associated with the digits is delayed. CONCLUSIONS The chameleon autopod provides an example of major evolutionary modifications to the skeleton with only minor disruption of the conserved order and pattern of limb muscle development. This robustness of muscle patterning facilitates the evolution of extreme yet functional phenotypes.
Collapse
Affiliation(s)
- Raul E Diaz
- Department of Biological Sciences, California State University, Los Angeles, California, USA.,Department of Herpetology, Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - Elizabeth A Taylor-Diaz
- Department of Biological Sciences, California State University, Los Angeles, California, USA
| | - Paul A Trainor
- Investigator, Stowers Institute for Medical Research, Kansas City, Missouri, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, District of Columbia, USA
| | - Julia L Molnar
- Department of Anatomy, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
9
|
Leong JCK, Li Y, Uesaka M, Uchida Y, Omori A, Hao M, Wan W, Dong Y, Ren Y, Zhang S, Zeng T, Wang F, Chen L, Wessel G, Livingston BT, Bradham C, Wang W, Irie N. Derivedness Index for Estimating Degree of Phenotypic Evolution of Embryos: A Study of Comparative Transcriptomic Analyses of Chordates and Echinoderms. Front Cell Dev Biol 2021; 9:749963. [PMID: 34900995 PMCID: PMC8661034 DOI: 10.3389/fcell.2021.749963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Species retaining ancestral features, such as species called living fossils, are often regarded as less derived than their sister groups, but such discussions are usually based on qualitative enumeration of conserved traits. This approach creates a major barrier, especially when quantifying the degree of phenotypic evolution or degree of derivedness, since it focuses only on commonly shared traits, and newly acquired or lost traits are often overlooked. To provide a potential solution to this problem, especially for inter-species comparison of gene expression profiles, we propose a new method named "derivedness index" to quantify the degree of derivedness. In contrast to the conservation-based approach, which deals with expressions of commonly shared genes among species being compared, the derivedness index also considers those that were potentially lost or duplicated during evolution. By applying our method, we found that the gene expression profiles of penta-radial phases in echinoderm tended to be more highly derived than those of the bilateral phase. However, our results suggest that echinoderms may not have experienced much larger modifications to their developmental systems than chordates, at least at the transcriptomic level. In vertebrates, we found that the mid-embryonic and organogenesis stages were generally less derived than the earlier or later stages, indicating that the conserved phylotypic period is also less derived. We also found genes that potentially explain less derivedness, such as Hox genes. Finally, we highlight technical concerns that may influence the measured transcriptomic derivedness, such as read depth and library preparation protocols, for further improvement of our method through future studies. We anticipate that this index will serve as a quantitative guide in the search for constrained developmental phases or processes.
Collapse
Affiliation(s)
- Jason Cheok Kuan Leong
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Masahiro Uesaka
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Yui Uchida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| | - Akihito Omori
- Sado Island Center for Ecological Sustainability, Niigata University, Niigata, Japan
| | - Meng Hao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yang Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yandong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Si Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Tao Zeng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Fayou Wang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Gary Wessel
- Providence Institute of Molecular Oogenesis, Brown University, Providence, RI, United States
| | - Brian T Livingston
- Department of Biological Sciences, California State University, Long Beach, CA, United States
| | - Cynthia Bradham
- Department of Biology, Boston University, Boston, MA, United States
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Naoki Irie
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Mammalian face as an evolutionary novelty. Proc Natl Acad Sci U S A 2021; 118:2111876118. [PMID: 34716275 PMCID: PMC8673075 DOI: 10.1073/pnas.2111876118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
The anterior end of the mammalian face is characteristically composed of a semimotile nose, not the upper jaw as in other tetrapods. Thus, the therian nose is covered ventrolaterally by the "premaxilla," and the osteocranium possesses only a single nasal aperture because of the absence of medial bony elements. This stands in contrast to those in other tetrapods in whom the premaxilla covers the rostral terminus of the snout, providing a key to understanding the evolution of the mammalian face. Here, we show that the premaxilla in therian mammals (placentals and marsupials) is not entirely homologous to those in other amniotes; the therian premaxilla is a composite of the septomaxilla and the palatine remnant of the premaxilla of nontherian amniotes (including monotremes). By comparing topographical relationships of craniofacial primordia and nerve supplies in various tetrapod embryos, we found that the therian premaxilla is predominantly of the maxillary prominence origin and associated with mandibular arch. The rostral-most part of the upper jaw in nonmammalian tetrapods corresponds to the motile nose in therian mammals. During development, experimental inhibition of primordial growth demonstrated that the entire mammalian upper jaw mostly originates from the maxillary prominence, unlike other amniotes. Consistently, cell lineage tracing in transgenic mice revealed a mammalian-specific rostral growth of the maxillary prominence. We conclude that the mammalian-specific face, the muzzle, is an evolutionary novelty obtained by overriding ancestral developmental constraints to establish a novel topographical framework in craniofacial mesenchyme.
Collapse
|
11
|
Tokita M, Watanabe T, Sato H, Kondo S, Kitayama C. A comparative study of cranial osteogenesis in turtles: implications for the diversification of skull morphology. ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-021-00544-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Nojiri T, Tu VT, Sohn JH, Koyabu D. On the sequence heterochrony of cranial ossification of bats in light of Haeckel's recapitulation theory. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 338:137-148. [PMID: 33773030 DOI: 10.1002/jez.b.23042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 01/25/2023]
Abstract
Haeckel's recapitulation theory has been a controversial topic in evolutionary biology. However, we have seen some recent cases applying Haeckel's view to interpret the interspecific variation of prenatal ontogeny. To revisit the validity of Haeckel's recapitulation theory, we take bats that have undergone drastic morphological changes and possess a characteristic ecology as a case study. All members of Rhinolophoidea and Yangochiroptera can generate an ultrasonic pulse from the larynx to interpret surrounding objects (laryngeal echolocation) whereas Pteropodidae lacks such ability. It is known that the petrosal bone is particularly derived in shape and expanded in laryngeal echolocators. If Haeckel's recapitulation theory holds, the formation of this derived trait should occur later than those of other bones. Therefore, we compared the prenatal ossification timing of the petrosal in 15 bat species and five outgroup species. We found that the ossification of the petrosal is accelerated in laryngeal echolocators while it is the last bone to ossify in non-laryngeal echolocating bats and non-volant mammals, which runs counter to the prediction generated by Haeckel's recapitulation theory. We point out the evolutionarily labile nature of trait developmental timing and emphasize that Haeckel's recapitulation theory does not hold in many cases. We caution that generating predictions on ancestral conditions and evolutionary history leading from Haeckel's recapitulation theory is not well supported.
