1
|
Zheng H, Munusamy S, Zhou S, Jahani R, Chen J, Kong J, Guan X. Nanopore Detection of Small Molecules Based on Replacement and Complexation Chemical Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407184. [PMID: 39828598 PMCID: PMC12003082 DOI: 10.1002/smll.202407184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/20/2024] [Indexed: 01/22/2025]
Abstract
Small molecules play important roles in a variety of biological processes such as metabolism, cell signaling and enzyme regulation, and can serve as valuable biomarkers for human diseases. Moreover, they are essential to drug discovery and development, and are important targets for environmental monitoring and food safety. Due to the size incompatibility, small molecule transport is difficult to be monitored with a nanopore. A popular strategy for nanopore detection of small molecules is to introduce a molecular probe as a ligand (or recognition element) and rely on their effect on the ligand transport. One limitation for this sensing strategy is that the probe molecule needs to have a slightly smaller size than the nanopore constriction or can be easily unfolded or unzipped through the pore. Herein, by taking advantage of replacement and complexation chemical interactions, a generic approach is reported for detection of small molecules by using large biomolecules with well-defined stable 3D structures such as aptamers as recognition elements. Given the versatile use of aptamers as capture agents for a wide variety of species, the developed nanopore sensing strategy should find applications in many fields.
Collapse
Affiliation(s)
- Haiyan Zheng
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | | | - Shuo Zhou
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Rana Jahani
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Jun Chen
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Juanhua Kong
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Xiyun Guan
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Marlin A, Le Pape F, Troadec T, Le Goff J, Tripier R, Berthou C, Patinec V. Zn 2+ triazamacrocyclic chelators with methylpyridine pendant arms for B-cell apoptosis: a structure-activity study. Dalton Trans 2025; 54:3939-3951. [PMID: 39895421 DOI: 10.1039/d4dt02962c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Three macrocyclic tacn (1,4,7-triazacyclononane) derivatives containing one, two and three 2-methylpyridine pendant arms (no1py, no2py and no3py), compared to the linear diamine analogue tpen (N,N,N',N'-tetrakis(2-methylpyridinyl)-ethylenediamine) known for its capacity to induce cell apoptosis by Zn2+ chelation and/or ROS production, have shown cytotoxic activity on the Daudi B-cell line and CLL (chronic lymphoid leukemia) primary B cell model. These properties have been evidenced using an Incucyte® Live-Cell Analysis System. Evaluation of caspase 3/7 activation by incubation with the four studied chelators has exhibited caspase-dependent apoptotic death. Investigation of the chelator action mechanism has shown no ROS (reactive oxygen species) production for the macrocyclic chelators no1py, no2py and no3py, unlike the linear counterpart tpen for which ROS production was revealed. A significant inhibition effect of macrocyclic chelator cytotoxicity has been established by extracellular addition of cationic salts (Zn2+ and Cu2+) and the Zinquin emission fluorescence method has evidenced intracellular labile zinc chelation for no2py and no3py, while no1py acts differently. The acid-base properties of the chelators and their Zn2+ complexation constants have been obtained, discussed and correlated with the demonstrated biological properties.
Collapse
Affiliation(s)
- Axia Marlin
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France.
| | - Fiona Le Pape
- Univ Brest, UMR-INSERM 1227 LBAI, 5 Avenue Foch, CHU Morvan, BP 824, 29609 Brest, France.
| | - Thibault Troadec
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France.
| | - Jocelyn Le Goff
- Univ Brest, UMR-INSERM 1227 LBAI, 5 Avenue Foch, CHU Morvan, BP 824, 29609 Brest, France.
| | - Raphaël Tripier
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France.
| | - Christian Berthou
- Univ Brest, UMR-INSERM 1227 LBAI, 5 Avenue Foch, CHU Morvan, BP 824, 29609 Brest, France.
| | - Véronique Patinec
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France.
| |
Collapse
|
3
|
Mishra L, Mishra M. Recent progress towards the development of fluorescent probes for the detection of disease-related enzymes. J Mater Chem B 2025; 13:763-801. [PMID: 39639834 DOI: 10.1039/d4tb01960a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Normal physiological functions as well as regulatory mechanisms for various pathological conditions depend on the activity of enzymes. Thus, determining the in vivo activity of enzymes is crucial for monitoring the physiological metabolism and diagnosis of diseases. Traditional enzyme detection methods are inefficient for in vivo detection, which have different limitations, such as high cost, laborious, and inevitable invasive procedures, low spatio-temporal resolution, weak anti-interference ability, and restricted scope of application. Because of its non-destructive nature, ultra-environmental sensitivity, and high spatiotemporal resolution, fluorescence imaging technology has emerged as a potent tool for the real-time visualization of live cells, thereby imaging the motility of proteins and intracellular signalling networks in tissues and cells and evaluating the binding and attraction of molecules. In the last few years, significant advancements have been achieved in detecting and imaging enzymes in biological systems. In this regard, the high sensitivity and unparalleled spatiotemporal resolution of fluorescent probes in association with confocal microscopy have garnered significant interest. In this review, we focus on providing a concise summary of the latest developments in the design of fluorogenic probes used for monitoring disease-associated enzymes and their application in biological imaging. We anticipate that this study will attract considerable attention among researchers in the relevant field, encouraging them to pursue advances in the development and application of fluorescent probes for the real-time monitoring of enzyme activity in live cells and in vivo models while ensuring excellent biocompatibility.
Collapse
Affiliation(s)
- Lopamudra Mishra
- Neural Developmental Biology Lab, Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India.
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
4
|
Castle AR, Westaway D. Prion Protein Endoproteolysis: Cleavage Sites, Mechanisms and Connections to Prion Disease. J Neurochem 2025; 169:e16310. [PMID: 39874431 PMCID: PMC11774512 DOI: 10.1111/jnc.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
Highly abundant in neurons, the cellular prion protein (PrPC) is an obligatory precursor to the disease-associated misfolded isoform denoted PrPSc that accumulates in the rare neurodegenerative disorders referred to either as transmissible spongiform encephalopathies (TSEs) or as prion diseases. The ability of PrPC to serve as a substrate for this template-mediated conversion process depends on several criteria but importantly includes the presence or absence of certain endoproteolytic events performed at the cell surface or in acidic endolysosomal compartments. The major endoproteolytic events affecting PrPC are referred to as α- and β-cleavages, and in this review we outline the sites within PrPC at which the cleavages occur, the mechanisms potentially responsible and their relevance to pathology. Although the association of α-cleavage with neuroprotection is well-supported, we identify open questions regarding the importance of β-cleavage in TSEs and suggest experimental approaches that could provide clarification. We also combine findings from in vitro cleavage assays and mass spectrometry-based studies of prion protein fragments in the brain to present an updated view in which α- and β-cleavages may represent two distinct clusters of proteolytic events that occur at multiple neighbouring sites rather than at single positions. Furthermore, we highlight the candidate proteolytic mechanisms best supported by the literature; currently, despite several proteases identified as capable of processing PrPC in vitro, in cell-based models and in some cases, in vivo, none have been shown conclusively to cleave PrPC in the brain. Addressing this knowledge gap will be crucial for developing therapeutic interventions to drive PrPC endoproteolysis in a neuroprotective direction. Finally, we end this review by briefly addressing other cleavage events, specifically ectodomain shedding, γ-cleavage, the generation of atypical pathological fragments in the familial prion disorder Gerstmann-Sträussler-Scheinker syndrome and the possibility of an additional form of endoproteolysis close to the PrPC N-terminus.
