1
|
Shilovsky GA, Putyatina TS, Morgunova GV, Seliverstov AV, Ashapkin VV, Sorokina EV, Markov AV, Skulachev VP. A Crosstalk between the Biorhythms and Gatekeepers of Longevity: Dual Role of Glycogen Synthase Kinase-3. BIOCHEMISTRY (MOSCOW) 2021; 86:433-448. [PMID: 33941065 PMCID: PMC8033555 DOI: 10.1134/s0006297921040052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review discusses genetic and molecular pathways that link circadian timing with metabolism, resulting in the emergence of positive and negative regulatory feedback loops. The Nrf2 pathway is believed to be a component of the anti-aging program responsible for the healthspan and longevity. Nrf2 enables stress adaptation by activating cell antioxidant defense and other metabolic processes via control of expression of over 200 target genes in response to various types of stress. The GSK3 system represents a “regulating valve” that controls fine oscillations in the Nrf2 level, unlike Keap1, which prevents significant changes in the Nrf2 content in the absence of oxidative stress and which is inactivated by the oxidative stress. Furthermore, GSK3 modifies core circadian clock proteins (Bmal1, Clock, Per, Cry, and Rev-erbα). Phosphorylation by GSK3 leads to the inactivation and degradation of circadian rhythm-activating proteins (Bmal1 and Clock) and vice versa to the activation and nuclear translocation of proteins suppressing circadian rhythms (Per and Rev-erbα) with the exception of Cry protein, which is likely to be implicated in the fine tuning of biological clock. Functionally, GSK3 appears to be one of the hubs in the cross-regulation of circadian rhythms and antioxidant defense. Here, we present the data on the crosstalk between the most powerful cell antioxidant mechanism, the Nrf2 system, and the biorhythm-regulating system in mammals, including the impact of GSK3 overexpression and knockout on the Nrf2 signaling. Understanding the interactions between the regulatory cascades linking homeostasis maintenance and cell response to oxidative stress will help in elucidating molecular mechanisms that underlie aging and longevity.
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Galina V Morgunova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Seliverstov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Vasily V Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena V Sorokina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vladimir P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
2
|
Brenna A, Albrecht U. Phosphorylation and Circadian Molecular Timing. Front Physiol 2020; 11:612510. [PMID: 33324245 PMCID: PMC7726318 DOI: 10.3389/fphys.2020.612510] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023] Open
Abstract
Endogenous circadian rhythms are biological processes generated by an internal body clock. They are self-sustaining, and they govern biochemical and physiological processes. However, circadian rhythms are influenced by many external stimuli to reprogram the phase in response to environmental change. Through their adaptability to environmental changes, they synchronize physiological responses to environmental challenges that occur within a sidereal day. The precision of this circadian system is assured by many post-translational modifications (PTMs) that occur on the protein components of the circadian clock mechanism. The most ancient example of circadian rhythmicity driven by phosphorylation of clock proteins was observed in cyanobacteria. The influence of phosphorylation on the circadian system is observed through different kingdoms, from plants to humans. Here, we discuss how phosphorylation modulates the mammalian circadian clock, and we give a detailed overview of the most critical discoveries in the field.
Collapse
Affiliation(s)
- Andrea Brenna
- Department of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
Relógio A, Thomas P, Medina-Pérez P, Reischl S, Bervoets S, Gloc E, Riemer P, Mang-Fatehi S, Maier B, Schäfer R, Leser U, Herzel H, Kramer A, Sers C. Ras-mediated deregulation of the circadian clock in cancer. PLoS Genet 2014; 10:e1004338. [PMID: 24875049 PMCID: PMC4038477 DOI: 10.1371/journal.pgen.1004338] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 03/14/2014] [Indexed: 02/06/2023] Open
Abstract
Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock. Living systems possess an endogenous time-generating system – the circadian clock - accountable for a 24 hours oscillation in the expression of about 10% of all genes. In mammals, disruption of oscillations is associated to several diseases including cancer. In this manuscript, we address the following question: what are the elicitors of a disrupted clock in cancer? We applied a systems biology approach to correlate experimental, bioinformatics and modelling data and could thereby identify key genes which discriminate strong and weak oscillators among cancer cell lines. Most of the discriminative genes play important roles in cell cycle regulation, DNA repair, immune system and metabolism and are involved in oncogenic pathways such as the RAS/MAPK. To investigate the potential impact of the Ras oncogene in the circadian clock we generated experimental models harbouring conditionally active Ras oncogenes. We put forward a direct correlation between the perturbation of Ras oncogene and an effect in the expression of clock genes, found by means of mathematical simulations and validated experimentally. Our study shows that perturbations of a single oncogene are sufficient to deregulate the mammalian circadian clock and opens new ways in which the circadian clock can influence disease and possibly play a role in therapy.
