1
|
Gozashti L, Nakamoto A, Russell S, Corbett-Detig R. Horizontal transmission of functionally diverse transposons is a major source of new introns. Proc Natl Acad Sci U S A 2025; 122:e2414761122. [PMID: 40402243 DOI: 10.1073/pnas.2414761122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/28/2025] [Indexed: 05/23/2025] Open
Abstract
Since the discovery of spliceosomal introns in eukaryotic genomes, the proximate molecular and evolutionary processes that generate new introns have remained a critical mystery. Specialized transposable elements (TEs), introners, are thought to be one of the major drivers of intron gain in diverse eukaryotes. However, the molecular mechanism(s) and evolutionary processes driving introner propagation within and between lineages remain elusive. Here, we analyze 8,716 genomes, revealing 1,093 introner families in 201 species spanning 1.7 billion years of evolution. Introners are derived from functionally diverse TEs including families of terminal-inverted-repeat DNA TEs, retrotransposons, cryptons, and helitrons as well as mobile elements with unknown molecular mechanisms. We identify eight cases where introners recently transferred between divergent host species and show that giant viruses that integrate into genomes may facilitate introner transfer across lineages. We propose that ongoing intron gain is primarily a consequence of TE activity in eukaryotes, thereby resolving a key mystery of genome structure evolution.
Collapse
Affiliation(s)
- Landen Gozashti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
- HHMI, Harvard University, Cambridge, MA 02138
| | - Anne Nakamoto
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Shelbi Russell
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
2
|
Wang K, Suyama R, Mizutani N, Matsuo M, Peng Y, Seki M, Suzuki Y, Luscombe NM, Dantec C, Lemaire P, Toyoda A, Nishida H, Onuma TA. Transcriptomes of a fast-developing chordate uncover drastic differences in transcription factors and localized maternal RNA composition compared with those of ascidians. Development 2025; 152:DEV202666. [PMID: 40099490 DOI: 10.1242/dev.202666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 12/30/2024] [Indexed: 03/20/2025]
Abstract
The larvacean Oikopleura dioica is a fast-developing chordate because of its small number of cells (∼4500 in juveniles) and rapid development to complete morphogenesis by 10 h after fertilization. Strikingly, most of its blastomeres are restricted to give rise to a single cell-type by the 32-cell stage of embryogenesis, unlike cell fate determination at the 110-cell stage in ascidians. In this study, RNA-sequencing (RNA-seq) revealed non-canonical properties of O. dioica: (1) an initial zygotic gene expression of 950 genes at the 16- to 32-cell stage; (2) 25 transcription factors (TFs) are expressed in the 32-cell stage (fewer than half of the TFs underlying gene regulatory networks in ascidian embryogenesis were lost or not expressed); (3) five maternal mRNAs localized in the vegetal-posterior blastomeres in animal and vegetal hemispheres; and (4) three maternal mRNAs localized in the small vegetal pole region of unfertilized eggs. These observations indicate that this fast-developing chordate lacks the first phase of development in ascidians: fertilization-driven ooplasmic movements that drive postplasmic RNAs toward the vegetal pole. These data have been deposited in ANISEED (https://www.aniseed.fr/) as transcriptome resources.
Collapse
Affiliation(s)
- Kai Wang
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- Clinical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ritsuko Suyama
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nanako Mizutani
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Masaki Matsuo
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yu Peng
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Masahide Seki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Christelle Dantec
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR5237, CNRS-Universite de Montpellier, 1919 route de Mende, F-34090 Montpellier, France
| | - Patrick Lemaire
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR5237, CNRS-Universite de Montpellier, 1919 route de Mende, F-34090 Montpellier, France
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Graduate School of Science and Engineering, Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
3
|
Wibisana JN, Plessy C, Dierckxsens N, Masunaga A, Miao J, Luscombe NM. The complete mitogenome of an unidentified Oikopleura species. F1000Res 2025; 13:1357. [PMID: 40248647 PMCID: PMC12004063 DOI: 10.12688/f1000research.157311.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2025] [Indexed: 04/19/2025] Open
Abstract
Appendicularians are planktonic tunicates abundant all over the world. Currently, only two complete annotated mitochondrial genome assemblies are available for appendicularians, both for cryptic species of Oikopleura dioica. This underrepresentation of available appendicularian mitochondrial genomes limits environmental DNA sequencing (eDNA) studies that rely on mitochondrial markers as a taxonomic barcode. We report the complete mitochondrial genome assembly and annotation of an unknown appendicularian species isolated from the Amami Oshima island, Kagoshima prefecture, Japan, that has significant sequence difference with other currently available assemblies and will serve as a useful resource for ecological studies and further mitochondrial studies of appendicularians.
Collapse
Affiliation(s)
- Johannes Nicolaus Wibisana
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 9040497, Japan
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 9040497, Japan
| | - Nicolas Dierckxsens
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 9040497, Japan
| | - Aki Masunaga
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 9040497, Japan
| | - Jiashun Miao
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 9040497, Japan
| | - Nicholas M. Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 9040497, Japan
| |
Collapse
|
4
|
Sánchez-Serna G, Badia-Ramentol J, Bujosa P, Ferrández-Roldán A, Torres-Águila NP, Fabregà-Torrus M, Wibisana JN, Mansfield MJ, Plessy C, Luscombe NM, Albalat R, Cañestro C. Less, but More: New Insights From Appendicularians on Chordate Fgf Evolution and the Divergence of Tunicate Lifestyles. Mol Biol Evol 2025; 42:msae260. [PMID: 39686543 PMCID: PMC11733497 DOI: 10.1093/molbev/msae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The impact of gene loss on the diversification of taxa and the emergence of evolutionary innovations remains poorly understood. Here, our investigation on the evolution of the Fibroblast Growth Factors (FGFs) in appendicularian tunicates as a case study reveals a scenario of "less, but more" characterized by massive losses of all Fgf gene subfamilies, except for the Fgf9/16/20 and Fgf11/12/13/14, which in turn underwent two bursts of duplications. Through phylogenetic analysis, synteny conservation, and gene and protein structure, we reconstruct the history of appendicularian Fgf genes, highlighting their paracrine and intracellular functions. An exhaustive analysis of developmental Fgf expression in Oikopleura dioica allows us to identify four associated evolutionary patterns characterizing the "less, but more" conceptual framework: conservation of ancestral functions; function shuffling between paralogs linked to gene losses; innovation of new functions after the duplication bursts; and function extinctions linked to gene losses. Our findings allow us to formulate novel hypotheses about the impact of Fgf losses and duplications on the transition from an ancestral ascidian-like biphasic lifestyle to the fully free-living appendicularians. These hypotheses include massive co-options of Fgfs for the development of the oikoblast and the tail fin; recruitment of Fgf11/12/13/14s into the evolution of a new mouth, and their role modulating neuronal excitability; the evolutionary innovation of an anterior tail FGF signaling source upon the loss of retinoic acid signaling; and the potential link between the loss of Fgf7/10/22 and Fgf8/17/18 and the loss of drastic metamorphosis and tail absorption in appendicularians, in contrast to ascidians.
Collapse
Affiliation(s)
- Gaspar Sánchez-Serna
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Jordi Badia-Ramentol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Paula Bujosa
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Alfonso Ferrández-Roldán
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Nuria P Torres-Águila
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marc Fabregà-Torrus
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Johannes N Wibisana
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
5
|
Lagman D, Leon A, Cieminska N, Deng W, Chatzigeorgiou M, Henriet S, Chourrout D. Pax3/7 gene function in Oikopleura dioica supports a neuroepithelial-like origin for its house-making Fol territory. Dev Biol 2024; 516:207-220. [PMID: 39181419 DOI: 10.1016/j.ydbio.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Larvacean tunicates feature a spectacular innovation not seen in other animals - the trunk oikoplastic epithelium (OE). This epithelium produces a house, a large and complex extracellular structure used for filtering and concentrating food particles. Previously we identified several homeobox transcription factor genes expressed during early OE patterning. Among these are two Pax3/7 copies that we named pax37A and pax37B. The vertebrate homologs, PAX3 and PAX7 are involved in developmental processes related to neural crest and muscles. In the ascidian tunicate Ciona intestinalis, Pax3/7 plays a role in the development of cells deriving from the neural plate border, including trunk epidermal sensory neurons and tail nerve cord neurons, as well as in the neural tube closure. Here we have investigated the roles of Oikopleura dioica pax37A and pax37B in the development of the OE, by using CRISPR-Cas9 mutant lines and analyzing scRNA-seq data from wild-type animals. We found that pax37B but not pax37A is essential for the differentiation of cell fields that produce the food concentrating filter of the house: the anterior Fol, giant Fol and Nasse cells. Trajectory analysis supported a neuroepithelial-like or a preplacodal ectoderm transcriptional signature in these cells. We propose that the highly specialized secretory epithelial cells of the Fol region either maintained or evolved neuroepithelial features. This is supported by a fragmented gene regulatory network involved in their development that also operates in ascidian epidermal neurons.
Collapse
Affiliation(s)
- David Lagman
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway; Department of Medical Cell Biology, Uppsala University, Uppsala, SE-75123, Sweden.
| | - Anthony Leon
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Nadia Cieminska
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Wei Deng
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | | | - Simon Henriet
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Daniel Chourrout
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway.
| |
Collapse
|
6
|
Albaina A, Garić R, Yebra L. Know your limits; miniCOI metabarcoding fails with key marine zooplankton taxa. JOURNAL OF PLANKTON RESEARCH 2024; 46:581-595. [PMID: 39664260 PMCID: PMC11629781 DOI: 10.1093/plankt/fbae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/25/2024] [Indexed: 12/13/2024]
Abstract
Eleven years after the publication of the first work applying deoxyribonucleic acid (DNA) metabarcoding to zooplankton communities, the commonly known "miniCOI" barcode is widely used, becoming the marker of choice. However, several primer combinations co-exist for this barcode and a critical evaluation of their performance is needed. This article reviews the misperformance of miniCOI metabarcoding with marine zooplankton communities, comparing them to microscopy and/or other universal markers. In total, misperformances were reported for 26 zooplankton taxa, including 18 copepods and five tunicates. We report a detection failure with Class Appendicularia and contrasting performances for Oithona similis (from good correspondence to detection failure), two worldwide abundant taxa with a crucial role in the marine pelagic realm. A combination of forward primer mismatches, the presence of long poly-T inserts and a low number of reference sequences would explain the failure to detect appendicularians. However, the contrasting performance with O. similis would correspond to distinct numbers of mismatches in the forward primer in different lineages within this cryptic taxon. This is reinforced by the report of similar patterns with other locally abundant zooplankton taxa. Therefore, we strongly call for the use of miniCOI in combination with alternative methods capable of addressing these limitations.