Collapse
Affiliation(s)
- Andrew R. Castle
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Kavli Institute of Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - David Westaway
- Centre for Prions and Protein Folding DiseasesUniversity of AlbertaEdmontonCanada
| |
Collapse
|
5
|
Xiao X, Huang J. Enzyme-Responsive Supramolecular Self-Assembly in Small Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39018035 DOI: 10.1021/acs.langmuir.4c01762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Enzyme-responsive molecular assemblies have recently made remarkable progress, owing to their widespread applications. As a class of catalysts with high specificity and efficiency, enzymes play a critical role in producing new molecules and maintaining metabolic stability in living organisms. Therefore, the study of enzyme-responsive assembly aids in understanding the origin of life and the physiological processes occurring within living bodies, contributing to further advancements across various disciplines. In this Review, we summarize three kinds of enzyme-responsive assembly systems in amphiphiles: enzyme-triggered assembly, disassembly, and structural transformation. Furthermore, motivated by the fact that biological macromolecules and complex structures all originated with small molecules, our focus lies on the small amphiphiles (e.g., peptides, surfactants, fluorescent molecules, and drug molecules). We also provide an outlook on the potential of enzyme-responsive assembly systems for biomimetic development and hope this Review will attract more attention to this emerging research branch at the intersection of assembly chemistry and biological science.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
6
|
Hoermann B, Dürr EM, Ludwig C, Ercan M, Köhn M. A strategy to disentangle direct and indirect effects on (de)phosphorylation by chemical modulators of the phosphatase PP1 in complex cellular contexts. Chem Sci 2024; 15:2792-2804. [PMID: 38404380 PMCID: PMC10882499 DOI: 10.1039/d3sc04746f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
Chemical activators and inhibitors are useful probes to identify substrates and downstream effects of enzymes; however, due to the complex signaling environment within cells, it is challenging to distinguish between direct and indirect effects. This is particularly the case for phosphorylation, where a single (de)phosphorylation event can trigger rapid changes in many other phosphorylation sites. An additional complication arises when a single catalytic entity, which acts in the form of many different holoenzymes with different substrates, is activated or inhibited, as it is unclear which holoenzymes are affected, and in turn which of their substrates are (de)phosphorylated. Direct target engaging MS-based technologies to study targets of drugs do not address these challenges. Here, we tackle this by studying the modulation of protein phosphatase-1 (PP1) activity by PP1-disrupting peptides (PDPs), as well as their selectivity toward PP1, by using a combination of mass spectrometry-based experiments. By combining cellular treatment with the PDP with in vitro dephosphorylation by the enzyme, we identify high confidence substrate candidates and begin to separate direct and indirect effects. Together with experiments analyzing which holoenzymes are particularly susceptible to this treatment, we obtain insights into the effect of the modulator on the complex network of protein (de)phosphorylation. This strategy holds promise for enhancing our understanding of PP1 in particular and, due to the broad applicability of the workflow and the MS-based read-out, of chemical modulators with complex mode of action in general.
Collapse
Affiliation(s)
- Bernhard Hoermann
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| | - Eva-Maria Dürr
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| | - Christina Ludwig
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM) Freising Germany
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM) Freising Germany
| | - Melda Ercan
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| | - Maja Köhn
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| |
Collapse
|
7
|
Zheng Q, Ma T, Wang M. Unleashing the Power of Proenzyme Delivery for Targeted Therapeutic Applications Using Biodegradable Lipid Nanoparticles. Acc Chem Res 2024; 57:208-221. [PMID: 38143330 DOI: 10.1021/acs.accounts.3c00597] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Proenzymes, functioning as inactive precursor forms of enzymes, hold significant promise for regulating essential biological processes. Their inherent property of latency, remaining inert until they arrive at the intended site of action, positions them as particularly promising candidates for the development of targeted therapeutics. Despite this potential, the therapeutic potential of proenzymes is challenged by designing proenzymes with excellent selectivity for disease cells. This limitation is further exacerbated by the inability of proenzymes to spontaneously cross the cell membrane, a biological barrier that impedes the cellular internalization of exogenous macromolecules. Therefore, efficacious intracellular delivery is paramount to unlocking the full therapeutic potency of proenzymes.In this Account, we first elucidate our recent advancements made in designing biodegradable lipid nanoparticles (LNPs) for the cell-specific delivery of biomacromolecules, including proteins and nucleic acids. Using a strategy of parallel synthesis, we have constructed an extensive library of ionizable lipids, each integrated with different biodegradable moieties. This combinatorial approach has led to the identification of LNPs that are particularly efficacious for the delivery of biomacromolecules specifically to tumor cells. This innovation capitalizes on the unique intracellular environment of cancer cells to control the degradation of LNPs, thereby ensuring the targeted release of therapeutics within tumor cells. Additionally, we discuss the structure-activity relationship governing the delivery efficacy of these LNPs and their applicability in regulating tumor cell signaling, specifically through the delivery of bacterial effector proteins.In the second segment, we aim to provide an overview of our recent contributions to the field of proenzyme design, where we have chemically tailored proteins to render them responsive to the unique milieu of tumor cells. Specifically, we elaborate on the chemical principles employed to modify proteins and DNAzymes, thereby priming them for activation in the presence of NAD(P)H:quinone oxidoreductase 1 (NQO1), an enzyme that is prevalently upregulated within tumor cells. We summarize the methodologies for intracellular delivery of these proenzymes using biodegradable LNPs, both in vitro and in vivo. The concomitant intracellular delivery and activation of proenzymes are examined in the context of enhanced therapeutic outcomes and targeted CRISPR/Cas9 genome editing.In conclusion, we offer a perspective on the chemical principles that could be leveraged to optimize LNPs for tissue-specific delivery of proenzymes. We also explore chemical strategies for the irreversible modulation of proenzyme activity within living cells and in vivo. Through this discussion, we provide insights into potential avenues for overcoming existing limitations and enhancing the delivery of proenzymes using LNPs, particularly for developing tumor-targeted therapies and genome editing applications.
Collapse
Affiliation(s)
- Qizhen Zheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100490, China
| | - Tianyu Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100490, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100490, China
| |
Collapse
|
8
|
Obaha A, Novinec M. Regulation of Peptidase Activity beyond the Active Site in Human Health and Disease. Int J Mol Sci 2023; 24:17120. [PMID: 38069440 PMCID: PMC10707025 DOI: 10.3390/ijms242317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
This comprehensive review addresses the intricate and multifaceted regulation of peptidase activity in human health and disease, providing a comprehensive investigation that extends well beyond the boundaries of the active site. Our review focuses on multiple mechanisms and highlights the important role of exosites, allosteric sites, and processes involved in zymogen activation. These mechanisms play a central role in shaping the complex world of peptidase function and are promising potential targets for the development of innovative drugs and therapeutic interventions. The review also briefly discusses the influence of glycosaminoglycans and non-inhibitory binding proteins on enzyme activities. Understanding their role may be a crucial factor in the development of therapeutic strategies. By elucidating the intricate web of regulatory mechanisms that control peptidase activity, this review deepens our understanding in this field and provides a roadmap for various strategies to influence and modulate peptidase activity.
Collapse
Affiliation(s)
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
9
|
Dow LF, Case AM, Paustian MP, Pinkerton BR, Simeon P, Trippier PC. The evolution of small molecule enzyme activators. RSC Med Chem 2023; 14:2206-2230. [PMID: 37974956 PMCID: PMC10650962 DOI: 10.1039/d3md00399j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
There is a myriad of enzymes within the body responsible for maintaining homeostasis by providing the means to convert substrates to products as and when required. Physiological enzymes are tightly controlled by many signaling pathways and their products subsequently control other pathways. Traditionally, most drug discovery efforts focus on identifying enzyme inhibitors, due to upregulation being prevalent in many diseases and the existence of endogenous substrates that can be modified to afford inhibitor compounds. As enzyme downregulation and reduction of endogenous activators are observed in multiple diseases, the identification of small molecules with the ability to activate enzymes has recently entered the medicinal chemistry toolbox to afford chemical probes and potential therapeutics as an alternative means to intervene in diseases. In this review we highlight the progress made in the identification and advancement of non-kinase enzyme activators and their potential in treating various disease states.
Collapse
Affiliation(s)
- Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Alfie M Case
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Megan P Paustian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Braeden R Pinkerton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Princess Simeon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center Omaha NE 68106 USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center Omaha NE 68106 USA
| |
Collapse
|
10
|
Qureshi G, Gediya P, Gehlot P, Ghate M, Vyas VK. 3D-QSAR assisted design, synthesis and pharmacological evaluation of novel substituted benzamides as procaspase-3 activators and anticancer agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
11
|
Sun X, Dong Y, Liu Y, Song N, Li F, Yang D. Self-assembly of artificial architectures in living cells — design and applications. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1091-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Mucin 1 as a Molecular Target of a Novel Diisoquinoline Derivative Combined with Anti-MUC1 Antibody in AGS Gastric Cancer Cells. Molecules 2021; 26:molecules26216504. [PMID: 34770912 PMCID: PMC8588261 DOI: 10.3390/molecules26216504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The aim of the study was to examine the molecular mechanism of the anticancer action of a monoclonal antibody against MUC1 and a diisoquinoline derivative (OM-86II) in human gastric cancer cells. METHODS The cell viability was measured by the MTT assay. The disruption of mitochondrial membrane potential and activity of caspase-8 and caspase-9 was performed by flow cytometry. Fluorescent microscopy was used to confirm the proapoptotic effect of compounds. LC3A, LC3B and Beclin-1 concentrations were analyzed to check the influence of the compounds on induction of autophagy. ELISA assessments were performed to measure the concentration of mTOR, sICAM1, MMP-2, MMP-9 and pro-apoptotic Bax. RESULTS The anti-MUC1 antibody with the diisoquinoline derivative (OM-86II) significantly reduced gastric cancer cells' viability. This was accompanied by an increase in caspase-8 and caspase-9 activity as well as high concentrations of pro-apoptotic Bax. We also proved that the anti-MUC1 antibody with OM-86II decreased the concentrations of MMP-9, sICAM1 and mTOR in gastric cancer cells. After 48 h of incubation with such a combination, we observed higher levels of the crucial component of autophagosomes (LC3) and Beclin-1. CONCLUSIONS Our study proved that the anti-MUC1 antibody sensitizes human gastric cancer cells to the novel diisoquinoline derivative (OM-86II) via induction of apoptosis and autophagy, and inhibition of selected proteins such as mTOR, sICAM1 and MMP-9.
