1
|
Abstract
Unlike genetic changes, epigenetics modulates gene expression without stable modification of the genome. Even though all cells, including sperm and egg, have an epigenome pattern, most of these modifications occur during lifetime and interestingly, some of them, are reversible. Lifestyle and especially nutrients as well as diet regimens are presently gaining importance due to their ability to affect the epigenome. On the other hand, since the epigenome profoundly affects gene expression profile it can be speculated that the epigenome could modulate individual response to nutrients. Recent years have thus seen growing interest on nutrients, macronutrients ratio and diet regimens capable to affect the epigenetic pattern. In fact, while genetic alterations are mostly detrimental at the individual level, reshaping the epigenome may be a feasible strategy to positively counteract the detrimental effect of aging. Here, I review nutrient consumption and diet regimens as a possible strategy to counteract aging-driven epigenome derangement.
Collapse
Affiliation(s)
- Mario G Mirisola
- STeBiCeF Department, Università di Palermo, Building 16, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
2
|
Chen T, Xu ZG, Luo J, Manne RK, Wang Z, Hsu CC, Pan BS, Cai Z, Tsai PJ, Tsai YS, Chen ZZ, Li HY, Lin HK. NSUN2 is a glucose sensor suppressing cGAS/STING to maintain tumorigenesis and immunotherapy resistance. Cell Metab 2023; 35:1782-1798.e8. [PMID: 37586363 PMCID: PMC10726430 DOI: 10.1016/j.cmet.2023.07.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/29/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Glucose metabolism is known to orchestrate oncogenesis. Whether glucose serves as a signaling molecule directly regulating oncoprotein activity for tumorigenesis remains elusive. Here, we report that glucose is a cofactor binding to methyltransferase NSUN2 at amino acid 1-28 to promote NSUN2 oligomerization and activation. NSUN2 activation maintains global m5C RNA methylation, including TREX2, and stabilizes TREX2 to restrict cytosolic dsDNA accumulation and cGAS/STING activation for promoting tumorigenesis and anti-PD-L1 immunotherapy resistance. An NSUN2 mutant defective in glucose binding or disrupting glucose/NSUN2 interaction abolishes NSUN2 activity and TREX2 induction leading to cGAS/STING activation for oncogenic suppression. Strikingly, genetic deletion of the glucose/NSUN2/TREX2 axis suppresses tumorigenesis and overcomes anti-PD-L1 immunotherapy resistance in those cold tumors through cGAS/STING activation to facilitate apoptosis and CD8+ T cell infiltration. Our study identifies NSUN2 as a direct glucose sensor whose activation by glucose drives tumorigenesis and immunotherapy resistance by maintaining TREX2 expression for cGAS/STING inactivation.
Collapse
Affiliation(s)
- Tingjin Chen
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhi-Gang Xu
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Jie Luo
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Rajesh Kumar Manne
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhengyu Wang
- University of Arkansas for Medical Sciences, College of Pharmacy, Division of Pharmaceutical Science, 200 South Cedar, Little Rock, AR 72202, USA
| | - Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Pei-Jane Tsai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Yau-Sheng Tsai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhong-Zhu Chen
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Hong-Yu Li
- University of Arkansas for Medical Sciences, College of Pharmacy, Division of Pharmaceutical Science, 200 South Cedar, Little Rock, AR 72202, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA.
| |
Collapse
|
3
|
You M, Xie Z, Zhang N, Zhang Y, Xiao D, Liu S, Zhuang W, Li L, Tao Y. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:196. [PMID: 37164974 PMCID: PMC10172373 DOI: 10.1038/s41392-023-01442-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
A wide spectrum of metabolites (mainly, the three major nutrients and their derivatives) can be sensed by specific sensors, then trigger a series of signal transduction pathways and affect the expression levels of genes in epigenetics, which is called metabolite sensing. Life body regulates metabolism, immunity, and inflammation by metabolite sensing, coordinating the pathophysiology of the host to achieve balance with the external environment. Metabolic reprogramming in cancers cause different phenotypic characteristics of cancer cell from normal cell, including cell proliferation, migration, invasion, angiogenesis, etc. Metabolic disorders in cancer cells further create a microenvironment including many kinds of oncometabolites that are conducive to the growth of cancer, thus forming a vicious circle. At the same time, exogenous metabolites can also affect the biological behavior of tumors. Here, we discuss the metabolite sensing mechanisms of the three major nutrients and their derivatives, as well as their abnormalities in the development of various cancers, and discuss the potential therapeutic targets based on metabolite-sensing signaling pathways to prevent the progression of cancer.
Collapse
Affiliation(s)
- Mengshu You
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhuolin Xie
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Nan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, People's Republic of China.
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
4
|
Moriel-Carretero M. The Many Faces of Lipids in Genome Stability (and How to Unmask Them). Int J Mol Sci 2021; 22:12930. [PMID: 34884734 PMCID: PMC8657548 DOI: 10.3390/ijms222312930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Deep efforts have been devoted to studying the fundamental mechanisms ruling genome integrity preservation. A strong focus relies on our comprehension of nucleic acid and protein interactions. Comparatively, our exploration of whether lipids contribute to genome homeostasis and, if they do, how, is severely underdeveloped. This disequilibrium may be understood in historical terms, but also relates to the difficulty of applying classical lipid-related techniques to a territory such as a nucleus. The limited research in this domain translates into scarce and rarely gathered information, which with time further discourages new initiatives. In this review, the ways lipids have been demonstrated to, or very likely do, impact nuclear transactions, in general, and genome homeostasis, in particular, are explored. Moreover, a succinct yet exhaustive battery of available techniques is proposed to tackle the study of this topic while keeping in mind the feasibility and habits of "nucleus-centered" researchers.
Collapse
Affiliation(s)
- María Moriel-Carretero
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, CEDEX 5, 34293 Montpellier, France
| |
Collapse
|
5
|
Liu Z, Xu J, Ma Q, Zhang X, Yang Q, Wang L, Cao Y, Xu Z, Tawfik A, Sun Y, Weintraub NL, Fulton DJ, Hong M, Dong Z, Smith LEH, Caldwell RB, Sodhi A, Huo Y. Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche. Sci Transl Med 2021; 12:12/555/eaay1371. [PMID: 32759274 DOI: 10.1126/scitranslmed.aay1371] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/02/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
The coordination of metabolic signals among different cellular components in pathological retinal angiogenesis is poorly understood. Here, we showed that in the pathological angiogenic vascular niche, retinal myeloid cells, particularly macrophages/microglia that are spatially adjacent to endothelial cells (ECs), are highly glycolytic. We refer to these macrophages/microglia that exhibit a unique angiogenic phenotype with increased expression of both M1 and M2 markers and enhanced production of both proinflammatory and proangiogenic cytokines as pathological retinal angiogenesis-associated glycolytic macrophages/microglia (PRAGMs). The phenotype of PRAGMs was recapitulated in bone marrow-derived macrophages or retinal microglia stimulated by lactate that was produced by hypoxic retinal ECs. Knockout of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (PFKFB3; Pfkfb3 for rodents), a glycolytic activator in myeloid cells, impaired the ability of macrophages/microglia to acquire an angiogenic phenotype, rendering them unable to promote EC proliferation and sprouting and pathological neovascularization in a mouse model of oxygen-induced proliferative retinopathy. Mechanistically, hyperglycolytic macrophages/microglia produced large amount of acetyl-coenzyme A, leading to histone acetylation and PRAGM-related gene induction, thus reprogramming macrophages/microglia into an angiogenic phenotype. These findings reveal a critical role of glycolytic metabolites as initiators of reciprocal activation of macrophages/microglia and ECs in the retinal angiogenic niche and suggest that strategies targeting the metabolic communication between these cell types may be efficacious in the treatment of pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Zhiping Liu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jiean Xu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Qian Ma
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiaoyu Zhang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Qiuhua Yang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lina Wang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yapeng Cao
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zhimin Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Amany Tawfik
- Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mei Hong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Akrit Sodhi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA. .,James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Wei X, Shi J, Lin Q, Ma X, Pang Y, Mao H, Li R, Lu W, Wang Y, Liu P. Targeting ACLY Attenuates Tumor Growth and Acquired Cisplatin Resistance in Ovarian Cancer by Inhibiting the PI3K-AKT Pathway and Activating the AMPK-ROS Pathway. Front Oncol 2021; 11:642229. [PMID: 33816292 PMCID: PMC8011496 DOI: 10.3389/fonc.2021.642229] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/23/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Ovarian cancer is the most lethal female genital malignancy. Although cisplatin is the first-line chemotherapy to treat ovarian cancer patients along with debulking surgeries, its efficacy is limited due to the high incidence of cisplatin resistance. ATP citrate lyase (ACLY) has been shown to be a key metabolic enzyme and is associated with poor prognosis in various cancers, including ovarian cancer. Nevertheless, no studies have probed the mechanistic relationship between ACLY and cisplatin resistance. Methods: Survival analysis was mainly carried out online. Bioinformatic analysis was performed in R/R studio. Proliferative activity was measured by MTT and colony formation assays. Cell cycle and apoptosis analysis were performed by flow cytometry. The acquired-cisplatin-resistant cell line A2780/CDDP was generated by exposing A2780 to cisplatin at gradually elevated concentrations. MTT assay was used to calculate IC50 values of cisplatin. A xenograft tumor assay was used test cell proliferation in vivo. Results: Higher expression of ACLY was found in ovarian cancer tissue and related to poor prognosis. Knockdown of ACLY in A2780, SKOV3, and HEY cells inhibited cell proliferation, caused cell-cycle arrest by modulating the P16–CDK4–CCND1 pathway, and induced apoptosis probably by inhibiting p-AKT activity. Bioinformatic analysis of the GSE15709 dataset revealed upregulation of ACLY and activation of PI3K–AKT pathway in cells with acquired cisplatin resistance, in line with observations on A2780/CDDP cells that we generated. Knockdown of ACLY alleviated cisplatin resistance, and works synergistically with cisplatin treatment to induce apoptosis in A2780/CDDP cells by inhibiting the PI3K–AKT pathway and activating AMPK–ROS pathway. The ACLY-specific inhibitor SB-204990 showed the same effect. In A2780/CDDP cells, AKT overexpression could attenuate cisplatin re-sensitization caused by ACLY knockdown. Conclusions: Knockdown of ACLY attenuated cisplatin resistance by inhibiting the PI3K–AKT pathway and activating the AMPK–ROS pathway. These findings suggest that a combination of ACLY inhibition and cisplatin might be an effective strategy for overcoming cisplatin resistance in ovarian cancer.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Juanjuan Shi
- Department of Gynecology and Obstetrics, Affiliated Tengzhou Center People's Hospital of Jining Medical University, Tengzhou, China
| | - Qianhan Lin
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxue Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yingxin Pang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Hongluan Mao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Rui Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Lu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Zhao Y, Feng F, Guo QH, Wang YP, Zhao R. Role of succinate dehydrogenase deficiency and oncometabolites in gastrointestinal stromal tumors. World J Gastroenterol 2020; 26:5074-5089. [PMID: 32982110 PMCID: PMC7495036 DOI: 10.3748/wjg.v26.i34.5074] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/14/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. At the molecular level, GISTs can be categorized into two groups based on the causative oncogenic mutations. Approximately 85% of GISTs are caused by gain-of-function mutations in the tyrosine kinase receptor KIT or platelet-derived growth factor receptor alpha (PDGFRA). The remaining GISTs, referred to as wild-type (WT) GISTs, are often deficient in succinate dehydrogenase complex (SDH), a key metabolic enzyme complex in the tricarboxylic acid (TCA) cycle and electron transport chain. SDH deficiency leads to the accumulation of succinate, a metabolite produced by the TCA cycle. Succinate inhibits α-ketoglutarate-dependent dioxygenase family enzymes, which comprise approximately 60 members and regulate key aspects of tumorigenesis such as DNA and histone demethylation, hypoxia responses, and m6A mRNA modification. For this reason, succinate and metabolites with similar structures, such as D-2-hydroxyglutarate and fumarate, are considered oncometabolites. In this article, we review recent advances in the understanding of how metabolic enzyme mutations and oncometabolites drive human cancer with an emphasis on SDH mutations and succinate in WT GISTs.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Gastroenterology, the First Hospital of Lanzhou University, Key Laboratory for Gastrointestinal Disease of Gansu Province, Lanzhou 730000, Gansu Province, China
| | - Fei Feng
- Department of Ultrasound, the First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Qing-Hong Guo
- Department of Gastroenterology, the First Hospital of Lanzhou University, Key Laboratory for Gastrointestinal Disease of Gansu Province, Lanzhou 730000, Gansu Province, China
| | - Yu-Ping Wang
- Department of Gastroenterology, the First Hospital of Lanzhou University, Key Laboratory for Gastrointestinal Disease of Gansu Province, Lanzhou 730000, Gansu Province, China
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, School of Medicine, the University of Alabama at Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
8
|
The vital role of ATP citrate lyase in chronic diseases. J Mol Med (Berl) 2019; 98:71-95. [PMID: 31858156 DOI: 10.1007/s00109-019-01863-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Chronic or non-communicable diseases are the leading cause of death worldwide; they usually result in long-term illnesses and demand long-term care. Despite advances in molecular therapeutics, specific biomarkers and targets for the treatment of these diseases are required. The dysregulation of de novo lipogenesis has been found to play an essential role in cell metabolism and is associated with the development and progression of many chronic diseases; this confirms the link between obesity and various chronic diseases. The main enzyme in this pathway-ATP-citrate lyase (ACLY), a lipogenic enzyme-catalyzes the critical reaction linking cellular glucose catabolism and lipogenesis. Increasing lines of evidence suggest that the modulation of ACLY expression correlates with the development and progressions of various chronic diseases such as neurodegenerative diseases, cardiovascular diseases, diabetes, obesity, inflammation, and cancer. Recent studies suggest that the inhibition of ACLY activity modulates the glycolysis and lipogenesis processes and stimulates normal physiological functions. This comprehensive review aimed to critically evaluate the role of ACLY in the development and progression of different diseases and the effects of its downregulation in the prevention and treatment of these diseases.
Collapse
|
9
|
Could the high consumption of high glycaemic index carbohydrates and sugars, associated with the nutritional transition to the Western type of diet, be the common cause of the obesity epidemic and the worldwide increasing incidences of Type 1 and Type 2 diabetes? Med Hypotheses 2019; 125:41-50. [PMID: 30902150 DOI: 10.1016/j.mehy.2019.02.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/07/2018] [Accepted: 02/08/2019] [Indexed: 12/30/2022]
Abstract
The globally increasing incidences of Type 1 diabetes (T1DM) and Type 2 diabetes (T2DM) can have a common background. If challenged by the contemporary high level of nutritional glucose stimulation, the β-cells in genetically predisposed individuals are at risk for damage which can lead to the diseases. The fat to carbohydrate dietary shift can also contribute to the associated obesity epidemic.
Collapse
|
10
|
Maher M, Diesch J, Casquero R, Buschbeck M. Epigenetic-Transcriptional Regulation of Fatty Acid Metabolism and Its Alterations in Leukaemia. Front Genet 2018; 9:405. [PMID: 30319689 PMCID: PMC6165860 DOI: 10.3389/fgene.2018.00405] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/03/2018] [Indexed: 12/26/2022] Open
Abstract
In recent years fatty acid metabolism has gained greater attention in haematologic cancers such as acute myeloid leukaemia. The oxidation of fatty acids provides fuel in the form of ATP and NADH, while fatty acid synthesis provides building blocks for cellular structures. Here, we will discuss how leukaemic cells differ from healthy cells in their increased reliance on fatty acid metabolism. In order to understand how these changes are achieved, we describe the main pathways regulating fatty acid metabolism at the transcriptional level and highlight the limited knowledge about related epigenetic mechanisms. We explore these mechanisms in the context of leukaemia and consider the relevance of the bone marrow microenvironment in disease management. Finally, we discuss efforts to interfere with fatty acid metabolism as a therapeutic strategy along with the use of metabolic parameters as biomarkers.
