1
|
Xiao Z, Puré E. The fibroinflammatory response in cancer. Nat Rev Cancer 2025; 25:399-425. [PMID: 40097577 DOI: 10.1038/s41568-025-00798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 03/19/2025]
Abstract
Fibroinflammation refers to the highly integrated fibrogenic and inflammatory responses mediated by the concerted function of fibroblasts and innate immune cells in response to tissue perturbation. This process underlies the desmoplastic remodelling of the tumour microenvironment and thus plays an important role in tumour initiation, growth and metastasis. More specifically, fibroinflammation alters the biochemical and biomechanical signalling in malignant cells to promote their proliferation and survival and further supports an immunosuppressive microenvironment by polarizing the immune status of tumours. Additionally, the presence of fibroinflammation is often associated with therapeutic resistance. As such, there is increasing interest in targeting this process to normalize the tumour microenvironment and thus enhance the treatment of solid tumours. Herein, we review advances made in unravelling the complexity of cancer-associated fibroinflammation that can inform the rational design of therapies targeting this.
Collapse
Affiliation(s)
- Zebin Xiao
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Sigirli S, Karakas D. Fibrotic Fortresses and Therapeutic Frontiers: Pancreatic Stellate Cells and the Extracellular Matrix in Pancreatic Cancer. Cancer Med 2025; 14:e70788. [PMID: 40437741 PMCID: PMC12119906 DOI: 10.1002/cam4.70788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/19/2025] [Accepted: 03/08/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is characterized by a unique tumor microenvironment (TME) that plays pivotal roles in cancer progression, angiogenesis, metastasis, and drug resistance. This complex and dynamic ecosystem comprises cancer cells, stromal cells, and extracellular matrix (ECM) components, which interact synergistically to drive cancer aggressiveness. Among the stromal cells, cancer-associated fibroblasts (CAFs) and pancreatic stellate cells (PSCs), mainly accepted as a group of CAFs, are central players in shaping the desmoplastic, hypoxic, and immunosuppressive stroma of PDAC. PSCs, the most abundant stromal cells in PDAC, are resident pancreatic cells that undergo phenotypic changes upon activation, driving tumor progression through the secretion of cytokines, growth factors, ECM components (e.g., collagen, hyaluronic acid, fibronectin), and matrix metalloproteinases. In addition to cellular elements, ECM components significantly contribute to cancer aggressiveness by forming a physical barrier that hinders drug penetration, activating signaling pathways through specific receptor interactions, and generating peptides originating from the fragmentation of proteins to induce cancer migration. Regarding their critical roles in tumor progression, therapeutic approaches targeting PSCs and the ECM have garnered increasing interest in recent years. However, PSCs and stromal components may exhibit dual roles, with the potential to both promote and suppress tumor progression under different conditions. Therefore, targeting PSCs or stroma may lead to unintended outcomes, including exacerbation of cancer aggressiveness. METHODS This review focuses on the multifaceted roles of PSCs in PDAC, particularly their interactions with cancer cells and their contributions to therapy resistance. Additionally, we discuss current and emerging therapeutic strategies targeting PSCs and the ECM components, including both preclinical and clinical efforts. CONCLUSION By synthesizing insights from recent literature, this review provides a comprehensive understanding of the role of PSCs in PDAC pathobiology and highlights potential therapeutic approaches targeting PSCs or ECM components to improve patient outcomes.