Collapse
|
13
|
Bender BJ, Gahbauer S, Luttens A, Lyu J, Webb CM, Stein RM, Fink EA, Balius TE, Carlsson J, Irwin JJ, Shoichet BK. A practical guide to large-scale docking. Nat Protoc 2021; 16:4799-4832. [PMID: 34561691 PMCID: PMC8522653 DOI: 10.1038/s41596-021-00597-z] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Structure-based docking screens of large compound libraries have become common in early drug and probe discovery. As computer efficiency has improved and compound libraries have grown, the ability to screen hundreds of millions, and even billions, of compounds has become feasible for modest-sized computer clusters. This allows the rapid and cost-effective exploration and categorization of vast chemical space into a subset enriched with potential hits for a given target. To accomplish this goal at speed, approximations are used that result in undersampling of possible configurations and inaccurate predictions of absolute binding energies. Accordingly, it is important to establish controls, as are common in other fields, to enhance the likelihood of success in spite of these challenges. Here we outline best practices and control docking calculations that help evaluate docking parameters for a given target prior to undertaking a large-scale prospective screen, with exemplification in one particular target, the melatonin receptor, where following this procedure led to direct docking hits with activities in the subnanomolar range. Additional controls are suggested to ensure specific activity for experimentally validated hit compounds. These guidelines should be useful regardless of the docking software used. Docking software described in the outlined protocol (DOCK3.7) is made freely available for academic research to explore new hits for a range of targets.
Collapse
Affiliation(s)
- Brian J Bender
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Andreas Luttens
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Chase M Webb
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Reed M Stein
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Elissa A Fink
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Trent E Balius
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Jin S, Vu HT, Hioki K, Noda N, Yoshida H, Shimane T, Ishizuka S, Takashima I, Mizuhata Y, Beverly Pe K, Ogawa T, Nishimura N, Packwood D, Tokitoh N, Kurata H, Yamasaki S, Ishii KJ, Uesugi M. Discovery of Self‐Assembling Small Molecules as Vaccine Adjuvants. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shuyu Jin
- Graduate School of Medicine Kyoto University, Uji Kyoto 611-0011 Japan
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Hue Thi Vu
- Graduate School of Medicine Kyoto University, Uji Kyoto 611-0011 Japan
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Kou Hioki
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC) Osaka University Osaka 565-0871 Japan
- Division of Vaccine Science the Institute of Medical Science University of Tokyo Tokyo 108-8639 Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research National Institute of Biomedical Innovation, Health and Nutrition Osaka 567-0085 Japan
| | - Naotaka Noda
- Graduate School of Medicine Kyoto University, Uji Kyoto 611-0011 Japan
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Hiroki Yoshida
- Graduate School of Medicine Kyoto University, Uji Kyoto 611-0011 Japan
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Toru Shimane
- Research Institute for Microbial Diseases Osaka University, Suita Osaka 565-0871 Japan
| | - Shigenari Ishizuka
- Research Institute for Microbial Diseases Osaka University, Suita Osaka 565-0871 Japan
| | - Ippei Takashima
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Kathleen Beverly Pe
- Graduate School of Medicine Kyoto University, Uji Kyoto 611-0011 Japan
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Tetsuya Ogawa
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Naoya Nishimura
- Research Institute for Microbial Diseases Osaka University, Suita Osaka 565-0871 Japan
| | - Daniel Packwood
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Kyoto 606-8501 Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Hiroki Kurata
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Sho Yamasaki
- Research Institute for Microbial Diseases Osaka University, Suita Osaka 565-0871 Japan
| | - Ken J. Ishii
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC) Osaka University Osaka 565-0871 Japan
- Division of Vaccine Science the Institute of Medical Science University of Tokyo Tokyo 108-8639 Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research National Institute of Biomedical Innovation, Health and Nutrition Osaka 567-0085 Japan
| | - Motonari Uesugi
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Kyoto 606-8501 Japan
- School of Pharmacy Fudan University Shanghai 201203 China
| |
Collapse
|
15
|
Jin S, Vu HT, Hioki K, Noda N, Yoshida H, Shimane T, Ishizuka S, Takashima I, Mizuhata Y, Beverly Pe K, Ogawa T, Nishimura N, Packwood D, Tokitoh N, Kurata H, Yamasaki S, Ishii KJ, Uesugi M. Discovery of Self-Assembling Small Molecules as Vaccine Adjuvants. Angew Chem Int Ed Engl 2021; 60:961-969. [PMID: 32979004 DOI: 10.1002/anie.202011604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 11/06/2022]
Abstract
Immune potentiators, termed adjuvants, trigger early innate immune responses to ensure the generation of robust and long-lasting adaptive immune responses of vaccines. Presented here is a study that takes advantage of a self-assembling small-molecule library for the development of a novel vaccine adjuvant. Cell-based screening of the library and subsequent structural optimization led to the discovery of a simple, chemically tractable deoxycholate derivative (molecule 6, also named cholicamide) whose well-defined nanoassembly potently elicits innate immune responses in macrophages and dendritic cells. Functional and mechanistic analyses indicate that the virus-like assembly enters the cells and stimulates the innate immune response through Toll-like receptor 7 (TLR7), an endosomal TLR that detects single-stranded viral RNA. As an influenza vaccine adjuvant in mice, molecule 6 was as potent as Alum, a clinically used adjuvant. The studies described here pave the way for a new approach to discovering and designing self-assembling small-molecule adjuvants against pathogens, including emerging viruses.
Collapse
Affiliation(s)
- Shuyu Jin
- Graduate School of Medicine, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hue Thi Vu
- Graduate School of Medicine, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kou Hioki
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, 565-0871, Japan.,Division of Vaccine Science, the Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan.,Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Naotaka Noda
- Graduate School of Medicine, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hiroki Yoshida
- Graduate School of Medicine, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Toru Shimane
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shigenari Ishizuka
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ippei Takashima
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kathleen Beverly Pe
- Graduate School of Medicine, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Tetsuya Ogawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Naoya Nishimura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Daniel Packwood
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hiroki Kurata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Sho Yamasaki
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, 565-0871, Japan.,Division of Vaccine Science, the Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan.,Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Motonari Uesugi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan.,School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
16
|
Du S, Liew SS, Zhang CW, Du W, Lang W, Yao CCY, Li L, Ge J, Yao SQ. Cell-Permeant Bioadaptors for Cytosolic Delivery of Native Antibodies: A "Mix-and-Go" Approach. ACS CENTRAL SCIENCE 2020; 6:2362-2376. [PMID: 33376798 PMCID: PMC7760483 DOI: 10.1021/acscentsci.0c01379] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 05/05/2023]
Abstract
Antibodies are powerful tools that may potentially find wide applications in live-cell bioimaging, disease diagnostics, and therapeutics. Their practical applications have however remained limited thus far, owing to their inability to cross the cell membrane. Existing approaches for cytosolic delivery of functional antibodies are available, but they are constantly plagued by the need for chemical/genetic modifications, low delivery efficiency, and severe endolysosomal trapping. Consequently, it is of paramount importance to develop new strategies capable of highly efficient cytosolic delivery of native antibodies with immediate bioavailability. Herein, we report a modification-free, convenient "mix-and-go" strategy for the cytosolic delivery of native antibodies to different live mammalian cells efficiently, with minimal endolysosomal trapping and immediate bioavailability. By simply mixing a cell-permeant bioadaptor (derived from protein A or TRIM21) with a commercially available off-the-shelf antibody, the resulting noncovalent complex could be immediately used for intracellular delivery of native antibodies needed in subsequent cytosolic target engagement. The versatility of this approach was successfully illustrated in a number of applications, including antibody-based, live-cell imaging of the endogenous protein glutathionylation to detect oxidative cell stress, antibody-based activation of endogenous caspase-3, and inhibition of endogenous PTP1B activity, and finally TRIM21-mediated endogenous protein degradation for potential targeted therapy. Our results thus indicate this newly developed, "mix-and-go" antibody delivery method should have broad applications in chemical biology and future drug discovery.