Collapse
Affiliation(s)
- Michael Maher
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeannine Diesch
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raquel Casquero
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marcus Buschbeck
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol-Universitat Autònoma de Barcelona, Barcelona, Spain
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| |
Collapse
|
11
|
An allometric approach of tumor-angiogenesis. Med Hypotheses 2018; 116:74-78. [DOI: 10.1016/j.mehy.2018.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/13/2018] [Accepted: 03/25/2018] [Indexed: 01/27/2023]
|
12
|
Huang J, Schriefer AE, Yang W, Cliften PF, Rudnick DA. Identification of an epigenetic signature of early mouse liver regeneration that is disrupted by Zn-HDAC inhibition. Epigenetics 2015; 9:1521-31. [PMID: 25482284 DOI: 10.4161/15592294.2014.983371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Liver regeneration has been well studied with hope of discovering strategies to improve liver disease outcomes. Nevertheless, the signals that initiate such regeneration remain incompletely defined, and translation of mechanism-based pro-regenerative interventions into new treatments for hepatic diseases has not yet been achieved. We previously reported the isoform-specific regulation and essential function of zinc-dependent histone deacetylases (Zn-HDACs) during mouse liver regeneration. Those data suggest that epigenetically regulated anti-proliferative genes are deacetylated and transcriptionally suppressed by Zn-HDAC activity or that pro-regenerative factors are acetylated and induced by such activity in response to partial hepatectomy (PH). To investigate these possibilities, we conducted genome-wide interrogation of the liver histone acetylome during early PH-induced liver regeneration in mice using acetyL-histone chromatin immunoprecipitation and next generation DNA sequencing. We also compared the findings of that study to those seen during the impaired regenerative response that occurs with Zn-HDAC inhibition. The results reveal an epigenetic signature of early liver regeneration that includes both hyperacetylation of pro-regenerative factors and deacetylation of anti-proliferative and pro-apoptotic genes. Our data also show that administration of an anti-regenerative regimen of the Zn-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) not only disrupts gene-specific pro-regenerative changes in liver histone deacetylation but also reverses PH-induced effects on histone hyperacetylation. Taken together, these studies offer new insight into and suggest novel hypotheses about the epigenetic mechanisms that regulate liver regeneration.
Collapse
Affiliation(s)
- Jiansheng Huang
- a Department of Pediatrics ; Washington University School of Medicine ; St. Louis , MO USA
| | | | | | | | | |
Collapse
|
13
|
Szarc vel Szic K, Declerck K, Vidaković M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenetics 2015; 7:33. [PMID: 25861393 PMCID: PMC4389409 DOI: 10.1186/s13148-015-0068-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/09/2015] [Indexed: 01/12/2023] Open
Abstract
The progressively older population in developed countries is reflected in an increase in the number of people suffering from age-related chronic inflammatory diseases such as metabolic syndrome, diabetes, heart and lung diseases, cancer, osteoporosis, arthritis, and dementia. The heterogeneity in biological aging, chronological age, and aging-associated disorders in humans have been ascribed to different genetic and environmental factors (i.e., diet, pollution, stress) that are closely linked to socioeconomic factors. The common denominator of these factors is the inflammatory response. Chronic low-grade systemic inflammation during physiological aging and immunosenescence are intertwined in the pathogenesis of premature aging also defined as ‘inflammaging.’ The latter has been associated with frailty, morbidity, and mortality in elderly subjects. However, it is unknown to what extent inflammaging or longevity is controlled by epigenetic events in early life. Today, human diet is believed to have a major influence on both the development and prevention of age-related diseases. Most plant-derived dietary phytochemicals and macro- and micronutrients modulate oxidative stress and inflammatory signaling and regulate metabolic pathways and bioenergetics that can be translated into stable epigenetic patterns of gene expression. Therefore, diet interventions designed for healthy aging have become a hot topic in nutritional epigenomic research. Increasing evidence has revealed that complex interactions between food components and histone modifications, DNA methylation, non-coding RNA expression, and chromatin remodeling factors influence the inflammaging phenotype and as such may protect or predispose an individual to many age-related diseases. Remarkably, humans present a broad range of responses to similar dietary challenges due to both genetic and epigenetic modulations of the expression of target proteins and key genes involved in the metabolism and distribution of the dietary constituents. Here, we will summarize the epigenetic actions of dietary components, including phytochemicals, and macro- and micronutrients as well as metabolites, that can attenuate inflammaging. We will discuss the challenges facing personalized nutrition to translate highly variable interindividual epigenetic diet responses to potential individual health benefits/risks related to aging disease.
Collapse
Affiliation(s)
- Katarzyna Szarc vel Szic
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ken Declerck
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Wim Vanden Berghe
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
14
|
Matsuhashi T, Hishiki T, Zhou H, Ono T, Kaneda R, Iso T, Yamaguchi A, Endo J, Katsumata Y, Atsushi A, Yamamoto T, Shirakawa K, Yan X, Shinmura K, Suematsu M, Fukuda K, Sano M. Activation of pyruvate dehydrogenase by dichloroacetate has the potential to induce epigenetic remodeling in the heart. J Mol Cell Cardiol 2015; 82:116-24. [PMID: 25744081 DOI: 10.1016/j.yjmcc.2015.02.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/02/2015] [Accepted: 02/23/2015] [Indexed: 12/16/2022]
Abstract
Dichloroacetate (DCA) promotes pyruvate entry into the Krebs cycle by inhibiting pyruvate dehydrogenase (PDH) kinase and thereby maintaining PDH in the active dephosphorylated state. DCA has recently gained attention as a potential metabolic-targeting therapy for heart failure but the molecular basis of the therapeutic effect of DCA in the heart remains a mystery. Once-daily oral administration of DCA alleviates pressure overload-induced left ventricular remodeling. We examined changes in the metabolic fate of pyruvate carbon (derived from glucose) entering the Krebs cycle by metabolic interventions of DCA. (13)C6-glucose pathway tracing analysis revealed that instead of being completely oxidized in the mitochondria for ATP production, DCA-mediated PDH dephosphorylation results in an increased acetyl-CoA pool both in control and pressure-overloaded hearts. DCA induces hyperacetylation of histone H3K9 and H4 in a dose-dependent manner in parallel to the dephosphorylation of PDH in cultured cardiomyocytes. DCA administration increases histone H3K9 acetylation in in vivo mouse heart. Interestingly, DCA-dependent histone acetylation was associated with an up-regulation of 2.3% of genes (545 out of 23,474 examined). Gene ontology analysis revealed that these genes are highly enriched in transcription-related categories. This evidence suggests that sustained activation of PDH by DCA results in an overproduction of acetyl-CoA, which exceeds oxidation in the Krebs cycle and results in histone acetylation. We propose that DCA-mediated PDH activation has the potential to induce epigenetic remodeling in the heart, which, at least in part, forms the molecular basis for the therapeutic effect of DCA in the heart.
Collapse
Affiliation(s)
| | - Takako Hishiki
- Department of Biochemistry, Keio University, School of Medicine, Tokyo, Japan; Japan Science and Technology Agency, Exploratory Research for Advanced Technology, Suematsu Gas Biology Project, Tokyo, Japan
| | - Heping Zhou
- Department of Cardiovascular Surgery, First affiliated Hospital, Fourth Military Medical University, Xi'an, China
| | - Tomohiko Ono
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan
| | - Ruri Kaneda
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Tokyo, Japan
| | - Tatsuya Iso
- Department of Medicine and Biological Science, Gunma University, Graduate School of Medicine, Gunma, Japan; Education and Research Support Center, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Aiko Yamaguchi
- Department of Bioimaging Information Analysis, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Jin Endo
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan
| | | | - Anzai Atsushi
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan
| | - Tsunehisa Yamamoto
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan
| | - Kohsuke Shirakawa
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan
| | - Xiaoxiang Yan
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan
| | - Ken Shinmura
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University, School of Medicine, Tokyo, Japan; Japan Science and Technology Agency, Exploratory Research for Advanced Technology, Suematsu Gas Biology Project, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Tokyo, Japan.
| |
Collapse
|
15
|
Elucidating Metabolic and Epigenetic Mechanisms that Regulate Liver Regeneration. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Abstract
BACKGROUND The advances in the world of IVF during the last decades have been rapid and impressive and culture media play a major role in this success. Until the 1980s fertility centers made their media in house. Nowadays, there are numerous commercially available culture media that contain various components including nutrients, vitamins and growth factors. This review goes through the past, present and future of IVF culture media and explores their composition and quality assessment. METHODS A computerized search was performed in PubMed regarding IVF culture media including results from 1929 until March 2014. Information was gathered from the websites of companies who market culture media, advertising material, instructions for use and certificates of analysis. The regulation regarding IVF media mainly in the European Union (EU) but also in non-European countries was explored. RESULTS The keyword 'IVF culture media' gave 923 results in PubMed and 'embryo culture media' 12 068 results dating from 1912 until March 2014, depicting the increased scientific activity in this field. The commercialization of IVF culture media has increased the standards bringing a great variety of options into clinical practice. However, it has led to reduced transparency and comparisons of brand names that do not facilitate the scientific dialogue. Furthermore, there is some evidence suggesting that suboptimal culture conditions could cause long-term reprogramming in the embryo as the periconception period is particularly susceptible to epigenetic alterations. IVF media are now classified as class III medical devices and only CE (Conformité Européene)-marked media should be used in the EU. CONCLUSION The CE marking of IVF culture media is a significant development in the field. However, the quality and efficiency of culture media should be monitored closely. Well-designed randomized controlled trials, large epidemiological studies and full transparency should be the next steps. Reliable, standardized models assessing multiple end-points and post-implantation development should replace the mouse embryo assay. Structured long-term follow-up of children conceived by assisted reproduction technologies and traceability are of paramount importance.