Collapse
Affiliation(s)
- Aitor Albaina
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Rade Garić
- Institute for Marine and Coastal Research, University of Dubrovnik, Kneza Damjana Jude 12, 20000 Dubrovnik, Croatia
| | - Lidia Yebra
- Centro Oceanográfico de Málaga (IEO, CSIC), Explanada de San Andrés (Muelle 9), Puerto de Málaga, 29002 Málaga,Spain
| |
Collapse
|
7
|
Lewin TD, Liao IJY, Luo YJ. Annelid Comparative Genomics and the Evolution of Massive Lineage-Specific Genome Rearrangement in Bilaterians. Mol Biol Evol 2024; 41:msae172. [PMID: 39141777 PMCID: PMC11371463 DOI: 10.1093/molbev/msae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
The organization of genomes into chromosomes is critical for processes such as genetic recombination, environmental adaptation, and speciation. All animals with bilateral symmetry inherited a genome structure from their last common ancestor that has been highly conserved in some taxa but seemingly unconstrained in others. However, the evolutionary forces driving these differences and the processes by which they emerge have remained largely uncharacterized. Here, we analyze genome organization across the phylum Annelida using 23 chromosome-level annelid genomes. We find that while many annelid lineages have maintained the conserved bilaterian genome structure, the Clitellata, a group containing leeches and earthworms, possesses completely scrambled genomes. We develop a rearrangement index to quantify the extent of genome structure evolution and show that, compared to the last common ancestor of bilaterians, leeches and earthworms have among the most highly rearranged genomes of any currently sampled species. We further show that bilaterian genomes can be classified into two distinct categories-high and low rearrangement-largely influenced by the presence or absence, respectively, of chromosome fission events. Our findings demonstrate that animal genome structure can be highly variable within a phylum and reveal that genome rearrangement can occur both in a gradual, stepwise fashion, or rapid, all-encompassing changes over short evolutionary timescales.
Collapse
Affiliation(s)
- Thomas D Lewin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Jyun Luo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
Klirs Y, Novosolov M, Gissi C, Garić R, Pupko T, Stach T, Huchon D. Evolutionary Insights from the Mitochondrial Genome of Oikopleura dioica: Sequencing Challenges, RNA Editing, Gene Transfers to the Nucleus, and tRNA Loss. Genome Biol Evol 2024; 16:evae181. [PMID: 39162337 PMCID: PMC11384887 DOI: 10.1093/gbe/evae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Sequencing the mitochondrial genome of the tunicate Oikopleura dioica is a challenging task due to the presence of long poly-A/T homopolymer stretches, which impair sequencing and assembly. Here, we report on the sequencing and annotation of the majority of the mitochondrial genome of O. dioica by means of combining several DNA and amplicon reads obtained by Illumina and MinIon Oxford Nanopore Technologies with public RNA sequences. We document extensive RNA editing, since all homopolymer stretches present in the mitochondrial DNA correspond to 6U-regions in the mitochondrial RNA. Out of the 13 canonical protein-coding genes, we were able to detect eight, plus an unassigned open reading frame that lacked sequence similarity to canonical mitochondrial protein-coding genes. We show that the nad3 gene has been transferred to the nucleus and acquired a mitochondria-targeting signal. In addition to two very short rRNAs, we could only identify a single tRNA (tRNA-Met), suggesting multiple losses of tRNA genes, supported by a corresponding loss of mitochondrial aminoacyl-tRNA synthetases in the nuclear genome. Based on the eight canonical protein-coding genes identified, we reconstructed maximum likelihood and Bayesian phylogenetic trees and inferred an extreme evolutionary rate of this mitochondrial genome. The phylogenetic position of appendicularians among tunicates, however, could not be accurately determined.
Collapse
Affiliation(s)
- Yael Klirs
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maria Novosolov
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
- Faculty of Health and Medical Sciences, GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Carmela Gissi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari 70126, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari 70126, Italy
- CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma 00196, Italy
| | - Rade Garić
- Institute for Marine and Coastal Research, University of Dubrovnik, Dubrovnik 20000, Croatia
| | - Tal Pupko
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Thomas Stach
- Department of Molecular Parasitology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dorothée Huchon
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
- The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
9
|
Dierckxsens N, Watanabe K, Tan Y, Masunaga A, Mansfield MJ, Miao J, Luscombe NM, Plessy C. Tracing Homopolymers in Oikopleura dioica's Mitogenome. Genome Biol Evol 2024; 16:evae182. [PMID: 39162185 PMCID: PMC11384890 DOI: 10.1093/gbe/evae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Oikopleura dioica is a planktonic tunicate (Appendicularia class) found extensively across the marine waters of the globe. The genome of a single male individual collected from Okinawa, Japan was sequenced using the single-molecule PacBio Hi-Fi method and assembled with NOVOLoci. The mitogenome is 39,268 bp long, featuring a large control region of around 22,000 bp. We annotated the proteins atp6, cob, cox1, cox2, cox3, nad1, nad4, and nad5, and found one more open reading frame that did not match any known gene. This study marks the first complete mitogenome assembly for an appendicularian, and reveals that A and T homopolymers cumulatively account for nearly half of its length. This reference sequence will be an asset for environmental DNA and phylogenetic studies.
Collapse
Affiliation(s)
- Nicolas Dierckxsens
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kosei Watanabe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Keio University, School of Medicine, Tokyo, Japan
| | - Yongkai Tan
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Aki Masunaga
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jiashun Miao
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
10
|
Mikina W, Hałakuc P, Milanowski R. Transposon-derived introns as an element shaping the structure of eukaryotic genomes. Mob DNA 2024; 15:15. [PMID: 39068498 PMCID: PMC11282704 DOI: 10.1186/s13100-024-00325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
The widely accepted hypothesis postulates that the first spliceosomal introns originated from group II self-splicing introns. However, it is evident that not all spliceosomal introns in the nuclear genes of modern eukaryotes are inherited through vertical transfer of intronic sequences. Several phenomena contribute to the formation of new introns but their most common origin seems to be the insertion of transposable elements. Recent analyses have highlighted instances of mass gains of new introns from transposable elements. These events often coincide with an increase or change in the spliceosome's tolerance to splicing signals, including the acceptance of noncanonical borders. Widespread acquisitions of transposon-derived introns occur across diverse evolutionary lineages, indicating convergent processes. These events, though independent, likely require a similar set of conditions. These conditions include the presence of transposon elements with features enabling their removal at the RNA level as introns and/or the existence of a splicing mechanism capable of excising unusual sequences that would otherwise not be recognized as introns by standard splicing machinery. Herein we summarize those mechanisms across different eukaryotic lineages.
Collapse
Affiliation(s)
- Weronika Mikina
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw, 02‑089, Poland
| | - Paweł Hałakuc
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw, 02‑089, Poland
| | - Rafał Milanowski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw, 02‑089, Poland.
| |
Collapse
|
11
|
Gahan JM, Helfrich LW, Wetzel LA, Bhanu NV, Yuan ZF, Garcia BA, Klose R, Booth DS. Chromatin profiling identifies putative dual roles for H3K27me3 in regulating transposons and cell type-specific genes in choanoflagellates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596151. [PMID: 38854040 PMCID: PMC11160669 DOI: 10.1101/2024.05.28.596151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Gene expression is tightly controlled during animal development to allow the formation of specialized cell types. Our understanding of how animals evolved this exquisite regulatory control remains elusive, but evidence suggests that changes in chromatin-based mechanisms may have contributed. To investigate this possibility, here we examine chromatin-based gene regulatory features in the closest relatives of animals, choanoflagellates. Using Salpingoeca rosetta as a model system, we examined chromatin accessibility and histone modifications at the genome scale and compared these features to gene expression. We first observed that accessible regions of chromatin are primarily associated with gene promoters and found no evidence of distal gene regulatory elements resembling the enhancers that animals deploy to regulate developmental gene expression. Remarkably, a histone modification deposited by polycomb repressive complex 2, histone H3 lysine 27 trimethylation (H3K27me3), appeared to function similarly in S. rosetta to its role in animals, because this modification decorated genes with cell type-specific expression. Additionally, H3K27me3 marked transposons, retaining what appears to be an ancestral role in regulating these elements. We further uncovered a putative new bivalent chromatin state at cell type-specific genes that consists of H3K27me3 and histone H3 lysine 4 mono-methylation (H3K4me1). Together, our discoveries support the scenario that gene-associated histone modification states that underpin development emerged before the evolution of animal multicellularity.
Collapse
Affiliation(s)
- James M. Gahan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry, University of Oxford, Oxford, UK
- Present Address: Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Lily W. Helfrich
- Howard Hughes Medical Institute / University of California, Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720
- Present Address: Benchling
| | - Laura A. Wetzel
- Howard Hughes Medical Institute / University of California, Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720
- Present Address: BioMarin Pharmaceutical Inc
| | - Natarajan V. Bhanu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Rob Klose
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - David S. Booth
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
12
|
Plessy C, Mansfield MJ, Bliznina A, Masunaga A, West C, Tan Y, Liu AW, Grašič J, Del Río Pisula MS, Sánchez-Serna G, Fabrega-Torrus M, Ferrández-Roldán A, Roncalli V, Navratilova P, Thompson EM, Onuma T, Nishida H, Cañestro C, Luscombe NM. Extreme genome scrambling in marine planktonic Oikopleura dioica cryptic species. Genome Res 2024; 34:426-440. [PMID: 38621828 PMCID: PMC11067885 DOI: 10.1101/gr.278295.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
Genome structural variations within species are rare. How selective constraints preserve gene order and chromosome structure is a central question in evolutionary biology that remains unsolved. Our sequencing of several genomes of the appendicularian tunicate Oikopleura dioica around the globe reveals extreme genome scrambling caused by thousands of chromosomal rearrangements, although showing no obvious morphological differences between these animals. The breakpoint accumulation rate is an order of magnitude higher than in ascidian tunicates, nematodes, Drosophila, or mammals. Chromosome arms and sex-specific regions appear to be the primary unit of macrosynteny conservation. At the microsyntenic level, scrambling did not preserve operon structures, suggesting an absence of selective pressure to maintain them. The uncoupling of the genome scrambling with morphological conservation in O. dioica suggests the presence of previously unnoticed cryptic species and provides a new biological system that challenges our previous vision of speciation in which similar animals always share similar genome structures.