Collapse
Affiliation(s)
- Shubo Du
- Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Si Si Liew
- Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Cheng-wu Zhang
- Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Wei Du
- Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Shaanxi
Institute of Flexible Electronics (SIFE) & Xi’an Key Laboratory
of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Wenjie Lang
- Key
Laboratory of Bioorganic Synthesis of Zhejiang Province, College of
Biotechnology and Bioengineering, Zhejiang
University of Technology, Hangzhou 310014, China
| | - Cassandra C. Y. Yao
- Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Lin Li
- Shaanxi
Institute of Flexible Electronics (SIFE) & Xi’an Key Laboratory
of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Jingyan Ge
- Key
Laboratory of Bioorganic Synthesis of Zhejiang Province, College of
Biotechnology and Bioengineering, Zhejiang
University of Technology, Hangzhou 310014, China
| | - Shao Q. Yao
- Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
17
|
Compromised IGF signaling causes caspase-6 activation in Huntington disease. Exp Neurol 2020; 332:113396. [DOI: 10.1016/j.expneurol.2020.113396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 11/19/2022]
|
18
|
Kaya I, Colmenarejo G. Analysis of Nuisance Substructures and Aggregators in a Comprehensive Database of Food Chemical Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8812-8824. [PMID: 32687707 DOI: 10.1021/acs.jafc.0c02521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The mechanistic understanding of the biological effects of foods involves the testing of food compounds in biochemical and biological assays. Positive results in these assays can be artifactual due to some properties of the compound: namely chemical reactivity, membrane disruption, redox cycling, etc., or through the formation of colloidal aggregates. Within the drug discovery field, a wide set of so-called "nuisance" filters have been developed to identify substructures prone to assay artifacts and/or promiscuity, e.g., the pan-assay interference compounds (PAINS) and others. In the subarea of natural products, a similar concept is the so-called invalid metabolic panaceas (IMPs). Finally, tools to identify putative aggregators have also been developed. Here, we analyzed the presence of nuisance substructures, IMPs, and aggregators in a large database of food compounds (the FooDB), which should be useful to the researchers working in the field, in order to be aware of possible artifact/promiscuity issues in their assays.
Collapse
Affiliation(s)
- Irem Kaya
- Biostatistics and Bioinformatics Unit, IMDEA Food CEI UAM+CSIC, E28049 Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food CEI UAM+CSIC, E28049 Madrid, Spain
| |
Collapse
|
19
|
Bludau I, Aebersold R. Proteomic and interactomic insights into the molecular basis of cell functional diversity. Nat Rev Mol Cell Biol 2020; 21:327-340. [PMID: 32235894 DOI: 10.1038/s41580-020-0231-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
The ability of living systems to adapt to changing conditions originates from their capacity to change their molecular constitution. This is achieved by multiple mechanisms that modulate the quantitative composition and the diversity of the molecular inventory. Molecular diversification is particularly pronounced on the proteome level, at which multiple proteoforms derived from the same gene can in turn combinatorially form different protein complexes, thus expanding the repertoire of functional modules in the cell. The study of molecular and modular diversity and their involvement in responses to changing conditions has only recently become possible through the development of new 'omics'-based screening technologies. This Review explores our current knowledge of the mechanisms regulating functional diversification along the axis of gene expression, with a focus on the proteome and interactome. We explore the interdependence between different molecular levels and how this contributes to functional diversity. Finally, we highlight several recent techniques for studying molecular diversity, with specific focus on mass spectrometry-based analysis of the proteome and its organization into functional modules, and examine future directions for this rapidly growing field.
Collapse
Affiliation(s)
- Isabell Bludau
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland. .,Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
Kim YJ, Perumalsamy H, Castro-Aceituno V, Kim D, Markus J, Lee S, Kim S, Liu Y, Yang DC. Photoluminescent And Self-Assembled Hyaluronic Acid-Zinc Oxide-Ginsenoside Rh2 Nanoparticles And Their Potential Caspase-9 Apoptotic Mechanism Towards Cancer Cell Lines. Int J Nanomedicine 2019; 14:8195-8208. [PMID: 31632027 PMCID: PMC6790350 DOI: 10.2147/ijn.s221328] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
Background Zinc oxide nanoparticles (ZnO NPs) are used in modern cancer therapy based on their specific target, efficacy, low toxicity and biocompatibility. The photocatalytic performance of Zinc oxide (ZnO) nanocomposites with hyaluronic acid (HA) was used to study anticancer properties against various human cancer cell lines. Methods Zinc oxide (ZnO) nanocomposites functionalized by hyaluronic acid (HA) were prepared by a co-precipitation method (HA-ZnONcs). The submicron-flower-shaped nanocomposites were further functionalized with ginsenoside Rh2 by a cleavable ester bond via carbodiimide chemistry to form Rh2HAZnO. The physicochemical behaviors of the synthesized ZnO nanocomposites were characterized by various analytical and spectroscopic techniques. We carried out 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay to evaluate the toxicity of Rh2HAZnO in various human cancer cells (A549, MCF-7, and HT29). Furthermore, to confirm the apoptotic effects of Rh2HAZnO and to determine the role of the Caspase-9/p38 MAPK pathways by various molecular techniques such as RT-PCR and Western blotting. Furthermore, Rh2HAZnO induced morphological changes of these cell lines, mainly intracellular reactive oxygen species (ROS) were observed by ROS staining and nucleus by Hoechst staining. Results We confirmed that Rh2HAZnO exhibits the anti-cancer effects on A549 lung cancer, HT29 colon cancer, and MCF7 breast cancer cells. Moreover, intracellular reactive oxygen species (ROS) were observed in three cancer cell lines. Rh2HAZnO induced apoptotic process through p53-mediated pathway by upregulating p53 and BAX and downregulating BCL2. Specifically, Rh2HAZnO induced activation of cleaved PARP (Asp214) in A549 lung cancer cells and upregulated Caspase-9/phosphorylation of p38 MAPK in other cell lines (HT29 and MCF-7). Furthermore, Rh2HAZnO induced morphological changes in the nucleus of these cell lines. Conclusion These results suggest that the potential anticancer activity of novel Rh2HAZnO nanoparticles might be linked to induction of apoptosis through the generation of ROS by activation of the Caspase-9/p38 MAPK pathway.
Collapse
Affiliation(s)
- Yeon Ju Kim
- Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Haribalan Perumalsamy
- Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Verónica Castro-Aceituno
- Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering/School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Josua Markus
- Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Seungah Lee
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Science, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Kim
- Center for Global Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| | - Ying Liu
- Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Deok Chun Yang
- Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
21
|
Lin A, Giuliano CJ, Palladino A, John KM, Abramowicz C, Yuan ML, Sausville EL, Lukow DA, Liu L, Chait AR, Galluzzo ZC, Tucker C, Sheltzer JM. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Transl Med 2019; 11:eaaw8412. [PMID: 31511426 PMCID: PMC7717492 DOI: 10.1126/scitranslmed.aaw8412] [Citation(s) in RCA: 442] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/19/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Ninety-seven percent of drug-indication pairs that are tested in clinical trials in oncology never advance to receive U.S. Food and Drug Administration approval. While lack of efficacy and dose-limiting toxicities are the most common causes of trial failure, the reason(s) why so many new drugs encounter these problems is not well understood. Using CRISPR-Cas9 mutagenesis, we investigated a set of cancer drugs and drug targets in various stages of clinical testing. We show that-contrary to previous reports obtained predominantly with RNA interference and small-molecule inhibitors-the proteins ostensibly targeted by these drugs are nonessential for cancer cell proliferation. Moreover, the efficacy of each drug that we tested was unaffected by the loss of its putative target, indicating that these compounds kill cells via off-target effects. By applying a genetic target-deconvolution strategy, we found that the mischaracterized anticancer agent OTS964 is actually a potent inhibitor of the cyclin-dependent kinase CDK11 and that multiple cancer types are addicted to CDK11 expression. We suggest that stringent genetic validation of the mechanism of action of cancer drugs in the preclinical setting may decrease the number of therapies tested in human patients that fail to provide any clinical benefit.