Collapse
Affiliation(s)
- Taro Nojiri
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Joon Hyuk Sohn
- Department of Anatomy and Cell Biology, Tokyo, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Daisuke Koyabu
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan.,Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
Fujimoto S, Yamanaka K, Tanegashima C, Nishimura O, Kuraku S, Kuratani S, Irie N. Measuring potential effects of the developmental burden associated with the vertebrate notochord. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 338:129-136. [PMID: 33689235 PMCID: PMC9291948 DOI: 10.1002/jez.b.23032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 01/20/2023]
Abstract
The notochord functions primarily as a supporting tissue to maintain the anteroposterior axis of primitive chordates, a function that is replaced entirely by the vertebral column in many vertebrates. The notochord still appears during vertebrate embryogenesis and plays a crucial role in the developmental pattern formation of surrounding structures, such as the somites and neural tube, providing the basis for the vertebrate body plan. The indispensable role of the notochord has often been referred to as the developmental burden and used to explain the evolutionary conservation of notochord; however, the existence of this burden has not been successfully exemplified so far. Since the adaptive value of target tissues appears to result in the evolutionary conservation of upstream structures through the developmental burden, we performed comparative gene expression profiling of the notochord, somites, and neural tube during the mid‐embryonic stages in turtles and chicken to measure their evolutionary conservation. When compared with the somites and neural tube, overall gene expression profiles in the notochord showed significantly lower or merely comparable levels of conservation. However, genes involved in inductive signalings, such as the sonic hedgehog (Shh) cascade and the formation of functional primary cilia, showed relatively higher levels of conservation in all the three structures analyzed. Collectively, these results suggest that shh signals are critical as the inductive source and receiving structures, possibly constituting the inter‐dependencies of developmental burden. Potential evolutionary effects toward notochord by developmental burden was evaluated by Laser Micro Dissection RNAseq (LMDseq). Notochord was less conserved than neural tube and somites; however, genes in sonic hedgehog (shh) signaling cascade was found to be evolutionarily conserved (not only in notochord but also in somites and neural tube). These results suggest that Shh signals are critical as the inductive source and receiving structures, possibly constituting the inter‐dependencies of developmental burden. Further studies that directly measure the burden required to verify the hypothesis are awaited.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Naoki Irie
- Department of Biological SciencesThe University of TokyoTokyoJapan
- Universal Biology InstituteThe University of TokyoTokyoJapan
| |
Collapse
|
14
|
Uesaka M, Kuratani S, Irie N. The developmental hourglass model and recapitulation: An attempt to integrate the two models. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 338:76-86. [PMID: 33503326 PMCID: PMC9292893 DOI: 10.1002/jez.b.23027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
Recapitulation is a hypothetical concept that assumes embryogenesis of an animal parallels its own phylogenetic history, sequentially developing from more ancestral features to more derived ones. This concept predicts that the earliest developmental stage of various animals should represent the most evolutionarily conserved patterns. Recent transcriptome‐based studies, on the other hand, have reported that mid‐embryonic, organogenetic periods show the highest level of conservation (the developmental hourglass model). This, however, does not rule out the possibility that recapitulation would still be detected after the mid‐embryonic period. In accordance with this, recapitulation‐like morphological features are enriched in late developmental stages. Moreover, our recent chromatin accessibility‐based study provided molecular evidence for recapitulation in the mid‐to‐late embryogenesis of vertebrates, as newly evolved gene regulatory elements tended to be activated at late embryonic stages. In this review, we revisit the recapitulation hypothesis, together with recent molecular‐based studies that support the developmental hourglass model. We contend that the recapitulation hypothesis does not entirely contradict the developmental hourglass model and that these two may even coexist in later embryonic stages of vertebrates. Finally, we review possible mechanisms underlying the recapitulation pattern of chromatin accessibility together with the hourglass‐like evolutionary conservation in vertebrate embryogenesis. Recapitulation pattern has been reported for chromatin accessibility during the mid‐to‐late embryogenesis. The observed recapitulation pattern and the developmental hourglass model may coexist. The possible evolutionary mechanisms underlying tendencies of embryonic evolution were discussed.
Collapse
Affiliation(s)
- Masahiro Uesaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, Kobe, Japan
| | - Naoki Irie
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Kuratani S, Uesaka M, Irie N. How can recapitulation be reconciled with modern concepts of evolution? JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 338:28-35. [PMID: 33382203 DOI: 10.1002/jez.b.23020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
To understand Haeckel's idea of recapitulation with modern evolutionary biology, one has to realize how evolutionarily conserved embryonic stages appear sequentially in developmental processes as chains of causality. Whether the idea of evolution was accepted or not, Haeckel and von Baer commonly saw an importance of a particularly conserved mid-embryonic stage in biphasic development of metazoans, the phylotype, that defines an animal phylum as the developmental source of a basic body plan. In an evolutionary context, the phylotypic stage was once understood by Haeckel to reflect the common ancestor of animal phyla, which went through hypermorphosis independently into various phyla. Recent comprehensive molecular studies, however, accumulated data to refute this idea. The conserved embryonic pattern does not reflect an ancestral adult morphology but appears to have arisen primarily as an embodiment of developmental constraints established through evolutionary processes. How the developmental burden results in a nested series of constraints will solve the recapitulative tendency of developmental programs.
Collapse
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, Kobe, Japan.,Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masahiro Uesaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Naoki Irie
- Department of Biological Sciences and Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Lyson TR, Bever GS. Origin and Evolution of the Turtle Body Plan. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-024746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The origin of turtles and their uniquely shelled body plan is one of the longest standing problems in vertebrate biology. The unfulfilled need for a hypothesis that both explains the derived nature of turtle anatomy and resolves their unclear phylogenetic position among reptiles largely reflects the absence of a transitional fossil record. Recent discoveries have dramatically improved this situation, providing an integrated, time-calibrated model of the morphological, developmental, and ecological transformations responsible for the modern turtle body plan. This evolutionary trajectory was initiated in the Permian (>260 million years ago) when a turtle ancestor with a diapsid skull evolved a novel mechanism for lung ventilation. This key innovation permitted the torso to become apomorphically stiff, most likely as an adaption for digging and a fossorial ecology. The construction of the modern turtle body plan then proceeded over the next 100 million years following a largely stepwise model of osteological innovation.
Collapse
Affiliation(s)
- Tyler R. Lyson
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205, USA
| | - Gabriel S. Bever
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205, USA
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
17
|
Cordero GA. Transcriptomic similarities and differences between the limb bud AER and unique carapacial ridge of turtle embryos. Evol Dev 2020; 22:370-383. [PMID: 32862496 DOI: 10.1111/ede.12351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/10/2020] [Accepted: 08/02/2020] [Indexed: 01/04/2023]
Abstract
Evolutionary innovation may arise via major departures from an ancestral condition. Turtle shell morphogenesis depends on a unique structure known as the carapacial ridge (CR). This lateral tissue protrusion in turtle embryos exhibits similar properties as the apical ectodermal ridge (AER)-a well-known molecular signaling center involved in limb development. Still, how the CR influences shell morphogenesis is not entirely clear. The present study aimed to describe the CR transcriptome shortly before ribs were halted within its mesenchyme, as required for shell development. Analyses exposed that the mesenchymal marker VIM was one of the most highly co-expressed genes and numerous appendage formation genes were situated within the core of CR and AER co-expression networks. However, there were tissue-specific differences in the activity of these genes. For instance, WNT5A was most frequently assigned to appendage-related annotations of the CR network core, but not in the AER. Several homeobox transcription factors known to regulate limb bud patterning exhibited their highest expression levels in the AER, but were underexpressed in the CR. The results of this study corroborate that novel body plans often originate via alterations of pre-existing genetic networks. Altogether, this exploratory study enhances the groundwork for future experiments on the molecular underpinnings of turtle shell development and evolution.
Collapse
Affiliation(s)
- Gerardo A Cordero
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
18
|
Nagashima H, Koga D, Kusumi S, Mukaigasa K, Yaginuma H, Ushiki T, Sato N. Novel concept for the epaxial/hypaxial boundary based on neuronal development. J Anat 2020; 237:427-438. [PMID: 32786168 DOI: 10.1111/joa.13219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 11/30/2022] Open
Abstract
Trunk muscles in vertebrates are classified as either dorsal epaxial or ventral hypaxial muscles. Epaxial and hypaxial muscles are defined as muscles innervated by the dorsal and ventral rami of spinal nerves, respectively. Each cluster of spinal motor neurons passing through dorsal rami innervates epaxial muscles, whereas clusters traveling on the ventral rami innervate hypaxial muscles. Herein, we show that some motor neurons exhibiting molecular profiles for epaxial muscles follow a path in the ventral rami. Dorsal deep-shoulder muscles and some body wall muscles are defined as hypaxial due to innervation via the ventral rami, but a part of these ventral rami has the molecular profile of motor neurons that innervate epaxial muscles. Thus, the epaxial and hypaxial boundary cannot be determined simply by the ramification pattern of spinal nerves. We propose that, although muscle innervation occurs via the ventral rami, dorsal deep-shoulder muscles and some body wall muscles represent an intermediate group that lies between epaxial and hypaxial muscles.
