1
|
Dai G, Li Y, Zhang M, Lu P, Zhang Y, Wang H, Shi L, Cao M, Shen R, Rui Y. The Regulation of the AMPK/mTOR Axis Mitigates Tendon Stem/Progenitor Cell Senescence and Delays Tendon Aging. Stem Cell Rev Rep 2023; 19:1492-1506. [PMID: 36917311 DOI: 10.1007/s12015-023-10526-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 03/16/2023]
Abstract
Age-related tendon disorders are closely linked with tendon stem/progenitor cell (TSPC) senescence. However, the underlying mechanisms of TSPC senescence and promising therapeutic strategies for rejuvenation of TSPC senescence remain unclear. In this study, the senescent state of TSPCs increased with age. It was also verified that the AMPK inhibition/mTOR activation is correlated with the senescent state of TSPCs. Furthermore, a low dose of metformin mitigated TSPC senescence and restored senescence-related functions, including proliferation, colony-forming ability, migration ability and tenogenic differentiation ability at the early stage of aging. The protective effects of metformin on TSPCs were regulated through the AMPK/mTOR axis. An in vivo study showed that metformin treatment postpones tendon aging and enhances AMPK phosphorylation but reduces mTOR phosphorylation in a natural aging rat model. Our study revealed new insight and mechanistic exploration of TSPC senescence and proposed a novel therapeutic treatment for age-related tendon disorders by targeting the AMPK/mTOR axis at the early stage of aging.
Collapse
Affiliation(s)
- Guangchun Dai
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China
- Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Yingjuan Li
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, Nanjing, PR China
| | - Ming Zhang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China
- Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Panpan Lu
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China
- Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Yuanwei Zhang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China
- Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Hao Wang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China
- Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Liu Shi
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Mumin Cao
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China
- Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Renwang Shen
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China
- Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Yunfeng Rui
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.
- Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China.
- Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China.
- China Orthopedic Regenerative Medicine Group, 310000, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
2
|
Dietary modulation of mitochondrial DNA damage: implications in aging and associated diseases. J Nutr Biochem 2019; 63:1-10. [DOI: 10.1016/j.jnutbio.2018.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022]
|
3
|
Xu J, Guo Y, Sui T, Wang Q, Zhang Y, Zhang R, Wang M, Guan S, Wang L. Molecular mechanisms of anti-oxidant and anti-aging effects induced by convallatoxin in Caenorhabditis elegans. Free Radic Res 2018; 51:529-544. [PMID: 28503972 DOI: 10.1080/10715762.2017.1331037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Convallatoxin is widely used as a cardiac glycoside in acute and chronic congestive heart-failure and paroxysmal tachycardia, with many effects and underlying protective mechanisms on inflammation and cellular proliferation. However, convallatoxin has not been investigated in its antioxidant effects and lifespan extension in Caenorhabditis elegans. In this study, we found that convallatoxin (20 μM) could significantly prolong the lifespan of wild-type C. elegans up to 16.3% through daf-16, but not sir-2.1 signalling and increased thermotolerance and resistance to paraquat-induced oxidative stress. Convallatoxin also improved pharyngeal pumping, locomotion, reduced lipofuscin accumulation and reactive oxygen species levels in C. elegans, which were attributed to hormesis, free radical-scavenging effects in vivo, and up-regulation of stress resistance-related proteins, such as SOD-3 and HSP-16.1. Furthermore, aging-associated genes daf-16, sod-3, and ctl-2 also appeared to contribute to the stress-resistance effect of convallatoxin. In summary, this study demonstrates that convallatoxin can protect against heat and oxidative stress and extend the lifespan of C. elegans, pointing it as a potential novel drug for retarding the aging process in humans.