Collapse
Affiliation(s)
- Sila Sigirli
- Medical Biotechnology, Graduate School of HealthAcibadem Mehmet Ali Aydinlar UniversityIstanbulTurkiye
| | - Didem Karakas
- Medical Biotechnology, Graduate School of HealthAcibadem Mehmet Ali Aydinlar UniversityIstanbulTurkiye
| |
Collapse
|
3
|
Liu L, Wang H, Chen R, Song Y, Wei W, Baek D, Gillin M, Kurabayashi K, Chen W. Cancer-on-a-chip for precision cancer medicine. LAB ON A CHIP 2025. [PMID: 40376718 DOI: 10.1039/d4lc01043d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Many cancer therapies fail in clinical trials despite showing potent efficacy in preclinical studies. One of the key reasons is the adopted preclinical models cannot recapitulate the complex tumor microenvironment (TME) and reflect the heterogeneity and patient specificity in human cancer. Cancer-on-a-chip (CoC) microphysiological systems can closely mimic the complex anatomical features and microenvironment interactions in an actual tumor, enabling more accurate disease modeling and therapy testing. This review article concisely summarizes and highlights the state-of-the-art progresses in CoC development for modeling critical TME compartments including the tumor vasculature, stromal and immune niche, as well as its applications in therapying screening. Current dilemma in cancer therapy development demonstrates that future preclinical models should reflect patient specific pathophysiology and heterogeneity with high accuracy and enable high-throughput screening for anticancer drug discovery and development. Therefore, CoC should be evolved as well. We explore future directions and discuss the pathway to develop the next generation of CoC models for precision cancer medicine, such as patient-derived chip, organoids-on-a-chip, and multi-organs-on-a-chip with high fidelity. We also discuss how the integration of sensors and microenvironmental control modules can provide a more comprehensive investigation of disease mechanisms and therapies. Next, we outline the roadmap of future standardization and translation of CoC technology toward real-world applications in pharmaceutical development and clinical settings for precision cancer medicine and the practical challenges and ethical concerns. Finally, we overview how applying advanced artificial intelligence tools and computational models could exploit CoC-derived data and augment the analytical ability of CoC.
Collapse
Affiliation(s)
- Lunan Liu
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - Huishu Wang
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - Ruiqi Chen
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Yujing Song
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - William Wei
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - David Baek
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Mahan Gillin
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Katsuo Kurabayashi
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
4
|
Wu T, Li X, Zheng F, Liu H, Yu Y. Intercellular communication between FAP+ fibroblasts and SPP1+ macrophages in prostate cancer via multi-omics. Front Immunol 2025; 16:1560998. [PMID: 40438108 PMCID: PMC12116517 DOI: 10.3389/fimmu.2025.1560998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
Background Prostate cancer (PCa) presents substantial heterogeneity and unpredictability in its progression. Despite therapeutic advancements, mortality from advanced PCa remains a significant challenge. Understanding the intercellular communication within the tumor microenvironment (TME) is critical for uncovering mechanisms driving tumorigenesis and identifying novel therapeutic targets. Methods We employed an integrative approach combining bulk RNA sequencing, single-cell RNA sequencing (scRNA-seq), and spatial transcriptomics to investigate interactions between FAP+ fibroblasts and tumor-associated macrophages in PCa. Key findings were validated using immunohistochemical and immunofluorescence staining techniques. Results Analysis of 23,519 scRNA-seq data from 23 prostate samples revealed a pronounced accumulation of FAP+ fibroblasts in tumor tissues. Spatial transcriptomics and bulk RNA sequencing demonstrated strong associations between FAP+ fibroblasts and SPP1+ macrophages. Notably, tumor-specific intercellular signaling pathways, such as CSF1/CSF1R and CXCL/ACKR1, were identified, highlighting their potential role in fostering an immunosuppressive TME. Conclusion Our findings unveil a distinct pattern of crosstalk between FAP+ fibroblasts and SPP1+ macrophages in PCa, shedding light on potential therapeutic targets for advanced PCa.
