1
|
Mao G, Srivastava AS, Wu S, Kosek D, Kirsebom LA. Importance of residue 248 in Escherichia coli RNase P RNA mediated cleavage. Sci Rep 2023; 13:14140. [PMID: 37644068 PMCID: PMC10465520 DOI: 10.1038/s41598-023-41203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
tRNA genes are transcribed as precursors and RNase P generates the matured 5' end of tRNAs. It has been suggested that residue - 1 (the residue immediately 5' of the scissile bond) in the pre-tRNA interacts with the well-conserved bacterial RNase P RNA (RPR) residue A248 (Escherichia coli numbering). The way A248 interacts with residue - 1 is not clear. To gain insight into the role of A248, we analyzed cleavage as a function of A248 substitutions and N-1 nucleobase identity by using pre-tRNA and three model substrates. Our findings are consistent with a model where the structural topology of the active site varies and depends on the identity of the nucleobases at, and in proximity to, the cleavage site and their potential to interact. This leads to positioning of Mg2+ that activates the water that acts as the nucleophile resulting in efficient and correct cleavage. We propose that in addition to be involved in anchoring the substrate the role of A248 is to exclude bulk water from access to the amino acid acceptor stem, thereby preventing non-specific hydrolysis of the pre-tRNA. Finally, base stacking is discussed as a way to protect functionally important base-pairing interactions from non-specific hydrolysis, thereby ensuring high fidelity during RNA processing and the decoding of mRNA.
Collapse
Affiliation(s)
- Guanzhong Mao
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - Abhishek S Srivastava
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - Shiying Wu
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - David Kosek
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden.
| |
Collapse
|
2
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
3
|
New biochemical insights of CCA enzyme role in tRNA maturation and an efficient method to synthesize the 3'-amino-tailed tRNA. Biochimie 2023; 209:95-102. [PMID: 36646204 DOI: 10.1016/j.biochi.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The maturation of tRNA and its quality control is crucial for aminoacylation and protein synthesis. The CCA enzyme, also known as tRNA nucleotidyltransferase, catalyzes the addition or repair of CCA at the 3'-terminus of tRNAs to facilitate aminoacylation. Structural studies of CCA enzyme in complex with ATP and CTP suggested that adding CCA at the 3'-terminus of tRNAs is a sequential process [1-4]. However, there are many inconsistent results of CCA addition from the biochemical studies, which raise the ambiguity about the CCA enzyme specificity in vitro [5-7]. On the other hand, there are no effective methods for preparing the 3'-amino-tailed tRNA to provide a stable amide linkage, which is vital to make homogeneous samples for structural studies of stalling peptides to understand ribosome mediated gene regulation [7-11]. In this study, we examined the functional specificity of the Class II CCA enzyme from E. coli, and optimized the benchmark experimental conditions to prepare the 3'-NH2-tRNA using the CCA enzyme. Our results suggest that the CCA enzyme has a specific ability to catalyze the CCA addition/repair activity within the stoichiometric range of the reactants, and excess amounts of nucleotides lead to non-specific polymerization of the tRNA. Further, we developed an efficient method for synthesizing 3'-amino tRNA, which can facilitate stable aminoacyl/peptidyl-tRNA preparation.
Collapse
|
4
|
Černý J, Božíková P, Svoboda J, Schneider B. A unified dinucleotide alphabet describing both RNA and DNA structures. Nucleic Acids Res 2020; 48:6367-6381. [PMID: 32406923 PMCID: PMC7293047 DOI: 10.1093/nar/gkaa383] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/11/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
By analyzing almost 120 000 dinucleotides in over 2000 nonredundant nucleic acid crystal structures, we define 96+1 diNucleotide Conformers, NtCs, which describe the geometry of RNA and DNA dinucleotides. NtC classes are grouped into 15 codes of the structural alphabet CANA (Conformational Alphabet of Nucleic Acids) to simplify symbolic annotation of the prominent structural features of NAs and their intuitive graphical display. The search for nontrivial patterns of NtCs resulted in the identification of several types of RNA loops, some of them observed for the first time. Over 30% of the nearly six million dinucleotides in the PDB cannot be assigned to any NtC class but we demonstrate that up to a half of them can be re-refined with the help of proper refinement targets. A statistical analysis of the preferences of NtCs and CANA codes for the 16 dinucleotide sequences showed that neither the NtC class AA00, which forms the scaffold of RNA structures, nor BB00, the DNA most populated class, are sequence neutral but their distributions are significantly biased. The reported automated assignment of the NtC classes and CANA codes available at dnatco.org provides a powerful tool for unbiased analysis of nucleic acid structures by structural and molecular biologists.