Collapse
Affiliation(s)
- Hiroshi Nagashima
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Daisuke Koga
- Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Kusumi
- Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Katsuki Mukaigasa
- Department of Neuroanatomy and Embryology, Fukushima Medical University, Fukushima, Japan
| | - Hiroyuki Yaginuma
- Department of Neuroanatomy and Embryology, Fukushima Medical University, Fukushima, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Noboru Sato
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
19
|
Smith Paredes D, Lord A, Meyer D, Bhullar BS. A developmental staging system and musculoskeletal development sequence of the common musk turtle (
Sternotherus odoratus
). Dev Dyn 2020; 250:111-127. [DOI: 10.1002/dvdy.210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Daniel Smith Paredes
- Department of Earth and Planetary Science, Peabody Museum of Natural History Yale University New Haven Connecticut USA
| | - Arianna Lord
- Department of Earth and Planetary Science, Peabody Museum of Natural History Yale University New Haven Connecticut USA
| | - Dalton Meyer
- Department of Earth and Planetary Science, Peabody Museum of Natural History Yale University New Haven Connecticut USA
| | - Bhart‐Anjan S. Bhullar
- Department of Earth and Planetary Science, Peabody Museum of Natural History Yale University New Haven Connecticut USA
| |
Collapse
|
20
|
Scaal M. Development of the amniote ventrolateral body wall. Dev Dyn 2020; 250:39-59. [PMID: 32406962 DOI: 10.1002/dvdy.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
In vertebrates, the trunk consists of the musculoskeletal structures of the back and the ventrolateral body wall, which together enclose the internal organs of the circulatory, digestive, respiratory and urogenital systems. This review gives an overview on the development of the thoracic and abdominal wall during amniote embryogenesis. Specifically, I briefly summarize relevant historical concepts and the present knowledge on the early embryonic development of ribs, sternum, intercostal muscles and abdominal muscles with respect to anatomical bauplan, origin and specification of precursor cells, initial steps of pattern formation, and cellular and molecular regulation of morphogenesis.
Collapse
Affiliation(s)
- Martin Scaal
- Faculty of Medicine, Institute of Anatomy II, University of Cologne, Cologne, Germany
| |
Collapse
|
21
|
Buskell A. Synthesising arguments and the extended evolutionary synthesis. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2020; 80:101244. [PMID: 31917083 DOI: 10.1016/j.shpsc.2019.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Synthesising arguments motivate changes to the conceptual tools, theoretical structure, and evaluatory framework employed in a given scientific domain. Recently, a broad coalition of researchers has put forward a synthesising argument in favour of an Extended Evolutionary Synthesis ('EES'). Often this synthesising argument is evaluated using a virtue-based approach, which construes the EES as a wholesale alternative to prevailing practice. Here I argue this virtue-based approach is not fit for purpose. Taking the central concept of niche construction as a case study, I show that an agenda-based approach better captures the pragmatic and epistemological goals of the EES synthesising argument and diagnoses areas of empirical disagreement with prevailing practice.
Collapse
Affiliation(s)
- Andrew Buskell
- Department of History and Philosophy of Science, Free School Lane, University of Cambridge, Cambridge, CB2 3RH, UK.
| |
Collapse
|
22
|
Yu Y, Hu H, Doust AN, Kellogg EA. Divergent gene expression networks underlie morphological diversity of abscission zones in grasses. THE NEW PHYTOLOGIST 2020; 225:1799-1815. [PMID: 31372996 PMCID: PMC7003853 DOI: 10.1111/nph.16087] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/19/2019] [Indexed: 05/19/2023]
Abstract
Abscission is a process in which plants shed their parts, and is mediated by a particular set of cells, the abscission zone (AZ). In grasses (Poaceae), the position of the AZ differs among species, raising the question of whether its anatomical structure and genetic control are conserved. The ancestral position of the AZ was reconstructed. A combination of light microscopy, transmission electron microscopy, RNA-Seq analyses and RNA in situ hybridisation were used to compare three species, two (weedy rice and Brachypodium distachyon) with the AZ in the ancestral position and one (Setaria viridis) with the AZ in a derived position below a cluster of flowers (spikelet). Rice and Brachypodium are more similar anatomically than Setaria. However, the cell wall properties and the transcriptome of rice and Brachypodium are no more similar to each other than either is to Setaria. The set of genes expressed in the studied tissues is generally conserved across species, but the precise developmental and positional patterns of expression and gene networks are almost entirely different. Transcriptional regulation of AZ development appears to be extensively rewired among the three species, leading to distinct anatomical and morphological outcomes.
Collapse
Affiliation(s)
- Yunqing Yu
- Donald Danforth Plant Science CenterSt LouisMO63132USA
| | - Hao Hu
- Department of Plant Biology, Ecology and EvolutionOklahoma State UniversityStillwaterOK74078USA
| | - Andrew N. Doust
- Department of Plant Biology, Ecology and EvolutionOklahoma State UniversityStillwaterOK74078USA
| | | |
Collapse
|
23
|
Mayerl CJ, Capano JG, Moreno AA, Wyneken J, Blob RW, Brainerd EL. Pectoral and pelvic girdle rotations during walking and swimming in a semi-aquatic turtle: testing functional role and constraint. ACTA ACUST UNITED AC 2019; 222:jeb.212688. [PMID: 31767737 DOI: 10.1242/jeb.212688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/20/2019] [Indexed: 01/29/2023]
Abstract
Pectoral and pelvic girdle rotations play a substantial role in enhancing stride length across diverse tetrapod lineages. However, the pectoral and pelvic girdle attach the limbs to the body in different ways and may exhibit dissimilar functions, especially during locomotion in disparate environments. Here, we tested for functional differences between the forelimb and hindlimb of the freshwater turtle Pseudemys concinna during walking and swimming using X-ray reconstruction of moving morphology (XROMM). In doing so, we also tested the commonly held notion that the shell constrains girdle motion in turtles. We found that the pectoral girdle exhibited greater rotations than the pelvic girdle on land and in water. Additionally, pelvic girdle rotations were greater on land than in water, whereas pectoral girdle rotations were similar in the two environments. These results indicate that although the magnitude of pelvic girdle rotations depends primarily on whether the weight of the body must be supported against gravity, the magnitude of pectoral girdle rotations likely depends primarily on muscular activity associated with locomotion. Furthermore, the pectoral girdle of turtles rotated more than has been observed in other taxa with sprawling postures, showing an excursion similar to that of mammals (∼38 deg). These results suggest that a rigid axial skeleton and internally positioned pectoral girdle have not constrained turtle girdle function, but rather the lack of lateral undulations in turtles and mammals may contribute to a functional convergence whereby the girdle acts as an additional limb segment to increase stride length.
Collapse
Affiliation(s)
- Christopher J Mayerl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - John G Capano
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Adam A Moreno
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Jeanette Wyneken
- Department of Biology, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
24
|
Cordero GA, Stearns S, Quinteros K, Berns CM, Binz SM, Janzen F. The postembryonic transformation of the shell in emydine box turtles. Evol Dev 2019; 21:297-310. [PMID: 31441599 DOI: 10.1111/ede.12307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A key trend in the 210-million-year-old history of modern turtles was the evolution of shell kinesis, that is, shell movement during neck and limb retraction. Kinesis is hypothesized to enhance predator defense in small terrestrial and semiaquatic turtles and has evolved multiple times since the early Cretaceous. This complex phenotype is nonfunctional and far from fully differentiated following embryogenesis. Instead, kinesis develops slowly in juveniles, providing a unique opportunity to illustrate the postembryonic origins of an adaptive trait. To this end, we examined ventral shell (plastral) kinesis in emydine box turtles and found that hatchling plastron shape differs from that of akinetic-shelled relatives, particularly where the hinge that enables kinesis differentiates. We also demonstrated shape changes relative to plastron size in juveniles, coinciding with a shift in the carapace-plastron structural connection, rearrangement of ectodermal plates, and bone repatterning. Furthermore, because the shell grows larger relative to the head, complete concealment of the head and extremities is only achieved after relative shell proportions increase. Structural alterations that facilitate the box turtle's transformation are probably prepatterned in embryos but require function-induced changes to differentiate in juveniles. This mode of delayed trait differentiation is essential to phenotypic diversification in turtles and perhaps other tetrapods.