Collapse
Affiliation(s)
- Ann Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Christopher J Giuliano
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Ann Palladino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kristen M John
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Hofstra University, Hempstead, NY 11549, USA
| | - Connor Abramowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- New York Institute of Technology, Glen Head, NY 11545, USA
| | - Monet Lou Yuan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Syosset High School, Syosset, NY 11791, USA
| | - Erin L Sausville
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Devon A Lukow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Luwei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | - Clara Tucker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Jason M Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
22
|
Abd-Allah WH, Salman A, Sabry Saad S. Anticancer activity of newly synthesized 1,1-disubstituted cyclohexane-1-carboxamides: in vitro caspases mediated apoptosis activators in human cancer cell lines and their molecular modeling. Drug Dev Res 2019; 80:933-947. [PMID: 31343754 DOI: 10.1002/ddr.21573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/26/2019] [Accepted: 07/04/2019] [Indexed: 01/02/2023]
Abstract
Novel 1,1-disubstituted cyclohexane-1-carboxamides 6a-h, 7a-e, and 8a-b were designed and synthesized as apoptotic inducers. Cytotoxicity test revealed that some compounds have strong to moderate effect, while others displayed weak action against different cancer cell lines including, MCF-7, HepG2, A549, and HTC-116. A549 carcinoma cell line exhibited higher sensitivity toward all synthesized candidates especially compounds 6a and 8a which offered the lowest IC50 values 3.03 and 5.21 μM, respectively, relative to the positive control doxorubicin with IC50 value of 3.01 μM. Compared to doxorubicin treatment, compounds 6a and 8a induced caspases-3, -8, and -9 activities and G2/M growth arrest in A549 carcinoma cell line. The expression levels of p53 (tumor suppressor protein that in humans is encoded by the TP53 gene), Bax (apoptosis regulator protein in humans that is encoded by bax gene), and the Bax/Bcl-2 ratio were all higher than those in doxorubicin-treated cells (Bcl-2, B-cell lymphoma 2, encoded in humans by the Bcl-2 gene). Additionally, compounds 6a and 8a appeared to exhibit higher selectivity against MCF-10 human breast normal cell line. The synthesized congeners could be considered as potent apoptotic inducers interfering with extrinsic and intrinsic apoptotic pathways. Moreover, compound 6a was able to form complex with zinc ions as indicated by UV spectrophotometry which revealed its ability for being caspase activator. Molecular docking studies expected the interactions and binding modes of the synthesized inhibitors in the caspase-3 active site.
Collapse
Affiliation(s)
- Walaa Hamada Abd-Allah
- Pharmaceutical Chemistry Department, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science & Technology, Giza, Egypt
| | - Asmaa Salman
- Department of Medicinal and Pharmaceutical Chemistry (Pharmacology Group), National Research Centre, Giza, Egypt
| | - Samah Sabry Saad
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science & Technology, Giza, Egypt
| |
Collapse
|
23
|
Takashima I, Kusamori K, Hakariya H, Takashima M, Vu TH, Mizukami Y, Noda N, Takayama Y, Katsuda Y, Sato SI, Takakura Y, Nishikawa M, Uesugi M. Multifunctionalization of Cells with a Self-Assembling Molecule to Enhance Cell Engraftment. ACS Chem Biol 2019; 14:775-783. [PMID: 30807095 DOI: 10.1021/acschembio.9b00109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell-based therapy is a promising approach to restoring lost functions to compromised organs. However, the issue of inefficient cell engraftment remains to be resolved. Herein, we take a chemical approach to facilitate cell engraftment by using self-assembling molecules which modify two cellular traits: cell survival and invasiveness. In this system, the self-assembling molecule induces syndecan-4 clusters on the cellular surface, leading to enhanced cell viability. Further integration with Halo-tag technology provided this self-assembly structure with matrix metalloproteinase-2 to functionalize cells with cell-invasion activity. In vivo experiments showed that the pretreated cells were able to survive injection and then penetrate and engraft into the host tissue, demonstrating that the system enhances cell engraftment. Therefore, cell-surface modification via an alliance between self-assembling molecules and ligation technologies may prove to be a promising method for cell engraftment.
Collapse
Affiliation(s)
- Ippei Takashima
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kosuke Kusamori
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Hayase Hakariya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Megumi Takashima
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Thi Hue Vu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuya Mizukami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Naotaka Noda
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yukiya Takayama
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yousuke Katsuda
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shin-ichi Sato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshinobu Takakura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Makiya Nishikawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Motonari Uesugi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
24
|
Zhang J, Chai X, He XP, Kim HJ, Yoon J, Tian H. Fluorogenic probes for disease-relevant enzymes. Chem Soc Rev 2019; 48:683-722. [PMID: 30520895 DOI: 10.1039/c7cs00907k] [Citation(s) in RCA: 405] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Traditional biochemical methods for enzyme detection are mainly based on antibody-based immunoassays, which lack the ability to monitor the spatiotemporal distribution and, in particular, the in situ activity of enzymes in live cells and in vivo. In this review, we comprehensively summarize recent progress that has been made in the development of small-molecule as well as material-based fluorogenic probes for sensitive detection of the activities of enzymes that are related to a number of human diseases. The principles utilized to design these probes as well as their applications are reviewed. Specific attention is given to fluorogenic probes that have been developed for analysis of the activities of enzymes including oxidases and reductases, those that act on biomacromolecules including DNAs, proteins/peptides/amino acids, carbohydrates and lipids, and those that are responsible for translational modifications. We envision that this review will serve as an ideal reference for practitioners as well as beginners in relevant research fields.
Collapse
Affiliation(s)
- Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | | | | | | | | | | |
Collapse
|
25
|
Ma J, Ni X, Gao Y, Huang K, Wang Y, Liu J, Gong G. Semicarbazone Derivatives Bearing Phenyl Moiety: Synthesis, Anticancer Activity, Cell Cycle, Apoptosis-Inducing and Metabolic Stability Study. Chem Pharm Bull (Tokyo) 2019; 67:351-360. [PMID: 30674756 DOI: 10.1248/cpb.c18-00738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of semicarbazone derivatives bearing phenyl moiety were synthesized and evaluated for the vitro anticancer activities in four human cancer cell lines (human colon cancer (HT29), human neuro-blastoma (SK-N-SH), human breast cancer (MDA-MB-231), and human gastric cancer (MKN45)). Biological evaluation led to the identification of 11q and 11s, which showed excellent anticancer activities against tested cancer cell lines with IC50 values ranging from 0.32 to 1.57 µM, respectively, while exhibiting weak cytotoxicity on the normal cells (human umbilical vein endothelial cell (HUVEC)). Flow cytometric assay for cell cycle and apoptosis revealed that 11q and 11s caused an arrest in the Sub-G1 cell cycle and inhibited proliferation of cancer cells by inducing apoptosis in a dose-dependent manner. Further enzymatic assay suggested that 11q and 11s could significantly activated procaspase-3 to caspase-3. Metabolic stability study indicated that 11q and 11s showed moderate stability in vitro in human and rat liver microsomes. In view of promising pharmacological activities of 11q and 11s, which had emerged as the valuable lead for further development in the treatment for cancer.
Collapse
Affiliation(s)
| | - Xin Ni
- Medical College, Huaqiao University
| | - Yali Gao
- Pharmacy Department, the Second Affiliated Hospital of Fujian Medical University
| | | | - Yu Wang
- Medical College, Huaqiao University
| | - Jiaan Liu
- Department of Chemistry, University of Massachusetts-Amherst
| | - Guowei Gong
- Department of Pharmaceutical Sciences, Zunyi Medical College Zhuhai Campus
| |
Collapse
|
26
|
Magnetic silica nanoparticles for use in matrix-assisted laser desorption ionization mass spectrometry of labile biomolecules such as oligosaccharides, amino acids, peptides and nucleosides. Mikrochim Acta 2019; 186:104. [DOI: 10.1007/s00604-018-3208-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/23/2018] [Indexed: 10/27/2022]
|
27
|
Ivarsson ME, Durantie E, Huberli C, Huwiler S, Hegde C, Friedman J, Altamura F, Lu J, Verdu EF, Bercik P, Logan SM, Chen W, Leroux JC, Castagner B. Small-Molecule Allosteric Triggers of Clostridium difficile Toxin B Auto-proteolysis as a Therapeutic Strategy. Cell Chem Biol 2019; 26:17-26.e13. [DOI: 10.1016/j.chembiol.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/27/2018] [Accepted: 09/28/2018] [Indexed: 01/19/2023]
|
28
|
Development of a high-content imaging assay for screening compound aggregation. Anal Biochem 2018; 559:30-33. [PMID: 30142329 DOI: 10.1016/j.ab.2018.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
Aggregated compounds can promiscuously and nonspecifically associate with proteins resulting in either false inhibition or activation of many different protein target classes. We developed a high-content imaging assay in a 384-well format using fluorescently labeled target proteins and an Operetta cell imager to screen for compound aggregates that interact with target proteins. The high-throughput assay can not only directly detect the interaction between compound aggregators and the target of interest, but also determine the critical aggregation concentration (CAC) of a given promiscuous small molecule.