Collapse
Affiliation(s)
- Elpiniki Chronopoulou
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Joyce C Harper
- UCL Centre for PG and D, Institute for Women's Health, University College London, London, UK The Centre for Reproductive and Genetic Health, UCLH, London, UK
| |
Collapse
|
17
|
Mehrotra S, Galdieri L, Zhang T, Zhang M, Pemberton LF, Vancura A. Histone hypoacetylation-activated genes are repressed by acetyl-CoA- and chromatin-mediated mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:751-63. [PMID: 24907648 DOI: 10.1016/j.bbagrm.2014.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 05/12/2014] [Accepted: 05/29/2014] [Indexed: 01/07/2023]
Abstract
Transcriptional activation is typically associated with increased acetylation of promoter histones. However, this paradigm does not apply to transcriptional activation of all genes. In this study we have characterized a group of genes that are repressed by histone acetylation. These histone hypoacetylation-activated genes (HHAAG) are normally repressed during exponential growth, when the cellular level of acetyl-CoA is high and global histone acetylation is also high. The HHAAG are induced during diauxic shift, when the levels of acetyl-CoA and global histone acetylation decrease. The histone hypoacetylation-induced activation of HHAAG is independent of Msn2/Msn4. The repression of HSP12, one of the HHAAG, is associated with well-defined nucleosomal structure in the promoter region, while histone hypoacetylation-induced activation correlates with delocalization of positioned nucleosomes or with reduced nucleosome occupancy. Correspondingly, unlike the majority of yeast genes, HHAAG are transcriptionally upregulated when expression of histone genes is reduced. Taken together, these results suggest a model in which histone acetylation is required for proper positioning of promoter nucleosomes and repression of HHAAG.
Collapse
Affiliation(s)
- Swati Mehrotra
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Luciano Galdieri
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Tiantian Zhang
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Man Zhang
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Lucy F Pemberton
- Center for Cell Signalling, Department of Microbiology, University of Virginia Health Sciences Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Ales Vancura
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
18
|
Lavington E, Cogni R, Kuczynski C, Koury S, Behrman EL, O'Brien KR, Schmidt PS, Eanes WF. A small system--high-resolution study of metabolic adaptation in the central metabolic pathway to temperate climates in Drosophila melanogaster. Mol Biol Evol 2014; 31:2032-41. [PMID: 24770333 DOI: 10.1093/molbev/msu146] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In this article, we couple the geographic variation in 127 single-nucleotide polymorphism (SNP) frequencies in genes of 46 enzymes of central metabolism with their associated cis-expression variation to predict latitudinal or climatic-driven gene expression changes in the metabolic architecture of Drosophila melanogaster. Forty-two percent of the SNPs in 65% of the genes show statistically significant clines in frequency with latitude across the 20 local population samples collected from southern Florida to Ontario. A number of SNPs in the screened genes are also associated with significant expression variation within the Raleigh population from North Carolina. A principal component analysis of the full variance-covariance matrix of latitudinal changes in SNP-associated standardized gene expression allows us to identify those major genes in the pathway and its associated branches that are likely targets of natural selection. When embedded in a central metabolic context, we show that these apparent targets are concentrated in the genes of the upper glycolytic pathway and pentose shunt, those controlling glycerol shuttle activity, and finally those enzymes associated with the utilization of glutamate and pyruvate. These metabolites possess high connectivity and thus may be the points where flux balance can be best shifted. We also propose that these points are conserved points associated with coupling energy homeostasis and energy sensing in mammals. We speculate that the modulation of gene expression at specific points in central metabolism that are associated with shifting flux balance or possibly energy-state sensing plays a role in adaptation to climatic variation.
Collapse
Affiliation(s)
- Erik Lavington
- Department of Ecology and Evolution, Stony Brook University
| | - Rodrigo Cogni
- Department of Ecology and Evolution, Stony Brook University
| | | | - Spencer Koury
- Department of Ecology and Evolution, Stony Brook University
| | | | | | | | - Walter F Eanes
- Department of Ecology and Evolution, Stony Brook University
| |
Collapse
|
19
|
Gacias M, Casaccia P. EPIGENETIC MECHANISMS IN MULTIPLE SCLEROSIS. REVISTA ESPANOLA DE ESCLEROSIS MULTIPLE 2014; 6:25-35. [PMID: 30147811 PMCID: PMC6107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The interplay between genetic factors and cell-specific epigenetic changes may be highly relevant in development of multiple sclerosis (MS). Environmental risk factors for MS are able to modify the epigenome, constituting a link between environment exposure and changes in gene expression. In this review we discuss the most relevant epigenetic findings described in different tissues from MS patients and the future application of epigenetic advances in MS field.
Collapse
Affiliation(s)
- Mar Gacias
- Department of Neuroscience, Friedman Brain Institute at Mount Sinai
| | - Patrizia Casaccia
- Department of Neuroscience, Friedman Brain Institute at Mount Sinai
- Department of Genetics and MultiScale Biology, Department of Neurology Icahn School of Medicine at Mount Sinai
| |
Collapse
|
20
|
Webster BR, Scott I, Traba J, Han K, Sack MN. Regulation of autophagy and mitophagy by nutrient availability and acetylation. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:525-34. [PMID: 24525425 DOI: 10.1016/j.bbalip.2014.02.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/10/2014] [Accepted: 02/04/2014] [Indexed: 12/15/2022]
Abstract
Normal cellular function is dependent on a number of highly regulated homeostatic mechanisms, which act in concert to maintain conditions suitable for life. During periods of nutritional deficit, cells initiate a number of recycling programs which break down complex intracellular structures, thus allowing them to utilize the energy stored within. These recycling systems, broadly named "autophagy", enable the cell to maintain the flow of nutritional substrates until they can be replenished from external sources. Recent research has shown that a number of regulatory components of the autophagy program are controlled by lysine acetylation. Lysine acetylation is a reversible post-translational modification that can alter the activity of enzymes in a number of cellular compartments. Strikingly, the main substrate for this modification is a product of cellular energy metabolism: acetyl-CoA. This suggests a direct and intricate link between fuel metabolites and the systems which regulate nutritional homeostasis. In this review, we examine how acetylation regulates the systems that control cellular autophagy, and how global protein acetylation status may act as a trigger for recycling of cellular components in a nutrient-dependent fashion. In particular, we focus on how acetylation may control the degradation and turnover of mitochondria, the major source of fuel-derived acetyl-CoA.
Collapse
Affiliation(s)
| | - Iain Scott
- Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD, USA
| | - Javier Traba
- Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD, USA
| | - Kim Han
- Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD, USA
| | - Michael N Sack
- Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD, USA.
| |
Collapse
|
21
|
Koopman R, Ly CH, Ryall JG. A metabolic link to skeletal muscle wasting and regeneration. Front Physiol 2014; 5:32. [PMID: 24567722 PMCID: PMC3909830 DOI: 10.3389/fphys.2014.00032] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/15/2014] [Indexed: 12/25/2022] Open
Abstract
Due to its essential role in movement, insulating the internal organs, generating heat to maintain core body temperature, and acting as a major energy storage depot, any impairment to skeletal muscle structure and function may lead to an increase in both morbidity and mortality. In the context of skeletal muscle, altered metabolism is directly associated with numerous pathologies and disorders, including diabetes, and obesity, while many skeletal muscle pathologies have secondary changes in metabolism, including cancer cachexia, sarcopenia and the muscular dystrophies. Furthermore, the importance of cellular metabolism in the regulation of skeletal muscle stem cells is beginning to receive significant attention. Thus, it is clear that skeletal muscle metabolism is intricately linked to the regulation of skeletal muscle mass and regeneration. The aim of this review is to discuss some of the recent findings linking a change in metabolism to changes in skeletal muscle mass, as well as describing some of the recent studies in developmental, cancer and stem-cell biology that have identified a role for cellular metabolism in the regulation of stem cell function, a process termed “metabolic reprogramming.”