Collapse
Affiliation(s)
- Jiří Černý
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, CZ-252 50 Vestec, Prague-West, Czech Republic
| | - Paulína Božíková
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, CZ-252 50 Vestec, Prague-West, Czech Republic
| | - Jakub Svoboda
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, CZ-252 50 Vestec, Prague-West, Czech Republic
| | - Bohdan Schneider
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, CZ-252 50 Vestec, Prague-West, Czech Republic
| |
Collapse
|
5
|
Affiliation(s)
- Olke C Uhlenbeck
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois
- Department of Biochemistry, University of Colorado, Boulder, Colorado
| |
Collapse
|
6
|
Clouet-d'Orval B, Batista M, Bouvier M, Quentin Y, Fichant G, Marchfelder A, Maier LK. Insights into RNA-processing pathways and associated RNA-degrading enzymes in Archaea. FEMS Microbiol Rev 2018; 42:579-613. [PMID: 29684129 DOI: 10.1093/femsre/fuy016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
RNA-processing pathways are at the centre of regulation of gene expression. All RNA transcripts undergo multiple maturation steps in addition to covalent chemical modifications to become functional in the cell. This includes destroying unnecessary or defective cellular RNAs. In Archaea, information on mechanisms by which RNA species reach their mature forms and associated RNA-modifying enzymes are still fragmentary. To date, most archaeal actors and pathways have been proposed in light of information gathered from Bacteria and Eukarya. In this context, this review provides a state of the art overview of archaeal endoribonucleases and exoribonucleases that cleave and trim RNA species and also of the key small archaeal proteins that bind RNAs. Furthermore, synthetic up-to-date views of processing and biogenesis pathways of archaeal transfer and ribosomal RNAs as well as of maturation of stable small non-coding RNAs such as CRISPR RNAs, small C/D and H/ACA box guide RNAs, and other emerging classes of small RNAs are described. Finally, prospective post-transcriptional mechanisms to control archaeal messenger RNA quality and quantity are discussed.
Collapse
Affiliation(s)
- Béatrice Clouet-d'Orval
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Manon Batista
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Marie Bouvier
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Yves Quentin
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | | | | |
Collapse
|
7
|
Yashiro Y, Tomita K. Function and Regulation of Human Terminal Uridylyltransferases. Front Genet 2018; 9:538. [PMID: 30483311 PMCID: PMC6240794 DOI: 10.3389/fgene.2018.00538] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/24/2018] [Indexed: 11/21/2022] Open
Abstract
RNA uridylylation plays a pivotal role in the biogenesis and metabolism of functional RNAs, and regulates cellular gene expression. RNA uridylylation is catalyzed by a subset of proteins from the non-canonical terminal nucleotidyltransferase family. In human, three proteins (TUT1, TUT4, and TUT7) have been shown to exhibit template-independent uridylylation activity at 3′-end of specific RNAs. TUT1 catalyzes oligo-uridylylation of U6 small nuclear (sn) RNA, which catalyzes mRNA splicing. Oligo-uridylylation of U6 snRNA is required for U6 snRNA maturation, U4/U6-di-snRNP formation, and U6 snRNA recycling during mRNA splicing. TUT4 and TUT7 catalyze mono- or oligo-uridylylation of precursor let-7 (pre–let-7). Let-7 RNA is broadly expressed in somatic cells and regulates cellular proliferation and differentiation. Mono-uridylylation of pre–let-7 by TUT4/7 promotes subsequent Dicer processing to up-regulate let-7 biogenesis. Oligo-uridylylation of pre–let-7 by TUT4/7 is dependent on an RNA-binding protein, Lin28. Oligo-uridylylated pre–let-7 is less responsive to processing by Dicer and degraded by an exonuclease DIS3L2. As a result, let-7 expression is repressed. Uridylylation of pre–let-7 depends on the context of the 3′-region of pre–let-7 and cell type. In this review, we focus on the 3′ uridylylation of U6 snRNA and pre-let-7, and describe the current understanding of mechanism of activity and regulation of human TUT1 and TUT4/7, based on their crystal structures that have been recently solved.