Collapse
|
29
|
Li F, Wei A, Bu L, Long L, Chen W, Wang C, Zhao C, Wang L. Procaspase-3-activating compound 1 stabilizes hypoxia-inducible factor 1α and induces DNA damage by sequestering ferrous iron. Cell Death Dis 2018; 9:1025. [PMID: 30287840 PMCID: PMC6172261 DOI: 10.1038/s41419-018-1038-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022]
Abstract
Procaspase-3-activating compound 1 (PAC-1) induces procaspase-3 activation via zinc chelation. However, whether PAC-1 employs other mechanisms remains unknown. Here we systematically screened for potent PAC-1 targets using 29 enhanced green fluorescent protein-labeled reporter cell lines and identified hypoxia-inducible factor 1α (HIF1α) and RAD51 pathways as PAC-1 targets. These results were verified in HepG2 cells and two other cancer cell lines. Mechanistically, PAC-1 specifically blocked HIF1α hydroxylation and upregulated HIF1α target genes. In addition, DNA damage, G1/S cell cycle arrest, and the inhibition of DNA synthesis were induced following PAC-1 administration. Interestingly, by using ferrozine-iron sequestration and iron titration assays, we uncovered the iron sequestering capacity of PAC-1. Additionally, the expression levels of iron shortage-related genes were also increased in PAC-1-treated cells, and iron (II) supplementation reversed all of the observed cellular responses. Thus, our results indicate that PAC-1 induces HIF1α stabilization and DNA damage by sequestering ferrous iron.
Collapse
Affiliation(s)
- Feifei Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Beijing Normal University, Beijing, 100875, China
| | - Aili Wei
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Beijing Normal University, Beijing, 100875, China
| | - Lijuan Bu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Long Long
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Wei Chen
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Chen Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Beijing Normal University, Beijing, 100875, China
| | - Changqi Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Beijing Normal University, Beijing, 100875, China.
| | - Lili Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China.
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
| |
Collapse
|
30
|
Zhou L, Qiu T, Lv F, Liu L, Ying J, Wang S. Self-Assembled Nanomedicines for Anticancer and Antibacterial Applications. Adv Healthc Mater 2018; 7:e1800670. [PMID: 30080319 DOI: 10.1002/adhm.201800670] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/03/2018] [Indexed: 01/28/2023]
Abstract
Self-assembly strategies have been widely applied in the nanomedicine field, which provide a convenient approach for building various structures for delivery carriers. When cooperating with biomolecules, self-assembly systems have significant influence on the cell activity and life process and could be used for regulating nanodrug activity. In this review, self-assembled nanomedicines are introduced, including materials, encapsulation, and releasing strategies, where self-assembly strategies are involved. Furthermore, as a promising and emerging area for nanomedicine, in situ self-assembly of anticancer drugs and supramolecular antibiotic switches is also discussed about how to regulate drug activity. Selective pericellular assembly can block mass transformation of cancer cells inducing cell apoptosis, and the intracellular assembly can either cause cell death or effectively avoid drug elimination from cytosol of cancer cells because of the assembly-induced retention (AIR) effect. Host-guest interactions of drug and competitive molecules offer reversible regulations of antibiotic activity, which can reduce drug-resistance and inhibit the generation of drug-resistant bacteria. Finally, the challenges and development trend in the field are discussed.
Collapse
Affiliation(s)
- Lingyun Zhou
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- College of Chemistry; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Tian Qiu
- Department of Pathology; National Cancer Center/National Clinical Research Center for; Cancer/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100021 P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Jianming Ying
- Department of Pathology; National Cancer Center/National Clinical Research Center for; Cancer/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100021 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- College of Chemistry; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
31
|
Dong N, Liu X, Zhao T, Wang L, Li H, Zhang S, Li X, Bai X, Zhang Y, Yang B. Apoptosis-inducing effects and growth inhibitory of a novel chalcone, in human hepatic cancer cells and lung cancer cells. Biomed Pharmacother 2018; 105:195-203. [PMID: 29857299 DOI: 10.1016/j.biopha.2018.05.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
Apoptosis is an important biological phenomenon, which affects many diseases, such as cancer and Alzheimer's disease. In the present study, we observed that chalcone 9X, an aromatic ketone, induced apoptosis of human hepatic and lung cancer cells and inhibited cancer cell migration and invasion. This compound strongly suppressed the growth of tumor in a mouse model of xenograft tumors. The anticancer activity of chalcone 9X was equivalent to 5-fluorouracil (5-FU) as a positive control agent, whereas the toxic effect of chalcone 9X in non-cancer cells was weaker than 5-FU. Molecular docking results showed that chalcone 9X could act on the active sites of pro-apoptotic proteins capspases-3 and -8 to induce apoptotic death of cancer cells. Our findings suggest that chalcone 9X might be considered a candidate compound of novel anticancer drug in the future.
Collapse
Affiliation(s)
- Naiwei Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutis of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China; Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Baojian Road 157, Nangang District, Harbin 150081, PR China
| | - Xin Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutis of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Tong Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutis of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Lei Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutis of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Huimin Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutis of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Shuqian Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutis of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Xia Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutis of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Xue Bai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutis of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Yong Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutis of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| | - Baofeng Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutis of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
32
|
Vance NR, Gakhar L, Spies MA. Allosteric Tuning of Caspase-7: A Fragment-Based Drug Discovery Approach. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicholas R. Vance
- Division of Medicinal and Natural Products Chemistry; College of Pharmacy; University of Iowa; 115 S Grand Ave Iowa City IA 52242 USA
| | - Lokesh Gakhar
- Department of Biochemistry; College of Medicine; University of Iowa; 51 Newton Road Iowa City IA 52242 USA
- Protein Crystallography Facility; Roy J. and Lucille A. Carver College of Medicine; University of Iowa; 51 Newton Road Iowa City IA 52242 USA
| | - M. Ashley Spies
- Division of Medicinal and Natural Products Chemistry; College of Pharmacy; University of Iowa; 115 S Grand Ave Iowa City IA 52242 USA
- Department of Biochemistry; College of Medicine; University of Iowa; 51 Newton Road Iowa City IA 52242 USA
| |
Collapse
|
33
|
Dual protein kinase and nucleoside kinase modulators for rationally designed polypharmacology. Nat Commun 2017; 8:1420. [PMID: 29127277 PMCID: PMC5681654 DOI: 10.1038/s41467-017-01582-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023] Open
Abstract
Masitinib, a highly selective protein kinase inhibitor, can sensitise gemcitabine-refractory cancer cell lines when used in combination with gemcitabine. Here we report a reverse proteomic approach that identifies the target responsible for this sensitisation: the deoxycytidine kinase (dCK). Masitinib, as well as other protein kinase inhibitors, such as imatinib, interact with dCK and provoke an unforeseen conformational-dependent activation of this nucleoside kinase, modulating phosphorylation of nucleoside analogue drugs. This phenomenon leads to an increase of prodrug phosphorylation of most of the chemotherapeutic drugs activated by this nucleoside kinase. The unforeseen dual activity of protein kinase inhibition/nucleoside kinase activation could be of great therapeutic benefit, through either reducing toxicity of therapeutic agents by maintaining effectiveness at lower doses or by counteracting drug resistance initiated via down modulation of dCK target. Masitinib is a protein kinase inhibitor that sensitises refractory pancreatic adenocarcinoma cells to treatment with the nucleoside analog gemcitabine. Here the authors show that Masitinib activates deoxycytidine kinase to enhance phosphorylation of nucleoside analogue pro-drugs, increasing their potency.
Collapse
|
34
|
Vance NR, Gakhar L, Spies MA. Allosteric Tuning of Caspase-7: A Fragment-Based Drug Discovery Approach. Angew Chem Int Ed Engl 2017; 56:14443-14447. [PMID: 28940929 PMCID: PMC5698726 DOI: 10.1002/anie.201706959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/28/2017] [Indexed: 11/12/2022]
Abstract
The caspase family of cysteine proteases are highly sought‐after drug targets owing to their essential roles in apoptosis, proliferation, and inflammation pathways. High‐throughput screening efforts to discover inhibitors have gained little traction. Fragment‐based screening has emerged as a powerful approach for the discovery of innovative drug leads. This method has become a central facet of drug discovery campaigns in the pharmaceutical industry and academia. A fragment‐based drug discovery campaign against human caspase‐7 resulted in the discovery of a novel series of allosteric inhibitors. An X‐ray crystal structure of caspase‐7 bound to a fragment hit and a thorough kinetic characterization of a zymogenic form of the enzyme were used to investigate the allosteric mechanism of inhibition. This work further advances our understanding of the mechanisms of allosteric control of this class of pharmaceutically relevant enzymes, and provides a new path forward for drug discovery efforts.