Collapse
Affiliation(s)
- Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan;
| | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Aleksandra Bliznina
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Aki Masunaga
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Charlotte West
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Yongkai Tan
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Andrew W Liu
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Jan Grašič
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - María Sara Del Río Pisula
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Gaspar Sánchez-Serna
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Marc Fabrega-Torrus
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Alfonso Ferrández-Roldán
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Vittoria Roncalli
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Pavla Navratilova
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, 779 00 Olomouc, Czech Republic
- Sars International Centre, University of Bergen, Bergen N-5008, Norway
| | - Eric M Thompson
- Sars International Centre, University of Bergen, Bergen N-5008, Norway
- Department of Biological Sciences, University of Bergen, Bergen N-5020, Norway
| | - Takeshi Onuma
- Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
13
|
Fritzsch B, Glover JC. Gene networks and the evolution of olfactory organs, eyes, hair cells and motoneurons: a view encompassing lancelets, tunicates and vertebrates. Front Cell Dev Biol 2024; 12:1340157. [PMID: 38533086 PMCID: PMC10963430 DOI: 10.3389/fcell.2024.1340157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Key developmental pathways and gene networks underlie the formation of sensory cell types and structures involved in chemosensation, vision and mechanosensation, and of the efferents these sensory inputs can activate. We describe similarities and differences in these pathways and gene networks in selected species of the three main chordate groups, lancelets, tunicates, and vertebrates, leading to divergent development of olfactory receptors, eyes, hair cells and motoneurons. The lack of appropriately posited expression of certain transcription factors in lancelets and tunicates prevents them from developing vertebrate-like olfactory receptors and eyes, although they generate alternative structures for chemosensation and vision. Lancelets and tunicates lack mechanosensory cells associated with the sensation of acoustic stimuli, but have gravisensitive organs and ciliated epidermal sensory cells that may (and in some cases clearly do) provide mechanosensation and thus the capacity to respond to movement relative to surrounding water. Although functionally analogous to the vertebrate vestibular apparatus and lateral line, homology is questionable due to differences in the expression of the key transcription factors Neurog and Atoh1/7, on which development of vertebrate hair cells depends. The vertebrate hair cell-bearing inner ear and lateral line thus likely represent major evolutionary advances specific to vertebrates. Motoneurons develop in vertebrates under the control of the ventral signaling molecule hedgehog/sonic hedgehog (Hh,Shh), against an opposing inhibitory effect mediated by dorsal signaling molecules. Many elements of Shh-signaling and downstream genes involved in specifying and differentiating motoneurons are also exhibited by lancelets and tunicates, but the repertoire of MNs in vertebrates is broader, indicating greater diversity in motoneuron differentiation programs.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Joel C. Glover
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Tobias Z, Solow A, Tepolt C. Geography and developmental plasticity shape post-larval thermal tolerance in the golden star tunicate, Botryllus schlosseri. J Therm Biol 2024; 119:103763. [PMID: 38071896 DOI: 10.1016/j.jtherbio.2023.103763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 11/19/2023] [Indexed: 02/25/2024]
Abstract
Local adaptation and phenotypic plasticity play key roles in mediating organisms' ability to respond to spatiotemporal variation in temperature. These two processes often act together to generate latitudinal or elevational clines in acute temperature tolerance. Phenotypic plasticity is also subject to local adaptation, with the expectation that populations inhabiting more variable environments should exhibit greater phenotypic plasticity of thermal tolerance. Here we examine the potential for local adaptation and developmental plasticity of thermal tolerance in the widespread invasive tunicate Botryllus schlosseri. By comparing five populations across a thermal gradient spanning 4.4° of latitude in the northwest Atlantic, we demonstrate that warmer populations south of the Gulf of Maine exhibit significantly increased (∼0.2 °C) post-larval temperature tolerance relative to the colder populations within it. We also show that B. schlosseri post-larvae possess a high degree of developmental plasticity for this trait, shifting their median temperature of survival (LT50) upwards by as much as 0.18 °C per 1 °C increase in environmental temperature. Lastly, we found that populations vary in their degrees of developmental plasticity, with populations that experience more pronounced short-term temperature variability exhibiting greater developmental plasticity, suggesting the local adaptation of developmental plasticity. By comparing the thermal tolerance of populations across space and through time, we demonstrate how geography and developmental plasticity have shaped thermal tolerance in B. schlosseri. These results help inform our understanding of how species are able to adjust their thermal physiology in new environments, including those encountered during invasion and under increasingly novel climate conditions.
Collapse
Affiliation(s)
- Zachary Tobias
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA, USA; Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Andrew Solow
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Carolyn Tepolt
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
15
|
Groussman RD, Blaskowski S, Coesel SN, Armbrust EV. MarFERReT, an open-source, version-controlled reference library of marine microbial eukaryote functional genes. Sci Data 2023; 10:926. [PMID: 38129449 PMCID: PMC10739892 DOI: 10.1038/s41597-023-02842-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Metatranscriptomics generates large volumes of sequence data about transcribed genes in natural environments. Taxonomic annotation of these datasets depends on availability of curated reference sequences. For marine microbial eukaryotes, current reference libraries are limited by gaps in sequenced organism diversity and barriers to updating libraries with new sequence data, resulting in taxonomic annotation of about half of eukaryotic environmental transcripts. Here, we introduce Marine Functional EukaRyotic Reference Taxa (MarFERReT), a marine microbial eukaryotic sequence library designed for use with taxonomic annotation of eukaryotic metatranscriptomes. We gathered 902 publicly accessible marine eukaryote genomes and transcriptomes and assessed their sequence quality and cross-contamination issues, selecting 800 validated entries for inclusion in MarFERReT. Version 1.1 of MarFERReT contains reference sequences from 800 marine eukaryotic genomes and transcriptomes, covering 453 species- and strain-level taxa, totaling nearly 28 million protein sequences with associated NCBI and PR2 Taxonomy identifiers and Pfam functional annotations. The MarFERReT project repository hosts containerized build scripts, documentation on installation and use case examples, and information on new versions of MarFERReT.
Collapse
Affiliation(s)
- R D Groussman
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA.
| | - S Blaskowski
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA
- Molecular Engineering and Sciences Institute, University of Washington, Molecular Engineering & Sciences Building 3946 W Stevens Way NE, Seattle, WA, 98195, USA
| | - S N Coesel
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA
| | - E V Armbrust
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA.
| |
Collapse
|
16
|
Feng H, Thompson EM. Functional specialization of Aurora kinase homologs during oogenic meiosis in the tunicate Oikopleura dioica. Front Cell Dev Biol 2023; 11:1323378. [PMID: 38130951 PMCID: PMC10733467 DOI: 10.3389/fcell.2023.1323378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
A single Aurora kinase found in non-vertebrate deuterostomes is assumed to represent the ancestor of vertebrate Auroras A/B/C. However, the tunicate Oikopleura dioica, a member of the sister group to vertebrates, possesses two Aurora kinases (Aurora1 and Aurora2) that are expressed in proliferative cells and reproductive organs. Previously, we have shown that Aurora kinases relocate from organizing centers to meiotic nuclei and were enriched on centromeric regions as meiosis proceeds to metaphase I. Here, we assessed their respective functions in oogenic meiosis using dsRNA interferences. We found that Aurora1 (Aur1) was involved in meiotic spindle organization and chromosome congression, probably through the regulation of microtubule dynamics, whereas Aurora2 (Aur2) was crucial for chromosome condensation and meiotic spindle assembly. In vitro kinase assays showed that Aur1 and Aur2 had comparable levels of kinase activities. Using yeast two-hybrid library screening, we identified a few novel interaction proteins for Aur1, including c-Jun-amino-terminal kinase-interacting protein 4, cohesin loader Scc2, and mitochondrial carrier homolog 2, suggesting that Aur1 may have an altered interaction network and participate in the regulation of microtubule motors and cohesin complexes in O. dioica.
Collapse
Affiliation(s)
- Haiyang Feng
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Eric M. Thompson
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Ribes-Navarro A, Kabeya N, Castro LFC, Gomes-dos-Santos A, Fonseca MM, Alberts-Hubatsch H, Hontoria F, Navarro JC, Monroig Ó. Examination of gammarid transcriptomes reveals a widespread occurrence of key metabolic genes from epibiont bdelloid rotifers in freshwater species. Open Biol 2023; 13:230196. [PMID: 37875161 PMCID: PMC10597677 DOI: 10.1098/rsob.230196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Previous data revealed the unexpected presence of genes encoding for long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic enzymes in transcriptomes from freshwater gammarids but not in marine species, even though closely related species were compared. This study aimed to clarify the origin and occurrence of selected LC-PUFA biosynthesis gene markers across all published gammarid transcriptomes. Through systematic searches, we confirmed the widespread occurrence of sequences from seven elongases and desaturases involved in LC-PUFA biosynthesis, in transcriptomes from freshwater gammarids but not marine species, and clarified that such occurrence is independent from the gammarid species and geographical origin. The phylogenetic analysis established that the retrieved elongase and desaturase sequences were closely related to bdelloid rotifers, confirming that multiple transcriptomes from freshwater gammarids contain contaminating rotifers' genetic material. Using the Adineta steineri genome, we investigated the genomic location and exon-intron organization of the elongase and desaturase genes, establishing they are all genome-anchored and, importantly, identifying instances of horizontal gene transfer. Finally, we provide compelling evidence demonstrating Bdelloidea desaturases and elongases enable these organisms to perform all the reactions for de novo biosynthesis of PUFA and, from them, LC-PUFA, an advantageous trait when considering the low abundance of these essential nutrients in freshwater environments.
Collapse
Affiliation(s)
- Alberto Ribes-Navarro
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - Naoki Kabeya
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, Japan
| | - L. Filipe C. Castro
- CIMAR/CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - André Gomes-dos-Santos
- CIMAR/CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M. Fonseca
- CIMAR/CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Hilke Alberts-Hubatsch
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Francisco Hontoria
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - Juan C. Navarro
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| |
Collapse
|
18
|
Sumner JT, Andrasz CL, Johnson CA, Wax S, Anderson P, Keeling EL, Davidson JM. De novo genome assembly and comparative genomics for the colonial ascidian Botrylloides violaceus. G3 (BETHESDA, MD.) 2023; 13:jkad181. [PMID: 37555394 PMCID: PMC10542563 DOI: 10.1093/g3journal/jkad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/25/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
Ascidians have the potential to reveal fundamental biological insights related to coloniality, regeneration, immune function, and the evolution of these traits. This study implements a hybrid assembly technique to produce a genome assembly and annotation for the botryllid ascidian, Botrylloides violaceus. A hybrid genome assembly was produced using Illumina, Inc. short and Oxford Nanopore Technologies long-read sequencing technologies. The resulting assembly is comprised of 831 contigs, has a total length of 121 Mbp, N50 of 1 Mbp, and a BUSCO score of 96.1%. Genome annotation identified 13 K protein-coding genes. Comparative genomic analysis with other tunicates reveals patterns of conservation and divergence within orthologous gene families even among closely related species. Characterization of the Wnt gene family, encoding signaling ligands involved in development and regeneration, reveals conserved patterns of subfamily presence and gene copy number among botryllids. This supports the use of genomic data from nonmodel organisms in the investigation of biological phenomena.
Collapse
Affiliation(s)
- Jack T Sumner
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Cassidy L Andrasz
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Christine A Johnson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Sarah Wax
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Paul Anderson
- Department of Computer Science and Software Engineering, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Elena L Keeling
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Jean M Davidson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
19
|
Mohri M, Moghadam A, Burketova L, Ryšánek P. Genome-wide identification of the opsin protein in Leptosphaeria maculans and comparison with other fungi (pathogens of Brassica napus). Front Microbiol 2023; 14:1193892. [PMID: 37692395 PMCID: PMC10485269 DOI: 10.3389/fmicb.2023.1193892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/28/2023] [Indexed: 09/12/2023] Open
Abstract
The largest family of transmembrane receptors are G-protein-coupled receptors (GPCRs). These receptors respond to perceived environmental signals and infect their host plants. Family A of the GPCR includes opsin. However, there is little known about the roles of GPCRs in phytopathogenic fungi. We studied opsin in Leptosphaeria maculans, an important pathogen of oilseed rape (Brassica napus) that causes blackleg disease, and compared it with six other fungal pathogens of oilseed rape. A phylogenetic tree analysis of 31 isoforms of the opsin protein showed six major groups and six subgroups. All three opsin isoforms of L. maculans are grouped in the same clade in the phylogenetic tree. Physicochemical analysis revealed that all studied opsin proteins are stable and hydrophobic. Subcellular localization revealed that most isoforms were localized in the endoplasmic reticulum membrane except for several isoforms in Verticillium species, which were localized in the mitochondrial membrane. Most isoforms comprise two conserved domains. One conserved motif was observed across all isoforms, consisting of the BACTERIAL_OPSIN_1 domain, which has been hypothesized to have an identical sensory function. Most studied isoforms showed seven transmembrane helices, except for one isoform of V. longisporum and four isoforms of Fusarium oxysporum. Tertiary structure prediction displayed a conformational change in four isoforms of F. oxysporum that presumed differences in binding to other proteins and sensing signals, thereby resulting in various pathogenicity strategies. Protein-protein interactions and binding site analyses demonstrated a variety of numbers of ligands and pockets across all isoforms, ranging between 0 and 13 ligands and 4 and 10 pockets. According to the phylogenetic analysis in this study and considerable physiochemically and structurally differences of opsin proteins among all studied fungi hypothesized that this protein acts in the pathogenicity, growth, sporulation, and mating of these fungi differently.