Collapse
Affiliation(s)
- Gerardo A Cordero
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA.,Department of Geosciences, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Samantha Stearns
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Kevin Quinteros
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Chelsea M Berns
- Department of Biology, Salisbury University, Salisbury, Maryland, USA
| | - Steven M Binz
- Department of Physics, Salisbury University, Salisbury, Maryland, USA
| | - Fredric Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
25
|
Fu J, Chen S, Zhao X, Luo Z, Zou P, Liu Y. Identification and characterization of the interferon-γ-inducible lysosomal thiol reductase gene in Chinese soft-shelled turtle, Pelodiscus sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:55-59. [PMID: 30172908 DOI: 10.1016/j.dci.2018.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
The reduction of disulfide bonds of exogenous antigens is crucial to the MHC-II class antigen processing and presenting pathway and is catalysed by interferon-γ-inducible lysosomal thiol reductase (GILT). In this study, a reptile GILT gene from Chinese soft-shelled turtle, Pelodiscus sinensis (PsGILT), was identified. The full-length cDNA of PsGILT is 1631 nucleotides (nt), including a 5'-untranslated region (UTR) of 3 nt, a 3'-UTR of 860 nt and an open reading frame (ORF) of 768 nt encoding 255 amino acids (aa). The conserved features in known GILTs, such as signal peptide, CXXC motif, GILT signature sequence, N-glycosylation site and conserved cysteines, were all found in the putative PsGILT protein. Genomic analysis revealed that PsGILT kept the "7 exons and 6 introns" structure of vertebrate GILT genes. PsGILT was expressed in all examined organs/tissues and was mainly expressed in spleen and blood. Increased mRNA expression levels of PsIFN-γ and PsGILT in PBLs were observed after induction with LPS, PolyI:C and recombinant IFN-γ (rIFN-γ). We also tested the reductase activity of rGILT in vitro and found that it could reduce intact human IgG into H chains and L chains. These above results implied that PsGILT may play an important role in resisting bacterial and viral infections, like other vertebrate GILTs.
Collapse
Affiliation(s)
- Jianping Fu
- College of Life Sciences, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi Province, 330022, China
| | - Shannan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Xin Zhao
- College of Life Sciences, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi Province, 330022, China
| | - Zhang Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Pengfei Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Yi Liu
- College of Life Sciences, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi Province, 330022, China.
| |
Collapse
|
26
|
Uesaka M, Kuratani S, Takeda H, Irie N. Recapitulation-like developmental transitions of chromatin accessibility in vertebrates. ZOOLOGICAL LETTERS 2019; 5:33. [PMID: 31807314 PMCID: PMC6857340 DOI: 10.1186/s40851-019-0148-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/06/2019] [Indexed: 05/09/2023]
Abstract
The relationship between development and evolution has been a central theme in evolutionary developmental biology. Across the vertebrates, the most highly conserved gene expression profiles are found at mid-embryonic, organogenesis stages, whereas those at earlier and later stages are more diverged. This hourglass-like pattern of divergence does not necessarily rule out the possibility that gene expression profiles that are more evolutionarily derived appear at later stages of development; however, no molecular-level evidence of such a phenomenon has been reported. To address this issue, we compared putative gene regulatory elements among different species within a phylum. We made a genome-wide assessment of accessible chromatin regions throughout embryogenesis in three vertebrate species (mouse, chicken, and medaka) and estimated the evolutionary ages of these regions to define their evolutionary origins on the phylogenetic tree. In all the three species, we found that genomic regions tend to become accessible in an order that parallels their phylogenetic history, with evolutionarily newer gene regulations activated at later developmental stages. This tendency was restricted only after the mid-embryonic, phylotypic periods. Our results imply a phylogenetic hierarchy of putative regulatory regions, in which their activation parallels the phylogenetic order of their appearance. One evolutionary mechanism that may explain this phenomenon is that newly introduced regulatory elements are more likely to survive if activated at later stages of embryogenesis. Possible relationships between this phenomenon and the so-called recapitulation are discussed.
Collapse
Affiliation(s)
- Masahiro Uesaka
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| | - Naoki Irie
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Evolution, Diversity, and Development of the Craniocervical System in Turtles with Special Reference to Jaw Musculature. HEADS, JAWS, AND MUSCLES 2019. [DOI: 10.1007/978-3-319-93560-7_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Cordero GA, Quinteros K, Janzen FJ. Delayed trait development and the convergent evolution of shell kinesis in turtles. Proc Biol Sci 2018; 285:rspb.2018.1585. [PMID: 30282655 DOI: 10.1098/rspb.2018.1585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022] Open
Abstract
Understanding developmental processes is foundational to clarifying the mechanisms by which convergent evolution occurs. Here, we show how a key convergently evolving trait is slowly 'acquired' in growing turtles. Many functionally relevant traits emerge late in turtle ontogeny, owing to design constraints imposed by the shell. We investigated this trend by examining derived patterns of shell formation associated with the multiple (at least 8) origins of shell kinesis in small-bodied turtles. Using box turtles as a model, we demonstrate that the flexible hinge joint required for shell kinesis differentiates gradually and via extensive repatterning of shell tissue. Disproportionate changes in shell shape and size substantiate that this transformation is a delayed ontogenetic response (3-5 years post-hatching) to structural alterations that arise in embryogenesis. These findings exemplify that the translation of genotype to phenotype may reach far beyond embryonic life stages. Thus, the temporal scope for developmental origins of adaptive morphological change might be broader than generally understood. We propose that delayed trait differentiation via tissue repatterning might facilitate phenotypic diversification and innovation that otherwise would not arise due to developmental constraints.
Collapse
Affiliation(s)
- Gerardo A Cordero
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, 251 Bessey Hall, Ames, IA, USA
| | - Kevin Quinteros
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, 251 Bessey Hall, Ames, IA, USA
| | - Fredric J Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, 251 Bessey Hall, Ames, IA, USA
| |
Collapse
|
29
|
Cordero GA, Liu H, Wimalanathan K, Weber R, Quinteros K, Janzen FJ. Gene network variation and alternative paths to convergent evolution in turtles. Evol Dev 2018; 20:172-185. [DOI: 10.1111/ede.12264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gerardo A. Cordero
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowa
| | - Haibo Liu
- Program in Bioinformatics and Computational BiologyIowa State UniversityAmesIowa
| | | | - Rachel Weber
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowa
| | - Kevin Quinteros
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowa
| | - Fredric J. Janzen
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowa
| |
Collapse
|
30
|
Cordero GA, Telemeco RS, Gangloff EJ. Reptile embryos are not capable of behavioral thermoregulation in the egg. Evol Dev 2017; 20:40-47. [DOI: 10.1111/ede.12244] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Rory S. Telemeco
- Department of BiologyCalifornia State UniversityFresnoCalifornia
| | - Eric J. Gangloff
- Department of EcologyEvolution, and Organismal BiologyIowa State UniversityAmesIowa
| |
Collapse
|
31
|
Böhmer C, Werneburg I. Deep time perspective on turtle neck evolution: chasing the Hox code by vertebral morphology. Sci Rep 2017; 7:8939. [PMID: 28827543 PMCID: PMC5566328 DOI: 10.1038/s41598-017-09133-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/21/2017] [Indexed: 12/24/2022] Open
Abstract
The unparalleled ability of turtle neck retraction is possible in three different modes, which characterize stem turtles, living side-necked (Pleurodira), and hidden-necked (Cryptodira) turtles, respectively. Despite the conservatism in vertebral count among turtles, there is significant functional and morphological regionalization in the cervical vertebral column. Since Hox genes play a fundamental role in determining the differentiation in vertebra morphology and based on our reconstruction of evolutionary genetics in deep time, we hypothesize genetic differences among the turtle groups and between turtles and other land vertebrates. We correlated anterior Hox gene expression and the quantifiable shape of the vertebrae to investigate the morphological modularity in the neck across living and extinct turtles. This permitted the reconstruction of the hypothetical ancestral Hox code pattern of the whole turtle clade. The scenario of the evolution of axial patterning in turtles indicates shifts in the spatial expression of HoxA-5 in relation to the reduction of cervical ribs in modern turtles and of HoxB-5 linked with a lower morphological differentiation between the anterior cervical vertebrae observed in cryptodirans. By comparison with the mammalian pattern, we illustrate how the fixed count of eight cervical vertebrae in turtles resulted from the emergence of the unique turtle shell.