Collapse
Affiliation(s)
- Yuka Yashiro
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
8
|
Luo J, Liu L, Venkateswaran S, Song Q, Zhou X. RPI-Bind: a structure-based method for accurate identification of RNA-protein binding sites. Sci Rep 2017; 7:614. [PMID: 28377624 PMCID: PMC5429624 DOI: 10.1038/s41598-017-00795-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/13/2017] [Indexed: 01/11/2023] Open
Abstract
RNA and protein interactions play crucial roles in multiple biological processes, while these interactions are significantly influenced by the structures and sequences of protein and RNA molecules. In this study, we first performed an analysis of RNA-protein interacting complexes, and identified interface properties of sequences and structures, which reveal the diverse nature of the binding sites. With the observations, we built a three-step prediction model, namely RPI-Bind, for the identification of RNA-protein binding regions using the sequences and structures of both proteins and RNAs. The three steps include 1) the prediction of RNA binding regions on protein, 2) the prediction of protein binding regions on RNA, and 3) the prediction of interacting regions on both RNA and protein simultaneously, with the results from steps 1) and 2). Compared with existing methods, most of which employ only sequences, our model significantly improves the prediction accuracy at each of the three steps. Especially, our model outperforms the catRAPID by >20% at the 3rd step. All of these results indicate the importance of structures in RNA-protein interactions, and suggest that the RPI-Bind model is a powerful theoretical framework for studying RNA-protein interactions.
Collapse
Affiliation(s)
- Jiesi Luo
- Center for Bioinformatics and Systems Biology and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Liang Liu
- Center for Bioinformatics and Systems Biology and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Suresh Venkateswaran
- Center for Bioinformatics and Systems Biology and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Qianqian Song
- Center for Bioinformatics and Systems Biology and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Xiaobo Zhou
- Center for Bioinformatics and Systems Biology and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
9
|
Peng Y, Alexov E. Computational investigation of proton transfer, pKa shifts and pH-optimum of protein-DNA and protein-RNA complexes. Proteins 2017; 85:282-295. [PMID: 27936518 PMCID: PMC9843452 DOI: 10.1002/prot.25221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 01/19/2023]
Abstract
Protein-nucleic acid interactions play a crucial role in many biological processes. This work investigates the changes of pKa values and protonation states of ionizable groups (including nucleic acid bases) that may occur at protein-nucleic acid binding. Taking advantage of the recently developed pKa calculation tool DelphiPka, we utilize the large protein-nucleic acid interaction database (NPIDB database) to model pKa shifts caused by binding. It has been found that the protein's interfacial basic residues experience favorable electrostatic interactions while the protein acidic residues undergo proton uptake to reduce the energy cost upon the binding. This is in contrast with observations made for protein-protein complexes. In terms of DNA/RNA, both base groups and phosphate groups of nucleotides are found to participate in binding. Some DNA/RNA bases undergo pKa shifts at complex formation, with the binding process tending to suppress charged states of nucleic acid bases. In addition, a weak correlation is found between the pH-optimum of protein-DNA/RNA binding free energy and the pH-optimum of protein folding free energy. Overall, the pH-dependence of protein-nucleic acid binding is not predicted to be as significant as that of protein-protein association. Proteins 2017; 85:282-295. © 2016 Wiley Periodicals, Inc.
Collapse
|
10
|
Mechanism of 3′-Matured tRNA Discrimination from 3′-Immature tRNA by Class-II CCA-Adding Enzyme. Structure 2016; 24:918-25. [DOI: 10.1016/j.str.2016.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/06/2016] [Accepted: 03/19/2016] [Indexed: 11/20/2022]
|
11
|
Kuhn CD. RNA versatility governs tRNA function: Why tRNA flexibility is essential beyond the translation cycle. Bioessays 2016; 38:465-73. [PMID: 26990636 DOI: 10.1002/bies.201500190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
tRNAs undergo multiple conformational changes during the translation cycle that are required for tRNA translocation and proper communication between the ribosome and translation factors. Recent structural data on how destabilized tRNAs utilize the CCA-adding enzyme to proofread themselves put a spotlight on tRNA flexibility beyond the translation cycle. In analogy to tRNA surveillance, this review finds that other processes also exploit versatile tRNA folding to achieve, amongst others, specific aminoacylation, translational regulation by riboswitches or a block of bacterial translation. tRNA flexibility is thereby not restricted to the hinges utilized during translation. In contrast, the flexibility of tRNA is distributed all over its L-shape and is actively exploited by the tRNA-interacting partners to discriminate one tRNA from another. Since the majority of tRNA modifications also modulate tRNA flexibility it seems that cells devote enormous resources to tightly sense and regulate tRNA structure. This is likely required for error-free protein synthesis.