Collapse
Affiliation(s)
- Jia Xu
- a School of Life Science , Jilin University , Changchun , PR China
| | - Youming Guo
- a School of Life Science , Jilin University , Changchun , PR China
| | - Tianzhuo Sui
- a School of Life Science , Jilin University , Changchun , PR China
| | - Qifei Wang
- b College of Chemistry , Jilin University , Changchun , PR China
| | - Yue Zhang
- a School of Life Science , Jilin University , Changchun , PR China
| | - Ruining Zhang
- a School of Life Science , Jilin University , Changchun , PR China
| | - Mingyang Wang
- a School of Life Science , Jilin University , Changchun , PR China
| | - Shuwen Guan
- a School of Life Science , Jilin University , Changchun , PR China
| | - Liping Wang
- a School of Life Science , Jilin University , Changchun , PR China
| |
Collapse
|
4
|
Lee BC, Kaya A, Gladyshev VN. Methionine restriction and life-span control. Ann N Y Acad Sci 2015; 1363:116-24. [PMID: 26663138 DOI: 10.1111/nyas.12973] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/10/2015] [Accepted: 10/22/2015] [Indexed: 01/04/2023]
Abstract
Dietary restriction (DR) without malnutrition is associated with longevity in various organisms. However, it has also been shown that reduced calorie intake is often ineffective in extending life span. Selecting optimal dietary regimens for DR studies is complicated, as the same regimen may lead to different outcomes depending on genotype and environmental factors. Recent studies suggested that interventions such as moderate protein restriction with or without adequate nutrition (e.g., particular amino acids or carbohydrates) may have additional beneficial effects mediated by certain metabolic and hormonal factors implicated in the biology of aging, regardless of total calorie intake. In particular, it was shown that restriction of a single amino acid, methionine, can mimic the effects of DR and extend life span in various model organisms. We discuss the beneficial effects of a methionine-restricted diet, the molecular pathways involved, and the use of this regimen in longevity interventions.
Collapse
Affiliation(s)
- Byung Cheon Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Alaattin Kaya
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Ghosh A, Rideout EJ, Grewal SS. TIF-IA-dependent regulation of ribosome synthesis in drosophila muscle is required to maintain systemic insulin signaling and larval growth. PLoS Genet 2014; 10:e1004750. [PMID: 25356674 PMCID: PMC4214618 DOI: 10.1371/journal.pgen.1004750] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 09/15/2014] [Indexed: 02/06/2023] Open
Abstract
The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis—a limiting step in ribosome biogenesis—via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2—a secreted factor that binds and inhibits dILP activity—from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis. All animals need adequate nutrition to grow and develop. Studies in tissue culture and model organisms have identified the TOR kinase signaling pathway as a key nutrient-dependent regulator of growth. Under nutrient rich conditions, TOR kinase is active and stimulates metabolic processes that drive growth. Under nutrient poor conditions, TOR is inhibited and animals alter their metabolism to maintain homeostasis and survival. Here we use Drosophila larvae to identify a role for ribosome synthesis—a key metabolic process—in mediating nutrient and TOR effects on body growth. In particular, we show that ribosome synthesis specifically in larval muscle is necessary to maintain organismal growth. We find that inhibition of muscle ribosome synthesis leads to reduced systemic insulin-like growth factor signaling via two endocrine responses—decreased expression of brain derived Drosophila insulin-like peptides (dILPs) and increased expression of Imp-L2, an inhibitor of insulin signaling. As a result of these effects, body growth is reduced and larval development is delayed. These findings suggest that control of ribosome synthesis, and hence protein synthesis, in specific tissues can exert control on overall body growth.