Collapse
Affiliation(s)
- Angela Relógio
- Institute for Theoretical Biology, Charité - Universitätsmedizin and Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail: (AR); (CS)
| | - Philippe Thomas
- Knowledge Management in Bioinformatics, Institute for Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Paula Medina-Pérez
- Laboratory of Molecular Tumor Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Chronobiology, Institute for Medical Immunology Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Silke Reischl
- Laboratory of Chronobiology, Institute for Medical Immunology Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sander Bervoets
- Institute for Theoretical Biology, Charité - Universitätsmedizin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ewa Gloc
- Laboratory of Molecular Tumor Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pamela Riemer
- Laboratory of Molecular Tumor Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Shila Mang-Fatehi
- Laboratory of Molecular Tumor Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bert Maier
- Laboratory of Chronobiology, Institute for Medical Immunology Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Reinhold Schäfer
- Laboratory of Molecular Tumor Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulf Leser
- Knowledge Management in Bioinformatics, Institute for Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité - Universitätsmedizin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Institute for Medical Immunology Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christine Sers
- Laboratory of Molecular Tumor Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (AR); (CS)
| |
Collapse
|
4
|
Wu T, Fu O, Yao L, Sun L, Zhuge F, Fu Z. Differential responses of peripheral circadian clocks to a short-term feeding stimulus. Mol Biol Rep 2012; 39:9783-9. [PMID: 22714924 DOI: 10.1007/s11033-012-1844-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 06/11/2012] [Indexed: 02/03/2023]
Abstract
To investigate the effects of a short-term feeding stimulus on the expression of circadian genes in peripheral tissues, we examined the effects of a 30-min feeding stimulus on the rapid responses and circadian phases of five clock genes (Bmal1, Cry1, Per1, Per2 and Per3) and a clock-controlled gene (Dbp) in the heart and kidney of rats. A 30 min feeding stimulus was sufficient to alter the transcript levels and circadian phases of peripheral clock genes in a tissue-specific manner. The transcript levels of most clock genes (Bmal1, Cry1, Per1, and Per2) were significantly down-regulated in the heart within 2 h, which were affected marginally in the kidney (except Per1). In addition to the rapid response of clock gene expression, we found that the circadian phases of these clock genes were markedly shifted by the 30-min feeding stimulus in the heart within 1 day. However, the same feeding stimulus almost not affected the peak phases of these clock genes in the kidney. Moreover, these differential responses of peripheral clocks to the 30-min feeding were also similarly reflected in the expression of circadian output gene Dbp. Therefore, a 30-min feeding stimulus was sufficient to induce dyssynchronized peripheral circadian rhythm and might further result in disordered downstream physiological function in rats.
Collapse
Affiliation(s)
- Tao Wu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, No. 6 District, Zhaohui, Hangzhou, Zhejiang 310032, China
| | | | | | | | | | | |
Collapse
|
5
|
Stevens RG. Does electric light stimulate cancer development in children? Cancer Epidemiol Biomarkers Prev 2012; 21:701-4. [PMID: 22354903 DOI: 10.1158/1055-9965.epi-12-0015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Incidence of cancer in children has increased in recent decades, and known risk factors can account for only a small minority of cases. Gestation and early childhood are particularly vulnerable periods in human development and an important aspect of development is in circadian rhythmicity. Emerging evidence implicates the molecular circadian mechanism in a vast array of other physiologic functions including metabolism, DNA damage response and cell-cycle regulation. Electric light exposure at night can disrupt circadian rhythms and, thereby, many other physiologic processes that are under circadian control. On this basis, it is proposed that ill-timed electric light exposure to pregnant women, to neonates, infants, and small children may increase cancer risk in those children. There are practical implications and interventions that accrue from this idea should it later be confirmed to be true.
Collapse
Affiliation(s)
- Richard G Stevens
- Department of Community Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| |
Collapse
|
6
|
Granados-Fuentes D, Ben-Josef G, Perry G, Wilson DA, Sullivan-Wilson A, Herzog ED. Daily rhythms in olfactory discrimination depend on clock genes but not the suprachiasmatic nucleus. J Biol Rhythms 2011; 26:552-60. [PMID: 22215613 PMCID: PMC3658462 DOI: 10.1177/0748730411420247] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The suprachiasmatic nucleus (SCN) regulates a wide range of daily behaviors and has been described as the master circadian pacemaker. The role of daily rhythmicity in other tissues, however, is unknown. We hypothesized that circadian changes in olfactory discrimination depend on a genetic circadian oscillator outside the SCN. We developed an automated assay to monitor olfactory discrimination in individual mice throughout the day. We found olfactory sensitivity increased approximately 6-fold from a minimum during the day to a peak in the early night. This circadian rhythm was maintained in SCN-lesioned mice and mice deficient for the Npas2 gene but was lost in mice lacking Bmal1 or both Per1 and Per2 genes. We conclude that daily rhythms in olfactory sensitivity depend on the expression of canonical clock genes. Olfaction is, thus, the first circadian behavior that is not based on locomotor activity and does not require the SCN.
Collapse
|
7
|
Bayesian Classification of Cytochrome P450 3A4 Substrates/Non-substrates and Color Mapping for Chemical Interpretation. JOURNAL OF COMPUTER AIDED CHEMISTRY 2010. [DOI: 10.2751/jcac.11.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|