Collapse
Affiliation(s)
- René Koopman
- Clinical Nutrition and Muscle and Exercise Metabolism Group, The University of Melbourne Melbourne, VIC, Australia
| | - C Hai Ly
- Stem Cell Metabolism and Regenerative Medicine Group, Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne Melbourne, VIC, Australia
| | - James G Ryall
- Stem Cell Metabolism and Regenerative Medicine Group, Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
22
|
Elucidating the metabolic regulation of liver regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:309-21. [PMID: 24139945 DOI: 10.1016/j.ajpath.2013.04.034] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 02/08/2023]
Abstract
The regenerative capability of liver is well known, and the mechanisms that regulate liver regeneration are extensively studied. Such analyses have defined general principles that govern the hepatic regenerative response and implicated specific extracellular and intracellular signals as regulated during and essential for normal liver regeneration. Nevertheless, the most proximal events that stimulate liver regeneration and the distal signals that terminate this process remain incompletely understood. Recent data suggest that the metabolic response to hepatic insufficiency might be the proximal signal that initiates regenerative hepatocellular proliferation. This review provides an overview of the data in support of a metabolic model of liver regeneration and reflects on the clinical implications and areas for further study suggested by these findings.
Collapse
|
23
|
Turgeon N, Blais M, Gagné JM, Tardif V, Boudreau F, Perreault N, Asselin C. HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation. PLoS One 2013; 8:e73785. [PMID: 24040068 PMCID: PMC3764035 DOI: 10.1371/journal.pone.0073785] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/23/2013] [Indexed: 02/07/2023] Open
Abstract
Acetylation and deacetylation of histones and other proteins depends on histone acetyltransferases and histone deacetylases (HDACs) activities, leading to either positive or negative gene expression. HDAC inhibitors have uncovered a role for HDACs in proliferation, apoptosis and inflammation. However, little is known of the roles of specific HDACs in intestinal epithelial cells (IEC). We investigated the consequences of ablating both HDAC1 and HDAC2 in murine IECs. Floxed Hdac1 and Hdac2 homozygous mice were crossed with villin-Cre mice. Mice deficient in both IEC HDAC1 and HDAC2 weighed less and survived more than a year. Colon and small intestinal sections were stained with hematoxylin and eosin, or with Alcian blue and Periodic Acid Schiff for goblet cell identification. Tissue sections from mice injected with BrdU for 2 h, 14 h and 48 h were stained with anti-BrdU. To determine intestinal permeability, 4-kDa FITC-labeled dextran was given by gavage for 3 h. Microarray analysis was performed on total colon RNAs. Inflammatory and IEC-specific gene expression was assessed by Western blot or semi-quantitative RT-PCR and qPCR with respectively total colon protein and total colon RNAs. HDAC1 and HDAC2-deficient mice displayed: 1) increased migration and proliferation, with elevated cyclin D1 expression and phosphorylated S6 ribosomal protein, a downstream mTOR target; 2) tissue architecture defects with cell differentiation alterations, correlating with reduction of secretory Paneth and goblet cells in jejunum and goblet cells in colon, increased expression of enterocytic markers such as sucrase-isomaltase in the colon, increased expression of cleaved Notch1 and augmented intestinal permeability; 3) loss of tissue homeostasis, as evidenced by modifications of claudin 3 expression, caspase-3 cleavage and Stat3 phosphorylation; 4) chronic inflammation, as determined by inflammatory molecular expression signatures and altered inflammatory gene expression. Thus, epithelial HDAC1 and HDAC2 restrain the intestinal inflammatory response, by regulating intestinal epithelial cell proliferation and differentiation.
Collapse
Affiliation(s)
- Naomie Turgeon
- Département d’anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mylène Blais
- Département d’anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Julie-Moore Gagné
- Département d’anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Véronique Tardif
- Département d’anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - François Boudreau
- Département d’anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nathalie Perreault
- Département d’anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Claude Asselin
- Département d’anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|
24
|
Galdieri L, Chang J, Mehrotra S, Vancura A. Yeast phospholipase C is required for normal acetyl-CoA homeostasis and global histone acetylation. J Biol Chem 2013; 288:27986-98. [PMID: 23913687 DOI: 10.1074/jbc.m113.492348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phospholipase C (Plc1p) is required for the initial step of inositol polyphosphate (InsP) synthesis, and yeast cells with deletion of the PLC1 gene are completely devoid of any InsPs and display aberrations in transcriptional regulation. Here we show that Plc1p is required for a normal level of histone acetylation; plc1Δ cells that do not synthesize any InsPs display decreased acetylation of bulk histones and global hypoacetylation of chromatin histones. In accordance with the role of Plc1p in supporting histone acetylation, plc1Δ mutation is synthetically lethal with mutations in several subunits of SAGA and NuA4 histone acetyltransferase (HAT) complexes. Conversely, the growth rate, sensitivity to multiple stresses, and the transcriptional defects of plc1Δ cells are partially suppressed by deletion of histone deacetylase HDA1. The histone hypoacetylation in plc1Δ cells is due to the defect in degradation of repressor Mth1p, and consequently lower expression of HXT genes and reduced conversion of glucose to acetyl-CoA, a substrate for HATs. The histone acetylation and transcriptional defects can be partially suppressed and the overall fitness improved in plc1Δ cells by increasing the cellular concentration of acetyl-CoA. Together, our data indicate that Plc1p and InsPs are required for normal acetyl-CoA homeostasis, which, in turn, regulates global histone acetylation.
Collapse
Affiliation(s)
- Luciano Galdieri
- From the Department of Biological Sciences, St. John's University, Queens, New York 11439
| | | | | | | |
Collapse
|
25
|
Huang J, Barr E, Rudnick DA. Characterization of the regulation and function of zinc-dependent histone deacetylases during rodent liver regeneration. Hepatology 2013; 57:1742-51. [PMID: 23258575 PMCID: PMC3825707 DOI: 10.1002/hep.26206] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/10/2012] [Indexed: 12/26/2022]
Abstract
UNLABELLED The studies reported here were undertaken to define the regulation and functional importance of zinc-dependent histone deacetylase (Zn-HDAC) activity during liver regeneration using the mouse partial hepatectomy (PH) model. The results showed that hepatic HDAC activity was significantly increased in nuclear and cytoplasmic fractions following PH. Further analyses showed isoform-specific effects of PH on HDAC messenger RNA (mRNA) and protein expression, with increased expression of the class I HDACs, 1 and 8, and class II HDAC4 in regenerating liver. Hepatic expression of (class II) HDAC5 was unchanged after PH; however, HDAC5 exhibited transient nuclear accumulation in regenerating liver. These changes in hepatic HDAC expression, subcellular localization, and activity coincided with diminished histone acetylation in regenerating liver. The significance of these events was investigated by determining the effects of suberoylanilide hydroxyamic acid (SAHA, a specific inhibitor of Zn-HDAC activity) on hepatic regeneration. The results showed that SAHA treatment suppressed the effects of PH on histone deacetylation and hepatocellular bromodeoxyuridine (BrdU) incorporation. Further examination showed that SAHA blunted hepatic expression and activation of cell cycle signals downstream of induction of cyclin D1 expression in mice subjected to PH. CONCLUSION The data reported here demonstrate isoform-specific regulation of Zn-HDAC expression, subcellular localization, and activity in regenerating liver. These studies also indicate that HDAC activity promotes liver regeneration by regulating hepatocellular cell cycle progression at a step downstream of cyclin D1 induction.