Collapse
Affiliation(s)
- Tingting Wu
- Department of General Surgery, Shenzhen Qianhai Taikang Hospital, Shenzhen, China
| | - Xinyu Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fei Zheng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hanchao Liu
- Department of Andrology and Urology, Sir Run Shaw Hospital, affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang Yu
- Department of General Surgery, Chifeng Hospital, Chifeng, Inner Mongolia, China
| |
Collapse
|
5
|
Dong S, Chen X, Li X, Wang Y, Huang Q, Li Y, Jin J, Zhu X, Zhong Y, Cai Q, Xue C, Guo F, Huang L, Feng M, Liu B, Hu S. A conceptual exploration on the synergistic anti-tumor effects of high-order combination of OHSV2-DSTE FAP5/CD3, CAR-T cells, and immunotoxins in hepatocellular carcinoma. Front Immunol 2025; 16:1509087. [PMID: 40406146 PMCID: PMC12095149 DOI: 10.3389/fimmu.2025.1509087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
Background Although the treatment landscape for advanced hepatocellular carcinoma (HCC) has seen significant advancements in the past decade with the introduction of immune checkpoint inhibitors and antiangiogenic drugs, progress has fallen short of expectations. Recently, a novel engineered oncolytic virus (OHSV2) that secretes dual-specific T-cell engagers (DSTEs) targeting the fibroblast activation protein (FAP) was developed and combined with GPC3-targeting CAR-T cells and immunotoxins to exert a synergistic antitumor effect. Methods OHSV2-DSTEFAP5/CD3 was initially generated by transducing the DSTEs engaging FAP5 on fibroblasts into the backbone of our oncolytic virus OHSV2. An innovative high-order combination was devised in a xenograft mouse model to conceptually explore whether enhanced anti-tumor effects could be achieved. Additionally, the underlying mechanisms of synergistic effects and safety profiles were preliminarily investigated. Results OHSV2-DSTEFAP5/CD3 effectively targeted and eliminated fibroblasts in vitro while maintaining cytotoxicity and inducing immune activation compared to parental OHSV2. In vivo, dose-adjusted combination therapy resulted in a remarkable antitumor effect compared to control treatments, leading to tumor regression in 40% of mice without significant toxicity to major organs. Mechanistically, rather than directly depleting fibroblasts, OHSV2-DSTEFAP5/CD3 played an essential role in priming T-cell proliferation, infiltration, and activation, and inhibiting the supportive interaction between cancer cells and fibroblasts. Conclusions This high-order combination represents a novel multiple-wave immunotherapeutic approach for HCC. Despite being a conceptual exploration, this strategy has demonstrated promising therapeutic efficacy and acceptable safety profiles.
Collapse
Affiliation(s)
- Shuang Dong
- Department of Medical Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China
| | - Xiaoyu Li
- Department of Medical Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Wang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China
| | - Qing Huang
- Department of Medical Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanxiang Li
- Department of Medical Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Jin
- Wuhan Binhui Biopharmaceutical Co., Ltd, Wuhan, China
| | - Xianmin Zhu
- Department of Medical Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhong
- Department of Medical Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Cai
- Department of Medical Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Xue
- Department of Medical Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Guo
- Department of Pathology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Le Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingqian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Binlei Liu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China
- Wuhan Binhui Biopharmaceutical Co., Ltd, Wuhan, China
| | - Sheng Hu
- Department of Medical Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Garemilla SSS, Gampa SC, Garimella S. Role of the tumor microenvironment in cancer therapy: unveiling new targets to overcome drug resistance. Med Oncol 2025; 42:202. [PMID: 40332723 DOI: 10.1007/s12032-025-02754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
Cancer is a leading cause of death globally, with resistance to therapy representing a major obstacle to effective treatment. The tumor microenvironment (TME), comprising a complex network to cellular and non-cellular components including cancer-associated fibroblasts, immune cells, the extracellular matrix and region of hypoxia, is integral to cancer progression and therapeutic resistance. This review delves into the multifaceted interactions within the TME that contribute to tumor growth, survival and immune evasion. Key elements such as the role of cancer- associated fibroblasts in remodeling the extracellular matrix and promoting angiogenesis, the influence of immune cells such as tumor-associated macrophages in creating an immunosuppressive milieu and the impact of hypoxia conditions on metabolic adaptation and therapy resistance are thoroughly examined. This review evaluates current and emerging TME-targeted therapeutic strategies, including inhibitors of extracellular matrix components, modulators of immune cell activity and approached to alleviate hypoxia. Combination therapies that integrate TME-targeted agents with conventional treatments such as chemotherapy and immunotherapy are also discussed for their potential to enhance treatment efficacy and circumvent resistance mechanisms. By synthesising recent advances in TME research and therapeutic innovation, this paper aims to underscore the importance of TME in cancer therapy and highlight promising avenues for improving patient outcomes through targeted intervention.