Collapse
Affiliation(s)
- Abhishek Ghosh
- Department of Biochemistry and Molecular Biology, and Clark H. Smith Brain Tumour Centre, Southern Alberta Cancer Research Institute, University of Calgary, Health Research Innovation Center, Calgary, Alberta, Canada
| | - Elizabeth J. Rideout
- Department of Biochemistry and Molecular Biology, and Clark H. Smith Brain Tumour Centre, Southern Alberta Cancer Research Institute, University of Calgary, Health Research Innovation Center, Calgary, Alberta, Canada
| | - Savraj S. Grewal
- Department of Biochemistry and Molecular Biology, and Clark H. Smith Brain Tumour Centre, Southern Alberta Cancer Research Institute, University of Calgary, Health Research Innovation Center, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
6
|
Methionine restriction extends lifespan of Drosophila melanogaster under conditions of low amino-acid status. Nat Commun 2014; 5:3592. [PMID: 24710037 PMCID: PMC4350766 DOI: 10.1038/ncomms4592] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/07/2014] [Indexed: 11/09/2022] Open
Abstract
Reduced methionine (Met) intake can extend lifespan of rodents, but whether this regimen represents a general strategy for regulating aging has been controversial. Here we report that Met restriction extends lifespan in both fruit flies and yeast, and that this effect requires low amino acid status. Met restriction in Drosophila mimicks the effect of dietary restriction and is associated with decreased reproduction. However, under conditions of high amino acid status, Met restriction is ineffective and the trade-off between longevity and reproduction is not observed. Overexpression of InRDN or Tsc2 inhibits lifespan extension by Met restriction, suggesting the role of TOR signaling in the Met control of longevity. Overall, this study defines the specific roles of Met and amino acid imbalance in aging and suggests that Met restiction is a general strategy for lifespan extension.
Collapse
|
7
|
Szafranski K, Mekhail K. The fine line between lifespan extension and shortening in response to caloric restriction. Nucleus 2014; 5:56-65. [PMID: 24637399 PMCID: PMC4028356 DOI: 10.4161/nucl.27929] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Caloric restriction (CR) is generally linked to lifespan extension in various organisms and may limit age-associated diseases. Processes through which caloric restriction promotes lifespan include obesity-countering weight loss, increased DNA repair, control of ribosomal and telomeric DNA repeats, mitochondrial regulation, activation of antioxidants, and protective autophagy. Several of these protective cellular processes are linked to the suppression of TOR (target of rapamycin) or the activation of sirtuins. In stark contrast, CR fails to extend or even shortens lifespan in certain settings. CR-dependent lifespan shortening is linked to weight loss in the non-obese, mitochondrial hyperactivity, genomic inflexibility, and several other processes. Deciphering the balance between positive and negative effects of CR is critical to understanding its ultimate impact on aging. This knowledge is especially needed in order to fulfil the promise of using CR or its mimetic drugs to counteract age-associated diseases and unhealthy aging.
Collapse
Affiliation(s)
- Kirk Szafranski
- Department of Laboratory Medicine and Pathobiology; Faculty of Medicine, University of Toronto; Toronto, ON Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology; Faculty of Medicine, University of Toronto; Toronto, ON Canada; Canada Research Chairs Program; Faculty of Medicine, University of Toronto; Toronto, ON Canada
| |
Collapse
|
8
|
Abstract
Dietary restriction (DR) has been shown to extend both median and maximum lifespan in a range of animals, although recent findings suggest that these effects are not universally enjoyed across all animals. In particular, the lifespan effect following DR in mice is highly strain-specific and there is little current evidence that DR induces a positive effect on all-cause mortality in non-human primates. However, the positive effects of DR on health appear to be highly conserved across the vast majority of species, including human subjects. Despite these effects on health, it is highly unlikely that DR will become a realistic or popular life choice for most human subjects given the level of restraint required. Consequently significant research is focusing on identifying compounds that will bestow the benefits of DR without the obligation to adhere to stringent reductions in daily food intake. Several such compounds, including rapamycin, metformin and resveratrol, have been identified as potential DR mimetics. Although these compounds show significant promise, there is a need to properly understand the mechanisms through which these drugs act. This review will discuss the importance in understanding the role that genetic background and heterogeneity play in mediating the lifespan and healthspan effects of DR. It will also provide an overview of the most promising current DR mimetics and their effects on healthy lifespan.