Collapse
Affiliation(s)
- Christine Böhmer
- UMR 7179 CNRS/MNHN, Muséum National d'Histoire Naturelle, 57 rue Cuvier CP-55, 75005, Paris, France.
| | - Ingmar Werneburg
- Senckenberg Center for Human Evolution and Palaeoenvironment at Eberhard Karls Universität, Sigwartstr, 10, 72076, Tübingen, Germany.
- Fachbereich Geowissenschaften, Eberhard Karls Universität, Hölderlinstraße 12, D-72074, Tübingen, Germany.
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115, Berlin, Germany.
| |
Collapse
|
32
|
Moustakas-Verho JE, Cebra-Thomas J, Gilbert SF. Patterning of the turtle shell. Curr Opin Genet Dev 2017; 45:124-131. [DOI: 10.1016/j.gde.2017.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/06/2017] [Accepted: 03/21/2017] [Indexed: 12/30/2022]
|
33
|
Yamashita W, Shimizu T, Nomura T. In Vitro and Ex Ovo Culture of Reptilian and Avian Neural Progenitor Cells. Methods Mol Biol 2017; 1650:259-265. [PMID: 28809027 DOI: 10.1007/978-1-4939-7216-6_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Reptiles and birds have been highlighted as excellent experimental models for the study of developmental biology; however, due to technical limitations in cellular analysis, dynamics of neural stem/progenitor cells of these animals remain unclear. In this chapter, we introduce the protocols for neurosphere culture and ex ovo embryonic culture of developing reptilian and avian embryos, which are modified from the method originally established for rodent embryos. Applications of these techniques provide powerful strategies for the study of comparative neural development of amniotes.
Collapse
Affiliation(s)
- Wataru Yamashita
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangi cho, Sakyoku, Kyoto, 606-0823, Japan
| | - Toyo Shimizu
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangi cho, Sakyoku, Kyoto, 606-0823, Japan
| | - Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangi cho, Sakyoku, Kyoto, 606-0823, Japan.
| |
Collapse
|
34
|
Nomura T, Ohtaka-Maruyama C, Yamashita W, Wakamatsu Y, Murakami Y, Calegari F, Suzuki K, Gotoh H, Ono K. The evolution of basal progenitors in the developing non-mammalian brain. Development 2016; 143:66-74. [PMID: 26732839 PMCID: PMC4725208 DOI: 10.1242/dev.127100] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The amplification of distinct neural stem/progenitor cell subtypes during embryogenesis is essential for the intricate brain structures present in various vertebrate species. For example, in both mammals and birds, proliferative neuronal progenitors transiently appear on the basal side of the ventricular zone of the telencephalon (basal progenitors), where they contribute to the enlargement of the neocortex and its homologous structures. In placental mammals, this proliferative cell population can be subdivided into several groups that include Tbr2+ intermediate progenitors and basal radial glial cells (bRGs). Here, we report that basal progenitors in the developing avian pallium show unique morphological and molecular characteristics that resemble the characteristics of bRGs, a progenitor population that is abundant in gyrencephalic mammalian neocortex. Manipulation of LGN (Leu-Gly-Asn repeat-enriched protein) and Cdk4/cyclin D1, both essential regulators of neural progenitor dynamics, revealed that basal progenitors and Tbr2+ cells are distinct cell lineages in the developing avian telencephalon. Furthermore, we identified a small population of subapical mitotic cells in the developing brains of a wide variety of amniotes and amphibians. Our results suggest that unique progenitor subtypes are amplified in mammalian and avian lineages by modifying common mechanisms of neural stem/progenitor regulation during amniote brain evolution. Highlighted article: In the developing chick pallium, a basal progenitor population resembles mammalian cortical basal radial glia, suggesting a more ancient evolutionary origin for this cell type.
Collapse
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangi cho, Sakyo-ku, Kyoto 606-0823, Japan Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Chiaki Ohtaka-Maruyama
- Neural Network Project, Department of Neural Development and Regeneration, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Wataru Yamashita
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangi cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Yoshio Wakamatsu
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Federico Calegari
- DFG-Centre for Regenerative Therapies Dresden, Faculty of Medicine, TUD, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Kunihiro Suzuki
- Department of Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan Division of Companion Diagnostics, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hitoshi Gotoh
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangi cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Katsuhiko Ono
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangi cho, Sakyo-ku, Kyoto 606-0823, Japan
| |
Collapse
|
35
|
Schmidt M, Mehlhorn M, Fischer MS. Shoulder girdle rotation, forelimb movement and the influence of carapace shape on locomotion in Testudo hermanni (Testudinidae). ACTA ACUST UNITED AC 2016; 219:2693-703. [PMID: 27340203 DOI: 10.1242/jeb.137059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 06/20/2016] [Indexed: 11/20/2022]
Abstract
Studies into the function of structures are crucial for making connections between morphology and behaviour of organisms, but are still rare for the terrestrial Testudinidae. We investigated the kinematics of shoulder girdle and forelimb motion in Hermann's tortoise Testudo hermanni using biplanar X-ray fluoroscopy with a twofold aim: firstly, to understand how the derived shapes of shoulder girdle and carapace together influence rotation of the girdle; and, secondly, to understand how girdle rotation affects forelimb excursion. The total degree of shoulder rotation in the horizontal plane is similar to a species with a less domed shell, but because of the long and nearly vertically oriented scapular prong, shoulder girdle rotation contributes more than 30% to the horizontal arc of the humerus and nearly 40% to the rotational component of step length. The antebrachium and manus, which act as a functional unit, contribute roughly 50% to this component of the step length because of their large excursion almost parallel to the mid-sagittal plane. This large excursion is the result of the complex interplay between humerus long-axis rotation, counter-rotation of the antebrachium, and elbow flexion and extension. A significant proportion of forelimb step length results from body translation that is due to the propulsive effect of the other limbs during their stance phases. Traits that are similar to other tortoises and terrestrial or semi-aquatic turtles are the overall slow walk because of a low stride frequency, and the lateral-sequence, diagonally coupled footfall pattern with high duty factors. Intraspecific variation of carapace shape and shoulder girdle dimensions has a corresponding effect on forelimb kinematics.