Collapse
Affiliation(s)
- Marzieh Mohri
- Department of Plant Protection, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Lenka Burketova
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Pavel Ryšánek
- Department of Plant Protection, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| |
Collapse
|
20
|
Satake H. Kobayashi Award 2021: Neuropeptides, receptors, and follicle development in the ascidian, Ciona intestinalis Type A: New clues to the evolution of chordate neuropeptidergic systems from biological niches. Gen Comp Endocrinol 2023; 337:114262. [PMID: 36925021 DOI: 10.1016/j.ygcen.2023.114262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Ciona intestinalis Type A (Ciona robusta) is a cosmopolitan species belonging to the phylum Urochordata, invertebrate chordates that are phylogenetically the most closely related to the vertebrates. Therefore, this species is of interest for investigation of the evolution and comparative physiology of endocrine, neuroendocrine, and nervous systems in chordates. Our group has identified>30 Ciona neuropeptides (80% of all identified ascidian neuropeptides) primarily using peptidomic approaches combined with reference to genome sequences. These neuropeptides are classified into two groups: homologs or prototypes of vertebrate neuropeptides and novel (Ciona-specific) neuropeptides. We have also identified the cognate receptors for these peptides. In particular, we elucidated multiple receptors for Ciona-specific neuropeptides by a combination of a novel machine learning system and experimental validation of the specific interaction of the predicted neuropeptide-receptor pairs, and verified unprecedented phylogenies of receptors for neuropeptides. Moreover, several neuropeptides were found to play major roles in the regulation of ovarian follicle development. Ciona tachykinin facilitates the growth of vitellogenic follicles via up-regulation of the enzymatic activities of proteases. Ciona vasopressin stimulates oocyte maturation and ovulation via up-regulation of maturation-promoting factor- and matrix metalloproteinase-directed collagen degradation, respectively. Ciona cholecystokinin also triggers ovulation via up-regulation of receptor tyrosine kinase signaling and the subsequent activation of matrix metalloproteinase. These studies revealed that the neuropeptidergic system plays major roles in ovarian follicle growth, maturation, and ovulation in Ciona, thus paving the way for investigation of the biological roles for neuropeptides in the endocrine, neuroendocrine, nervous systems of Ciona, and studies of the evolutionary processes of various neuropeptidergic systems in chordates.
Collapse
Affiliation(s)
- Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan.
| |
Collapse
|
21
|
Stanton D, Justin HS, Reitzel AM. Step in Time: Conservation of Circadian Clock Genes in Animal Evolution. Integr Comp Biol 2022; 62:1503-1518. [PMID: 36073444 DOI: 10.1093/icb/icac140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023] Open
Abstract
Over the past few decades, the molecular mechanisms responsible for circadian phenotypes of animals have been studied in increasing detail in mammals, some insects, and other invertebrates. Particular circadian proteins and their interactions are shared across evolutionary distant animals, resulting in a hypothesis for the canonical circadian clock of animals. As the number of species for which the circadian clockwork has been described increases, the circadian clock in animals driving cyclical phenotypes becomes less similar. Our focus in this review is to develop and synthesize the current literature to better understand the antiquity and evolution of the animal circadian clockwork. Here, we provide an updated understanding of circadian clock evolution in animals, largely through the lens of conserved genes characterized in the circadian clock identified in bilaterian species. These comparisons reveal extensive variation within the likely composition of the core clock mechanism, including losses of many genes, and that the ancestral clock of animals does not equate to the bilaterian clock. Despite the loss of these core genes, these species retain circadian behaviors and physiology, suggesting novel clocks have evolved repeatedly. Additionally, we highlight highly conserved cellular processes (e.g., cell division, nutrition) that intersect with the circadian clock of some animals. The conservation of these processes throughout the animal tree remains essentially unknown, but understanding their role in the evolution and maintenance of the circadian clock will provide important areas for future study.
Collapse
Affiliation(s)
- Daniel Stanton
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - Hannah S Justin
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte NC 28223, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte NC 28223, USA
| |
Collapse
|
22
|
Henriet S, Aasjord A, Chourrout D. Laboratory study of Fritillaria lifecycle reveals key morphogenetic events leading to genus-specific anatomy. Front Zool 2022; 19:26. [PMID: 36307829 PMCID: PMC9617304 DOI: 10.1186/s12983-022-00471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
A fascinating variety of adult body plans can be found in the Tunicates, the closest existing relatives of vertebrates. A distinctive feature of the larvacean class of pelagic tunicates is the presence of a highly specialized surface epithelium that produces a cellulose test, the “larvacean house”. While substantial differences exist between the anatomy of larvacean families, most of the ontogeny is derived from the observations of a single genus, Oikopleura. We present the first study of Fritillaria development based on the observation of individuals reproduced in the laboratory. Like the other small epipelagic species Oikopleura dioica, the larvae of Fritillaria borealis grow rapidly in the laboratory, and they acquire the adult form within a day. We could show that major morphological differences exhibited by Fritillaria and Oikopleura adults originate from a key developmental stage during larval organogenesis. Here, the surface epithelium progressively retracts from the posterior digestive organs of Fritillaria larvae, and it establishes house-producing territories around the pharynx. Our results show that the divergence between larvacean genera was associated with a profound rearrangement of the mechanisms controlling the differentiation of the larval ectoderm.
Collapse
|
23
|
Singh KS, van der Hooft JJJ, van Wees SCM, Medema MH. Integrative omics approaches for biosynthetic pathway discovery in plants. Nat Prod Rep 2022; 39:1876-1896. [PMID: 35997060 PMCID: PMC9491492 DOI: 10.1039/d2np00032f] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 12/13/2022]
Abstract
Covering: up to 2022With the emergence of large amounts of omics data, computational approaches for the identification of plant natural product biosynthetic pathways and their genetic regulation have become increasingly important. While genomes provide clues regarding functional associations between genes based on gene clustering, metabolome mining provides a foundational technology to chart natural product structural diversity in plants, and transcriptomics has been successfully used to identify new members of their biosynthetic pathways based on coexpression. Thus far, most approaches utilizing transcriptomics and metabolomics have been targeted towards specific pathways and use one type of omics data at a time. Recent technological advances now provide new opportunities for integration of multiple omics types and untargeted pathway discovery. Here, we review advances in plant biosynthetic pathway discovery using genomics, transcriptomics, and metabolomics, as well as recent efforts towards omics integration. We highlight how transcriptomics and metabolomics provide complementary information to link genes to metabolites, by associating temporal and spatial gene expression levels with metabolite abundance levels across samples, and by matching mass-spectral features to enzyme families. Furthermore, we suggest that elucidation of gene regulatory networks using time-series data may prove useful for efforts to unwire the complexities of biosynthetic pathway components based on regulatory interactions and events.
Collapse
Affiliation(s)
- Kumar Saurabh Singh
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, The Netherlands.
| | - Justin J J van der Hooft
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Saskia C M van Wees
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, The Netherlands.
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
24
|
Jakt LM, Dubin A, Johansen SD. Intron size minimisation in teleosts. BMC Genomics 2022; 23:628. [PMID: 36050638 PMCID: PMC9438311 DOI: 10.1186/s12864-022-08760-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background Spliceosomal introns are parts of primary transcripts that are removed by RNA splicing. Although introns apparently do not contribute to the function of the mature transcript, in vertebrates they comprise the majority of the transcribed region increasing the metabolic cost of transcription. The persistence of long introns across evolutionary time suggests functional roles that can offset this metabolic cost. The teleosts comprise one of the largest vertebrate clades. They have unusually compact and variable genome sizes and provide a suitable system for analysing intron evolution. Results We have analysed intron lengths in 172 vertebrate genomes and show that teleost intron lengths are relatively short, highly variable and bimodally distributed. Introns that were long in teleosts were also found to be long in mammals and were more likely to be found in regulatory genes and to contain conserved sequences. Our results argue that intron length has decreased in parallel in a non-random manner throughout teleost evolution and represent a deviation from the ancestral state. Conclusion Our observations indicate an accelerated rate of intron size evolution in the teleosts and that teleost introns can be divided into two classes by their length. Teleost intron sizes have evolved primarily as a side-effect of genome size evolution and small genomes are dominated by short introns (<256 base pairs). However, a non-random subset of introns has resisted this process across the teleosts and these are more likely have functional roles in all vertebrate clades. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08760-w).
Collapse
Affiliation(s)
- Lars Martin Jakt
- Faculty for bioscience and aquaculture, Nord University, Universitetsalléen 11, Bodoe, 8026, Norway.
| | - Arseny Dubin
- Faculty for bioscience and aquaculture, Nord University, Universitetsalléen 11, Bodoe, 8026, Norway.,Currently at: Parental Investment and Immune Dynamics, GEOMAR Helmholtz Centre for Ocean Research, Düsternbrookerweg 20, Kiel, D-24105, Germany
| | - Steinar Daae Johansen
- Faculty for bioscience and aquaculture, Nord University, Universitetsalléen 11, Bodoe, 8026, Norway
| |
Collapse
|
25
|
Chen Z, Huang X, Fu R, Zhan A. Neighbours matter: Effects of genomic organization on gene expression plasticity in response to environmental stresses during biological invasions. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100992. [PMID: 35504120 DOI: 10.1016/j.cbd.2022.100992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Gene expression regulation has been widely recognized as an important molecular mechanism underlying phenotypic plasticity in environmental adaptation. However, it remains largely unexplored on the effects of genomic organization on gene expression plasticity under environmental stresses during biological invasions. Here, we use an invasive model ascidian, Ciona robusta, to investigate how genomic organization affects gene expression in response to salinity stresses during range expansions. Our study showed that neighboring genes were co-expressed and approximately 30% of stress responsive genes were physically clustered on chromosomes. Such coordinated expression was substantially affected by the physical distance and orientation of genes. Interestingly, the overall expression correlation of neighboring genes was significantly decreased under high salinity stresses, illustrating that the co-expression regulation could be disrupted by salinity challenges. Furthermore, the clustering of genes was associated with their function constraints and expression patterns - operon genes enriched in gene expression machinery had the highest transcriptional activity and expression stability. Notably, our analyses showed that the tail-to-tail genes, mainly involved in biological functions related to phosphorylation, homeostatic process, and ion transport, exhibited higher intrinsic expression variability and greater response to salinity challenges. Altogether, the results obtained here provide new insights into the effects of gene organization on gene expression plasticity under environmental challenges, hence improving our knowledge on mechanisms of rapid environmental adaptation during biological invasions.
Collapse
Affiliation(s)
- Zaohuang Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Ruiying Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
26
|
Oba Y, Schultz DT. Firefly genomes illuminate the evolution of beetle bioluminescent systems. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100879. [PMID: 35091104 DOI: 10.1016/j.cois.2022.100879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Fireflies are one of the best-known bioluminescent organisms, and the reaction mechanism and ecological utility of bioluminescence have been well-studied. Genome assemblies of six species of bioluminescent beetles have recently been published. These studies have focused on the evolution of novelties; luciferase, and the biosynthesis of luciferin and defensive chemicals. For example, clustering of the luciferase gene with acyl-CoA synthetase genes on a chromosome in luminous beetle genomes suggests the involvement of tandem gene duplications and neofunctionalization during the evolution of beetle bioluminescence. Several candidate genes for critical roles in beetle bioluminescence have been identified, but their functional analyses are still ongoing. The establishment of a long-term mass-rearing system and strain will be the key for the post-genome research on bioluminescent beetles. Lastly, the application of contemporary chromosome-scale genome assembly techniques to luminous beetles will help resolve outstanding evolutionary questions, such as how many times bioluminescence evolved in this clade.