Collapse
|
9
|
Maklakov AA, Lummaa V. Evolution of sex differences in lifespan and aging: Causes and constraints. Bioessays 2013; 35:717-24. [DOI: 10.1002/bies.201300021] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Alexei A. Maklakov
- Ageing Research Group, Department of Animal Ecology; Evolutionary Biology Centre, Uppsala University; Uppsala Sweden
| | - Virpi Lummaa
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| |
Collapse
|
10
|
Yanos ME, Bennett CF, Kaeberlein M. Genome-Wide RNAi Longevity Screens in Caenorhabditis elegans. Curr Genomics 2013; 13:508-18. [PMID: 23633911 PMCID: PMC3468884 DOI: 10.2174/138920212803251391] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/14/2012] [Accepted: 07/25/2012] [Indexed: 01/08/2023] Open
Abstract
Progress in aging research has identified genetic and environmental factors that regulate longevity across species. The nematode worm Caenorhabditiselegans is a genetically tractable model system that has been widely used to investigate the molecular mechanisms of aging, and the development of RNA interference (RNAi) technology has provided a powerful tool for performing large-scale genetic screens in this organism. Genome-wide screens have identified hundreds of genes that influence lifespan, many of which fall into distinct functional classes and pathways. The purpose of this review is to summarize the results of large-scale RNAi longevity screens in C. elegans, and to provide an in-depth comparison and analysis of their methodology and most significant findings.
Collapse
Affiliation(s)
- Melana E Yanos
- Department of Pathology, University of Washington, Seattle, WA, USA ; Department of Psychology, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
11
|
Kaeberlein M. mTOR Inhibition: From Aging to Autism and Beyond. SCIENTIFICA 2013; 2013:849186. [PMID: 24379984 PMCID: PMC3860151 DOI: 10.1155/2013/849186] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/27/2013] [Indexed: 05/10/2023]
Abstract
The mechanistic target of rapamycin (mTOR) is a highly conserved protein that regulates growth and proliferation in response to environmental and hormonal cues. Broadly speaking, organisms are constantly faced with the challenge of interpreting their environment and making a decision between "grow or do not grow." mTOR is a major component of the network that makes this decision at the cellular level and, to some extent, the tissue and organismal level as well. Although overly simplistic, this framework can be useful when considering the myriad functions ascribed to mTOR and the pleiotropic phenotypes associated with genetic or pharmacological modulation of mTOR signaling. In this review, I will consider mTOR function in this context and attempt to summarize and interpret the growing body of literature demonstrating interesting and varied effects of mTOR inhibitors. These include robust effects on a multitude of age-related parameters and pathologies, as well as several other processes not obviously linked to aging or age-related disease.
Collapse
Affiliation(s)
- Matt Kaeberlein
- Department of Pathology, University of Washington, 1959 NE Pacific Street, D-514, Seattle, WA 98195-7470, USA
- *Matt Kaeberlein:
| |
Collapse
|
12
|
Berg EC, Maklakov AA. Sexes suffer from suboptimal lifespan because of genetic conflict in a seed beetle. Proc Biol Sci 2012; 279:4296-302. [PMID: 22915670 PMCID: PMC3441075 DOI: 10.1098/rspb.2012.1345] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/27/2012] [Indexed: 01/25/2023] Open
Abstract
Males and females have different routes to successful reproduction, resulting in sex differences in lifespan and age-specific allocation of reproductive effort. The trade-off between current and future reproduction is often resolved differently by males and females, and both sexes can be constrained in their ability to reach their sex-specific optima owing to intralocus sexual conflict. Such genetic antagonism may have profound implications for evolution, but its role in ageing and lifespan remains unresolved. We provide direct experimental evidence that males live longer and females live shorter than necessary to maximize their relative fitness in Callosobruchus maculatus seed beetles. Using artificial selection in a genetically heterogeneous population, we created replicate long-life lines where males lived on average 27 per cent longer than in short-life lines. As predicted by theory, subsequent assays revealed that upward selection on male lifespan decreased relative male fitness but increased relative female fitness compared with downward selection. Thus, we demonstrate that lifespan-extending genes can help one sex while harming the other. Our results show that sexual antagonism constrains adaptive life-history evolution, support a novel way of maintaining genetic variation for lifespan and argue for better integration of sex effects into applied research programmes aimed at lifespan extension.