Collapse
Affiliation(s)
- Manuela Schmidt
- Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-University Jena, Erbertstraße 1, Jena 07743, Germany
| | - Martin Mehlhorn
- Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-University Jena, Erbertstraße 1, Jena 07743, Germany
| | - Martin S Fischer
- Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-University Jena, Erbertstraße 1, Jena 07743, Germany
| |
Collapse
|
36
|
Vieira LG, Santos AL, Moura LR, Orpinelli SR, Pereira KF, Lima FC. Morphology, development and heterochrony of the carapace of Giant Amazon River Turtle Podocnemis expansa (Testudines, Podocnemidae). PESQUISA VETERINARIA BRASILEIRA 2016. [DOI: 10.1590/s0100-736x2016000500014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract: With aim to report the ontogeny of the osseous elements of the carapace in Peurodiras, 62 embryos and 43 nestlings of Podocnemis expansa were collected and submitted to the clearing and staining technique of bones and cartilages and study of serial histological slices. The carapace has mixed osseous structure of endo and exoskeleton, formed by 8 pairs of costal bones associated with ribs, 7 neural bones associated with neural arches, 11 pairs of peripheral bones, 1 nuchal, 1 pygal and 1 suprapygal. This structure begins its formation in the beginning of stage 16 with the ossification of the periosteal collar of the ribs. With exception of the peripheral bones, the other ones begin their ossification during the embrionary period. In histologic investigation it was found that the costal bones and neural bones have a close relation to the endoskeleton components, originating themselves as intramembranous expansions of the periosteal collar of the ribs and neural arches, respectively. The condensation of the mesenchyme adjacent to the periosteal collar induces the formation of spikes that grow in trabeculae permeated by fibroblasts below the dermis. The nuchal bone also ossifies in an intramembranous way, but does not show direct relation to the endoskeleton. Such information confirms those related to the other Pleurodira, mainly with Podocnemis unifilis, sometimes with conspicuous variations in the chronology of the ossification events. The formation of dermal plates in the carapace of Pleurodira and Criptodira follow the same pattern.
Collapse
|
37
|
Development of the turtle plastron, the order-defining skeletal structure. Proc Natl Acad Sci U S A 2016; 113:5317-22. [PMID: 27114549 DOI: 10.1073/pnas.1600958113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The dorsal and ventral aspects of the turtle shell, the carapace and the plastron, are developmentally different entities. The carapace contains axial endochondral skeletal elements and exoskeletal dermal bones. The exoskeletal plastron is found in all extant and extinct species of crown turtles found to date and is synaptomorphic of the order Testudines. However, paleontological reconstructed transition forms lack a fully developed carapace and show a progression of bony elements ancestral to the plastron. To understand the evolutionary development of the plastron, it is essential to know how it has formed. Here we studied the molecular development and patterning of plastron bones in a cryptodire turtle Trachemys scripta We show that plastron development begins at developmental stage 15 when osteochondrogenic mesenchyme forms condensates for each plastron bone at the lateral edges of the ventral mesenchyme. These condensations commit to an osteogenic identity and suppress chondrogenesis. Their development overlaps with that of sternal cartilage development in chicks and mice. Thus, we suggest that in turtles, the sternal morphogenesis is prevented in the ventral mesenchyme by the concomitant induction of osteogenesis and the suppression of chondrogenesis. The osteogenic subroutines later direct the growth and patterning of plastron bones in an autonomous manner. The initiation of plastron bone development coincides with that of carapacial ridge formation, suggesting that the development of dorsal and ventral shells are coordinated from the start and that adopting an osteogenesis-inducing and chondrogenesis-suppressing cell fate in the ventral mesenchyme has permitted turtles to develop their order-specific ventral morphology.
Collapse
|
38
|
Matsubara Y, Kuroiwa A, Suzuki T. Efficient harvesting methods for early-stage snake and turtle embryos. Dev Growth Differ 2016; 58:241-9. [DOI: 10.1111/dgd.12278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Yoshiyuki Matsubara
- Division of Biological Science; Graduate School of Science; Nagoya University Furo-cho; Chikusa-ku Nagoya 464-8602 Japan
| | - Atsushi Kuroiwa
- Division of Biological Science; Graduate School of Science; Nagoya University Furo-cho; Chikusa-ku Nagoya 464-8602 Japan
| | - Takayuki Suzuki
- Division of Biological Science; Graduate School of Science; Nagoya University Furo-cho; Chikusa-ku Nagoya 464-8602 Japan
| |
Collapse
|
39
|
Botelho JF, Smith-Paredes D, Soto-Acuña S, O'Connor J, Palma V, Vargas AO. Molecular development of fibular reduction in birds and its evolution from dinosaurs. Evolution 2016; 70:543-54. [PMID: 26888088 PMCID: PMC5069580 DOI: 10.1111/evo.12882] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 01/02/2016] [Accepted: 01/27/2016] [Indexed: 01/05/2023]
Abstract
Birds have a distally reduced, splinter‐like fibula that is shorter than the tibia. In embryonic development, both skeletal elements start out with similar lengths. We examined molecular markers of cartilage differentiation in chicken embryos. We found that the distal end of the fibula expresses Indian hedgehog (IHH), undergoing terminal cartilage differentiation, and almost no Parathyroid‐related protein (PTHrP), which is required to develop a proliferative growth plate (epiphysis). Reduction of the distal fibula may be influenced earlier by its close contact with the nearby fibulare, which strongly expresses PTHrP. The epiphysis‐like fibulare however then separates from the fibula, which fails to maintain a distal growth plate, and fibular reduction ensues. Experimental downregulation of IHH signaling at a postmorphogenetic stage led to a tibia and fibula of equal length: The fibula is longer than in controls and fused to the fibulare, whereas the tibia is shorter and bent. We propose that the presence of a distal fibular epiphysis may constrain greater growth in the tibia. Accordingly, many Mesozoic birds show a fibula that has lost its distal epiphysis, but remains almost as long as the tibia, suggesting that loss of the fibulare preceded and allowed subsequent evolution of great fibulo–tibial disparity.
Collapse
Affiliation(s)
- João Francisco Botelho
- Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias de la Universidad de Chile, Santiago, Chile.
| | - Daniel Smith-Paredes
- Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias de la Universidad de Chile, Santiago, Chile
| | - Sergio Soto-Acuña
- Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias de la Universidad de Chile, Santiago, Chile.,Área de Paleontología, Museo Nacional de Historia Natural, Santiago, Chile
| | - Jingmai O'Connor
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Science, Beijing, China
| | - Verónica Palma
- FONDAP Center for Genomic Regulation, Departamento de Biología, Facultad de Ciencias de la Universidad de Chile, Santiago, Chile
| | - Alexander O Vargas
- Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias de la Universidad de Chile, Santiago, Chile.
