1
|
The regulation mechanisms and the Lamarckian inheritance property of DNA methylation in animals. Mamm Genome 2021; 32:135-152. [PMID: 33860357 DOI: 10.1007/s00335-021-09870-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/05/2021] [Indexed: 12/19/2022]
Abstract
DNA methylation is a stable and heritable epigenetic mechanism, of which the main functions are stabilizing the transcription of genes and promoting genetic conservation. In animals, the direct molecular inducers of DNA methylation mainly include histone covalent modification and non-coding RNA, whereas the fundamental regulators of DNA methylation are genetic and environmental factors. As is well known, competition is present everywhere in life systems, and will finally strike a balance that is optimal for the animal's survival and reproduction. The same goes for the regulation of DNA methylation. Genetic and environmental factors, respectively, are responsible for the programmed and plasticity changes of DNA methylation, and keen competition exists between genetically influenced procedural remodeling and environmentally influenced plastic alteration. In this process, genetic and environmental factors collaboratively decide the methylation patterns of corresponding loci. DNA methylation alterations induced by environmental factors can be transgenerationally inherited, and exhibit the characteristic of Lamarckian inheritance. Further research on regulatory mechanisms and the environmental plasticity of DNA methylation will provide strong support for understanding the biological function and evolutionary effects of DNA methylation.
Collapse
|
2
|
Russo J. Reproductive history and breast cancer prevention. Horm Mol Biol Clin Investig 2016; 27:3-10. [PMID: 27518906 DOI: 10.1515/hmbci-2016-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 12/11/2022]
Abstract
The hormonal milieu of an early full-term pregnancy induces lobular development, completing the cycle of differentiation of the breast. This process induces a specific genomic signature in the mammary gland that is represented by the stem cell containing a heterochomatin condensed nucleus (HTN). Even though differentiation significantly reduces cell proliferation in the mammary gland, the mammary epithelium remains capable of responding with proliferation to given stimuli, such as a new pregnancy. The stem cell HTN is able to metabolize the carcinogen and repair the induced DNA damage more efficiently than the stem cell containing an euchromatinic structure (EUN), as it has been demonstrated in the rodent experimental system. The basic biological concept is that pregnancy shifts the stem cell EUN to the stem cell HTN that is refractory to carcinogenesis. Data generated by the use of cDNA micro array techniques have allowed to demonstrate that while lobular development regressed after pregnancy and lactation, programmed cell death genes, DNA repair genes, chromatin remodeling, transcription factors and immune-surveillance gene transcripts all of these genes are upregulated and are part of the genomic signature of pregnancy that is associated with the preventive effect of this physiological process.
Collapse
|
3
|
Keep-ING balance: tumor suppression by epigenetic regulation. FEBS Lett 2014; 588:2728-42. [PMID: 24632289 DOI: 10.1016/j.febslet.2014.03.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/06/2014] [Indexed: 12/26/2022]
Abstract
Cancer cells accumulate genetic and epigenetic changes that alter gene expression to drive tumorigenesis. Epigenetic silencing of tumor suppressor, cell cycle, differentiation and DNA repair genes contributes to neoplastic transformation. The ING (inhibitor of growth) proteins (ING1-ING5) have emerged as a versatile family of growth regulators, phospholipid effectors, histone mark sensors and core components of HDAC1/2 - and several HAT chromatin-modifying complexes. This review will describe the characteristic pathways by which ING family proteins differentially affect the Hallmarks of Cancer and highlight the various epigenetic mechanisms by which they regulate gene expression. Finally, we will discuss their potentials as biomarkers and therapeutic targets in epigenetic treatment strategies.
Collapse
|
4
|
Barton M, Santucci-Pereira J, Russo J. Molecular pathways involved in pregnancy-induced prevention against breast cancer. Front Endocrinol (Lausanne) 2014; 5:213. [PMID: 25540638 PMCID: PMC4261797 DOI: 10.3389/fendo.2014.00213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/25/2014] [Indexed: 12/18/2022] Open
Abstract
Pregnancy produces a protective effect against breast cancer in women who had their first full term pregnancy (FTP) in their middle twenties. The later in life the first delivery occurs, the higher the risk of breast cancer development. Also, transiently during the postpartum period, the risk of developing breast cancer increases. This transient increased risk is taken over by a long-lasting protective period. The genomic profile of parous women has shown pregnancy induces a long-lasting "genomic signature" that explains the preventive effect on breast cancer. This signature reveals that chromatin remodeling is the driver of the differentiation process conferred by FTP. The chromatin remodeling process may be the ultimate step mediating the protection of the breast against developing breast cancer in post-menopausal years.