Collapse
Affiliation(s)
- Elena C Berg
- Ageing Research Group, Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
13
|
Pagán-Mercado G, Santiago-Cartagena E, Akamine P, Rodríguez-Medina JR. Functional and genetic interactions of TOR in the budding yeast Saccharomyces cerevisiae with myosin type II-deficiency (myo1Δ). BMC Cell Biol 2012; 13:13. [PMID: 22646158 PMCID: PMC3470973 DOI: 10.1186/1471-2121-13-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Yeast has numerous mechanisms to survive stress. Deletion of myosin type II (myo1Δ) in Saccharomyces cerevisiae results in a cell that has defective cytokinesis. To survive this genetically induced stress, this budding yeast up regulates the PKC1 cell wall integrity pathway (CWIP). More recently, our work indicated that TOR, another stress signaling pathway, was down regulated in myo1Δ strains. Since negative signaling by TOR is known to regulate PKC1, our objectives in this study were to understand the cross-talk between the TOR and PKC1 signaling pathways and to determine if they share upstream regulators for mounting the stress response in myo1Δ strains. RESULTS Here we proved that TORC1 signaling was down regulated in the myo1Δ strain. While a tor1Δ mutant strain had increased viability relative to myo1Δ, a combined myo1Δtor1Δ mutant strain showed significantly reduced cell viability. Synthetic rescue of the tor2-21(ts) lethal phenotype was observed in the myo1Δ strain in contrast to the chs2Δ strain, a chitin synthase II null mutant that also activates the PKC1 CWIP and exhibits cytokinesis defects very similar to myo1Δ, where the rescue effect was not observed. We observed two pools of Slt2p, the final Mitogen Activated Protein Kinase (MAPK) of the PKC1 CWIP; one pool that is up regulated by heat shock and one that is up regulated by the myo1Δ stress. The cell wall stress sensor WSC1 that activates PKC1 CWIP under other stress conditions was shown to act as a negative regulator of TORC1 in the myo1Δ mutant. Finally, the repression of TORC1 was inversely correlated with the activation of PKC1 in the myo1Δ strain. CONCLUSIONS Regulated expression of TOR1 was important in the activation of the PKC1 CWIP in a myo1Δ strain and hence its survival. We found evidence that the PKC1 and TORC1 pathways share a common upstream regulator associated with the cell wall stress sensor WSC1. Surprisingly, essential TORC2 functions were not required in the myo1Δ strain. By understanding how yeast mounts a concerted stress response, one can further design pharmacological cocktails to undermine their ability to adapt and to survive.
Collapse
Affiliation(s)
- Glorivee Pagán-Mercado
- Department of Biochemistry, School of Medicine, Medical Sciences Campus, University of Puerto Rico, PO Box 365067, San Juan, PR, 00936-5067, USA
| | - Ednalise Santiago-Cartagena
- Department of Biochemistry, School of Medicine, Medical Sciences Campus, University of Puerto Rico, PO Box 365067, San Juan, PR, 00936-5067, USA
| | - Pearl Akamine
- Department of Biochemistry, School of Medicine, Medical Sciences Campus, University of Puerto Rico, PO Box 365067, San Juan, PR, 00936-5067, USA
| | - José R Rodríguez-Medina
- Department of Biochemistry, School of Medicine, Medical Sciences Campus, University of Puerto Rico, PO Box 365067, San Juan, PR, 00936-5067, USA
| |
Collapse
|
14
|
|
15
|
Jacobi C, Hömme M, Melk A. Is cellular senescence important in pediatric kidney disease? Pediatr Nephrol 2011; 26:2121-31. [PMID: 21240672 DOI: 10.1007/s00467-010-1740-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 11/11/2010] [Accepted: 11/15/2010] [Indexed: 01/12/2023]
Abstract
Somatic cellular senescence (SCS) describes the limited ability of cells to divide. Normally, SCS is associated with physiological aging, but evidence suggests that it may play a role in disease progression, even in young patients. Stressors such as acute injury or chronic inflammation may induce SCS, which in turn exhausts organ regenerative potential. This review summarizes what is known about SCS in the kidney with aging and disease. As most patients with chronic kidney disease (CKD) also develop cardiovascular complications, a second focus of this review deals with the role of SCS in cardiovascular disease. Also, as SCS seems to accelerate CKD and cardiovascular disease progression, developing strategies for new treatment options that overcome SCS or protect a patient from it represents an exciting challenge.