Collapse
Affiliation(s)
| | - Siri Chandana Gampa
- Department of Life Sciences, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Sireesha Garimella
- Department of Life Sciences, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India.
| |
Collapse
|
7
|
Gao Y, Zhang X, Xia S, Chen Q, Tong Q, Yu S, An R, Cheng C, Zou W, Liang L, Xie X, Song Z, Liu R, Zhang J. Spatial multi-omics reveals the potential involvement of SPP1 + fibroblasts in determining metabolic heterogeneity and promoting metastatic growth of colorectal cancer liver metastasis. Mol Ther 2025:S1525-0016(25)00374-0. [PMID: 40340245 DOI: 10.1016/j.ymthe.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/01/2025] [Accepted: 05/03/2025] [Indexed: 05/10/2025] Open
Abstract
This study investigates key microscopic regions involved in colorectal cancer liver metastasis (CRLM), focusing on the crucial role of cancer-associated fibroblasts (CAFs) in promoting tumor progression and providing molecular- and metabolism-level insights for its diagnosis and treatment using multi-omics. We followed 12 fresh surgical samples from 2 untreated CRLM patients. Among these, 4 samples were used for spatial transcriptomics (ST), 4 for spatial metabolomics, and 4 for single-cell RNA sequencing (scRNA-seq). Additionally, 92 frozen tissue samples from 40 patients were collected. Seven patients were used for immunofluorescence and RT-qPCR, while 33 patients were used for untargeted metabolomics. ST revealed that the spatial regions of CRLM consists of 7 major components, with fibroblast-dominated regions being the most prominent. These regions are characterized by diverse cell-cell interactions, and immunosuppressive and tumor growth-promoting environments. scRNA-seq identified that SPP1+ fibroblasts interact with CD44+ tumor cells, as confirmed through immunofluorescence. Spatial metabolomics revealed suberic acid and tetraethylene glycol as specific metabolic components of this structure, which was further validated by untargeted metabolomics. In conclusion, an SPP1+ fibroblast-rich spatial region with metabolic reprogramming capabilities and immunosuppressive properties was identified in CRLM, which potentially facilitates metastatic outgrowth through interactions with tumor cells.
Collapse
Affiliation(s)
- Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Xiuping Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing 100853, P.R. China
| | - Shenglong Xia
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Qing Chen
- Institute of Respiratory Diseases, Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China; Organiod Platform of Medical Laboratory Science, Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China
| | - Qingchao Tong
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Shaobo Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Rui An
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Cheng Cheng
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Wenbo Zou
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing 100853, P.R. China
| | - Leilei Liang
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou Zhejiang, China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
| | - Rong Liu
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing 100853, P.R. China.
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China.
| |
Collapse
|
8
|
Tang F, Zhu Y, Shen J, Yuan B, He X, Tian Y, Weng L, Sun L. CD44 + cells enhance pro-tumor stroma in the spatial landscape of colorectal cancer leading edge. Br J Cancer 2025; 132:703-715. [PMID: 40069574 PMCID: PMC11997037 DOI: 10.1038/s41416-025-02968-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND The heterogeneity of tumors significantly impacts on colorectal cancer (CRC) progression. However, the influence of this heterogeneity on the spatial architecture of CRC remains largely unknown. METHODS Spatial transcriptomic (ST) analysis of AOM/DSS-induced colorectal cancer (CRC), integrated with single-cell RNA sequencing, generated a comprehensive spatial atlas of CRC. Pseudotime trajectory, stemness evaluation, and cell-cell communication analyses explored how CD44+ tumor cells at the leading edge remodel the tumor microenvironment (TME). In vitro experiments and immunofluorescence staining of clinical samples validated pleiotrophin (PTN) signaling in promoting cancer-associated fibroblasts (CAFs) phenotypic transition and CRC progression. RESULTS Our findings revealed a distinctive layered ring-like structure within CRC tissues, where CD44+ tumor cells exhibiting high stemness were positioned at the tumor's leading edge. Inflammatory CAFs (iCAFs)-like, myofibroblastic CAFs (myCAFs)-like cells and pro-tumorigenic neutrophils primarily located at the tumor edge, in proximity to CD44+ tumor cells. CD44+ tumor cells then triggered the phenotypic transition of CAFs into iCAF-like and myCAF-like cells through PTN signaling. CONCLUSIONS Our results provide distinctive insights into how tumor heterogeneity reshapes the TME at the leading edge of tumor, thereby promoting CRC progression.