Collapse
Affiliation(s)
- Claus-D Kuhn
- BIOmac Research Center, Elite Network of Bavaria and University of Bayreuth, NW I, Bayreuth, Germany
| |
Collapse
|
12
|
Transfer RNA: From pioneering crystallographic studies to contemporary tRNA biology. Arch Biochem Biophys 2016; 602:95-105. [PMID: 26968773 DOI: 10.1016/j.abb.2016.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 12/17/2022]
Abstract
Transfer RNAs (tRNAs) play a key role in protein synthesis as adaptor molecules between messenger RNA and protein sequences on the ribosome. Their discovery in the early sixties provoked a worldwide infatuation with the study of their architecture and their function in the decoding of genetic information. tRNAs are also emblematic molecules in crystallography: the determination of the first tRNA crystal structures represented a milestone in structural biology and tRNAs were for a long period the sole source of information on RNA folding, architecture, and post-transcriptional modifications. Crystallographic data on tRNAs in complex with aminoacyl-tRNA synthetases (aaRSs) also provided the first insight into protein:RNA interactions. Beyond the translation process and the history of structural investigations on tRNA, this review also illustrates the renewal of tRNA biology with the discovery of a growing number of tRNA partners in the cell, the involvement of tRNAs in a variety of regulatory and metabolic pathways, and emerging applications in biotechnology and synthetic biology.
Collapse
|
13
|
Fiedler M, Rossmanith W, Wahle E, Rammelt C. Mitochondrial poly(A) polymerase is involved in tRNA repair. Nucleic Acids Res 2015; 43:9937-49. [PMID: 26354863 PMCID: PMC4787750 DOI: 10.1093/nar/gkv891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/26/2015] [Indexed: 11/12/2022] Open
Abstract
Transcription of the mitochondrial genome results in polycistronic precursors, which are processed mainly by the release of tRNAs interspersed between rRNAs and mRNAs. In many metazoan mitochondrial genomes some tRNA genes overlap with downstream genes; in the case of human mitochondria the genes for tRNATyr and tRNACys overlap by one nucleotide. It has previously been shown that processing of the common precursor releases an incomplete tRNATyr lacking the 3′-adenosine. The 3′-terminal adenosine has to be added before addition of the CCA end and subsequent aminoacylation. We show that the mitochondrial poly(A) polymerase (mtPAP) is responsible for this A addition. In vitro, a tRNATyr lacking the discriminator is a substrate for mtPAP. In vivo, an altered mtPAP protein level affected tRNATyr maturation, as shown by sequencing the 3′ ends of mitochondrial tRNAs. Complete repair could be reconstituted in vitro with three enzymes: mtPAP frequently added more than one A to the 3′ end of the truncated tRNA, and either the mitochondrial deadenylase PDE12 or the endonuclease RNase Z trimmed the oligo(A) tail to a single A before CCA addition. An enzyme machinery that evolved primarily for other purposes thus allows to tolerate the frequent evolutionary occurrence of gene overlaps.
Collapse
Affiliation(s)
- Mario Fiedler
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
14
|
Wilusz JE. Controlling translation via modulation of tRNA levels. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:453-70. [PMID: 25919480 DOI: 10.1002/wrna.1287] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/13/2015] [Accepted: 04/06/2015] [Indexed: 12/22/2022]
Abstract
Transfer RNAs (tRNAs) are critical adaptor molecules that carry amino acids to a messenger RNA (mRNA) template during protein synthesis. Although tRNAs have commonly been viewed as abundant 'house-keeping' RNAs, it is becoming increasingly clear that tRNA expression is tightly regulated. Depending on a cell's proliferative status, the pool of active tRNAs is rapidly changed, enabling distinct translational programs to be expressed in differentiated versus proliferating cells. Here, I highlight several post-transcriptional regulatory mechanisms that allow the expression or functions of tRNAs to be altered. Modulating the modification status or structural stability of individual tRNAs can cause those specific tRNA transcripts to selectively accumulate or be degraded. Decay generally occurs via the rapid tRNA decay pathway or by the nuclear RNA surveillance machinery. In addition, the CCA-adding enzyme plays a critical role in determining the fate of a tRNA. The post-transcriptional addition of CCA to the 3' ends of stable tRNAs generates the amino acid attachment site, whereas addition of CCACCA to unstable tRNAs prevents aminoacylation and marks the tRNA for degradation. In response to various stresses, tRNAs can accumulate in the nucleus or be further cleaved into small RNAs, some of which inhibit translation. By implementing these various post-transcriptional control mechanisms, cells are able to fine-tune tRNA levels to regulate subsets of mRNAs as well as overall translation rates.