Collapse
Affiliation(s)
- Maria Barton
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Julia Santucci-Pereira
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Jose Russo
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
- *Correspondence: Jose Russo, The Irma H Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, 333 Cottman Avenue, Room P2037, Philadelphia, PA 19111, USA e-mail:
| |
Collapse
|
5
|
Adamik J, Henkel M, Ray A, Auron PE, Duerr R, Barrie A. The IL17A and IL17F loci have divergent histone modifications and are differentially regulated by prostaglandin E2 in Th17 cells. Cytokine 2013; 64:404-12. [PMID: 23800789 DOI: 10.1016/j.cyto.2013.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 05/06/2013] [Accepted: 05/17/2013] [Indexed: 12/20/2022]
Abstract
Prostaglandin E2 (PGE2), IL-23 and IL-1β are implicated in inflammatory bowel disease susceptibility, likely in part by modulating IL-17 producing CD4(+) T helper (Th17) cells. To better understand how these three mediators affect Th17 cell memory responses, we characterized the gene expression profiles of activated human peripheral CD4(+) effector memory T cells and sorted Th17 memory cells from healthy donors concurrent with IL17A mRNA induction mediated by PGE2 and/or IL-23 plus IL-1β. We discovered that PGE2 and IL-23 plus IL-1β differentially regulate Th17 cytokine expression and synergize to induce IL-17A, but not IL-17F. IL-23 plus IL-1β preferentially induce IL-17F expression. The addition of PGE2 to IL-23 plus IL-1β only enhances IL-17A expression as mediated by the PGE2 EP4 receptor, and promotes a switch from an IL-17F to an IL-17A predominant immune response. The human Th17 HuT-102 cell line was also found to constitutively express IL-17A, but not IL-17F. We went on to show that the IL17A and IL17F loci have divergent epigenetic architectures in unstimulated HuT-102 and primary Th17 cells and are poised for preferential expression of IL17A. We conclude that the chromatin for IL17A and IL17F are distinctly regulated, which may play an important role in mucosal health and disease.
Collapse
Affiliation(s)
- Juraj Adamik
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | | | | | | | | | | |
Collapse
|
6
|
The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells. Cell Rep 2013; 3:2142-54. [PMID: 23746450 DOI: 10.1016/j.celrep.2013.05.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/19/2013] [Accepted: 05/03/2013] [Indexed: 12/27/2022] Open
Abstract
Human cells contain five canonical, replication-dependent somatic histone H1 subtypes (H1.1, H1.2, H1.3, H1.4, and H1.5). Although they are key chromatin components, the genomic distribution of the H1 subtypes is still unknown, and their role in chromatin processes has thus far remained elusive. Here, we map the genomic localization of all somatic replication-dependent H1 subtypes in human lung fibroblasts using an integrative DNA adenine methyltransferase identification (DamID) analysis. We find in general that H1.2 to H1.5 are depleted from CpG-dense regions and active regulatory regions. H1.1 shows a DamID binding profile distinct from the other subtypes, suggesting a unique function. H1 subtypes can mark specific domains and repressive regions, pointing toward a role for H1 in three-dimensional genome organization. Our work integrates H1 subtypes into the epigenome maps of human cells and provides a valuable resource to refine our understanding of the significance of H1 and its heterogeneity in the control of genome function.
Collapse
|
7
|
Caputo VS, Costa JR, Makarona K, Georgiou E, Layton DM, Roberts I, Karadimitris A. Mechanism of Polycomb recruitment to CpG islands revealed by inherited disease-associated mutation. Hum Mol Genet 2013; 22:3187-94. [PMID: 23591993 DOI: 10.1093/hmg/ddt171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
How the transcription repressing complex Polycomb interacts with transcriptional regulators at housekeeping genes in somatic cells is not well understood. By exploiting a CpG island (CGI) point mutation causing a Mendelian disease, we show that DNA binding of activating transcription factor (TF) determines histone acetylation and nucleosomal depletion commensurate with Polycomb exclusion from the target promoter. Lack of TF binding leads to reversible transcriptional repression imposed by nucleosomal compaction and consolidated by Polycomb recruitment and establishment of bivalent chromatin status. Thus, within a functional hierarchy of transcriptional regulators, TF binding is the main determinant of Polycomb recruitment to the CGI of a housekeeping gene in somatic cells.
Collapse
Affiliation(s)
- Valentina S Caputo
- Centre for Haematology, Department of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | |
Collapse
|
8
|
A tiered hidden Markov model characterizes multi-scale chromatin states. Genomics 2013; 102:1-7. [PMID: 23570996 DOI: 10.1016/j.ygeno.2013.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/28/2013] [Accepted: 03/31/2013] [Indexed: 11/21/2022]
Abstract
Precise characterization of chromatin states is an important but difficult task for understanding the regulatory role of chromatin. A number of computational methods have been developed with varying levels of success. However, a remaining challenge is to model epigenomic patterns over multi-scales, as each histone mark is distributed with its own characteristic length scale. We developed a tiered hidden Markov model and applied it to analyze a ChIP-seq dataset in human embryonic stem cells. We identified a two-tier structure containing 15 distinct bin-level chromatin states grouped into three domain-level states. Whereas the bin-level states capture the local variation of histone marks, the domain-level states detect large-scale variations. Compared to bin-level states, the domain-level states are more robust and coherent. We also found active regions in intergenic regions that upon closer examination were expressed non-coding RNAs and pseudogenes. These results provide insights into an additional layer of complexity in chromatin organization.