Collapse
Affiliation(s)
- Feiyu Tang
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- Center for Biotherapy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongwei Zhu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Jia Shen
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Bowen Yuan
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiang He
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Yuxi Tian
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Weng
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China.
| | - Lunquan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.
- FuRong Laboratory, Changsha, China.
| |
Collapse
|
9
|
Brewer G, Savage P, Fortier AM, Zhao H, Pacis A, Wang YC, Zuo D, de Nobrega M, Pedersen A, Cassel de Camps C, Souleimanova M, Ramos VM, Ragoussis J, Park M, Moraes C. Invasive phenotypes of triple-negative breast cancer-associated fibroblasts are mechanosensitive, AhR-dependent and correlate with disease state. Acta Biomater 2025:S1742-7061(25)00314-9. [PMID: 40318744 DOI: 10.1016/j.actbio.2025.04.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Cancer associated fibroblasts (CAFs) play a critically important role in facilitating tumour cell invasion during metastasis. They also modulate local biophysical features of the tumour microenvironment through the formation of fibrotic foci, which have been correlated with breast cancer aggression. However, the impact of the evolving three-dimensional biophysical tumour microenvironment on CAF function remains undefined. Here, by isolating CAFs from primary human triple-negative breast cancer tissue at the time of surgery, we find that their ability to remodel the local microenvironment and invade into a three-dimensional matrix correlates with disease state. We then engineered culture models to systematically deconstruct and recreate mechanical tissue features of early breast cancer fibrotic foci; and demonstrate that invasion is mechanically-activated only in CAFs from patients with no detectable pre-existing metastases, but is independent of mechanical cues in CAFs isolated from patients with later-stage axillary lymph node metastases. By comparing the differential transcriptional response of these cells to microenvironmental tissue stiffness, we identify the aryl hydrocarbon receptor (AhR) as being significantly upregulated in invasive sub-populations of both mechanically-activated and mechanically-insensitive CAFs. Increasing AhR expression in CAFs induced invasion, while suppressing AhR significantly reduced invasion in both mechanically-activated and mechanically-insensitive CAF populations, even on stiffnesses that recapitulate late-stage disease. This work therefore uses mechanobiological analyses to identify AhR as a mediator of CAF invasion, providing a potential stratification marker to identify those patients who might respond to future mechanics-based prophylactic therapies, and provides a targetable mechanism to limit CAF-associated metastatic disease progression in triple-negative breast cancer patients. STATEMENT OF SIGNIFICANCE: By designing a mechanically-tunable tissue-engineered model of fibroblastic foci, and using this to culture patient-derived cancer-associated fibroblasts, we demonstrate that these cells are differentially mechanosensitive, depending on disease stage of the patient. While comparing transcriptomic profiles of patient-derived cells produces too many pathways to screen, identifying the pathways activated by local tissue mechanics that were common across each patient allowed us to identify a specific target to limit fibroblast invasion. This broad discovery strategy may be useful across a variety of biomaterials-based tissue engineered models; and these specific findings suggest (1) a strategy to identify patients who might respond to CAF- or matrix-targeting therapies, and (2) a specific actionable target to limit CAF-associated metastatic disease progression.