Collapse
Affiliation(s)
- Jiansheng Huang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Emily Barr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - David A. Rudnick
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
,Department of Developmental, Regenerative, and Stem Cell Biology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
26
|
Feuer S, Camarano L, Rinaudo P. ART and health: clinical outcomes and insights on molecular mechanisms from rodent studies. Mol Hum Reprod 2013; 19:189-204. [PMID: 23264495 PMCID: PMC3598410 DOI: 10.1093/molehr/gas066] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/07/2012] [Accepted: 12/11/2012] [Indexed: 12/23/2022] Open
Abstract
Since the birth of the first IVF-conceived child in 1978, the use of assisted reproductive technologies (ART) has grown dramatically, contributing to the successful birth of 5 million individuals worldwide. However, there are several reported associations of ART with pregnancy complications, such as low birthweight (LBW), preterm birth, birth defects, epigenetic disorders, cancer and poor metabolic health. Whether this is attributed to ART procedures or to the subset of the population seeking ART remains a controversy, but the most relevant question today concerns the potential long-term implications of assisted conception. Recent evidence has emerged suggesting that ART-conceived children have distinct metabolic profiles that may predispose to cardiovascular pathologies in adulthood. Because the eldest IVF individuals are still too young to exhibit components of chronic middle-aged syndromes, the use of animal models has become particularly useful in describing the effects of unusual or stressful preimplantation experiences on adult fitness. Elucidating the molecular mechanisms by which embryos integrate environmental signals into development and metabolic gene expression programs will be essential for optimizing ART procedures such as in vitro culture conditions, embryo selection and transfer. In the future, additional animal studies to identify mechanisms underlying unfavorable ART outcomes, as well as more epidemiological reviews to monitor the long-term health of ART children are required, given that ART procedures have become routine medical practice.
Collapse
Affiliation(s)
- S.K. Feuer
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, 2356 Sutter St, 7th floor, San Francisco, CA 94115, USA
| | - L. Camarano
- Samuel Merritt University, School of Nursing, Oakland, CA, USA
- Fertility Physicians of Northern California, San Jose, CA, USA
| | - P.F. Rinaudo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, 2356 Sutter St, 7th floor, San Francisco, CA 94115, USA
| |
Collapse
|
27
|
Nutritional regulation of fetal growth and implications for productive life in ruminants. Animal 2012; 4:1075-83. [PMID: 22444610 DOI: 10.1017/s1751731110000479] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The maternal nutritional and metabolic environment is critical in determining not only the reproductive success but also the long-term health and viability of the offspring. Changes in maternal diet at defined stages of gestation coincident with different stages of development can have pronounced effects on organ and tissue function in later life. This includes adipose tissue for which differential effects are observed between brown and white adipose tissues. One early, critical window of organ development in the ruminant relates to the period covering uterine attachment, or implantation, and rapid placental growth. During this period, there is pronounced cell division within developing organelles in many fetal tissues, leading to their structural development. In sheep, a 50% global reduction in caloric intake over this specific period profoundly affects placental growth and morphology, resulting in reduced placentome weight. This occurs in conjunction with a lower capacity to inactivate maternal cortisol through the enzyme 11β-hydroxysteroid dehydrogenase type 2 in response to a decrease in maternal plasma cortisol in early gestation. The birth weight of the offspring is, however, unaffected by this dietary manipulation and, although they possess more fat, this adaptation does not persist into adulthood when they become equally obese as those born to control fed mothers. Subsequently, after birth, further changes in fat development occur which impact on both glucocorticoid action and inflammatory responses. These adaptations can include changes in the relative populations of both brown and white adipocytes for which prolactin acting through its receptor appears to have a prominent role. Earlier when in utero nutrient restricted (i.e. between early-to-mid gestation) offspring are exposed to an obesogenic postnatal environment; they exhibit an exaggerated insulin response, which is accompanied by a range of amplified and thus, adverse, physiological or metabolic responses to obesity. These types of adaptations are in marked contrast to the effect of late gestational nutrient restriction, which results in reduced fat mass at birth. As young adults, however, fat mass is increased and, although basal insulin is unaffected, these offspring are insulin resistant. In conclusion, changes in nutrient supply to either the mother and/or her fetus can have profound effects on a range of metabolically important tissues. These have the potential to either exacerbate, or protect from, the adverse effects of later obesity and accompanying complications in the resulting offspring.
Collapse
|
28
|
Galdieri L, Vancura A. Acetyl-CoA carboxylase regulates global histone acetylation. J Biol Chem 2012; 287:23865-76. [PMID: 22580297 PMCID: PMC3390662 DOI: 10.1074/jbc.m112.380519] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Indexed: 12/15/2022] Open
Abstract
Histone acetylation depends on intermediary metabolism for supplying acetyl-CoA in the nucleocytosolic compartment. However, because nucleocytosolic acetyl-CoA is also used for de novo synthesis of fatty acids, histone acetylation and synthesis of fatty acids compete for the same acetyl-CoA pool. The first and rate-limiting reaction in de novo synthesis of fatty acids is carboxylation of acetyl-CoA to form malonyl-CoA, catalyzed by acetyl-CoA carboxylase. In yeast Saccharomyces cerevisiae, acetyl-CoA carboxylase is encoded by the ACC1 gene. In this study, we show that attenuated expression of ACC1 results in increased acetylation of bulk histones, globally increased acetylation of chromatin histones, and altered transcriptional regulation. Together, our data indicate that Acc1p activity regulates the availability of acetyl-CoA for histone acetyltransferases, thus representing a link between intermediary metabolism and epigenetic mechanisms of transcriptional regulation.
Collapse
Affiliation(s)
- Luciano Galdieri
- From the Department of Biological Sciences, St. John's University, Queens, New York 11439
| | - Ales Vancura
- From the Department of Biological Sciences, St. John's University, Queens, New York 11439
| |
Collapse
|
29
|
Dell' Antone P. Energy metabolism in cancer cells: how to explain the Warburg and Crabtree effects? Med Hypotheses 2012; 79:388-92. [PMID: 22770870 DOI: 10.1016/j.mehy.2012.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 06/01/2012] [Accepted: 06/03/2012] [Indexed: 11/26/2022]
Abstract
Cancer cells have a greater need for energy and a ready supply of the building blocks necessary for the synthesis of macromolecules (nucleotides, protein, lipids) in order to duplicate genome and biomass. The hypothesis can be postulated that those precursors for synthetic processes, which can only be furnished by glycolysis, cannot be sufficiently recruited from external sources (the blood stream) and that glycolysis is necessarily markedly activated. It can also be hypothesized that the Krebs cycle, which also furnishes precursors for macromolecule synthesis to meet the requirements of proliferating cells, is depleted of intermediates. In view of its cyclic nature requiring not only pyruvate but also oxalacetate as the "last" metabolite of the reaction sequence for its sustenance, the Krebs cycle may be partially inactivated. While anaplerotic reactions and other sources (amino acids and fatty acids) could supply the cycle with intermediates, those pathways constitute futile cycles for amino and fatty acids as they would be partially degraded in the cycle and the intermediates thus obtained would be exported into the cytoplasm for synthetic processes with no advantage for the cell. It is also hypothesized that glutamine, an important fuel for cancer cells and playing a critical role in anaplerosis, may not contribute to reinforce the cycle; malate and α-ketoglutarate, two products of glutamine metabolism, might be exported from the mitochondria as precursors of biosynthetic pathways. It is possible then that malate, used for NADPH production required in the biosynthetic pathways, and glycerol-phosphate, too used for biosynthetic purposes (lipid biosynthesis), are unable to sustain the mitochondrial redox shuttles reducing the respiratory capacity of the mitochondria. Low shuttle capacity implies that NADH generated by glycolysis needs to be continuously re-oxidized in the cytoplasm via lactate dehydrogenase to maintain glycolysis fully activated, causing the abnormal lactate production observed in cancer. The paper goes onto discuss the essential role of glucose in cancer cell proliferation also in inducing the Crabtree effect. It is finally hypothesized that respiration inhibition after cancer cells have been supplied with glucose is due to reactivation in a suited medium of biosynthetic pathways with the consequences described above.