Collapse
|
9
|
Rowe HM, Kapopoulou A, Corsinotti A, Fasching L, Macfarlan TS, Tarabay Y, Viville S, Jakobsson J, Pfaff SL, Trono D. TRIM28 repression of retrotransposon-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells. Genome Res 2013; 23:452-61. [PMID: 23233547 PMCID: PMC3589534 DOI: 10.1101/gr.147678.112] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/06/2012] [Indexed: 02/03/2023]
Abstract
TRIM28 is critical for the silencing of endogenous retroviruses (ERVs) in embryonic stem (ES) cells. Here, we reveal that an essential impact of this process is the protection of cellular gene expression in early embryos from perturbation by cis-acting activators contained within these retroelements. In TRIM28-depleted ES cells, repressive chromatin marks at ERVs are replaced by histone modifications typical of active enhancers, stimulating transcription of nearby cellular genes, notably those harboring bivalent promoters. Correspondingly, ERV-derived sequences can repress or enhance expression from an adjacent promoter in transgenic embryos depending on their TRIM28 sensitivity in ES cells. TRIM28-mediated control of ERVs is therefore crucial not just to prevent retrotransposition, but more broadly to safeguard the transcriptional dynamics of early embryos.
Collapse
Affiliation(s)
- Helen M. Rowe
- School of Life Sciences and Frontiers in Genetics Program, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Adamandia Kapopoulou
- School of Life Sciences and Frontiers in Genetics Program, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Swiss Bioinformatics Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andrea Corsinotti
- School of Life Sciences and Frontiers in Genetics Program, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Liana Fasching
- Wallenberg Neuroscience Center, Lund University, BMC A11, 221 84 Lund, Sweden
| | - Todd S. Macfarlan
- Gene Expression Laboratory and the Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Yara Tarabay
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, BP10142, Illkirch Cedex, France
| | - Stéphane Viville
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, BP10142, Illkirch Cedex, France
| | - Johan Jakobsson
- Wallenberg Neuroscience Center, Lund University, BMC A11, 221 84 Lund, Sweden
| | - Samuel L. Pfaff
- Gene Expression Laboratory and the Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Didier Trono
- School of Life Sciences and Frontiers in Genetics Program, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Niu DK, Jiang L. Can ENCODE tell us how much junk DNA we carry in our genome? Biochem Biophys Res Commun 2012; 430:1340-3. [PMID: 23268340 DOI: 10.1016/j.bbrc.2012.12.074] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 12/12/2012] [Indexed: 11/26/2022]
Abstract
One of the large, unsolved problems in human genetics is the proportion of functional sequences in genomes. Recently, the encyclopedia of DNA elements consortium revealed that the majority of the genome is biochemically active, which were described as biochemical functions. This has been used as evidence to pronounce the death of the junk DNA concept. In evolutionary biology, junk DNAs are sequences whose gain or loss does not seriously affect fitness of the host organism. In the human genome, a large amount of biochemical activity should be to repress the sequences so as to avoid their harmful expression. The biochemical activity is very different from functionality in the light of evolution. The single nucleotide polymorphism sites associated with disease and other phenotypes may be functional, but their abundance in the active genome regions is not reliable evidence of functionality. Because of sequence-independent functions, the proportion of functional regions would be underestimated when sequence constraints are used alone. Knockout may be the most effective means of distinguishing functional sequences from junk DNA.
Collapse
Affiliation(s)
- Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | | |
Collapse
|
11
|
Ordog T, Syed SA, Hayashi Y, Asuzu DT. Epigenetics and chromatin dynamics: a review and a paradigm for functional disorders. Neurogastroenterol Motil 2012; 24:1054-68. [PMID: 23095056 PMCID: PMC3607505 DOI: 10.1111/nmo.12031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Motility and functional gastrointestinal disorders have high prevalence in the community, cause significant morbidity, and represent a major health care burden. Despite major advances in our understanding of the cellular and molecular basis of gastrointestinal neuromuscular functions, many of these diseases still defy mechanistic explanations. The biopsychosocial model underlying the current classification of functional gastrointestinal disorders recognizes and integrates the pathogenetic role of genetic, environmental, and psychosocial factors but has not been associated with specific molecular mechanisms. PURPOSE Here, we propose that this integrative function is encoded in the chromatin, composed of the DNA and associated histone and non-histone proteins and non-coding RNA. By establishing epigenetically heritable 'molecular memories' of past stimuli including environmental challenges, the chromatin determines an individual's responses to future insults and translates them into high-order outputs such as symptoms and illness behavior. Thus, surveying epigenetic signatures throughout the genome of affected cells in individual patients may make it possible to better understand and ultimately control the phenomena described by the biopsychosocial model. In this review, we provide a high-level but comprehensive description of the concepts and mechanisms underlying epigenetics and chromatin dynamics, describe the mechanisms whereby the environment can alter the epigenome and identify aspects of functional gastrointestinal and motility disorders where epigenetic mechanisms are most likely to play important roles.