Collapse
Affiliation(s)
- Yuichi Oba
- Department of Environmental Biology, Chubu University, Kasugai 487-8501, Japan.
| | - Darrin T Schultz
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, United States
| |
Collapse
|
27
|
Moreira F, Arenas M, Videira A, Pereira F. Evolutionary History of TOPIIA Topoisomerases in Animals. J Mol Evol 2022; 90:149-165. [PMID: 35165762 DOI: 10.1007/s00239-022-10048-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/26/2022] [Indexed: 01/15/2023]
Abstract
TOPIIA topoisomerases are required for the regulation of DNA topology by DNA cleavage and re-ligation and are important targets of antibiotic and anticancer agents. Humans possess two TOPIIA paralogue genes (TOP2A and TOP2B) with high sequence and structural similarity but distinct cellular functions. Despite their functional and clinical relevance, the evolutionary history of TOPIIA is still poorly understood. Here we show that TOPIIA is highly conserved in Metazoa. We also found that TOPIIA paralogues from jawed and jawless vertebrates had different origins related with tetraploidization events. After duplication, TOP2B evolved under a stronger purifying selection than TOP2A, perhaps promoted by the more specialized role of TOP2B in postmitotic cells. We also detected genetic signatures of positive selection in the highly variable C-terminal domain (CTD), possibly associated with adaptation to cellular interactions. By comparing TOPIIA from modern and archaic humans, we found two amino acid substitutions in the TOP2A CTD, suggesting that TOP2A may have contributed to the evolution of present-day humans, as proposed for other cell cycle-related genes. Finally, we identified six residues conferring resistance to chemotherapy differing between TOP2A and TOP2B. These six residues could be targets for the development of TOP2A-specific inhibitors that would avoid the side effects caused by inhibiting TOP2B. Altogether, our findings clarify the origin, diversification and selection pressures governing the evolution of animal TOPIIA.
Collapse
Affiliation(s)
- Filipa Moreira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310, Vigo, Spain
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Arnaldo Videira
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Filipe Pereira
- IDENTIFICA Genetic Testing, Rua Simão Bolívar 259 3º Dir Tras, 4470-214, Maia, Portugal.
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
28
|
Kawada T, Osugi T, Matsubara S, Sakai T, Shiraishi A, Yamamoto T, Satake H. Omics Studies for the Identification of Ascidian Peptides, Cognate Receptors, and Their Relevant Roles in Ovarian Follicular Development. Front Endocrinol (Lausanne) 2022; 13:858885. [PMID: 35321341 PMCID: PMC8936170 DOI: 10.3389/fendo.2022.858885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Omics studies contribute to the elucidation of genomes and profiles of gene expression. In the ascidian Ciona intestinalis Type A (Ciona robusta), mass spectrometry (MS)-based peptidomic studies have detected numerous Ciona-specific (nonhomologous) neuropeptides as well as Ciona homologs of typical vertebrate neuropeptides and hypothalamic peptide hormones. Candidates for cognate G protein-coupled receptors (GPCRs) for these peptides have been found in the Ciona transcriptome by two ways. First, Ciona homologous GPCRs of vertebrate counterparts have been detected by sequence homology searches of cognate transcriptomes. Second, the transcriptome-derived GPCR candidates have been used for machine learning-based systematic prediction of interactions not only between Ciona homologous peptides and GPCRs but also between novel Ciona peptides and GPCRs. These data have ultimately led to experimental evidence for various Ciona peptide-GPCR interactions. Comparative transcriptomics between the wildtype and Ciona vasopressin (CiVP) gene-edited Ciona provide clues to the biological functions of CiVP in ovarian follicular development and whole body growth. Furthermore, the transcriptomes of follicles treated with peptides, such as Ciona tachykinin and cionin (a Ciona cholecystokinin homolog), have revealed key regulatory genes for Ciona follicle growth, maturation, and ovulation, eventually leading to the verification of essential and novel molecular mechanisms underlying these biological events. These findings indicate that omics studies, combined with artificial intelligence and single-cell technologies, pave the way for investigating in greater details the nervous, neuroendocrine, and endocrine systems of ascidians and the molecular and functional evolution and diversity of peptidergic regulatory networks throughout chordates.
Collapse
|
29
|
Onuma TA, Nishida H. Developmental biology of the larvacean Oikopleura dioica: Genome resources, functional screening, and imaging. Dev Growth Differ 2021; 64:67-82. [PMID: 34964127 DOI: 10.1111/dgd.12769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/01/2022]
Abstract
The larvacean Oikopleura dioica is a cosmopolitan planktonic chordate and is closely related to vertebrates. It is characterized by a tadpole-shaped morphology with notochord flanked by muscle in the tail and brain on the dorsal side, a short life cycle of five days, a compact genome of approximately 56 Mb, a simple and transparent body with a small number of cells (~4000 in functional juveniles), invariant embryonic cell lineages, and fast development that ensures complete morphogenesis and organ formation 10 h after fertilization. With these features, this marine chordate is a promising and advantageous animal model in which genetic manipulation is feasible. In this review, we introduce relevant resources and modern techniques that have been developed: (1) Genome and transcriptomes. Oikopleura dioica has the smallest genome among non-parasitic metazoans. Its genome databases have been generated using three geographically distant O. dioica populations, and several intra-species sequence differences are becoming evident; (2) Functional genetic knockdown techniques. Comprehensive screening of genes is feasible using ovarian microinjection and double-strand DNA-induced gene knockdown; and (3) Live imaging of embryos and larvae. Application of these techniques has uncovered novel aspects of development, including meiotic cell arrest, left-right patterning, epidermal cell patterning, and mouth formation involving the connection of ectoderm and endoderm sheets. Oikopleura dioca has become very useful for developmental and evolutionary studies in chordates.
Collapse
Affiliation(s)
- Takeshi A Onuma
- Graduate School of Science and Engineering, Faculty of Science, Kagoshima University, Kagoshima, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
30
|
Parra-Rincón E, Velandia-Huerto CA, Gittenberger A, Fallmann J, Gatter T, Brown FD, Stadler PF, Bermúdez-Santana CI. The Genome of the "Sea Vomit" Didemnum vexillum. Life (Basel) 2021; 11:1377. [PMID: 34947908 PMCID: PMC8704543 DOI: 10.3390/life11121377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022] Open
Abstract
Tunicates are the sister group of vertebrates and thus occupy a key position for investigations into vertebrate innovations as well as into the consequences of the vertebrate-specific genome duplications. Nevertheless, tunicate genomes have not been studied extensively in the past, and comparative studies of tunicate genomes have remained scarce. The carpet sea squirt Didemnum vexillum, commonly known as "sea vomit", is a colonial tunicate considered an invasive species with substantial ecological and economical risk. We report the assembly of the D. vexillum genome using a hybrid approach that combines 28.5 Gb Illumina and 12.35 Gb of PacBio data. The new hybrid scaffolded assembly has a total size of 517.55 Mb that increases contig length about eightfold compared to previous, Illumina-only assembly. As a consequence of an unusually high genetic diversity of the colonies and the moderate length of the PacBio reads, presumably caused by the unusually acidic milieu of the tunic, the assembly is highly fragmented (L50 = 25,284, N50 = 6539). It is sufficient, however, for comprehensive annotations of both protein-coding genes and non-coding RNAs. Despite its shortcomings, the draft assembly of the "sea vomit" genome provides a valuable resource for comparative tunicate genomics and for the study of the specific properties of colonial ascidians.
Collapse
Affiliation(s)
- Ernesto Parra-Rincón
- Biology Department, Universidad Nacional de Colombia, Carrera 45 # 26-85, Edif. Uriel Gutiérrez, Bogotá D.C 111321, Colombia; (E.P.-R.); (P.F.S.)
| | - Cristian A. Velandia-Huerto
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany; (J.F.); (T.G.)
| | - Adriaan Gittenberger
- GiMaRIS, Rijksstraatweg 75, 2171 AK Sassenheim, The Netherlands;
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany; (J.F.); (T.G.)
| | - Thomas Gatter
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany; (J.F.); (T.G.)
| | - Federico D. Brown
- Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, Rua do Matão, Tr. 14 no. 101, São Paulo 05508-090, Brazil;
- Centro de Biologia Marinha, Universidade de São Paulo, Rod. Manuel Hypólito do Rego km. 131.5, São Sebastião 11612-109, Brazil
| | - Peter F. Stadler
- Biology Department, Universidad Nacional de Colombia, Carrera 45 # 26-85, Edif. Uriel Gutiérrez, Bogotá D.C 111321, Colombia; (E.P.-R.); (P.F.S.)
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany; (J.F.); (T.G.)
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria
- Santa Fe Institute, Santa Fe, NM 87506, USA
| | - Clara I. Bermúdez-Santana
- Biology Department, Universidad Nacional de Colombia, Carrera 45 # 26-85, Edif. Uriel Gutiérrez, Bogotá D.C 111321, Colombia; (E.P.-R.); (P.F.S.)
| |
Collapse
|
31
|
Orús-Alcalde A, Lu TM, Børve A, Hejnol A. The evolution of the metazoan Toll receptor family and its expression during protostome development. BMC Ecol Evol 2021; 21:208. [PMID: 34809567 PMCID: PMC8609888 DOI: 10.1186/s12862-021-01927-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/21/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) play a crucial role in immunity and development. They contain leucine-rich repeat domains, one transmembrane domain, and one Toll/IL-1 receptor domain. TLRs have been classified into V-type/scc and P-type/mcc TLRs, based on differences in the leucine-rich repeat domain region. Although TLRs are widespread in animals, detailed phylogenetic studies of this gene family are lacking. Here we aim to uncover TLR evolution by conducting a survey and a phylogenetic analysis in species across Bilateria. To discriminate between their role in development and immunity we furthermore analyzed stage-specific transcriptomes of the ecdysozoans Priapulus caudatus and Hypsibius exemplaris, and the spiralians Crassostrea gigas and Terebratalia transversa. RESULTS We detected a low number of TLRs in ecdysozoan species, and multiple independent radiations within the Spiralia. V-type/scc and P-type/mcc type-receptors are present in cnidarians, protostomes and deuterostomes, and therefore they emerged early in TLR evolution, followed by a loss in xenacoelomorphs. Our phylogenetic analysis shows that TLRs cluster into three major clades: clade α is present in cnidarians, ecdysozoans, and spiralians; clade β in deuterostomes, ecdysozoans, and spiralians; and clade γ is only found in spiralians. Our stage-specific transcriptome and in situ hybridization analyses show that TLRs are expressed during development in all species analyzed, which indicates a broad role of TLRs during animal development. CONCLUSIONS Our findings suggest that a clade α TLR gene (TLR-Ca) and a clade β/γ TLR gene (TLR-Cβ/γ) were already present in the cnidarian-bilaterian common ancestor. However, although TLR-Ca was conserved in cnidarians, TLR-Cβ/γ was lost during the early evolution of these taxa. Moreover, TLR-Cβ/γ duplicated to generate TLR-Cβ and TLR-Cγ in the lineage to the last common protostome-deuterostome ancestor. TLR-Ca, TLR-Cβ and TLR-Cγ further expanded generating the three major TLR clades. While all three clades radiated in several spiralian lineages, specific TLRs clades have been presumably lost in other lineages. Furthermore, the expression of the majority of these genes during protostome ontogeny suggests a likely role in development.