Collapse
Affiliation(s)
- Paolo Dell' Antone
- Dipartimento di Scienze Biomediche Sperimentali, Via Colombo 3, Padova, Italy.
| |
Collapse
|
30
|
Epigenetic impact of dietary polyphenols in cancer chemoprevention: Lifelong remodeling of our epigenomes. Pharmacol Res 2012; 65:565-76. [DOI: 10.1016/j.phrs.2012.03.007] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/10/2012] [Accepted: 03/13/2012] [Indexed: 02/07/2023]
|
31
|
Kwon T, Harris AL, Rossi A, Bargiello TA. Molecular dynamics simulations of the Cx26 hemichannel: evaluation of structural models with Brownian dynamics. J Gen Physiol 2011; 138:475-93. [PMID: 22006989 PMCID: PMC3206306 DOI: 10.1085/jgp.201110679] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/27/2011] [Indexed: 11/21/2022] Open
Abstract
The recently published crystal structure of the Cx26 gap junction channel provides a unique opportunity for elucidation of the structure of the conductive connexin pore and the molecular determinants of its ion permeation properties (conductance, current-voltage [I-V] relations, and charge selectivity). However, the crystal structure was incomplete, most notably lacking the coordinates of the N-terminal methionine residue, which resides within the pore, and also lacking two cytosolic domains. To allow computational studies for comparison with the known channel properties, we completed the structure. Grand canonical Monte Carlo Brownian dynamics (GCMC/BD) simulations of the completed and the published Cx26 hemichannel crystal structure indicate that the pore is too narrow to permit significant ion flux. The GCMC/BD simulations predict marked inward current rectification and almost perfect anion selectivity, both inconsistent with known channel properties. The completed structure was refined by all-atom molecular dynamics (MD) simulations (220 ns total) in an explicit solvent and POPC membrane system. These MD simulations produced an equilibrated structure with a larger minimal pore diameter, which decreased the height of the permeation barrier formed by the N terminus. GCMC/BD simulations of the MD-equilibrated structure yielded more appropriate single-channel conductance and less anion/cation selectivity. However, the simulations much more closely matched experimentally determined I-V relations when the charge effects of specific co- and posttranslational modifications of Cx26 previously identified by mass spectrometry were incorporated. We conclude that the average equilibrated structure obtained after MD simulations more closely represents the open Cx26 hemichannel structure than does the crystal structure, and that co- and posttranslational modifications of Cx26 hemichannels are likely to play an important physiological role by defining the conductance and ion selectivity of Cx26 channels. Furthermore, the simulations and data suggest that experimentally observed heterogeneity in Cx26 I-V relations can be accounted for by variation in co- and posttranslational modifications.
Collapse
Affiliation(s)
- Taekyung Kwon
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Andrew L. Harris
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| | - Angelo Rossi
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| | - Thaddeus A. Bargiello
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
32
|
Hu H, Deng C, Yang T, Dong Q, Chen Y, Nice EC, Huang C, Wei Y. Proteomics revisits the cancer metabolome. Expert Rev Proteomics 2011; 8:505-533. [DOI: 10.1586/epr.11.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
33
|
Tang KH, Tang YJ, Blankenship RE. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Front Microbiol 2011; 2:165. [PMID: 21866228 PMCID: PMC3149686 DOI: 10.3389/fmicb.2011.00165] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/18/2011] [Indexed: 11/19/2022] Open
Abstract
Photosynthesis is the biological process that converts solar energy to biomass, bio-products, and biofuel. It is the only major natural solar energy storage mechanism on Earth. To satisfy the increased demand for sustainable energy sources and identify the mechanism of photosynthetic carbon assimilation, which is one of the bottlenecks in photosynthesis, it is essential to understand the process of solar energy storage and associated carbon metabolism in photosynthetic organisms. Researchers have employed physiological studies, microbiological chemistry, enzyme assays, genome sequencing, transcriptomics, and (13)C-based metabolomics/fluxomics to investigate central carbon metabolism and enzymes that operate in phototrophs. In this report, we review diverse CO(2) assimilation pathways, acetate assimilation, carbohydrate catabolism, the tricarboxylic acid cycle and some key, and/or unconventional enzymes in central carbon metabolism of phototrophic microorganisms. We also discuss the reducing equivalent flow during photoautotrophic and photoheterotrophic growth, evolutionary links in the central carbon metabolic network, and correlations between photosynthetic and non-photosynthetic organisms. Considering the metabolic versatility in these fascinating and diverse photosynthetic bacteria, many essential questions in their central carbon metabolism still remain to be addressed.
Collapse
Affiliation(s)
- Kuo-Hsiang Tang
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Yinjie J. Tang
- Department of Energy, Environment, and Chemical Engineering, Washington University in St. LouisSt. Louis, MO, USA
| | - Robert Eugene Blankenship
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| |
Collapse
|
34
|
Eanes WF. Molecular population genetics and selection in the glycolytic pathway. ACTA ACUST UNITED AC 2011; 214:165-71. [PMID: 21177937 DOI: 10.1242/jeb.046458] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this review, I discuss the evidence for differential natural selection acting across enzymes in the glycolytic pathway in Drosophila. Across the genome, genes evolve at very different rates and possess markedly varying levels of molecular polymorphism, codon bias and expression variation. Discovering the underlying causes of this variation has been a challenge in evolutionary biology. It has been proposed that both the intrinsic properties of enzymes and their pathway position have direct effects on their molecular evolution, and with the genomic era the study of adaptation has been taken to the level of pathways and networks of genes and their products. Of special interest have been the energy-producing pathways. Using both population genetic and experimental approaches, our laboratory has been engaged in a study of molecular variation across the glycolytic pathway in Drosophila melanogaster and its close relatives. We have observed a pervasive pattern in which genes at the top of the pathway, especially around the intersection at glucose 6-phosphate, show evidence for both contemporary selection, in the form of latitudinal allele clines, and inter-specific selection, in the form of elevated levels of amino acid substitutions between species. To further explore this question, future work will require corroboration in other species, expansion into tangential pathways, and experimental work to better characterize metabolic control through the pathway and to examine the pleiotropic effects of these genes on other traits and fitness components.
Collapse
Affiliation(s)
- Walter F Eanes
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11790, USA.
| |
Collapse
|
35
|
Hochberg Z, Feil R, Constancia M, Fraga M, Junien C, Carel JC, Boileau P, Le Bouc Y, Deal CL, Lillycrop K, Scharfmann R, Sheppard A, Skinner M, Szyf M, Waterland RA, Waxman DJ, Whitelaw E, Ong K, Albertsson-Wikland K. Child health, developmental plasticity, and epigenetic programming. Endocr Rev 2011; 32:159-224. [PMID: 20971919 PMCID: PMC3365792 DOI: 10.1210/er.2009-0039] [Citation(s) in RCA: 419] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 08/27/2010] [Indexed: 11/19/2022]
Abstract
Plasticity in developmental programming has evolved in order to provide the best chances of survival and reproductive success to the organism under changing environments. Environmental conditions that are experienced in early life can profoundly influence human biology and long-term health. Developmental origins of health and disease and life-history transitions are purported to use placental, nutritional, and endocrine cues for setting long-term biological, mental, and behavioral strategies in response to local ecological and/or social conditions. The window of developmental plasticity extends from preconception to early childhood and involves epigenetic responses to environmental changes, which exert their effects during life-history phase transitions. These epigenetic responses influence development, cell- and tissue-specific gene expression, and sexual dimorphism, and, in exceptional cases, could be transmitted transgenerationally. Translational epigenetic research in child health is a reiterative process that ranges from research in the basic sciences, preclinical research, and pediatric clinical research. Identifying the epigenetic consequences of fetal programming creates potential applications in clinical practice: the development of epigenetic biomarkers for early diagnosis of disease, the ability to identify susceptible individuals at risk for adult diseases, and the development of novel preventive and curative measures that are based on diet and/or novel epigenetic drugs.
Collapse
Affiliation(s)
- Z Hochberg
- Rambam Medical Center, Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Parra-Bonilla G, Alvarez DF, Al-Mehdi AB, Alexeyev M, Stevens T. Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation. Am J Physiol Lung Cell Mol Physiol 2010; 299:L513-22. [PMID: 20675437 PMCID: PMC2957419 DOI: 10.1152/ajplung.00274.2009] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 07/27/2010] [Indexed: 02/04/2023] Open
Abstract
Pulmonary microvascular endothelial cells possess both highly proliferative and angiogenic capacities, yet it is unclear how these cells sustain the metabolic requirements essential for such growth. Rapidly proliferating cells rely on aerobic glycolysis to sustain growth, which is characterized by glucose consumption, glucose fermentation to lactate, and lactic acidosis, all in the presence of sufficient oxygen concentrations. Lactate dehydrogenase A converts pyruvate to lactate necessary to sustain rapid flux through glycolysis. We therefore tested the hypothesis that pulmonary microvascular endothelial cells express lactate dehydrogenase A necessary to utilize aerobic glycolysis and support their growth. Pulmonary microvascular endothelial cell (PMVEC) growth curves were conducted over a 7-day period. PMVECs consumed glucose, converted glucose into lactate, and acidified the media. Restricting extracellular glucose abolished the lactic acidosis and reduced PMVEC growth, as did replacing glucose with galactose. In contrast, slow-growing pulmonary artery endothelial cells (PAECs) minimally consumed glucose and did not develop a lactic acidosis throughout the growth curve. Oxygen consumption was twofold higher in PAECs than in PMVECs, yet total cellular ATP concentrations were twofold higher in PMVECs. Glucose transporter 1, hexokinase-2, and lactate dehydrogenase A were all upregulated in PMVECs compared with their macrovascular counterparts. Inhibiting lactate dehydrogenase A activity and expression prevented lactic acidosis and reduced PMVEC growth. Thus PMVECs utilize aerobic glycolysis to sustain their rapid growth rates, which is dependent on lactate dehydrogenase A.