| |
Collapse
|
40
|
Hirasawa T, Fujimoto S, Kuratani S. Expansion of the neck reconstituted the shoulder-diaphragm in amniote evolution. Dev Growth Differ 2016; 58:143-53. [PMID: 26510533 PMCID: PMC11520960 DOI: 10.1111/dgd.12243] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 02/01/2023]
Abstract
The neck acquired flexibility through modifications of the head-trunk interface in vertebrate evolution. Although developmental programs for the neck musculoskeletal system have attracted the attention of evolutionary developmental biologists, how the heart, shoulder and surrounding tissues are modified during development has remained unclear. Here we show, through observation of the lateral plate mesoderm at cranial somite levels in chicken-quail chimeras, that the deep part of the lateral body wall is moved concomitant with the caudal transposition of the heart, resulting in the infolding of the expanded cervical lateral body wall into the thorax. Judging from the brachial plexus pattern, an equivalent infolding also appears to take place in mammalian and turtle embryos. In mammals, this infolding process is particularly important because it separates the diaphragm from the shoulder muscle mass. In turtles, the expansion of the cervical lateral body wall affects morphogenesis of the shoulder. Our findings highlight the cellular expansion in developing amniote necks that incidentally brought about the novel adaptive traits.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047, Japan
| | - Satoko Fujimoto
- Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047, Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
41
|
Holthaus KB, Strasser B, Sipos W, Schmidt HA, Mlitz V, Sukseree S, Weissenbacher A, Tschachler E, Alibardi L, Eckhart L. Comparative Genomics Identifies Epidermal Proteins Associated with the Evolution of the Turtle Shell. Mol Biol Evol 2015; 33:726-37. [PMID: 26601937 PMCID: PMC4760078 DOI: 10.1093/molbev/msv265] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The evolution of reptiles, birds, and mammals was associated with the origin of unique integumentary structures. Studies on lizards, chicken, and humans have suggested that the evolution of major structural proteins of the outermost, cornified layers of the epidermis was driven by the diversification of a gene cluster called Epidermal Differentiation Complex (EDC). Turtles have evolved unique defense mechanisms that depend on mechanically resilient modifications of the epidermis. To investigate whether the evolution of the integument in these reptiles was associated with specific adaptations of the sequences and expression patterns of EDC-related genes, we utilized newly available genome sequences to determine the epidermal differentiation gene complement of turtles. The EDC of the western painted turtle (Chrysemys picta bellii) comprises more than 100 genes, including at least 48 genes that encode proteins referred to as beta-keratins or corneous beta-proteins. Several EDC proteins have evolved cysteine/proline contents beyond 50% of total amino acid residues. Comparative genomics suggests that distinct subfamilies of EDC genes have been expanded and partly translocated to loci outside of the EDC in turtles. Gene expression analysis in the European pond turtle (Emys orbicularis) showed that EDC genes are differentially expressed in the skin of the various body sites and that a subset of beta-keratin genes within the EDC as well as those located outside of the EDC are expressed predominantly in the shell. Our findings give strong support to the hypothesis that the evolutionary innovation of the turtle shell involved specific molecular adaptations of epidermal differentiation.
Collapse
Affiliation(s)
- Karin Brigit Holthaus
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA), University of Bologna, Bologna, Italy
| | - Bettina Strasser
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Sipos
- Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Heiko A Schmidt
- Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories, Medical University of Vienna, University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Supawadee Sukseree
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Lorenzo Alibardi
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA), University of Bologna, Bologna, Italy
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Li P, Zhou L, Yu Y, Yang M, Ni S, Wei S, Qin Q. Characterization of DNA aptamers generated against the soft-shelled turtle iridovirus with antiviral effects. BMC Vet Res 2015; 11:245. [PMID: 26419355 PMCID: PMC4588899 DOI: 10.1186/s12917-015-0559-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/22/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Soft-shelled turtle iridovirus (STIV) causes severe systemic disease in farmed soft-shelled turtles (Trionyx sinensis). More efficient methods of controlling and detecting STIV infections are urgently needed. METHODS In this study, we generated eight single-stranded DNA (ssDNA) aptamers against STIV using systematic evolution of ligands by exponential enrichment (SELEX). RESULTS The aptamers formed representative stem-loop secondary structures. Electrophoretic mobility shift assays and fluorescent localization showed that the selected aptamers had high binding affinity for STIV. Aptamer QA-36 had the highest calculated binding affinity (K d ) of 53.8 nM. Flow cytometry and fluorescence microscopy of cell-aptamer interactions demonstrated that QA-12 was able to recognize both STIV-infected cells and tissues with a high level of specificity. Moreover, the selected aptamers inhibited STIV infection in vitro and in vivo, with aptamer QA-36 demonstrating the greatest protective effect against STIV and inhibiting STIV infection in a dose-dependent manner. DISCUSSION We generated DNA aptamers that bound STIV with a high level of specificity, providing an alternative means for investigating STIV pathogenesis, drug development, and medical therapies for STIV infection. CONCLUSIONS These DNA aptamers may thus be suitable antiviral candidates for the control of STIV infections.
Collapse
Affiliation(s)
- Pengfei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Lingli Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yepin Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Min Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Songwei Ni
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Shina Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China. .,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
43
|
Joyce WG. The origin of turtles: a paleontological perspective. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:181-93. [PMID: 25712176 DOI: 10.1002/jez.b.22609] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/27/2014] [Indexed: 11/10/2022]
Abstract
The origin of turtles and their unusual body plan has fascinated scientists for the last two centuries. Over the course of the last decades, a broad sample of molecular analyses have favored a sister group relationship of turtles with archosaurs, but recent studies reveal that this signal may be the result of systematic biases affecting molecular approaches, in particular sampling, non-randomly distributed rate heterogeneity among taxa, and the use of concatenated data sets. Morphological studies, by contrast, disfavor archosaurian relationships for turtles, but the proposed alternative topologies are poorly supported as well. The recently revived paleontological hypothesis that the Middle Permian Eunotosaurus africanus is an intermediate stem turtle is now robustly supported by numerous characters that were previously thought to be unique to turtles and that are now shown to have originated over the course of tens of millions of years unrelated to the origin of the turtle shell. Although E. africanus does not solve the placement of turtles within Amniota, it successfully extends the stem lineage of turtles to the Permian and helps resolve some questions associated with the origin of turtles, in particular the non-composite origin of the shell, the slow origin of the shell, and the terrestrial setting for the origin of turtles.
Collapse
Affiliation(s)
- Walter G Joyce
- Department of Geoscience, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
44
|
Rice R, Riccio P, Gilbert SF, Cebra-Thomas J. Emerging from the rib: resolving the turtle controversies. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:208-20. [PMID: 25675951 DOI: 10.1002/jez.b.22600] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/29/2014] [Indexed: 12/15/2022]
Abstract
Two of the major controversies in the present study of turtle shell development involve the mechanism by which the carapacial ridge initiates shell formation and the mechanism by which each rib forms the costal bones adjacent to it. This paper claims that both sides of each debate might be correct-but within the species examined. Mechanism is more properly "mechanisms," and there is more than one single way to initiate carapace formation and to form the costal bones. In the initiation of the shell, the rib precursors may be kept dorsal by either "axial displacement" (in the hard-shell turtles) or "axial arrest" (in the soft-shell turtle Pelodiscus), or by a combination of these. The former process would deflect the rib into the dorsal dermis and allow it to continue its growth there, while the latter process would truncate rib growth. In both instances, though, the result is to keep the ribs from extending into the ventral body wall. Our recent work has shown that the properties of the carapacial ridge, a key evolutionary innovation of turtles, differ greatly between these two groups. Similarly, the mechanism of costal bone formation may differ between soft-shell and hard-shell turtles, in that the hard-shell species may have both periosteal flattening as well as dermal bone induction, while the soft-shelled turtles may have only the first of these processes.
Collapse
Affiliation(s)
- Ritva Rice
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
45
|
Oisi Y, Fujimoto S, Ota KG, Kuratani S. On the peculiar morphology and development of the hypoglossal, glossopharyngeal and vagus nerves and hypobranchial muscles in the hagfish. ZOOLOGICAL LETTERS 2015; 1:6. [PMID: 26605051 PMCID: PMC4604111 DOI: 10.1186/s40851-014-0005-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 12/20/2014] [Indexed: 05/28/2023]
Abstract
INTRODUCTION The vertebrate body is characterized by its dual segmental organization: pharyngeal arches in the head and somites in the trunk. Muscular and nervous system morphologies are also organized following these metameric patterns, with distinct differences between head and trunk; branchiomeric nerves innervating pharyngeal arches are superficial to spinal nerves innervating somite derivatives. Hypobranchial muscles originate from rostral somites and occupy the "neck" at the head-trunk interface. Hypobranchial muscles, unlike ventral trunk muscles in the lateral body wall, develop from myocytes that migrate ventrally to occupy a space that is ventrolateral to the pharynx and unassociated with coelomic cavities. Occipitospinal nerves innervating these muscles also extend ventrally, thereby crossing the vagus nerve laterally. RESULTS In hagfishes, the basic morphological pattern of vertebrates is obliterated by the extreme caudal shift of the posterior part of the pharynx. The vagus nerve is found unusually medially, and occipitospinal nerves remain unfasciculated, appearing as metameric spinal nerves as in the posterior trunk region. Moreover, the hagfish exhibits an undifferentiated body plan, with the hypobranchial muscles not well dissociated from the abaxial muscles in the trunk. Comparative embryological observation showed that this hagfish-specific morphology is established by secondary modification of the common vertebrate embryonic pattern, and the hypobranchial muscle homologue can be found in the rostral part of the oblique muscle with pars decussata. CONCLUSION The morphological pattern of the hagfish represents an extreme case of heterotopy that led to the formation of the typical hypoglossal nerve, and can be regarded as an autapomorphic trait of the hagfish lineage.