Collapse
Affiliation(s)
- T Ordog
- Epigenomics Translational Program, Mayo Clinic Center for Individualized Medicine, Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering and Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
12
|
Zhang Z, Ott CJ, Lewandowska MA, Leir SH, Harris A. Molecular mechanisms controlling CFTR gene expression in the airway. J Cell Mol Med 2012; 16:1321-30. [PMID: 21895967 PMCID: PMC3289769 DOI: 10.1111/j.1582-4934.2011.01439.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The low levels of CFTR gene expression and paucity of CFTR protein in human airway epithelial cells are not easily reconciled with the pivotal role of the lung in cystic fibrosis pathology. Previous data suggested that the regulatory mechanisms controlling CFTR gene expression might be different in airway epithelium in comparison to intestinal epithelium where CFTR mRNA and protein is much more abundant. Here we examine chromatin structure and modification across the CFTR locus in primary human tracheal (HTE) and bronchial (NHBE) epithelial cells and airway cell lines including 16HBE14o- and Calu3. We identify regions of open chromatin that appear selective for primary airway epithelial cells and show that several of these are enriched for a histone modification (H3K4me1) that is characteristic of enhancers. Consistent with these observations, three of these sites encompass elements that have cooperative enhancer function in reporter gene assays in 16HBE14o- cells. Finally, we use chromosome conformation capture (3C) to examine the three-dimensional structure of nearly 800 kb of chromosome 7 encompassing CFTR and observe long-range interactions between the CFTR promoter and regions far outside the locus in cell types that express high levels of CFTR.
Collapse
Affiliation(s)
- Zhaolin Zhang
- Human Molecular Genetic Program, Children's Memorial Research Center, Chicago, IL 60614, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
Cellular reprogramming involves the artificial dedifferentiation of somatic cells to a pluripotent state. When affected by overexpressing specific transcription factors, the process is highly inefficient, as only 0.1-1% of cells typically undergo the transformation. This low efficiency has been attributed to high kinetic barriers that affect all cells equally and can only be overcome by rare stochastic events. The barriers to reprogramming are likely to involve transformations of chromatin state because (i) inhibitors of chromatin-modifying enzymes can enhance the efficiency of reprogramming and (ii) knockdown or knock-out of chromatin-modifying enzymes can lower the efficiency of reprogramming. Here, we review the relationship between chromatin state transformations (chromatin reprogramming) and cellular reprogramming, with an emphasis on transcription factors, chromatin remodeling factors, histone modifications and DNA methylation.
Collapse
|
14
|
Genome-wide localization of protein-DNA binding and histone modification by a Bayesian change-point method with ChIP-seq data. PLoS Comput Biol 2012; 8:e1002613. [PMID: 22844240 PMCID: PMC3406014 DOI: 10.1371/journal.pcbi.1002613] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 06/01/2012] [Indexed: 11/22/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have matured considerably since their introduction and a focus has been placed on developing sophisticated analytical tools to deal with the amassing volumes of data. Chromatin immunoprecipitation sequencing (ChIP-seq), a major application of NGS, is a widely adopted technique for examining protein-DNA interactions and is commonly used to investigate epigenetic signatures of diffuse histone marks. These datasets have notoriously high variance and subtle levels of enrichment across large expanses, making them exceedingly difficult to define. Windows-based, heuristic models and finite-state hidden Markov models (HMMs) have been used with some success in analyzing ChIP-seq data but with lingering limitations. To improve the ability to detect broad regions of enrichment, we developed a stochastic Bayesian Change-Point (BCP) method, which addresses some of these unresolved issues. BCP makes use of recent advances in infinite-state HMMs by obtaining explicit formulas for posterior means of read densities. These posterior means can be used to categorize the genome into enriched and unenriched segments, as is customarily done, or examined for more detailed relationships since the underlying subpeaks are preserved rather than simplified into a binary classification. BCP performs a near exhaustive search of all possible change points between different posterior means at high-resolution to minimize the subjectivity of window sizes and is computationally efficient, due to a speed-up algorithm and the explicit formulas it employs. In the absence of a well-established “gold standard” for diffuse histone mark enrichment, we corroborated BCP's island detection accuracy and reproducibility using various forms of empirical evidence. We show that BCP is especially suited for analysis of diffuse histone ChIP-seq data but also effective in analyzing punctate transcription factor ChIP datasets, making it widely applicable for numerous experiment types. To unravel the mechanisms of gene regulation, understanding the complex interplay of protein-DNA interactions is instrumental. Recently, chromatin immunoprecipitation, coupled with next-generation sequencing (ChIP-seq), has risen as the go-to technique for examining these interactions on a genome-wide scale. It has also given rise to new computational issues. One such difficulty is the large variation in read density profiles from different types of NGS data, including variable peak “shapes” ranging from punctate to diffuse enrichment segments. To address this issue, we developed an infinite-state hidden Markov model that resulted in explicit formulas for the estimation of read density enrichment and can be used to find both significant “peaks” and broad segments. We show the versatility of BCP in analyzing various ChIP-seq data, which can further our understanding of the role of transcription factors in gene regulatory networks and histone modification marks in epigenomic modulation.