Collapse
Affiliation(s)
- Nicholas R Vance
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, 115 S Grand Ave, Iowa City, IA, 52242, USA
| | - Lokesh Gakhar
- Department of Biochemistry, College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA, 52242, USA.,Protein Crystallography Facility, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA, 52242, USA
| | - M Ashley Spies
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, 115 S Grand Ave, Iowa City, IA, 52242, USA.,Department of Biochemistry, College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA, 52242, USA
| |
Collapse
|
35
|
Shi R, Dai X, Li W, Lu F, Liu Y, Qu H, Li H, Chen Q, Tian H, Wu E, Wang Y, Zhou R, Lee ST, Lifshitz Y, Kang Z, Liu J. Hydroxyl-Group-Dominated Graphite Dots Reshape Laser Desorption/Ionization Mass Spectrometry for Small Biomolecular Analysis and Imaging. ACS NANO 2017; 11:9500-9513. [PMID: 28850220 DOI: 10.1021/acsnano.7b05328] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Small molecules play critical roles in life science, yet their facile detection and imaging in physiological or pathological settings remain a challenge. Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) is a powerful tool for molecular analysis. However, conventional organic matrices (CHCA, DHB, etc.) used in assisting analyte ionization suffer from intensive background noise in the mass region below m/z 700, which hinders MALDI MS applications for small-molecule detection. Here, we report that a hydroxyl-group-dominated graphite dot (GD) matrix overcomes limitations of conventional matrices and allows MALDI MS to be used in fast and high-throughput analysis of small biomolecules. GDs exhibit extremely low background noise and ultrahigh sensitivity (with limit of detection <1 fmol) in MALDI MS. This approach allows identification of complex oligosaccharides, detection of low-molecular-weight components in traditional Chinese herbs, and facile analysis of puerarin and its metabolites in serum without purification. Moreover, we show that the GDs provide an effective matrix for the direct imaging or spatiotemporal mapping of small molecules and their metabolites (m/z < 700) simultaneously at the suborgan tissue level. Density functional theory calculations further provide the mechanistic basis of GDs as an effective MALDI matrix in both the positive-ion and negative-ion modes. Collectively, our work uncovered a useful matrix which reshapes MALDI MS technology for a wide range of applications in biology and medicine.
Collapse
Affiliation(s)
| | | | | | - Fang Lu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine , Beijing 100029, China
| | | | - Huihua Qu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine , Beijing 100029, China
| | | | - Qiongyang Chen
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang Province 310027, China
| | - He Tian
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang Province 310027, China
| | | | - Yong Wang
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University , Shenzhen, Guangdong Province 518060, China
| | - Ruhong Zhou
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| | | | - Yeshayahu Lifshitz
- Department of Materials Science and Engineering, Technion Israel Institute of Technology , Haifa 3200003, Israel
| | | | | |
Collapse
|
36
|
Engineering a light-activated caspase-3 for precise ablation of neurons in vivo. Proc Natl Acad Sci U S A 2017; 114:E8174-E8183. [PMID: 28893998 DOI: 10.1073/pnas.1705064114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The circuitry of the brain is characterized by cell heterogeneity, sprawling cellular anatomy, and astonishingly complex patterns of connectivity. Determining how complex neural circuits control behavior is a major challenge that is often approached using surgical, chemical, or transgenic approaches to ablate neurons. However, all these approaches suffer from a lack of precise spatial and temporal control. This drawback would be overcome if cellular ablation could be controlled with light. Cells are naturally and cleanly ablated through apoptosis due to the terminal activation of caspases. Here, we describe the engineering of a light-activated human caspase-3 (Caspase-LOV) by exploiting its natural spring-loaded activation mechanism through rational insertion of the light-sensitive LOV2 domain that expands upon illumination. We apply the light-activated caspase (Caspase-LOV) to study neurodegeneration in larval and adult Drosophila Using the tissue-specific expression system (UAS)-GAL4, we express Caspase-LOV specifically in three neuronal cell types: retinal, sensory, and motor neurons. Illumination of whole flies or specific tissues containing Caspase-LOV-induced cell death and allowed us to follow the time course and sequence of neurodegenerative events. For example, we find that global synchronous activation of caspase-3 drives degeneration with a different time-course and extent in sensory versus motor neurons. We believe the Caspase-LOV tool we engineered will have many other uses for neurobiologists and others for specific temporal and spatial ablation of cells in complex organisms.
Collapse
|
37
|
Pisco JP, de Chiara C, Pacholarz KJ, Garza-Garcia A, Ogrodowicz RW, Walker PA, Barran PE, Smerdon SJ, de Carvalho LPS. Uncoupling conformational states from activity in an allosteric enzyme. Nat Commun 2017; 8:203. [PMID: 28781362 PMCID: PMC5545217 DOI: 10.1038/s41467-017-00224-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/13/2017] [Indexed: 02/07/2023] Open
Abstract
ATP-phosphoribosyltransferase (ATP-PRT) is a hexameric enzyme in conformational equilibrium between an open and seemingly active state and a closed and presumably inhibited form. The structure-function relationship of allosteric regulation in this system is still not fully understood. Here, we develop a screening strategy for modulators of ATP-PRT and identify 3-(2-thienyl)-l-alanine (TIH) as an allosteric activator of this enzyme. Kinetic analysis reveals co-occupancy of the allosteric sites by TIH and l-histidine. Crystallographic and native ion-mobility mass spectrometry data show that the TIH-bound activated form of the enzyme closely resembles the inhibited l-histidine-bound closed conformation, revealing the uncoupling between ATP-PRT open and closed conformations and its functional state. These findings suggest that dynamic processes are responsible for ATP-PRT allosteric regulation and that similar mechanisms might also be found in other enzymes bearing a ferredoxin-like allosteric domain. Active and inactive state ATP-phosphoribosyltransferases (ATP-PRTs) are believed to have different conformations. Here the authors show that in both states, ATP-PRT has a similar structural arrangement, suggesting that dynamic alterations are involved in ATP-PRT regulation by allosteric modulators.
Collapse
Affiliation(s)
- João P Pisco
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Cesira de Chiara
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Kamila J Pacholarz
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology & School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Acely Garza-Garcia
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Roksana W Ogrodowicz
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Philip A Walker
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology & School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Stephen J Smerdon
- Structural Biology of DNA-damage Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Luiz Pedro S de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
38
|
Hart KM, Moeder KE, Ho CMW, Zimmerman MI, Frederick TE, Bowman GR. Designing small molecules to target cryptic pockets yields both positive and negative allosteric modulators. PLoS One 2017; 12:e0178678. [PMID: 28570708 PMCID: PMC5453556 DOI: 10.1371/journal.pone.0178678] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/17/2017] [Indexed: 11/28/2022] Open
Abstract
Allosteric drugs, which bind to proteins in regions other than their main ligand-binding or active sites, make it possible to target proteins considered “undruggable” and to develop new therapies that circumvent existing resistance. Despite growing interest in allosteric drug discovery, rational design is limited by a lack of sufficient structural information about alternative binding sites in proteins. Previously, we used Markov State Models (MSMs) to identify such “cryptic pockets,” and here we describe a method for identifying compounds that bind in these cryptic pockets and modulate enzyme activity. Experimental tests validate our approach by revealing both an inhibitor and two activators of TEM β-lactamase (TEM). To identify hits, a library of compounds is first virtually screened against either the crystal structure of a known cryptic pocket or an ensemble of structures containing the same cryptic pocket that is extracted from an MSM. Hit compounds are then screened experimentally and characterized kinetically in individual assays. We identify three hits, one inhibitor and two activators, demonstrating that screening for binding to allosteric sites can result in both positive and negative modulation. The hit compounds have modest effects on TEM activity, but all have higher affinities than previously identified inhibitors, which bind the same cryptic pocket but were found, by chance, via a computational screen targeting the active site. Site-directed mutagenesis of key contact residues predicted by the docking models is used to confirm that the compounds bind in the cryptic pocket as intended. Because hit compounds are identified from docking against both the crystal structure and structures from the MSM, this platform should prove suitable for many proteins, particularly targets whose crystal structures lack obvious druggable pockets, and for identifying both inhibitory and activating small-molecule modulators.