Collapse
Affiliation(s)
- Yasuhiro Oisi
- />Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Satoko Fujimoto
- />Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Kinya G Ota
- />Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, No. 23-10, Dawen Road, Jiaoxi, Yilan 26242 Taiwan
| | - Shigeru Kuratani
- />Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| |
Collapse
|
46
|
Botelho JF, Smith-Paredes D, Verónica PA. Efficient Detection of Indian Hedgehog During Endochondral Ossification by Whole-Mount Immunofluorescence. Methods Mol Biol 2015; 1322:157-166. [PMID: 26179047 DOI: 10.1007/978-1-4939-2772-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Endochondral ossification is a process essential for the formation of the vertebrate skeleton. Indian Hedgehog (IHH) is a key regulator of this process. So far, monitoring IHH expression in whole-mount developing skeletal structures has been hampered by the permeability and the opacity of the tissue. Whole-mount preparations require advanced techniques of fixation, clearing, and staining. We describe a reliable method for fixing, immunostaining, and clearing whole-mount developing cartilages that allows for the detection of IHH in the developing skeleton of avian embryos. The fixation process ensures a proper preservation of cellular structures and, especially, the antigenicity of the tissue, allowing the antibody labelling of IHH. This protocol reveals specific cell staining in localized regions of the developing cartilage, facilitating the study of IHH function during key periods of skeletogenesis.
Collapse
Affiliation(s)
- João Francisco Botelho
- Department of Biology, Faculty of Sciences, University of Chile, Campus Juan Gomez Millas, Las Palmeras #3425, Nunoa, Santiago, Chile,
| | | | | |
Collapse
|
47
|
Masyuk M, Brand-Saberi B. Recruitment of skeletal muscle progenitors to secondary sites: a role for CXCR4/SDF-1 signalling in skeletal muscle development. Results Probl Cell Differ 2015; 56:1-23. [PMID: 25344664 DOI: 10.1007/978-3-662-44608-9_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During embryonic development, myogenesis occurs in different functional muscle groups at different time points depending on the availability of their final destinations. Primary trunk muscle consists of the intrinsic dorsal (M. erector spinae) and ventral (cervical, thoracic, abdominal) muscles. In contrast, secondary trunk muscles are established from progenitor cells that have migrated initially from the somites into the limb buds and thereafter returned to the trunk. Furthermore, craniofacial muscle constitutes a group that originates from four different sources and employs a different set of regulatory molecules. Development of muscle groups at a distance from their origins involves the maintenance of a pool of progenitor cells capable of proliferation and directed cell migration. We review here the data concerning somite-derived progenitor cell migration to the limbs and subsequent retrograde migration in the establishment of secondary trunk muscle in chicken and mouse. We review the function of SDF-1 and CXCR4 in the control of this process referring to our previous work in shoulder muscle and cloacal/perineal muscle development. Some human anatomical variations and malformations of secondary trunk muscles are discussed.
Collapse
Affiliation(s)
- Maryna Masyuk
- Department of Anatomy and Molecular Embryology, Ruhr-Universität Bochum, Universitätsstraße 150, MA 5/161, 44801, Bochum, Germany,
| | | |
Collapse
|
48
|
Nagashima H, Sugahara F, Takechi M, Sato N, Kuratani S. On the homology of the shoulder girdle in turtles. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:244-54. [PMID: 25052382 DOI: 10.1002/jez.b.22584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/30/2014] [Accepted: 06/16/2014] [Indexed: 12/15/2022]
Abstract
The shoulder girdle in turtles is encapsulated in the shell and has a triradiate morphology. Due to its unique configuration among amniotes, many theories have been proposed about the skeletal identities of the projections for the past two centuries. Although the dorsal ramus represents the scapular blade, the ventral two rami remain uncertain. In particular, the ventrorostral process has been compared to a clavicle, an acromion, and a procoracoid based on its morphology, its connectivity to the rest of the skeleton and to muscles, as well as with its ossification center, cell lineage, and gene expression. In making these comparisons, the shoulder girdle skeleton of anurans has often been used as a reference. This review traces the history of the debate on the homology of the shoulder girdle in turtles. And based on the integrative aspects of developmental biology, comparative morphology, and paleontology, we suggest acromion and procoracoid identities for the two ventral processes.
Collapse
Affiliation(s)
- Hiroshi Nagashima
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | |
Collapse
|
49
|
Nagashima H, Shibata M, Taniguchi M, Ueno S, Kamezaki N, Sato N. Comparative study of the shell development of hard- and soft-shelled turtles. J Anat 2014; 225:60-70. [PMID: 24754673 PMCID: PMC4089346 DOI: 10.1111/joa.12189] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2014] [Indexed: 12/23/2022] Open
Abstract
The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used - the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin.
Collapse
Affiliation(s)
- Hiroshi Nagashima
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
| | - Masahiro Shibata
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
| | - Mari Taniguchi
- Suma Aqualife ParkKobe, Japan
- Sea Turtle Association of JapanHirakata, Japan
| | - Shintaro Ueno
- Suma Aqualife ParkKobe, Japan
- Sea Turtle Association of JapanHirakata, Japan
| | - Naoki Kamezaki
- Suma Aqualife ParkKobe, Japan
- Sea Turtle Association of JapanHirakata, Japan
| | - Noboru Sato
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
| |
Collapse
|
50
|
Retrograde migration of pectoral girdle muscle precursors depends on CXCR4/SDF-1 signaling. Histochem Cell Biol 2014; 142:473-88. [PMID: 24972797 DOI: 10.1007/s00418-014-1237-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 01/26/2023]
Abstract
In vertebrates, muscles of the pectoral girdle connect the forelimbs with the thorax. During development, the myogenic precursor cells migrate from the somites into the limb buds. Whereas most of the myogenic precursors remain in the limb bud to form the forelimb muscles, several cells migrate back toward the trunk to give rise to the superficial pectoral girdle muscles, such as the large pectoral muscle, the latissimus dorsi and the deltoid. Recently, this developing mode has been referred to as the "In-Out" mechanism. The present study focuses on the mechanisms of the "In-Out" migration during formation of the pectoral girdle muscles. Combining in ovo electroporation, tissue slice-cultures and confocal laser scanning microscopy, we visualize live in detail the retrograde migration of myogenic precursors from the forelimb bud into the trunk region by live imaging. Furthermore, we present for the first time evidence for the involvement of the chemokine receptor CXCR4 and its ligand SDF-1 during these processes. After microsurgical implantations of CXCR4 inhibitor beads in the proximal forelimb region of chicken embryos, we demonstrate with the aid of in situ hybridization and live-cell imaging that CXCR4/SDF-1 signaling is crucial for the retrograde migration of pectoral girdle muscle precursors. Moreover, we analyzed the MyoD expression in CXCR4-mutant mouse embryos and observed a considerable decrease in pectoral girdle musculature. We thus demonstrate the importance of the CXCR4/SDF-1 axis for the pectoral girdle muscle formation in avians and mammals.
Collapse
|