Collapse
|
15
|
Orlando DA, Guenther MG, Frampton GM, Young RA. CpG island structure and trithorax/polycomb chromatin domains in human cells. Genomics 2012; 100:320-6. [PMID: 22819920 DOI: 10.1016/j.ygeno.2012.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022]
Abstract
TrxG and PcG complexes play key roles in the epigenetic regulation of development through H3K4me3 and H3K27me3 modification at specific sites throughout the human genome, but how these sites are selected is poorly understood. We find that in pluripotent cells, clustered CpG-islands at genes predict occupancy of H3K4me3 and H3K27me3, and these "bivalent" chromatin domains precisely span the boundaries of CpG-island clusters. These relationships are specific to pluripotent stem cells and are not retained at H3K4me3 and H3K27me3 sites unique to differentiated cells. We show that putative transcripts from clustered CpG-islands predict stem-loop structures characteristic of those bound by PcG complexes, consistent with the possibility that RNA facilitates PcG recruitment or maintenance at these sites. These studies suggest that CpG-island structure plays a fundamental role in establishing developmentally important chromatin structures in the pluripotent genome, and a subordinate role in establishing TrxG/PcG chromatin structure at sites unique to differentiated cells.
Collapse
Affiliation(s)
- David A Orlando
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
16
|
Guenther MG. Transcriptional control of embryonic and induced pluripotent stem cells. Epigenomics 2012; 3:323-43. [PMID: 22122341 DOI: 10.2217/epi.11.15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Embryonic stem cells (ESCs) have the potential to generate virtually any cell type or tissue type in the body. This remarkable plasticity has yielded great interest in using these cells to understand early development and in treating human disease. In an effort to understand the basis of ESC pluripotency, genetic and genomic studies have revealed transcriptional regulatory circuitry that maintains the pluripotent cell state and poises the genome for downstream activation. Critical components of this circuitry include ESC transcription factors, chromatin regulators, histone modifications, signaling molecules and regulatory RNAs. This article will focus on our current understanding of these components and how they influence ESC and induced pluripotent stem cell states. Emerging themes include regulation of the pluripotent genome by a core set of transcription factors, transcriptional poising of developmental genes by chromatin regulatory complexes and the establishment of multiple layers of repression at key genomic loci.
Collapse
|
17
|
Tang X, Lim MH, Pelletier J, Tang M, Nguyen V, Keller WA, Tsang EWT, Wang A, Rothstein SJ, Harada JJ, Cui Y. Synergistic repression of the embryonic programme by SET DOMAIN GROUP 8 and EMBRYONIC FLOWER 2 in Arabidopsis seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1391-404. [PMID: 22162868 PMCID: PMC3276103 DOI: 10.1093/jxb/err383] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/19/2011] [Accepted: 10/25/2011] [Indexed: 05/18/2023]
Abstract
The seed maturation programme occurs only during the late phase of embryo development, and repression of the maturation genes is pivotal for seedling development. However, mechanisms that repress the expression of this programme in vegetative tissues are not well understood. A genetic screen was performed for mutants that express maturation genes in leaves. Here, it is shown that mutations affecting SDG8 (SET DOMAIN GROUP 8), a putative histone methyltransferase, cause ectopic expression of a subset of maturation genes in leaves. Further, to investigate the relationship between SDG8 and the Polycomb Group (PcG) proteins, which are known to repress many developmentally important genes including seed maturation genes, double mutants were made and formation of somatic embryos was observed on mutant seedlings with mutations in both SDG8 and EMF2 (EMBRYONIC FLOWER 2). Analysis of histone methylation status at the chromatin sites of a number of maturation loci revealed a synergistic effect of emf2 and sdg8 on the deposition of the active histone mark which is the trimethylation of Lys4 on histone 3 (H3K4me3). This is consistent with high expression of these genes and formation of somatic embryos in the emf2 sdg8 double mutants. Interestingly, a double mutant of sdg8 and vrn2 (vernalization2), a paralogue of EMF2, grew and developed normally to maturity. These observations demonstrate a functional cooperative interplay between SDG8 and an EMF2-containing PcG complex in maintaining vegetative cell identity by repressing seed genes to promote seedling development. The work also indicates the functional specificities of PcG complexes in Arabidopsis.
Collapse
Affiliation(s)
- Xurong Tang
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Myung-Ho Lim
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, 150 Suin-ro, Gwonseon-gu, Suwon 441-707, Korea
| | - Julie Pelletier
- Section of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Mingjuan Tang
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Vi Nguyen
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Wilfred A. Keller
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Edward W. T. Tsang
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Aiming Wang
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Steven J. Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - John J. Harada
- Section of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| |
Collapse
|
18
|
Russo J, Santucci-Pereira J, de Cicco RL, Sheriff F, Russo PA, Peri S, Slifker M, Ross E, Mello MLS, Vidal BC, Belitskaya-Lévy I, Arslan A, Zeleniuch-Jacquotte A, Bordas P, Lenner P, Ahman J, Afanasyeva Y, Hallmans G, Toniolo P, Russo IH. Pregnancy-induced chromatin remodeling in the breast of postmenopausal women. Int J Cancer 2012; 131:1059-70. [PMID: 22025034 DOI: 10.1002/ijc.27323] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 09/22/2011] [Indexed: 01/12/2023]
Abstract
Early pregnancy and multiparity are known to reduce the risk of women to develop breast cancer at menopause. Based on the knowledge that the differentiation of the breast induced by the hormones of pregnancy plays a major role in this protection, this work was performed with the purpose of identifying what differentiation-associated molecular changes persist in the breast until menopause. Core needle biopsies (CNB) obtained from the breast of 42 nulliparous (NP) and 71 parous (P) postmenopausal women were analyzed in morphology, immunocytochemistry and gene expression. Whereas in the NP breast, nuclei of epithelial cells were large and euchromatic, in the P breast they were small and hyperchromatic, showing strong methylation of histone 3 at lysine 9 and 27. Transcriptomic analysis performed using Affymetrix HG_U133 oligonucleotide arrays revealed that in CNB of the P breast, there were 267 upregulated probesets that comprised genes controlling chromatin organization, transcription regulation, splicing machinery, mRNA processing and noncoding elements including XIST. We concluded that the differentiation process induced by pregnancy is centered in chromatin remodeling and in the mRNA processing reactome, both of which emerge as important regulatory pathways. These are indicative of a safeguard step that maintains the fidelity of the transcription process, becoming the ultimate mechanism mediating the protection of the breast conferred by full-term pregnancy.