Collapse
Affiliation(s)
- Christoph Jacobi
- Department of Pediatric Nephrology, Gastroenterology and Metabolic Diseases, Children's Hospital, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | | | | |
Collapse
|
16
|
Katewa SD, Kapahi P. Role of TOR signaling in aging and related biological processes in Drosophila melanogaster. Exp Gerontol 2011; 46:382-90. [PMID: 21130151 PMCID: PMC3058120 DOI: 10.1016/j.exger.2010.11.036] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 11/23/2010] [Accepted: 11/23/2010] [Indexed: 01/22/2023]
Abstract
Extensive studies in model organisms in the last few decades have revealed that aging is subject to profound genetic influence. The conserved nutrient sensing TOR (Target of Rapamycin) pathway is emerging as a key regulator of lifespan and healthspan in various species from yeast to mammals. The TOR signaling pathway plays a critical role in determining how a eukaryotic cell or a cellular system co-ordinates its growth, development and aging in response to constant changes in its surrounding environment? TOR integrates signals originating from changes in growth factors, nutrient availability, energy status and various physiological stresses. Each of these inputs is specialized to sense particular signal(s), and conveys it to the TOR complex which in turn relays the signal to downstream outputs to appropriately respond to the environmental changes. These outputs include mRNA translation, autophagy, transcription, metabolism, cell survival, proliferation and growth amongst a number of other cellular processes, some of which influence organismal lifespan. Here we review the contribution of the model organism Drosophila in the understanding of TOR signaling and the various biological processes it modulates that may impact on aging. Drosophila was the first organism where the nutrient dependent effects of the TOR pathway on lifespan were first uncovered. We also discuss how the nutrient-sensing TOR pathway appears to be critically important for mediating the longevity effects of dietary restriction (DR), a potent environmental method of lifespan extension by nutrient limitation. Identifying the molecular mechanisms that modulate lifespan downstream of TOR is being intensely investigated and there is hope that these are likely to serve as potential targets for amelioration of age-related diseases and enhance healthful lifespan extension in humans.
Collapse
|
17
|
Abstract
In this, the fourth installment of our annual Hot Topics review on mRNA translation and aging, we have decided to expand our scope to include recent findings related to the role of TOR signaling in aging. As new data emerge, it is clear that TOR signaling acts upstream of mRNA translation, as well as a variety of other cellular processes, to modulate longevity and healthspan in evolutionarily diverse species. This Hot Topics review will cover important new findings in this area that have occurred over the past year. These include the demonstration that the TOR substrate ribosomal S6 kinase modulates longevity in mammals, the potential for TOR inhibitors as therapeutic treatments for Alzheimer's disease, and further studies emphasizing the importance of differential translation of specific mRNAs for healthy aging and enhanced longevity.