Collapse
Affiliation(s)
- Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
15
|
Yamashita S, Martinez A, Tomita K. Measurement of Acceptor-TΨC Helix Length of tRNA for Terminal A76-Addition by A-Adding Enzyme. Structure 2015; 23:830-842. [PMID: 25914059 DOI: 10.1016/j.str.2015.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 02/25/2015] [Accepted: 03/23/2015] [Indexed: 11/25/2022]
Abstract
The 3'-terminal CCA (C74C75A76-3') of tRNA is required for protein synthesis. In Aquifex aeolicus, the CCA-3' is synthesized by CC-adding and A-adding enzymes, although in most organisms, CCA is synthesized by a single CCA-adding enzyme. The mechanisms by which the A-adding enzyme adds only A76, but not C74C75, onto tRNA remained elusive. The complex structures of the enzyme with various tRNAs revealed the presence of a single tRNA binding site on the enzyme, with the enzyme measuring the acceptor-TΨC helix length of tRNA. The 3'-C75 of tRNA lacking A76 can reach the active site and the size and shape of the nucleotide binding pocket at the insertion stage are suitable for ATP. The 3'-C74 of tRNA lacking C75A76 cannot reach the active site, although CTP or ATP can bind the active pocket. Thus, the A-adding enzyme adds only A76, but not C74C75, onto tRNA.
Collapse
Affiliation(s)
- Seisuke Yamashita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Anna Martinez
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kozo Tomita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
16
|
Lohöfener J, Steinke N, Kay-Fedorov P, Baruch P, Nikulin A, Tishchenko S, Manstein DJ, Fedorov R. The Activation Mechanism of 2'-5'-Oligoadenylate Synthetase Gives New Insights Into OAS/cGAS Triggers of Innate Immunity. Structure 2015; 23:851-862. [PMID: 25892109 DOI: 10.1016/j.str.2015.03.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 12/25/2022]
Abstract
2'-5'-Oligoadenylate synthetases (OASs) produce the second messenger 2'-5'-oligoadenylate, which activates RNase L to induce an intrinsic antiviral state. We report on the crystal structures of catalytic intermediates of OAS1 including the OAS1·dsRNA complex without substrates, with a donor substrate, and with both donor and acceptor substrates. Combined with kinetic studies of point mutants and the previously published structure of the apo form of OAS1, the new data suggest a sequential mechanism of OAS activation and show the individual roles of each component. They reveal a dsRNA-mediated push-pull effect responsible for large conformational changes in OAS1, the catalytic role of the active site Mg(2+), and the structural basis for the 2'-specificity of product formation. Our data reveal similarities and differences in the activation mechanisms of members of the OAS/cyclic GMP-AMP synthase family of innate immune sensors. In particular, they show how helix 3103-α5 blocks the synthesis of cyclic dinucleotides by OAS1.
Collapse
Affiliation(s)
- Jan Lohöfener
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Nicola Steinke
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Penelope Kay-Fedorov
- Institute for Virology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Petra Baruch
- Research Division for Structural Analysis, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Alexey Nikulin
- Institute of Protein Research, Russian Academy of Science, 142290 Pushchino, Moscow Region, Russian Federation
| | - Svetlana Tishchenko
- Institute of Protein Research, Russian Academy of Science, 142290 Pushchino, Moscow Region, Russian Federation
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; Research Division for Structural Analysis, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Roman Fedorov
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; Research Division for Structural Analysis, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| |
Collapse
|
17
|
Kuhn CD, Wilusz JE, Zheng Y, Beal PA, Joshua-Tor L. On-enzyme refolding permits small RNA and tRNA surveillance by the CCA-adding enzyme. Cell 2015; 160:644-658. [PMID: 25640237 PMCID: PMC4329729 DOI: 10.1016/j.cell.2015.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/07/2014] [Accepted: 12/31/2014] [Indexed: 11/16/2022]
Abstract
Transcription in eukaryotes produces a number of long noncoding RNAs (lncRNAs). Two of these, MALAT1 and Menβ, generate a tRNA-like small RNA in addition to the mature lncRNA. The stability of these tRNA-like small RNAs and bona fide tRNAs is monitored by the CCA-adding enzyme. Whereas CCA is added to stable tRNAs and tRNA-like transcripts, a second CCA repeat is added to certain unstable transcripts to initiate their degradation. Here, we characterize how these two scenarios are distinguished. Following the first CCA addition cycle, nucleotide binding to the active site triggers a clockwise screw motion, producing torque on the RNA. This ejects stable RNAs, whereas unstable RNAs are refolded while bound to the enzyme and subjected to a second CCA catalytic cycle. Intriguingly, with the CCA-adding enzyme acting as a molecular vise, the RNAs proofread themselves through differential responses to its interrogation between stable and unstable substrates.