Collapse
Affiliation(s)
- Kathryn M. Hart
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Katelyn E. Moeder
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Chris M. W. Ho
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Maxwell I. Zimmerman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Thomas E. Frederick
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gregory R. Bowman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biomedical Engineering, and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
39
|
Aldrich C, Bertozzi C, Georg GI, Kiessling L, Lindsley C, Liotta D, Merz KM, Schepartz A, Wang S. The Ecstasy and Agony of Assay Interference Compounds. ACS Infect Dis 2017; 3:259-262. [PMID: 28244723 DOI: 10.1021/acsinfecdis.7b00023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Aldrich C, Bertozzi C, Georg GI, Kiessling L, Lindsley C, Liotta D, Merz KM, Schepartz A, Wang S. The Ecstasy and Agony of Assay Interference Compounds. ACS Med Chem Lett 2017; 8:379-382. [PMID: 28435522 DOI: 10.1021/acsmedchemlett.7b00056] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
41
|
Rizk SS, Mukherjee S, Koide A, Koide S, Kossiakoff AA. Targeted rescue of cancer-associated IDH1 mutant activity using an engineered synthetic antibody. Sci Rep 2017; 7:556. [PMID: 28373671 PMCID: PMC5429742 DOI: 10.1038/s41598-017-00728-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/10/2017] [Indexed: 01/01/2023] Open
Abstract
We have utilized a high-diversity phage display library to engineer antibody fragments (Fabs) that can modulate the activity of the enzyme isocitrate dehydrogenase 1 (IDH1). We show that a conformation-specific Fab can reactivate an IDH1 mutant associated with brain tumors. The results show that this strategy is a first step towards developing "activator drugs" for a large number of genetic disorders where mutations have disrupted protein function.
Collapse
Affiliation(s)
- Shahir S Rizk
- Department of Chemistry and Biochemistry, Indiana University South Bend, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, Indiana, USA.
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Akiko Koide
- Perlmutter Cancer Cener, New York University Langone Medical Center, New York, USA.,Department of Medicine, New York University School of Medicine, New York, USA
| | - Shohei Koide
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,Perlmutter Cancer Cener, New York University Langone Medical Center, New York, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
42
|
Aldrich C, Bertozzi C, Georg GI, Kiessling L, Lindsley C, Liotta D, Merz KM, Schepartz A, Wang S. The Ecstasy and Agony of Assay Interference Compounds. ACS CENTRAL SCIENCE 2017; 3:143-147. [PMID: 28386587 PMCID: PMC5364449 DOI: 10.1021/acscentsci.7b00069] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
43
|
Aldrich C, Bertozzi C, Georg GI, Kiessling L, Lindsley C, Liotta D, Merz KM, Schepartz A, Wang S. The Ecstasy and Agony of Assay Interference Compounds. ACS Chem Biol 2017; 12:575-578. [PMID: 28244728 DOI: 10.1021/acschembio.7b00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
Aldrich C, Bertozzi C, Georg GI, Kiessling L, Lindsley C, Liotta D, Merz KM, Schepartz A, Wang S. The Ecstasy and Agony of Assay Interference Compounds. ACS Chem Neurosci 2017; 8:420-423. [PMID: 28244737 DOI: 10.1021/acschemneuro.7b00064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
45
|
Aldrich C, Bertozzi C, Georg GI, Kiessling L, Lindsley C, Liotta D, Merz KM, Schepartz A, Wang S. The Ecstasy and Agony of Assay Interference Compounds. J Chem Inf Model 2017; 57:387-390. [PMID: 28244743 DOI: 10.1021/acs.jcim.7b00105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Aldrich C, Bertozzi C, Georg GI, Kiessling L, Lindsley C, Liotta D, Merz KM, Schepartz A, Wang S. The Ecstasy and Agony of Assay Interference Compounds. J Med Chem 2017; 60:2165-2168. [PMID: 28244745 DOI: 10.1021/acs.jmedchem.7b00229] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
47
|
Aldrich C, Bertozzi C, Georg GI, Kiessling L, Lindsley C, Liotta D, Merz KM, Schepartz A, Wang S. The Ecstasy and Agony of Assay Interference Compounds. Biochemistry 2017; 56:1363-1366. [PMID: 28244742 DOI: 10.1021/acs.biochem.7b00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Abstract
Designing drugs that can simultaneously interact with multiple targets is a promising approach for treating complicated diseases. Compared to using combinations of single target drugs, multitarget drugs have advantages of higher efficacy, improved safety profile, and simpler administration. Many in silico methods have been developed to approach different aspects of this polypharmacology-guided drug design, particularly for drug repurposing and multitarget drug design. In this review, we summarize recent progress in computational multitarget drug design and discuss their advantages and limitations. Perspectives for future drug development will also be discussed.
Collapse
Affiliation(s)
- Weilin Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (AAIS), Peking University , Beijing 100871, People's Republic of China
| | - Jianfeng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies (AAIS), Peking University , Beijing 100871, People's Republic of China
| | - Luhua Lai
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (AAIS), Peking University , Beijing 100871, People's Republic of China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies (AAIS), Peking University , Beijing 100871, People's Republic of China.,BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China
| |
Collapse
|
49
|
Duan D, Torosyan H, Elnatan D, McLaughlin CK, Logie J, Shoichet MS, Agard DA, Shoichet BK. Internal Structure and Preferential Protein Binding of Colloidal Aggregates. ACS Chem Biol 2017; 12:282-290. [PMID: 27983786 DOI: 10.1021/acschembio.6b00791] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Colloidal aggregates of small molecules are the most common artifact in early drug discovery, sequestering and inhibiting target proteins without specificity. Understanding their structure and mechanism has been crucial to developing tools to control for, and occasionally even exploit, these particles. Unfortunately, their polydispersity and transient stability have prevented exploration of certain elementary properties, such as how they pack. Dye-stabilized colloidal aggregates exhibit enhanced homogeneity and stability when compared to conventional colloidal aggregates, enabling investigation of some of these properties. By small-angle X-ray scattering and multiangle light scattering, pair distance distribution functions suggest that the dye-stabilized colloids are filled, not hollow, spheres. Stability of the coformulated colloids enabled investigation of their preference for binding DNA, peptides, or folded proteins, and their ability to purify one from the other. The coformulated colloids showed little ability to bind DNA. Correspondingly, the colloids preferentially sequestered protein from even a 1600-fold excess of peptides that are themselves the result of a digest of the same protein. This may reflect the avidity advantage that a protein has in a surface-to-surface interaction with the colloids. For the first time, colloids could be shown to have preferences of up to 90-fold for particular proteins over others. Loaded onto the colloids, bound enzyme could be spun down, resuspended, and released back into buffer, regaining most of its activity. Implications of these observations for colloid mechanisms and utility will be considered.
Collapse
Affiliation(s)
- Da Duan
- Department of Pharmaceutical Chemistry & Quantitative Biology Institute, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94158-2550, United States
| | - Hayarpi Torosyan
- Department of Pharmaceutical Chemistry & Quantitative Biology Institute, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94158-2550, United States
| | - Daniel Elnatan
- Howard
Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, United States
| | - Christopher K. McLaughlin
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada M5S 3G9
| | - Jennifer Logie
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada M5S 3G9
| | - Molly S. Shoichet
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada M5S 3G9
| | - David A. Agard
- Howard
Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, United States
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry & Quantitative Biology Institute, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94158-2550, United States
| |
Collapse
|
50
|
Modi S, Kir D, Banerjee S, Saluja A. Control of Apoptosis in Treatment and Biology of Pancreatic Cancer. J Cell Biochem 2016. [PMID: 26206252 DOI: 10.1002/jcb.25284] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer is estimated to be the 12th most common cancer in the United States in 2014 and yet this malignancy is the fourth leading cause of cancer-related death in the United States. Late detection and resistance to therapy are the major causes for its dismal prognosis. Apoptosis is an actively orchestrated cell death mechanism that serves to maintain tissue homoeostasis. Cancer develops from normal cells by accruing significant changes through one or more mechanisms, leading to DNA damage and mutations, which in a normal cell would induce this programmed cell death pathway. As a result, evasion of apoptosis is one of the hallmarks of cancer cells. PDAC is notoriously resistant to apoptosis, thereby explaining its aggressive nature and resistance to conventional treatment modalities. The current review is focus on understanding different intrinsic and extrinsic pathways in pancreatic cancer that may affect apoptosis in this disease.
Collapse
Affiliation(s)
- Shrey Modi
- Division of Basic and Translational Research, Department of Surgery, Minneapolis, Minnesota
| | - Devika Kir
- Division of Basic and Translational Research, Department of Surgery, Minneapolis, Minnesota
| | - Sulagna Banerjee
- Division of Basic and Translational Research, Department of Surgery, Minneapolis, Minnesota
| | - Ashok Saluja
- Division of Basic and Translational Research, Department of Surgery, Minneapolis, Minnesota
| |
Collapse
|