Collapse
Affiliation(s)
- Andrea Orús-Alcalde
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tsai-Ming Lu
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Aina Børve
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
32
|
Nishida H, Matsuo M, Konishi S, Ohno N, Manni L, Onuma TA. Germline development during embryogenesis of the larvacean, Oikopleura dioica. Dev Biol 2021; 481:188-200. [PMID: 34755656 DOI: 10.1016/j.ydbio.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/08/2021] [Accepted: 10/24/2021] [Indexed: 11/18/2022]
Abstract
Germ cells develop into eggs and sperms and represent a lineage that survives through multiple generations. Germ cell specification during embryogenesis proceeds through one of two basic modes: either the cell-autonomous mode or the inductive mode. In the cell-autonomous mode, specification of germ cell fate involves asymmetric partitioning of the specialized maternal cytoplasm, known as the germplasm. Oikopleura dioica is a larvacean (class Appendicularia) and a chordate. It is regarded as a promising animal model for studying chordate development because of its short life cycle (5 days) and small genome size (∼60 Mb). We show that their embryos possess germplasm, as observed in ascidians (class Ascidiacea). The vegetal cytoplasm shifted towards the future posterior pole before the first cleavage occurred. A bilateral pair of primordial germ cells (PGC, B11 cells) was formed at the posterior pole at the 32-cell stage through two rounds of unequal cleavage. These B11 cells did not undergo further division before hatching of the tadpole-shaped larvae. The centrosome-attracting body (CAB) is a subcellular structure that contains the germplasm and plays crucial roles in germ cell development in ascidians. The presence of CAB with germplasm was observed in the germline lineage cells of larvaceans via electron microscopy and using extracted embryos. The CAB appeared at the 8-cell stage and persisted until the middle stage of embryogenesis. The antigen for the phosphorylated histone 3 antibody was localized to the CAB and persisted in the PGC until hatching after the CAB disappeared. Maternal snail mRNA, which encodes a transcription factor, was co-localized with the antigen for the H3S28p antibody. Furthermore, we found a novel PGC-specific subcellular structure that we call the germ body (GB). This study thus highlights the conserved and non-conserved features of germline development between ascidians and larvaceans. The rapid development and short life cycle (five days) of O. dioica would open the way to genetically analyze germ cell development in the future.
Collapse
Affiliation(s)
- Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| | - Masaki Matsuo
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Shohei Konishi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Nobuhiko Ohno
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan; Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, via U. Bassi 58/B, I-35121, Padova, Italy
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
33
|
Internally Symmetrical Stwintrons and Related Canonical Introns in Hypoxylaceae Species. J Fungi (Basel) 2021; 7:jof7090710. [PMID: 34575748 PMCID: PMC8469720 DOI: 10.3390/jof7090710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023] Open
Abstract
Spliceosomal introns are pervasive in eukaryotes. Intron gains and losses have occurred throughout evolution, but the origin of new introns is unclear. Stwintrons are complex intervening sequences where one of the sequence elements (5′-donor, lariat branch point element or 3′-acceptor) necessary for excision of a U2 intron (external intron) is itself interrupted by a second (internal) U2 intron. In Hypoxylaceae, a family of endophytic fungi, we uncovered scores of donor-disrupted stwintrons with striking sequence similarity among themselves and also with canonical introns. Intron–exon structure comparisons suggest that these stwintrons have proliferated within diverging taxa but also give rise to proliferating canonical introns in some genomes. The proliferated (stw)introns have integrated seamlessly at novel gene positions. The recently proliferated (stw)introns appear to originate from a conserved ancestral stwintron characterised by terminal inverted repeats (45–55 nucleotides), a highly symmetrical structure that may allow the formation of a double-stranded intron RNA molecule. No short tandem duplications flank the putatively inserted intervening sequences, which excludes a DNA transposition-based mechanism of proliferation. It is tempting to suggest that this highly symmetrical structure may have a role in intron proliferation by (an)other mechanism(s).
Collapse
|
34
|
Márquez Y, Mantica F, Cozzuto L, Burguera D, Hermoso-Pulido A, Ponomarenko J, Roy SW, Irimia M. ExOrthist: a tool to infer exon orthologies at any evolutionary distance. Genome Biol 2021; 22:239. [PMID: 34416914 PMCID: PMC8379844 DOI: 10.1186/s13059-021-02441-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Several bioinformatic tools have been developed for genome-wide identification of orthologous and paralogous genes. However, no corresponding tool allows the detection of exon homology relationships. Here, we present ExOrthist, a fully reproducible Nextflow-based software enabling inference of exon homologs and orthogroups, visualization of evolution of exon-intron structures, and assessment of conservation of alternative splicing patterns. ExOrthist evaluates exon sequence conservation and considers the surrounding exon-intron context to derive genome-wide multi-species exon homologies at any evolutionary distance. We demonstrate its use in different evolutionary scenarios: whole genome duplication in frogs and convergence of Nova-regulated splicing networks (https://github.com/biocorecrg/ExOrthist).
Collapse
Affiliation(s)
- Yamile Márquez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003, Barcelona, Spain.
| | - Federica Mantica
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Demian Burguera
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003, Barcelona, Spain.,Department of Zoology, Charles University, Vinicna 7, 12844, Prague, Czech Republic
| | - Antonio Hermoso-Pulido
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Scott W Roy
- San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra, Barcelona, Spain. .,ICREA, Barcelona, Spain.
| |
Collapse
|
35
|
Calatayud S, Garcia-Risco M, Capdevila M, Cañestro C, Palacios Ò, Albalat R. Modular Evolution and Population Variability of Oikopleura dioica Metallothioneins. Front Cell Dev Biol 2021; 9:702688. [PMID: 34277643 PMCID: PMC8283569 DOI: 10.3389/fcell.2021.702688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/09/2021] [Indexed: 01/29/2023] Open
Abstract
Chordate Oikopleura dioica probably is the fastest evolving metazoan reported so far, and thereby, a suitable system in which to explore the limits of evolutionary processes. For this reason, and in order to gain new insights on the evolution of protein modularity, we have investigated the organization, function and evolution of multi-modular metallothionein (MT) proteins in O. dioica. MTs are a heterogeneous group of modular proteins defined by their cysteine (C)-rich domains, which confer the capacity of coordinating different transition metal ions. O. dioica has two MTs, a bi-modular OdiMT1 consisting of two domains (t-12C and 12C), and a multi-modular OdiMT2 with six t-12C/12C repeats. By means of mass spectrometry and spectroscopy of metal-protein complexes, we have shown that the 12C domain is able to autonomously bind four divalent metal ions, although the t-12C/12C pair –as it is found in OdiMT1– is the optimized unit for divalent metal binding. We have also shown a direct relationship between the number of the t-12C/12C repeats and the metal-binding capacity of the MTs, which means a stepwise mode of functional and structural evolution for OdiMT2. Finally, after analyzing four different O. dioica populations worldwide distributed, we have detected several OdiMT2 variants with changes in their number of t-12C/12C domain repeats. This finding reveals that the number of repeats fluctuates between current O. dioica populations, which provides a new perspective on the evolution of domain repeat proteins.
Collapse
Affiliation(s)
- Sara Calatayud
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Mario Garcia-Risco
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
36
|
Aase-Remedios ME, Ferrier DEK. Improved Understanding of the Role of Gene and Genome Duplications in Chordate Evolution With New Genome and Transcriptome Sequences. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.703163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Comparative approaches to understanding chordate genomes have uncovered a significant role for gene duplications, including whole genome duplications (WGDs), giving rise to and expanding gene families. In developmental biology, gene families created and expanded by both tandem and WGDs are paramount. These genes, often involved in transcription and signalling, are candidates for underpinning major evolutionary transitions because they are particularly prone to retention and subfunctionalisation, neofunctionalisation, or specialisation following duplication. Under the subfunctionalisation model, duplication lays the foundation for the diversification of paralogues, especially in the context of gene regulation. Tandemly duplicated paralogues reside in the same regulatory environment, which may constrain them and result in a gene cluster with closely linked but subtly different expression patterns and functions. Ohnologues (WGD paralogues) often diversify by partitioning their expression domains between retained paralogues, amidst the many changes in the genome during rediploidisation, including chromosomal rearrangements and extensive gene losses. The patterns of these retentions and losses are still not fully understood, nor is the full extent of the impact of gene duplication on chordate evolution. The growing number of sequencing projects, genomic resources, transcriptomics, and improvements to genome assemblies for diverse chordates from non-model and under-sampled lineages like the coelacanth, as well as key lineages, such as amphioxus and lamprey, has allowed more informative comparisons within developmental gene families as well as revealing the extent of conserved synteny across whole genomes. This influx of data provides the tools necessary for phylogenetically informed comparative genomics, which will bring us closer to understanding the evolution of chordate body plan diversity and the changes underpinning the origin and diversification of vertebrates.
Collapse
|
37
|
Onuma TA, Nakanishi R, Sasakura Y, Ogasawara M. Nkx2-1 and FoxE regionalize glandular (mucus-producing) and thyroid-equivalent traits in the endostyle of the chordate Oikopleura dioica. Dev Biol 2021; 477:219-231. [PMID: 34107272 DOI: 10.1016/j.ydbio.2021.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022]
Abstract
The endostyle is a ventral pharyngeal organ used for internal filter feeding of basal chordates and is considered homologous to the follicular thyroid of vertebrates. It contains mucus-producing (glandular) and thyroid-equivalent regions organized along the dorsoventral (DV) axis. Although thyroid-related genes (Nkx2-1, FoxE, and thyroid peroxidase (TPO)) are known to be expressed in the endostyle, their roles in establishing regionalization within the organ have not been demonstrated. We report that Nkx2-1 and FoxE are essential for establishing DV axial identity in the endostyle of Oikopleura dioica. Genome and expression analyses showed von Willebrand factor-like (vWFL) and TPO/dual oxidase (Duox)/Nkx2-1/FoxE as orthologs of glandular and thyroid-related genes, respectively. Knockdown experiments showed that Nkx2-1 is necessary for the expression of glandular and thyroid-related genes, whereas FoxE is necessary only for thyroid-related genes. Moreover, Nkx2-1 expression is necessary for FoxE expression in larvae during organogenesis. The results demonstrate the essential roles of Nkx2-1 and FoxE in establishing regionalization in the endostyle, including (1) the Nkx2-1-dependent glandular region, and (2) the Nkx2-1/FoxE-dependent thyroid-equivalent region. DV axial regionalization may be responsible for organizing glandular and thyroid-equivalent traits of the pharynx along the DV axis.