Collapse
Affiliation(s)
- Claus-D Kuhn
- W.M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Yuxuan Zheng
- Department of Chemistry, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Leemor Joshua-Tor
- W.M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
18
|
Structures and functions of Qβ replicase: translation factors beyond protein synthesis. Int J Mol Sci 2014; 15:15552-70. [PMID: 25184952 PMCID: PMC4200798 DOI: 10.3390/ijms150915552] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 11/19/2022] Open
Abstract
Qβ replicase is a unique RNA polymerase complex, comprising Qβ virus-encoded RNA-dependent RNA polymerase (the catalytic β-subunit) and three host-derived factors: translational elongation factor (EF) -Tu, EF-Ts and ribosomal protein S1. For almost fifty years, since the isolation of Qβ replicase, there have been several unsolved, important questions about the mechanism of RNA polymerization by Qβ replicase. Especially, the detailed functions of the host factors, EF-Tu, EF-Ts, and S1, in Qβ replicase, which are all essential in the Escherichia coli (E. coli) host for protein synthesis, had remained enigmatic, due to the absence of structural information about Qβ replicase. In the last five years, the crystal structures of the core Qβ replicase, consisting of the β-subunit, EF-Tu and Ts, and those of the core Qβ replicase representing RNA polymerization, have been reported. Recently, the structure of Qβ replicase comprising the β-subunit, EF-Tu, EF-Ts and the N-terminal half of S1, which is capable of initiating Qβ RNA replication, has also been reported. In this review, based on the structures of Qβ replicase, we describe our current understanding of the alternative functions of the host translational elongation factors and ribosomal protein S1 in Qβ replicase as replication factors, beyond their established functions in protein synthesis.
Collapse
|
19
|
Tomita K, Yamashita S. Molecular mechanisms of template-independent RNA polymerization by tRNA nucleotidyltransferases. Front Genet 2014; 5:36. [PMID: 24596576 PMCID: PMC3925840 DOI: 10.3389/fgene.2014.00036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 01/31/2014] [Indexed: 11/13/2022] Open
Abstract
The universal 3'-terminal CCA sequence of tRNA is built and/or synthesized by the CCA-adding enzyme, CTP:(ATP) tRNA nucleotidyltransferase. This RNA polymerase has no nucleic acid template, but faithfully synthesizes the defined CCA sequence on the 3'-terminus of tRNA at one time, using CTP and ATP as substrates. The mystery of CCA-addition without a nucleic acid template by unique RNA polymerases has long fascinated researchers in the field of RNA enzymology. In this review, the mechanisms of RNA polymerization by the remarkable CCA-adding enzyme and its related enzymes are presented, based on their structural features.
Collapse
Affiliation(s)
- Kozo Tomita
- RNA Processing Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology Tsukuba, Japan
| | - Seisuke Yamashita
- RNA Processing Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology Tsukuba, Japan
| |
Collapse
|
20
|
Translocation and rotation of tRNA during template-independent RNA polymerization by tRNA nucleotidyltransferase. Structure 2014; 22:315-25. [PMID: 24389024 DOI: 10.1016/j.str.2013.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/23/2013] [Accepted: 12/06/2013] [Indexed: 11/21/2022]
Abstract
The 3'-terminal CCA (CCA-3' at positions 74-76) of tRNA is synthesized by CCA-adding enzyme using CTP and ATP as substrates, without a nucleic acid template. In Aquifex aeolicus, CC-adding and A-adding enzymes collaboratively synthesize the CCA-3'. The mechanism of CCA-3' synthesis by these two enzymes remained obscure. We now present crystal structures representing CC addition onto tRNA by A. aeolicus CC-adding enzyme. After C₇₄ addition in an enclosed active pocket and pyrophosphate release, the tRNA translocates and rotates relative to the enzyme, and C₇₅ addition occurs in the same active pocket as C₇₄ addition. At both the C₇₄-adding and C₇₅-adding stages, CTP is selected by Watson-Crick-like hydrogen bonds between the cytosine of CTP and conserved Asp and Arg residues in the pocket. After C₇₄C₇₅ addition and pyrophosphate release, the tRNA translocates further and drops off the enzyme, and the CC-adding enzyme terminates RNA polymerization.