Collapse
Affiliation(s)
- Jose Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
| | - Philip Avner
- Mouse Molecular Genetics Unit, Developmental Biology Department, CNRS URA 2578, Institut Pasteur, F-75015 Paris, France;
| |
Collapse
|
20
|
Moazed D. Mechanisms for the inheritance of chromatin states. Cell 2011; 146:510-8. [PMID: 21854979 DOI: 10.1016/j.cell.2011.07.013] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/20/2011] [Accepted: 07/13/2011] [Indexed: 12/24/2022]
Abstract
Studies in eukaryotes ranging from yeast to mammals indicate that specific chromatin structures can be inherited following DNA replication via mechanisms acting in cis. Both the initial establishment of such chromatin structures and their inheritance require sequence-dependent specificity factors and changes in histone posttranslational modifications. Here I propose models for the maintenance of epigenetic information in which DNA silencers or nascent RNA scaffolds act as sensors that work cooperatively with parentally inherited histones to re-establish chromatin states following DNA replication.
Collapse
Affiliation(s)
- Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Abstract
The past decade has highlighted the central role of epigenetic processes in cancer causation, progression and treatment. Next-generation sequencing is providing a window for visualizing the human epigenome and how it is altered in cancer. This view provides many surprises, including linking epigenetic abnormalities to mutations in genes that control DNA methylation, the packaging and the function of DNA in chromatin, and metabolism. Epigenetic alterations are leading candidates for the development of specific markers for cancer detection, diagnosis and prognosis. The enzymatic processes that control the epigenome present new opportunities for deriving therapeutic strategies designed to reverse transcriptional abnormalities that are inherent to the cancer epigenome.
Collapse
Affiliation(s)
- Stephen B. Baylin
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA
| | - Peter A. Jones
- The USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
22
|
Viswanathan R, Auble DT. One small step for Mot1; one giant leap for other Swi2/Snf2 enzymes? BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:488-96. [PMID: 21658482 PMCID: PMC3171519 DOI: 10.1016/j.bbagrm.2011.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/14/2011] [Accepted: 05/20/2011] [Indexed: 12/13/2022]
Abstract
The TATA-binding protein (TBP) is a major target for transcriptional regulation. Mot1, a Swi2/Snf2-related ATPase, dissociates TBP from DNA in an ATP dependent process. The experimental advantages of this relatively simple reaction have been exploited to learn more about how Swi2/Snf2 ATPases function biochemically. However, many unanswered questions remain and fundamental aspects of the Mot1 mechanism are still under debate. Here, we review the available data and integrate the results with structural and biochemical studies of related enzymes to derive a model for Mot1's catalytic action consistent with the broad literature on enzymes in this family. We propose that the Mot1 ATPase domain is tethered to TBP by a flexible, spring-like linker of alpha helical hairpins. The linker juxtaposes the ATPase domain such that it can engage duplex DNA on one side of the TBP-DNA complex. This allows the ATPase to employ short-range, nonprocessive ATP-driven DNA tracking to pull or push TBP off its DNA site. DNA translocation is a conserved property of ATPases in the broader enzyme family. As such, the model explains how a structurally and functionally conserved ATPase domain has been put to use in a very different context than other enzymes in the Swi2/Snf2 family. This article is part of a Special Issue entitled:Snf2/Swi2 ATPase structure and function.
Collapse
Affiliation(s)
- Ramya Viswanathan
- Department of Biochemistry and Molecular Genetics, Box 800733 Jordan Hall, University of Virginia Health System, Charlottesville, VA 22908
| | - David T. Auble
- Department of Biochemistry and Molecular Genetics, Box 800733 Jordan Hall, University of Virginia Health System, Charlottesville, VA 22908
| |
Collapse
|
23
|
Levine M. Paused RNA polymerase II as a developmental checkpoint. Cell 2011; 145:502-11. [PMID: 21565610 DOI: 10.1016/j.cell.2011.04.021] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/18/2011] [Accepted: 04/25/2011] [Indexed: 11/18/2022]
Abstract
The textbook view of gene activation is that the rate-limiting step is the interaction of RNA polymerase II (Pol II) with the gene's promoter. However, studies in a variety of systems, including human embryonic stem cells and the early Drosophila embryo, have begun to challenge this view. There is increasing evidence that differential gene expression often depends on the regulation of transcription elongation via the release of Pol II from the proximal promoter. I review the implications of this mechanism of gene activation with respect to the orderly unfolding of complex gene networks governing animal development.