Collapse
|
37
|
Abstract
Protein acetylation has historically been considered a predominantly eukaryotic phenomenon. Recent evidence, however, supports the hypothesis that acetylation broadly impacts bacterial physiology. To explore more rapidly the impact of protein acetylation in bacteria, microbiologists can benefit from the strong foundation established by investigators of protein acetylation in eukaryotes. To help advance this learning process, we will summarize the current understanding of protein acetylation in eukaryotes, discuss the emerging link between acetylation and metabolism and highlight the best-studied examples of protein acetylation in bacteria.
Collapse
Affiliation(s)
- Linda I. Hu
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Ave. Bldg. 105, Maywood, IL 60153, USA
| | - Bruno P. Lima
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Ave. Bldg. 105, Maywood, IL 60153, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Ave. Bldg. 105, Maywood, IL 60153, USA
| |
Collapse
|
38
|
Bracha AL, Ramanathan A, Huang S, Ingber DE, Schreiber SL. Carbon metabolism-mediated myogenic differentiation. Nat Chem Biol 2010; 6:202-204. [PMID: 20081855 PMCID: PMC2822028 DOI: 10.1038/nchembio.301] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 10/29/2009] [Indexed: 12/25/2022]
Abstract
The role of nutrients and metabolism in cellular differentiation is poorly understood. Using RNAi screening, metabolic profiling and small-molecule probes, we discovered that the knockdown of three metabolic enzymes-phosphoglycerate kinase (Pgk1), hexose-6-phosphate dehydrogenase (H6pd) and ATP citrate lyase (Acl)-induces differentiation of mouse C2C12 myoblasts even in the presence of mitogens. These enzymes and the pathways they regulate provide new targets for the control of myogenic differentiation in myoblasts and rhabdomyosarcoma cells.
Collapse
Affiliation(s)
- Abigail L. Bracha
- Vascular Biology Program, Departments of Pathology & Surgery, Children’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Arvind Ramanathan
- Howard Hughes Medical Institute at the Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Sui Huang
- Institute for Biocomplexity and Informatics, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Donald E. Ingber
- Vascular Biology Program, Departments of Pathology & Surgery, Children’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Stuart L. Schreiber
- Howard Hughes Medical Institute at the Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
39
|
Plenary Lecture 2: Transcription factors, regulatory elements and nutrient-gene communication. Proc Nutr Soc 2009; 69:91-4. [PMID: 19968906 DOI: 10.1017/s0029665109991790] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dramatic advances have been made in the understanding of the differing molecular mechanisms used by nutrients to regulate genes that are essential for their biological roles to carry out normal metabolism. Classical studies have focused on nutrients as ligands to activate specific transcription factors. New interest has focused on histone acetylation as a process for either global or limited gene activation and is the first mechanism to be discussed. Nuclear ATP-citrate lyase generates acetyl-CoA, which has been shown to have a role in the activation of specific genes via selective histone acetylation. Transcription factor acetylation may provide a second mode of control of nutrient-responsive gene transcription. The third mechanism relates to the availability of response elements within chromatin, which as well as the location of the elements in the gene may allow or prevent transcription. A fourth mechanism involves intracellular transport of Zn ions, which can orchestrate localized enzyme inhibition-activation. This process in turn influences signalling molecules that regulate gene expression. The examples provided in the present review point to a new level of complexity in understanding nutrient-gene communication.
Collapse
|
40
|
Lu Z, Scott I, Webster BR, Sack MN. The emerging characterization of lysine residue deacetylation on the modulation of mitochondrial function and cardiovascular biology. Circ Res 2009; 105:830-41. [PMID: 19850949 DOI: 10.1161/circresaha.109.204974] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is emerging recognition of a novel fuel and redox sensing regulatory program that controls cellular adaptation via nonhistone protein lysine residue acetyl posttranslation modifications. This program functions in tissues with high energy demand and oxidative capacity and is highly enriched in the heart. Deacetylation is regulated by NAD(+)-dependent activation of the sirtuin family of proteins, whereas acetyltransferase modifications are controlled by less clearly delineated acetyltransferases. Subcellular localization specific protein targets of lysine-acetyl modification have been identified in the nucleus, cytoplasm, and mitochondria. Despite distinct subcellular localizations, these modifications appear, in large part, to modify mitochondrial properties including respiration, energy production, apoptosis, and antioxidant defenses. These mitochondrial regulatory programs are important in cardiovascular biology, although how protein acetyl modifications effects cardiovascular pathophysiology has not been extensively explored. This review will introduce the role of nonhistone protein lysine residue acetyl modifications, discuss their regulation and biochemistry and present the direct and indirect data implicating their involvement in the heart and vasculature.
Collapse
Affiliation(s)
- Zhongping Lu
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | | | | | | |
Collapse
|
41
|
Wallace DC, Fan W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion 2009; 10:12-31. [PMID: 19796712 DOI: 10.1016/j.mito.2009.09.006] [Citation(s) in RCA: 361] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 12/15/2022]
Abstract
The epigenome has been hypothesized to provide the interface between the environment and the nuclear DNA (nDNA) genes. Key factors in the environment are the availability of calories and demands on the organism's energetic capacity. Energy is funneled through glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), the cellular bioenergetic systems. Since there are thousands of bioenergetic genes dispersed across the chromosomes and mitochondrial DNA (mtDNA), both cis and trans regulation of the nDNA genes is required. The bioenergetic systems convert environmental calories into ATP, acetyl-Coenzyme A (acetyl-CoA), s-adenosyl-methionine (SAM), and reduced NAD(+). When calories are abundant, ATP and acetyl-CoA phosphorylate and acetylate chromatin, opening the nDNA for transcription and replication. When calories are limiting, chromatin phosphorylation and acetylation are lost and gene expression is suppressed. DNA methylation via SAM can also be modulated by mitochondrial function. Phosphorylation and acetylation are also pivotal to regulating cellular signal transduction pathways. Therefore, bioenergetics provides the interface between the environment and the epigenome. Consistent with this conclusion, the clinical phenotypes of bioenergetic diseases are strikingly similar to those observed in epigenetic diseases (Angelman, Rett, Fragile X Syndromes, the laminopathies, cancer, etc.), and an increasing number of epigenetic diseases are being associated with mitochondrial dysfunction. This bioenergetic-epigenomic hypothesis has broad implications for the etiology, pathophysiology, and treatment of a wide range of common diseases.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics (MAMMAG), University of California, Irvine, CA 92697-3940, USA.
| | | |
Collapse
|
42
|
MacFarlane AJ, Strom A, Scott FW. Epigenetics: deciphering how environmental factors may modify autoimmune type 1 diabetes. Mamm Genome 2009; 20:624-32. [PMID: 19697079 DOI: 10.1007/s00335-009-9213-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 07/20/2009] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that has increased two- to threefold over the past half century by as yet unknown means. It is generally accepted that T1D is the result of gene-environment interactions, but such rapid increases in incidence are not explained by Mendelian inheritance. There have been numerous advances in our knowledge of the pathogenesis of T1D. Indeed, there has been a large number of genes identified that contribute to risk for this disease and several environmental factors have been proposed. The complexity of such interactions is yet to be understood for any major chronic disease. Epigenetic regulation is one way to explain the rapid increase in incidence and could be a central mechanism by which environmental factors influence development of diabetes. However, there is remarkably little known about the contribution of epigenetics to T1D pathogenesis. Here we speculate on various candidate processes and molecules of the immune and endocrine systems that could modify risk for T1D through epigenetic regulation.
Collapse
Affiliation(s)
- Amanda J MacFarlane
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A0K9, Canada.
| | | | | |
Collapse
|