Collapse
Affiliation(s)
- Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
- Aging Research Institute, Guangdong Medical College, Dongguan 523808, Guangdong, People's Republic of China
| | - Brian K. Kennedy
- Buck Institute for Age Research, Novato, CA 98945, USA
- Aging Research Institute, Guangdong Medical College, Dongguan 523808, Guangdong, People's Republic of China
| |
Collapse
|
18
|
Progress on Molecular Mechanisms of Chronological Ageing in Model Organism <I>Saccharomyces cerevisiae</I>. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Fadini GP, Ceolotto G, Pagnin E, de Kreutzenberg S, Avogaro A. At the crossroads of longevity and metabolism: the metabolic syndrome and lifespan determinant pathways. Aging Cell 2011; 10:10-7. [PMID: 21040402 DOI: 10.1111/j.1474-9726.2010.00642.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The metabolic syndrome is becoming increasingly prevalent in the general population and carries significant incremental morbidity and mortality. It is associated with multi-organ involvement and increased all-cause mortality, resembling a precocious aging process. The mechanisms that account for this phenomenon are incompletely known, but it is becoming clear that longevity genes might be involved. Experiments with overactivation or disruption of key lifespan determinant pathways, such as silent information regulator (SIR)T1, p66Shc, and mammalian target of rapamycin (TOR), lead to development of features of the metabolic syndrome in mice. These genes integrate longevity pathways and metabolic signals in a complex interplay in which lifespan appears to be strictly dependent on substrate and energy bioavailability. Herein, we describe the roles and possible interconnections of selected lifespan determinant molecular networks in the development of the metabolic syndrome and its complications, describing initial available data in humans. Additional pathways are involved in linking nutrient availability and longevity, certainly including insulin and Insulin-like Growth Factor-1 (IGF-1) signaling, as well as FOXO transcription factors. The model described in this viewpoint article is therefore likely to be an oversimplification. Nevertheless, it represents one starting platform for understanding cell biology of lifespan in relation to the metabolic syndrome.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Department of Clinical and Experimental Medicine, University of Padova, Medical School, Padova, Italy.
| | | | | | | | | |
Collapse
|
20
|
McColl G, Rogers AN, Alavez S, Hubbard AE, Melov S, Link CD, Bush AI, Kapahi P, Lithgow GJ. Insulin-like signaling determines survival during stress via posttranscriptional mechanisms in C. elegans. Cell Metab 2010; 12:260-72. [PMID: 20816092 PMCID: PMC2945254 DOI: 10.1016/j.cmet.2010.08.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 10/01/2009] [Accepted: 06/14/2010] [Indexed: 12/30/2022]
Abstract
The insulin-like signaling (ILS) pathway regulates metabolism and is known to modulate adult life span in C. elegans. Altered stress responses and resistance to a wide range of stressors are also associated with changes in ILS and contribute to enhanced longevity. The transcription factors DAF-16 and HSF-1 are key effectors of the longevity phenotype. We demonstrate that increased intrinsic thermotolerance, due to lower ILS, is not dependent on stress-induced transcriptional responses but instead requires active protein translation. Translation profiling experiments reveal genes that are posttranscriptionally regulated in response to altered ILS during heat shock in a DAF-16-dependent manner. Furthermore, several novel proteins are specifically required for ILS effects on thermotolerance. We propose that lowered ILS results in metabolic and physiological changes. These DAF-16-induced changes precondition a translational response under acute stress to modulate survival.
Collapse
Affiliation(s)
- Gawain McColl
- The Mental Health Research Institute, Parkville, VIC 3052, Australia
- Center for Neuroscience, University of Melbourne, Parkville, VIC 3052, Australia
- Buck Institute for Age Research, Novato, CA 94945, USA
| | | | | | - Alan E. Hubbard
- Buck Institute for Age Research, Novato, CA 94945, USA
- Division of Biostatistics, University of California, Berkeley, CA 94720, USA
| | - Simon Melov
- Buck Institute for Age Research, Novato, CA 94945, USA
| | - Christopher D. Link
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309, USA
| | - Ashley I. Bush
- The Mental Health Research Institute, Parkville, VIC 3052, Australia
- Department of Pathology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Pankaj Kapahi
- Buck Institute for Age Research, Novato, CA 94945, USA
| | | |
Collapse
|
21
|
Abstract
The past decade has seen fundamental advances in our understanding of the ageing process and raised optimism that interventions to slow ageing may be on the horizon. Studies of budding yeast have made immense contributions to this progress. Yeast longevity factors have now been shown to modulate ageing in invertebrate and mammalian models, and studies of yeast have resulted in some of the best candidates for anti-ageing drugs currently in development. The first interventions to slow human ageing may spring from the humble yeast.