Collapse
|
21
|
Liu C, Xiong Y. Electron density sharpening as a general technique in crystallographic studies. J Mol Biol 2013; 426:980-93. [PMID: 24269527 DOI: 10.1016/j.jmb.2013.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
Abstract
Sharpening is a powerful method to restore the details from blurred electron density in crystals with high overall temperature factors (B-factors). This valuable technique is currently not optimally used because of the uncertainty in the scope of its application and ambiguities in practice. We performed an analysis of ~2000 crystal data sets deposited in the Protein Data Bank and show that sharpening improves the electron density map in many cases across all resolution ranges, often with dramatic enhancement for mid- and low-resolution structures. It is effective when used with either experimental or model phases without introducing additional bias. Our tests also provide a practical guide for optimal sharpening. We further show that anisotropic diffraction correction improves electron density in many cases but should be used with caution. Our study demonstrates that a routine practice of electron density sharpening may have a broad impact on the outcomes of structural biology studies.
Collapse
Affiliation(s)
- Chang Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| |
Collapse
|
22
|
Dutta T, Malhotra A, Deutscher MP. How a CCA sequence protects mature tRNAs and tRNA precursors from action of the processing enzyme RNase BN/RNase Z. J Biol Chem 2013; 288:30636-30644. [PMID: 24022488 DOI: 10.1074/jbc.m113.514570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In many organisms, 3' maturation of tRNAs is catalyzed by the endoribonuclease, RNase BN/RNase Z, which cleaves after the discriminator nucleotide to generate a substrate for addition of the universal CCA sequence. However, tRNAs or tRNA precursors that already contain a CCA sequence are not cleaved, thereby avoiding a futile cycle of removal and readdition of these essential residues. We show here that the adjacent C residues of the CCA sequence and an Arg residue within a highly conserved sequence motif in the channel leading to the RNase catalytic site are both required for the protective effect of the CCA sequence. When both of these determinants are present, CCA-containing RNAs in the channel are unable to move into the catalytic site; however, substitution of either of the C residues by A or U or mutation of Arg(274) to Ala allows RNA movement and catalysis to proceed. These data define a novel mechanism for how tRNAs are protected against the promiscuous action of a processing enzyme.
Collapse
Affiliation(s)
- Tanmay Dutta
- From the Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Arun Malhotra
- From the Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Murray P Deutscher
- From the Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136.
| |
Collapse
|
23
|
Takeshita D, Yamashita S, Tomita K. Mechanism for template-independent terminal adenylation activity of Qβ replicase. Structure 2012; 20:1661-9. [PMID: 22884418 DOI: 10.1016/j.str.2012.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/29/2012] [Accepted: 07/15/2012] [Indexed: 11/29/2022]
Abstract
The genomic RNA of Qβ virus is replicated by Qβ replicase, a template-dependent RNA polymerase complex. Qβ replicase has an intrinsic template-independent RNA 3'-adenylation activity, which is required for efficient viral RNA amplification in the host cells. However, the mechanism of the template-independent 3'-adenylation of RNAs by Qβ replicase has remained elusive. We determined the structure of a complex that includes Qβ replicase, a template RNA, a growing RNA complementary to the template RNA, and ATP. The structure represents the terminal stage of RNA polymerization and reveals that the shape and size of the nucleotide-binding pocket becomes available for ATP accommodation after the 3'-penultimate template-dependent C-addition. The stacking interaction between the ATP and the neighboring Watson-Crick base pair, between the 5'-G in the template and the 3'-C in the growing RNA, contributes to the nucleotide specificity. Thus, the template for the template-independent 3'-adenylation by Qβ replicase is the RNA and protein ribonucleoprotein complex.
Collapse
Affiliation(s)
- Daijiro Takeshita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | |
Collapse
|
24
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
25
|
An inhibitory C-terminal region dictates the specificity of A-adding enzymes. Proc Natl Acad Sci U S A 2011; 108:21040-5. [PMID: 22167803 DOI: 10.1073/pnas.1116117108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For efficient aminoacylation, tRNAs carry the conserved 3'-terminal sequence C-C-A, which is synthesized by highly specific tRNA nucleotidyltransferases (CCA-adding enzymes). In several prokaryotes, this function is accomplished by separate enzymes for CC- and A-addition. As A-adding enzymes carry an N-terminal catalytic core identical to that of CCA-adding enzymes, it is unclear why their activity is restricted. Here, it is shown that C-terminal deletion variants of A-adding enzymes acquire full and precise CCA-incorporating activity. The deleted region seems to be responsible for tRNA primer selection, restricting the enzyme's specificity to tRNAs ending with CC. The data suggest that A-adding enzymes carry an intrinsic CCA-adding activity that can be reactivated by the introduction of deletions in the C-terminal domain. Furthermore, a unique subtype of CCA-adding enzymes could be identified that evolved out of A-adding enzymes, suggesting that mutations and deletions in nucleotidyltransferases can lead to altered and even more complex activities, as a simple A-incorporation is converted into sequence-specific addition of C and A residues. Such activity-modifying events may have had an important role in the evolution of tRNA nucleotidyltransferases.