Collapse
Affiliation(s)
- Michael Levine
- Division of Genetics, Genomics, and Development, Department of Molecular and Cell Biology, Center for Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
24
|
Trask MC, Mager J. Complexity of polycomb group function: diverse mechanisms of target specificity. J Cell Physiol 2011; 226:1719-21. [PMID: 20799281 DOI: 10.1002/jcp.22395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epigenetic regulation of gene expression has become relevant to nearly all areas of biomedical research. The emergence of technologies that allow for examination of the epigenome combined with identification of key protein complexes that mediate the myriad chromatin modifications that occur have greatly enhanced the versatility and efficacy of tools with which to study normal development and disease states. The evolutionarily conserved polycomb group genes (PcG) have been identified as a predominant mechanism by which gene silencing occurs during development, differentiation, and disease. While molecular events that target PcG complexes have been well defined in some non-vertebrate models, the details of locus specificity and functional diversity of mammalian PcG proteins have not yet unresolved. Here we discuss recent findings that offer novel mechanistic events and add complexity to our understanding of PcG function in vertebrates.
Collapse
Affiliation(s)
- Mary C Trask
- Department of Veterinary and Animal Science, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
25
|
Abstract
Small noncoding RNAs regulate a variety of cellular processes, including genomic imprinting, chromatin remodeling, replication, transcription, and translation. Here, we report small replication-regulating RNAs (srRNAs) that specifically inhibit DNA replication of the human BK polyomavirus (BKV) in vitro and in vivo. srRNAs from FM3A murine mammary tumor cells were enriched by DNA replication assay-guided fractionation and hybridization to the BKV noncoding control region (NCCR) and synthesized as cDNAs. Selective mutagenesis of the cDNA sequences and their putative targets suggests that the inhibition of BKV DNA replication is mediated by srRNAs binding to the viral NCCR, hindering early steps in the initiation of DNA replication. Ectopic expression of srRNAs in human cells inhibited BKV DNA replication in vivo. Additional srRNAs were designed and synthesized that specifically inhibit simian virus 40 (SV40) DNA replication in vitro. These observations point to novel mechanisms for regulating DNA replication and suggest the design of synthetic agents for inhibiting replication of polyomaviruses and possibly other viruses.
Collapse
|
26
|
Spitale RC, Tsai MC, Chang HY. RNA templating the epigenome: long noncoding RNAs as molecular scaffolds. Epigenetics 2011; 6:539-43. [PMID: 21393997 DOI: 10.4161/epi.6.5.15221] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cellular pathways must be synergized, controlled and organized to manage homeostasis. To achieve high selectivity within the crowded cellular milieu the cell utilizes scaffolding complexes whose role is to bring molecules in proximity thereby controlling and enhancing intermolecular interactions and signaling events. To date, scaffolds have been shown to be composed of proteinaceous units; however, recent evidence has supported the idea that non-coding RNAs may also play a similar role. In this point of view article we discuss recent data on ncRNA scaffolds, with particular focus on ncRNA HOTAIR. Using our current knowledge of signaling networks we discuss the role that RNA may play in writing and regulating histone modifications and the information needed for correct gene expression. Further, we speculate on additional, yet undiscovered roles that ncRNAs may be playing as molecular scaffolds.
Collapse
Affiliation(s)
- Robert C Spitale
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
27
|
Abstract
Embryonic stem cells and induced pluripotent stem cells hold great promise for regenerative medicine. These cells can be propagated in culture in an undifferentiated state but can be induced to differentiate into specialized cell types. Moreover, these cells provide a powerful model system for studies of cellular identity and early mammalian development. Recent studies have provided insights into the transcriptional control of embryonic stem cell state, including the regulatory circuitry underlying pluripotency. These studies have, as a consequence, uncovered fundamental mechanisms that control mammalian gene expression, connect gene expression to chromosome structure, and contribute to human disease.
Collapse
Affiliation(s)
- Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| |
Collapse
|
28
|
Majesky MW, Dong XR, Regan JN, Hoglund VJ. Vascular smooth muscle progenitor cells: building and repairing blood vessels. Circ Res 2011; 108:365-77. [PMID: 21293008 PMCID: PMC3382110 DOI: 10.1161/circresaha.110.223800] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/27/2010] [Indexed: 01/17/2023]
Abstract
Molecular pathways that control the specification, migration, and number of available smooth muscle progenitor cells play key roles in determining blood vessel size and structure, capacity for tissue repair, and progression of age-related disorders. Defects in these pathways produce malformations of developing blood vessels, depletion of smooth muscle progenitor cell pools for vessel wall maintenance and repair, and aberrant activation of alternative differentiation pathways in vascular disease. A better understanding of the molecular mechanisms that uniquely specify and maintain vascular smooth muscle cell precursors is essential if we are to use advances in stem and progenitor cell biology and somatic cell reprogramming for applications directed to the vessel wall.