Collapse
|
22
|
Abstract
Dietary restriction (DR) is a robust nongenetic, nonpharmacological intervention that is known to increase active and healthy lifespan in a variety of species. Despite a variety of differences in the protocols and the way DR is carried out in different species, conserved relationships are emerging among multiple species. 2009 saw the field of DR mature with important mechanistic insights from multiple species. A report of lifespan extension in rapamycin-treated mice suggested that the TOR pathway, a conserved mediator of DR in invertebrates, may also be critical to DR effects in mammals. 2009 also saw exciting discoveries related to DR in various organisms including yeast, worms, flies, mice, monkeys and humans. These studies complement each other and together aim to deliver the promise of postponing aging and age-related diseases by revealing the underlying mechanisms of the protective effects of DR. Here, we summarize a few of the reports published in 2009 that we believe provide novel directions and an improved understanding of dietary restriction.
Collapse
|
23
|
Pearce EL. Metabolism in T cell activation and differentiation. Curr Opin Immunol 2010; 22:314-20. [PMID: 20189791 DOI: 10.1016/j.coi.2010.01.018] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 01/21/2010] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
Abstract
When naïve or memory T cells encounter foreign antigen along with proper co-stimulation they undergo rapid and extensive clonal expansion. In mammals, this type of proliferation is fairly unique to cells of the adaptive immune system and requires a considerable expenditure of energy and cellular resources. While research has often focused on the roles of cytokines, antigenic signals, and co-stimulation in guiding T cell responses, data indicate that, at a fundamental level, it is cellular metabolism that regulates T cell function and differentiation and therefore influences the final outcome of the adaptive immune response. This review will focus on some earlier fundamental observations regarding T cell bioenergetics and its role in regulating cellular function, as well as recent work that suggests that manipulating the immune response by targeting lymphocyte metabolism could prove useful in treatments against infection and cancer.
Collapse
|
24
|
Robert L, Labat-Robert J, Robert AM. Genetic, epigenetic and posttranslational mechanisms of aging. Biogerontology 2010; 11:387-99. [PMID: 20157779 DOI: 10.1007/s10522-010-9262-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 01/15/2010] [Indexed: 11/30/2022]
Abstract
Gerontological experimentation is and was always strongly influenced by "theories". The early decades of molecular genetics inspired deterministic thinking, based on the "Central Dogma" (DNA --> RNA --> Proteins). With the progress of detailed knowledge of gene-function a much more complicated picture emerged. Regulation of gene-expression turned out to be a highly complicated process. Experimental gerontology produced over the last decades several "paradigms" incompatible with simple genetic determinism. The increasing number of such detailed experimental "facts" revealed the importance of epigenetic factors and of posttranslational modifications in the age-dependent decline of physiological functions. We shall present in this review a short but critical analysis of genetic and epigenetic processes applied to the interpretation of the more and more precisely elucidated experimental paradigms of aging followed by some of the most relevant aging-mechanisms at the post-translational level, the posttranslational modifications of proteins such as the Maillard reaction, the proteolytic production of harmful peptides and the molecular mechanisms of the aging of elastin with the role of the age-dependent uncoupling of the elastin receptor, as well as the loss of several other receptors. We insist also on the well documented influence of posttranslational modifications on gene expression and on the role of non-coding RNA-s. Altogether, these data replace the previous simplistic concepts on gene action as related to aging by a much more complicated picture, where epigenetic and posttranslational processes together with environmentally influenced genetic pathways play key-roles in aging and strongly influence gene expression.
Collapse
Affiliation(s)
- L Robert
- Hôpital Hôtel Dieu, Université Paris, France.
| | | | | |
Collapse
|
25
|
|