Collapse
|
26
|
Wilusz JE, Whipple JM, Phizicky EM, Sharp PA. tRNAs marked with CCACCA are targeted for degradation. Science 2011; 334:817-21. [PMID: 22076379 DOI: 10.1126/science.1213671] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase] adds CCA to the 3' ends of transfer RNAs (tRNAs), a critical step in tRNA biogenesis that generates the amino acid attachment site. We found that the CCA-adding enzyme plays a key role in tRNA quality control by selectively marking structurally unstable tRNAs and tRNA-like small RNAs for degradation. Instead of adding CCA to the 3' ends of these transcripts, CCA-adding enzymes from all three kingdoms of life add CCACCA. In addition, hypomodified mature tRNAs are subjected to CCACCA addition as part of a rapid tRNA decay pathway in vivo. We conjecture that CCACCA addition is a universal mechanism for controlling tRNA levels and preventing errors in translation.
Collapse
Affiliation(s)
- Jeremy E Wilusz
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
27
|
Erives A. A model of proto-anti-codon RNA enzymes requiring L-amino acid homochirality. J Mol Evol 2011; 73:10-22. [PMID: 21779963 PMCID: PMC3223571 DOI: 10.1007/s00239-011-9453-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/07/2011] [Indexed: 01/26/2023]
Abstract
All living organisms encode the 20 natural amino acid units of polypeptides using a universal scheme of triplet nucleotide "codons". Disparate features of this codon scheme are potentially informative of early molecular evolution: (i) the absence of any codons for D-amino acids; (ii) the odd combination of alternate codon patterns for some amino acids; (iii) the confinement of synonymous positions to a codon's third nucleotide; (iv) the use of 20 specific amino acids rather than a number closer to the full coding potential of 64; and (v) the evolutionary relationship of patterns in stop codons to amino acid codons. Here I propose a model for an ancestral proto-anti-codon RNA (pacRNA) auto-aminoacylation system and show that pacRNAs would naturally manifest features of the codon table. I show that pacRNAs could implement all the steps for auto-aminoacylation: amino acid coordination, intermediate activation of the amino acid by the 5'-end of the pacRNA, and 3'-aminoacylation of the pacRNA. The anti-codon cradles of pacRNAs would have been able to recognize and coordinate only a small number of L-amino acids via hydrogen bonding. A need for proper spatial coordination would have limited the number of chargeable amino acids for all anti-codon sequences, in addition to making some anti-codon sequences unsuitable. Thus, the pacRNA model implies that the idiosyncrasies of the anti-codon table and L-amino acid homochirality co-evolved during a single evolutionary period. These results further imply that early life consisted of an aminoacylated RNA world with a richer enzymatic potential than ribonucleotides alone.
Collapse
Affiliation(s)
- Albert Erives
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
28
|
Zhou XL, Du DH, Tan M, Lei HY, Ruan LL, Eriani G, Wang ED. Role of tRNA amino acid-accepting end in aminoacylation and its quality control. Nucleic Acids Res 2011; 39:8857-68. [PMID: 21775341 PMCID: PMC3203616 DOI: 10.1093/nar/gkr595] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aminoacyl–tRNA synthetases (aaRSs) are remarkable enzymes that are in charge of the accurate recognition and ligation of amino acids and tRNA molecules. The greatest difficulty in accurate aminoacylation appears to be in discriminating between highly similar amino acids. To reduce mischarging of tRNAs by non-cognate amino acids, aaRSs have evolved an editing activity in a second active site to cleave the incorrect aminoacyl–tRNAs. Editing occurs after translocation of the aminoacyl–CCA76 end to the editing site, switching between a hairpin and a helical conformation for aminoacylation and editing. Here, we studied the consequence of nucleotide changes in the CCA76 accepting end of tRNALeu during the aminoacylation and editing reactions. The analysis showed that the terminal A76 is essential for both reactions, suggesting that critical interactions occur in the two catalytic sites. Substitutions of C74 and C75 selectively decreased aminoacylation keeping nearly unaffected editing. These mutations might favor the regular helical conformation required to reach the editing site. Mutating the editing domain residues that contribute to CCA76 binding reduced the aminoacylation fidelity leading to cell-toxicity in the presence of non-cognate amino acids. Collectively, the data show how protein synthesis quality is controlled by the CCA76 homogeneity of tRNAs.
Collapse
Affiliation(s)
- Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|