Collapse
Affiliation(s)
- Mark W Majesky
- Seattle Children's Research Institute, University of Washington, 1900 Ninth Ave, M/S C9S-5, Seattle, WA 98101, USA.
| | | | | | | |
Collapse
|
29
|
Mohammad HP, Baylin SB. Linking cell signaling and the epigenetic machinery. Nat Biotechnol 2011; 28:1033-8. [PMID: 20944593 DOI: 10.1038/nbt1010-1033] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One of the biggest gaps in our knowledge about epigenomes is how their interplay with cellular signaling influences development, adult cellular differentiation and disease.
Collapse
Affiliation(s)
- Helai P Mohammad
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | |
Collapse
|
30
|
Meissner A. Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol 2011; 28:1079-88. [PMID: 20944600 DOI: 10.1038/nbt.1684] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetic modifications constitute a complex regulatory layer on top of the genome sequence. Pluripotent and differentiated cells provide a powerful system for investigating how the epigenetic code influences cellular fate. High-throughput sequencing of these cell types has yielded DNA methylation maps at single-nucleotide resolution and many genome-wide chromatin maps. In parallel to epigenome mapping efforts, remarkable progress has been made in our ability to manipulate cell states; ectopic expression of transcription factors has been shown to override developmentally established epigenetic marks and to enable routine generation of induced pluripotent stem (iPS) cells. Despite these advances, many fundamental questions remain. The roles of epigenetic marks and, in particular, of epigenetic modifiers in development and in disease states are not well understood. Although iPS cells appear molecularly and functionally similar to embryonic stem cells, more genome-wide studies are needed to define the extent and functions of epigenetic remodeling during reprogramming.
Collapse
Affiliation(s)
- Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
31
|
Abstract
The Polycomb group (PcG) system represses the transcription of important developmental regulators and perpetuates this repression across multiple cell divisions. Inputs from outside the cell can influence PcG function by recruiting additional chromatin factors to PcG-regulated loci or by downregulating the PcG genes themselves. These types of PcG system modulation allow context-dependent induction of genes during development, in cancer, and in response to changes in the environment. In this review, we outline instances where molecular players in this process have been recently identified, comparing and contrasting different ways in which derepression is achieved, and projecting directions for future research.
Collapse
|
32
|
Heard E, Tishkoff S, Todd JA, Vidal M, Wagner GP, Wang J, Weigel D, Young R. Ten years of genetics and genomics: what have we achieved and where are we heading? Nat Rev Genet 2010; 11:723-33. [PMID: 20820184 PMCID: PMC3004366 DOI: 10.1038/nrg2878] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To celebrate the first 10 years of Nature Reviews Genetics, we asked eight leading researchers for their views on the key developments in genetics and genomics in the past decade and the prospects for the future. Their responses highlight the incredible changes that the field has seen, from the explosion of genomic data and the many possibilities it has opened up to the ability to reprogramme adult cells to pluripotency. The way ahead looks similarly exciting as we address questions such as how cells function as systems and how complex interactions among genetics, epigenetics and the environment combine to shape phenotypes.
Collapse
Affiliation(s)
- Edith Heard
- Mammalian Developmental Epigenetics Group, Unité de Génétique et Biologie du Développement, INSERM U934/CNRS UMR3215, Institut Curie – Centre de Recherche, 26, rue d’Ulm, 75248 Paris Cedex 05, France.
| | - Sarah Tishkoff
- Departments of Genetics and Biology, University of Pennsylvania School of Medicine, 428 Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104-6145, USA.
| | - John A. Todd
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK.
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute; and the Department of Genetics, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.
| | - Günter P. Wagner
- Yale Systems Biology Institute, Yale University, POB 208106, New Haven, Connecticut 06520-8106, USA.
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, China; and the Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark.
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.
| | - Richard Young
- Whitehead Institute for Biomedical Research, MIT, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.
| |
Collapse
|
33
|
Stable transmission of reversible modifications: maintenance of epigenetic information through the cell cycle. Cell Mol Life Sci 2010; 68:27-44. [PMID: 20799050 PMCID: PMC3015210 DOI: 10.1007/s00018-010-0505-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/19/2010] [Accepted: 08/09/2010] [Indexed: 12/30/2022]
Abstract
Even though every cell in a multicellular organism contains the same genes, the differing spatiotemporal expression of these genes determines the eventual phenotype of a cell. This means that each cell type contains a specific epigenetic program that needs to be replicated through cell divisions, along with the genome, in order to maintain cell identity. The stable inheritance of these programs throughout the cell cycle relies on several epigenetic mechanisms. In this review, DNA methylation and histone methylation by specific histone lysine methyltransferases (KMT) and the Polycomb/Trithorax proteins are considered as the primary mediators of epigenetic inheritance. In addition, non-coding RNAs and nuclear organization are implicated in the stable transfer of epigenetic information. Although most epigenetic modifications are reversible in nature, they can be stably maintained by self-recruitment of modifying protein complexes or maintenance of these complexes or structures through the cell cycle.
Collapse
|