Collapse
Affiliation(s)
- Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| | - Rina Nakanishi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
38
|
Bliznina A, Masunaga A, Mansfield MJ, Tan Y, Liu AW, West C, Rustagi T, Chien HC, Kumar S, Pichon J, Plessy C, Luscombe NM. Telomere-to-telomere assembly of the genome of an individual Oikopleura dioica from Okinawa using Nanopore-based sequencing. BMC Genomics 2021; 22:222. [PMID: 33781200 PMCID: PMC8008620 DOI: 10.1186/s12864-021-07512-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/05/2021] [Indexed: 11/10/2022] Open
Abstract
Background The larvacean Oikopleura dioica is an abundant tunicate plankton with the smallest (65–70 Mbp) non-parasitic, non-extremophile animal genome identified to date. Currently, there are two genomes available for the Bergen (OdB3) and Osaka (OSKA2016) O. dioica laboratory strains. Both assemblies have full genome coverage and high sequence accuracy. However, a chromosome-scale assembly has not yet been achieved. Results Here, we present a chromosome-scale genome assembly (OKI2018_I69) of the Okinawan O. dioica produced using long-read Nanopore and short-read Illumina sequencing data from a single male, combined with Hi-C chromosomal conformation capture data for scaffolding. The OKI2018_I69 assembly has a total length of 64.3 Mbp distributed among 19 scaffolds. 99% of the assembly is contained within five megabase-scale scaffolds. We found telomeres on both ends of the two largest scaffolds, which represent assemblies of two fully contiguous autosomal chromosomes. Each of the other three large scaffolds have telomeres at one end only and we propose that they correspond to sex chromosomes split into a pseudo-autosomal region and X-specific or Y-specific regions. Indeed, these five scaffolds mostly correspond to equivalent linkage groups in OdB3, suggesting overall agreement in chromosomal organization between the two populations. At a more detailed level, the OKI2018_I69 assembly possesses similar genomic features in gene content and repetitive elements reported for OdB3. The Hi-C map suggests few reciprocal interactions between chromosome arms. At the sequence level, multiple genomic features such as GC content and repetitive elements are distributed differently along the short and long arms of the same chromosome. Conclusions We show that a hybrid approach of integrating multiple sequencing technologies with chromosome conformation information results in an accurate de novo chromosome-scale assembly of O. dioica’s highly polymorphic genome. This genome assembly opens up the possibility of cross-genome comparison between O. dioica populations, as well as of studies of chromosomal evolution in this lineage. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07512-6.
Collapse
Affiliation(s)
- Aleksandra Bliznina
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Aki Masunaga
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yongkai Tan
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Andrew W Liu
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Charlotte West
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Francis Crick Institute, London, UK
| | - Tanmay Rustagi
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hsiao-Chiao Chien
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Saurabh Kumar
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Julien Pichon
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Francis Crick Institute, London, UK.,Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, UK
| |
Collapse
|
39
|
Lim CS, Weinstein BN, Roy SW, Brown CM. Analysis of fungal genomes reveals commonalities of intron gain or loss and functions in intron-poor species. Mol Biol Evol 2021; 38:4166-4186. [PMID: 33772558 PMCID: PMC8476143 DOI: 10.1093/molbev/msab094] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous evolutionary reconstructions have concluded that early eukaryotic ancestors including both the last common ancestor of eukaryotes and of all fungi had intron-rich genomes. By contrast, some extant eukaryotes have few introns, underscoring the complex histories of intron–exon structures, and raising the question as to why these few introns are retained. Here, we have used recently available fungal genomes to address a variety of questions related to intron evolution. Evolutionary reconstruction of intron presence and absence using 263 diverse fungal species supports the idea that massive intron reduction through intron loss has occurred in multiple clades. The intron densities estimated in various fungal ancestors differ from zero to 7.6 introns per 1 kb of protein-coding sequence. Massive intron loss has occurred not only in microsporidian parasites and saccharomycetous yeasts, but also in diverse smuts and allies. To investigate the roles of the remaining introns in highly-reduced species, we have searched for their special characteristics in eight intron-poor fungi. Notably, the introns of ribosome-associated genes RPL7 and NOG2 have conserved positions; both intron-containing genes encoding snoRNAs. Furthermore, both the proteins and snoRNAs are involved in ribosome biogenesis, suggesting that the expression of the protein-coding genes and noncoding snoRNAs may be functionally coordinated. Indeed, these introns are also conserved in three-quarters of fungi species. Our study shows that fungal introns have a complex evolutionary history and underappreciated roles in gene expression.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Brooke N Weinstein
- Quantitative & Systems Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA.,Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Scott W Roy
- Quantitative & Systems Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA.,Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
40
|
Wenzel MA, Müller B, Pettitt J. SLIDR and SLOPPR: flexible identification of spliced leader trans-splicing and prediction of eukaryotic operons from RNA-Seq data. BMC Bioinformatics 2021; 22:140. [PMID: 33752599 PMCID: PMC7986045 DOI: 10.1186/s12859-021-04009-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/08/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Spliced leader (SL) trans-splicing replaces the 5' end of pre-mRNAs with the spliced leader, an exon derived from a specialised non-coding RNA originating from elsewhere in the genome. This process is essential for resolving polycistronic pre-mRNAs produced by eukaryotic operons into monocistronic transcripts. SL trans-splicing and operons may have independently evolved multiple times throughout Eukarya, yet our understanding of these phenomena is limited to only a few well-characterised organisms, most notably C. elegans and trypanosomes. The primary barrier to systematic discovery and characterisation of SL trans-splicing and operons is the lack of computational tools for exploiting the surge of transcriptomic and genomic resources for a wide range of eukaryotes. RESULTS Here we present two novel pipelines that automate the discovery of SLs and the prediction of operons in eukaryotic genomes from RNA-Seq data. SLIDR assembles putative SLs from 5' read tails present after read alignment to a reference genome or transcriptome, which are then verified by interrogating corresponding SL RNA genes for sequence motifs expected in bona fide SL RNA molecules. SLOPPR identifies RNA-Seq reads that contain a given 5' SL sequence, quantifies genome-wide SL trans-splicing events and predicts operons via distinct patterns of SL trans-splicing events across adjacent genes. We tested both pipelines with organisms known to carry out SL trans-splicing and organise their genes into operons, and demonstrate that (1) SLIDR correctly detects expected SLs and often discovers novel SL variants; (2) SLOPPR correctly identifies functionally specialised SLs, correctly predicts known operons and detects plausible novel operons. CONCLUSIONS SLIDR and SLOPPR are flexible tools that will accelerate research into the evolutionary dynamics of SL trans-splicing and operons throughout Eukarya and improve gene discovery and annotation for a wide range of eukaryotic genomes. Both pipelines are implemented in Bash and R and are built upon readily available software commonly installed on most bioinformatics servers. Biological insight can be gleaned even from sparse, low-coverage datasets, implying that an untapped wealth of information can be retrieved from existing RNA-Seq datasets as well as from novel full-isoform sequencing protocols as they become more widely available.
Collapse
Affiliation(s)
- Marius A Wenzel
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| | - Berndt Müller
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Jonathan Pettitt
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
41
|
Lowe EK, Racioppi C, Peyriéras N, Ristoratore F, Christiaen L, Swalla BJ, Stolfi A. A cis-regulatory change underlying the motor neuron-specific loss of Ebf expression in immotile tunicate larvae. Evol Dev 2021; 23:72-85. [PMID: 33355999 PMCID: PMC7920938 DOI: 10.1111/ede.12364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 10/23/2020] [Accepted: 12/06/2020] [Indexed: 11/26/2022]
Abstract
Many species in the tunicate family Molgulidae have independently lost their swimming larval form and instead develop as tailless, immotile larvae. These larvae do not develop structures that are essential for swimming such as the notochord, otolith, and tail muscles. However, little is known about neural development in these nonswimming larvae. Here, we studied the patterning of the Motor Ganglion (MG) of Molgula occulta, a nonswimming species. We found that spatial patterns of MG neuron regulators in this species are conserved, compared with species with swimming larvae, suggesting that the gene networks regulating their expression are intact despite the loss of swimming. However, expression of the key motor neuron regulatory gene Ebf (Collier/Olf/EBF) was reduced in the developing MG of M. occulta when compared with molgulid species with swimming larvae. This was corroborated by measuring allele-specific expression of Ebf in hybrid embryos from crosses of M. occulta with the swimming species M. oculata. Heterologous reporter construct assays in the model tunicate species Ciona robusta revealed a specific cis-regulatory sequence change that reduces expression of Ebf in the MG, but not in other cells. Taken together, these data suggest that MG neurons are still specified in M. occulta larvae, but their differentiation might be impaired due to reduction of Ebf expression levels.
Collapse
Affiliation(s)
- Elijah K. Lowe
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Station Biologique de Roscoff, Roscoff, France
| | - Claudia Racioppi
- Station Biologique de Roscoff, Roscoff, France
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Nadine Peyriéras
- Station Biologique de Roscoff, Roscoff, France
- UPS3611 Complex Systems Institute Paris Ile-de-France (ISC-PIF), CNRS, Paris, France
- USR3695 BioEmergences, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Lionel Christiaen
- Station Biologique de Roscoff, Roscoff, France
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Billie J. Swalla
- Station Biologique de Roscoff, Roscoff, France
- Department of Biology, University of Washington, Seattle, WA, USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
42
|
Farhat S, Le P, Kayal E, Noel B, Bigeard E, Corre E, Maumus F, Florent I, Alberti A, Aury JM, Barbeyron T, Cai R, Da Silva C, Istace B, Labadie K, Marie D, Mercier J, Rukwavu T, Szymczak J, Tonon T, Alves-de-Souza C, Rouzé P, Van de Peer Y, Wincker P, Rombauts S, Porcel BM, Guillou L. Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp. BMC Biol 2021; 19:1. [PMID: 33407428 PMCID: PMC7789003 DOI: 10.1186/s12915-020-00927-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/12/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Dinoflagellates are aquatic protists particularly widespread in the oceans worldwide. Some are responsible for toxic blooms while others live in symbiotic relationships, either as mutualistic symbionts in corals or as parasites infecting other protists and animals. Dinoflagellates harbor atypically large genomes (~ 3 to 250 Gb), with gene organization and gene expression patterns very different from closely related apicomplexan parasites. Here we sequenced and analyzed the genomes of two early-diverging and co-occurring parasitic dinoflagellate Amoebophrya strains, to shed light on the emergence of such atypical genomic features, dinoflagellate evolution, and host specialization. RESULTS We sequenced, assembled, and annotated high-quality genomes for two Amoebophrya strains (A25 and A120), using a combination of Illumina paired-end short-read and Oxford Nanopore Technology (ONT) MinION long-read sequencing approaches. We found a small number of transposable elements, along with short introns and intergenic regions, and a limited number of gene families, together contribute to the compactness of the Amoebophrya genomes, a feature potentially linked with parasitism. While the majority of Amoebophrya proteins (63.7% of A25 and 59.3% of A120) had no functional assignment, we found many orthologs shared with Dinophyceae. Our analyses revealed a strong tendency for genes encoded by unidirectional clusters and high levels of synteny conservation between the two genomes despite low interspecific protein sequence similarity, suggesting rapid protein evolution. Most strikingly, we identified a large portion of non-canonical introns, including repeated introns, displaying a broad variability of associated splicing motifs never observed among eukaryotes. Those introner elements appear to have the capacity to spread over their respective genomes in a manner similar to transposable elements. Finally, we confirmed the reduction of organelles observed in Amoebophrya spp., i.e., loss of the plastid, potential loss of a mitochondrial genome and functions. CONCLUSION These results expand the range of atypical genome features found in basal dinoflagellates and raise questions regarding speciation and the evolutionary mechanisms at play while parastitism was selected for in this particular unicellular lineage.
Collapse
Affiliation(s)
- Sarah Farhat
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Phuong Le
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ehsan Kayal
- Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Estelle Bigeard
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Erwan Corre
- Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Florian Maumus
- URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | - Isabelle Florent
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Muséum national d'Histoire naturelle, CNRS, CP 52, 57 rue Cuvier, 75005, Paris, France
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Tristan Barbeyron
- Sorbonne Université, CNRS, UMR 8227, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Ruibo Cai
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Karine Labadie
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Dominique Marie
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Jonathan Mercier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Tsinda Rukwavu
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Jeremy Szymczak
- Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Thierry Tonon
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Catharina Alves-de-Souza
- Algal Resources Collection, MARBIONC, Center for Marine Sciences, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC, 28409, USA
| | - Pierre Rouzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Betina M Porcel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France.
| | - Laure Guillou
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France.
| |
Collapse
|
43
|
Leclère L, Nir TS, Bazarsky M, Braitbard M, Schneidman-Duhovny D, Gat U. Dynamic Evolution of the Cthrc1 Genes, a Newly Defined Collagen-Like Family. Genome Biol Evol 2020; 12:3957-3970. [PMID: 32022859 PMCID: PMC7058181 DOI: 10.1093/gbe/evaa020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Collagen triple helix repeat containing protein 1 (Cthrc1) is a secreted glycoprotein reported to regulate collagen deposition and to be linked to the Transforming growth factor β/Bone morphogenetic protein and the Wnt/planar cell polarity pathways. It was first identified as being induced upon injury to rat arteries and was found to be highly expressed in multiple human cancer types. Here, we explore the phylogenetic and evolutionary trends of this metazoan gene family, previously studied only in vertebrates. We identify Cthrc1 orthologs in two distant cnidarian species, the sea anemone Nematostella vectensis and the hydrozoan Clytia hemisphaerica, both of which harbor multiple copies of this gene. We find that Cthrc1 clade-specific diversification occurred multiple times in cnidarians as well as in most metazoan clades where we detected this gene. Many other groups, such as arthropods and nematodes, have entirely lost this gene family. Most vertebrates display a single highly conserved gene, and we show that the sequence evolutionary rate of Cthrc1 drastically decreased within the gnathostome lineage. Interestingly, this reduction coincided with the origin of its conserved upstream neighboring gene, Frizzled 6 (FZD6), which in mice has been shown to functionally interact with Cthrc1. Structural modeling methods further reveal that the yet uncharacterized C-terminal domain of Cthrc1 is similar in structure to the globular C1q superfamily domain, also found in the C-termini of collagens VIII and X. Thus, our studies show that the Cthrc1 genes are a collagen-like family with a variable short collagen triple helix domain and a highly conserved C-terminal domain structure resembling the C1q family.
Collapse
Affiliation(s)
- Lucas Leclère
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Tal S Nir
- Department of Cell and Developmental Biology, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | - Michael Bazarsky
- Department of Cell and Developmental Biology, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | - Merav Braitbard
- Department of Biochemistry, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | - Dina Schneidman-Duhovny
- Department of Biochemistry, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel.,School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Uri Gat
- Department of Cell and Developmental Biology, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
44
|
How to build a larval body with less than a hundred cells? Insights from the early development of a stalked jellyfish (Staurozoa, Cnidaria). ORG DIVERS EVOL 2020. [DOI: 10.1007/s13127-020-00459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Conservative route to genome compaction in a miniature annelid. Nat Ecol Evol 2020; 5:231-242. [PMID: 33199869 PMCID: PMC7854359 DOI: 10.1038/s41559-020-01327-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
The causes and consequences of genome reduction in animals are unclear because our understanding of this process mostly relies on lineages with often exceptionally high rates of evolution. Here, we decode the compact 73.8-megabase genome of Dimorphilus gyrociliatus, a meiobenthic segmented worm. The D. gyrociliatus genome retains traits classically associated with larger and slower-evolving genomes, such as an ordered, intact Hox cluster, a generally conserved developmental toolkit and traces of ancestral bilaterian linkage. Unlike some other animals with small genomes, the analysis of the D. gyrociliatus epigenome revealed canonical features of genome regulation, excluding the presence of operons and trans-splicing. Instead, the gene-dense D. gyrociliatus genome presents a divergent Myc pathway, a key physiological regulator of growth, proliferation and genome stability in animals. Altogether, our results uncover a conservative route to genome compaction in annelids, reminiscent of that observed in the vertebrate Takifugu rubripes. This study reports the genome of the miniature segmented annelid Dimorphilus gyrociliatus and reveals no drastic changes in genome architecture and regulation, unlike other cases of genome miniaturization.
Collapse
|
46
|
Glover JC. Oikopleura. Curr Biol 2020; 30:R1243-R1245. [DOI: 10.1016/j.cub.2020.07.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
|
48
|
Wei J, Zhang J, Lu Q, Ren P, Guo X, Wang J, Li X, Chang Y, Duan S, Wang S, Yu H, Zhang X, Yang X, Gao H, Dong B. Genomic basis of environmental adaptation in the leathery sea squirt (Styela clava). Mol Ecol Resour 2020; 20:1414-1431. [PMID: 32531855 PMCID: PMC7540406 DOI: 10.1111/1755-0998.13209] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022]
Abstract
Tunicates occupy the evolutionary position at the boundary of invertebrates and vertebrates. It exhibits adaptation to broad environmental conditions and is distributed globally. Despite hundreds of years of embryogenesis studies, the genetic basis of the invasive habits of ascidians remains largely unknown. The leathery sea squirt, Styela clava, is an important invasive species. We used the chromosomal-level genome and transcriptome of S. clava to explore its genomic- and molecular-network-based mechanisms of adaptation to environments. Compared with Ciona intestinalis type A (C. robusta), the size of the S. clava genome was expanded by 2-fold, although the gene number was comparable. An increase in transposon number and variation in dominant types were identified as potential expansion mechanisms. In the S. clava genome, the number of genes encoding the heat-shock protein 70 family and members of the complement system was expanded significantly, and cold-shock protein genes were transferred horizontally into the S. clava genome from bacteria. The expanded gene families potentially play roles in the adaptation of S. clava to its environments. The loss of key genes in the galactan synthesis pathway might explain the distinct tunic structure and hardness compared with the ascidian Ciona species. We demonstrated further that the integrated thyroid hormone pathway participated in the regulation of larval metamorphosis that provides S. clava with two opportunities for adapting to their environment. Thus, our report of the chromosomal-level leathery sea squirt genome provides a comprehensive genomic basis for the understanding of environmental adaptation in tunicates.
Collapse
Affiliation(s)
- Jiankai Wei
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Jin Zhang
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Qiongxuan Lu
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Ping Ren
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xin Guo
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Jing Wang
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xiang Li
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Yaoguang Chang
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Shuai Duan
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Shi Wang
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Haiyan Yu
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xiaoming Zhang
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xiuxia Yang
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Hongwei Gao
- Technical Center of Inspection and QuarantineShandong Entry‐Exit Inspection and Quarantine BureauQingdaoChina
| | - Bo Dong
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
| |
Collapse
|
49
|
Morita R, Onuma TA, Manni L, Ohno N, Nishida H. Mouth opening is mediated by separation of dorsal and ventral daughter cells of the lip precursor cells in the larvacean, Oikopleura dioica. Dev Genes Evol 2020; 230:315-327. [PMID: 32803391 DOI: 10.1007/s00427-020-00667-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Mouth formation involves the processes of mouth opening, formation of the oral cavity, and the development of associated sensory organs. In deuterostomes, the surface ectoderm and the anterior part of the archenteron are reconfigured and reconnected to make a mouth opening. This study of the larval development of the larvacean, Oikopleura dioica, investigates the cellular organization of the oral region, the developmental processes of the mouth, and the formation of associated sensory cells. O. dioica is a simple chordate whose larvae are transparent and have a small number of constituent cells. It completes organ morphogenesis in 7 h, between hatching 3 h after fertilization and the juvenile stage at 10 h, when it attains adult form and starts to feed. It has two types of mechanosensory cell embedded in the oral epithelium, which is a single layer of cells. There are twenty coronal sensory cells in the circumoral nerve ring and two dorsal sensory organ cells. Two bilateral lip precursor cells (LPCs), facing the anterior surface, divide dorsoventrally and make a wedge-shaped cleft between the two daughter cells named the dorsal lip cell (DLC) and the ventral lip cell (VLC). Eventually, the DLC and VLC become detached and separated into dorsal and ventral lips, triggering mouth opening. This is an intriguing example of cell division itself contributing to morphogenesis. The boundary between the ectoderm and endoderm is present between the lip cells and coronal sensory cells. All oral sensory cells, including dorsal sensory organ cells, were of endodermal origin and were not derived from the ectodermal placode. These observations on mouth formation provide a cellular basis for further studies at a molecular level, in this simple chordate.
Collapse
Affiliation(s)
- Ryo Morita
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, via U. Bassi 58/B, I-35121, Padova, Italy
| | - Nobuhiko Ohno
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
50
|
Wang K, Tomura R, Chen W, Kiyooka M, Ishizaki H, Aizu T, Minakuchi Y, Seki M, Suzuki Y, Omotezako T, Suyama R, Masunaga A, Plessy C, Luscombe NM, Dantec C, Lemaire P, Itoh T, Toyoda A, Nishida H, Onuma TA. A genome database for a Japanese population of the larvacean Oikopleura dioica. Dev Growth Differ 2020; 62:450-461. [PMID: 32677034 DOI: 10.1111/dgd.12689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 01/01/2023]
Abstract
The larvacean Oikopleura dioica is a planktonic chordate and is a tunicate that belongs to the closest relatives to vertebrates. Its simple and transparent body, invariant embryonic cell lineages, and short life cycle of 5 days make it a promising model organism for the study of developmental biology. The genome browser OikoBase was established in 2013 using Norwegian O. dioica. However, genome information for other populations is not available, even though many researchers have studied local populations. In the present study, we sequenced using Illumina and PacBio RSII technologies the genome of O. dioica from a southwestern Japanese population that was cultured in our laboratory for 3 years. The genome of Japanese O. dioica was assembled into 576 scaffold sequences with a total length and N50 length of 56.6 and 1.5 Mb, respectively. A total of 18,743 gene models (transcript models) were predicted in the genome assembly, named OSKA2016. In addition, 19,277 non-redundant transcripts were assembled using RNA-seq data. The OSKA2016 has global sequence similarity of only 86.5% when compared with the OikoBase, highlighting the sequence difference between the two far distant O. dioica populations on the globe. The genome assembly, transcript assembly, and transcript models were incorporated into ANISEED (https://www.aniseed.cnrs.fr/) for genome browsing and BLAST searches. Mapping of reads obtained from male- or female-specific genome libraries yielded male-specific scaffolds in the OSKA2016 and revealed that over 2.6 Mb of sequence were included in the male-specific Y-region. The genome and transcriptome resources from two distinct populations will be useful datasets for developmental biology, evolutionary biology, and molecular ecology using this model organism.
Collapse
Affiliation(s)
- Kai Wang
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Ryo Tomura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Wei Chen
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Miho Kiyooka
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hinako Ishizaki
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Tomoyuki Aizu
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Masahide Seki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Tatsuya Omotezako
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Ritsuko Suyama
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Aki Masunaga
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Christelle Dantec
- Centre de Recherches de Biochimie Macromoleculaire (CRBM), UMR5237, CNRS-Universite de Montpellier, Montpellier, France
| | - Patrick Lemaire
- Centre de Recherches de Biochimie Macromoleculaire (CRBM), UMR5237, CNRS-Universite de Montpellier, Montpellier, France
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|