Collapse
Affiliation(s)
- Gabrielle Brewer
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Avenues des Pins, Montréal, QC, Canada; Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montréal, QC, Canada
| | - Paul Savage
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Avenues des Pins, Montréal, QC, Canada; Department of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC, Canada
| | - Anne-Marie Fortier
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Avenues des Pins, Montréal, QC, Canada
| | - Hong Zhao
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Avenues des Pins, Montréal, QC, Canada
| | - Alain Pacis
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Avenues des Pins, Montréal, QC, Canada
| | - Yu-Chang Wang
- Department of Human Genetics, McGill University, 3640 University, Montreal, QC; Genome Innovation Centre, 740 Dr Penfield Ave, Montreal, QC
| | - Dongmei Zuo
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Avenues des Pins, Montréal, QC, Canada
| | - Monyse de Nobrega
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Avenues des Pins, Montréal, QC, Canada; Department of Genetics and Molecular Biology, State University of Londrina, Londrina, PR, Brazil
| | - Annika Pedersen
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Avenues des Pins, Montréal, QC, Canada; Department of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC, Canada
| | - Camille Cassel de Camps
- Department of Biomedical Engineering, McGill University, 3775 rue University, Montréal, QC, Canada
| | - Margarita Souleimanova
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Avenues des Pins, Montréal, QC, Canada
| | - Valentina Muñoz Ramos
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Avenues des Pins, Montréal, QC, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, 3640 University, Montreal, QC; Genome Innovation Centre, 740 Dr Penfield Ave, Montreal, QC
| | - Morag Park
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Avenues des Pins, Montréal, QC, Canada; Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montréal, QC, Canada; Department of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC, Canada; Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Montréal, QC, Canada.
| | - Christopher Moraes
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Avenues des Pins, Montréal, QC, Canada; Department of Biomedical Engineering, McGill University, 3775 rue University, Montréal, QC, Canada; Department of Chemical Engineering, McGill University, 3610 rue University, Montréal, QC, Canada.
| |
Collapse
|
10
|
Weber F, Reese KL, Pantel K, Smit DJ. Cancer-associated fibroblasts as a potential novel liquid biopsy marker in cancer patients. J Exp Clin Cancer Res 2025; 44:127. [PMID: 40259388 PMCID: PMC12010557 DOI: 10.1186/s13046-025-03387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are tissue residing cells within the tumor microenvironment (TME). Stromal CAFs have been shown to be associated with poor prognosis and tumor progression in several solid tumor entities. Although the molecular mechanisms are not fully understood yet, a critical role within the TME through direct interaction with the tumor cells as well as other cells has been proposed. While most studies on CAFs focus on stromal CAFs, recent reports highlight the possibility of detecting circulating CAFs (cCAFs) in the blood. In contrast to invasive tissue biopsies for stromal CAF characterization, liquid biopsy allows a minimally invasive isolation of cCAFs. Furthermore, liquid biopsy methods could enable continuous monitoring of cCAFs in cancer patients and therefore may present a novel biomarker for solid tumors. In this work, we present an overview of cCAF studies currently available and summarize the liquid biopsy techniques for cCAF isolation and detection. Moreover, the future research directions in the emerging field are highlighted and the potential applications of cCAFs as novel biomarkers for solid tumor patients discussed.
Collapse
Affiliation(s)
- Franziska Weber
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Kim-Lea Reese
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Martinistraße 52, 20246, Hamburg, Germany
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
11
|
Mohammad SI, Vasudevan A, Hussein Alzewmel A, Rab SO, Ballal S, Kalia R, Bethanney Janney J, Ray S, Joshi KK, Yasin HA. The mutual effects of stearoyl-CoA desaturase and cancer-associated fibroblasts: A focus on cancer biology. Exp Cell Res 2025; 447:114508. [PMID: 40122505 DOI: 10.1016/j.yexcr.2025.114508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
The tumor microenvironment (TME) 's primary constituents that promote cancer development are cancer-associated fibroblasts (CAFs). Metabolic remodeling has been shown to control CAF activity, particularly aberrant lipid metabolism. SCD1 can be thought of as the primary enzyme controlling the fluidity of lipid bilayers by gradually converting saturated fatty acids into monounsaturated fatty acids. Furthermore, its crucial function in the onset and spread of cancer is well acknowledged. Even with the increasing amount of research on changes in lipid metabolism, this problem remains a relatively understudied aspect of cancer research. Blocking several fatty acid synthesis-related enzymes highly expressed in cancerous cells inhibits cell division and encourages apoptosis. This is the situation with SCD1, whose overexpression has been linked to several changed tumors and cells. Both genetic and pharmacological silencing of SCD1 in cancer cells prevents glucose-mediated lipogenesis and tumor cell growth. However, its role in CAFs, hence, cancer biology, has been less studied. This study aimed to review the role of SCD1 in CAF biology, shedding light on their function in cancer cell biology.
Collapse
Affiliation(s)
- Suleiman Ibrahim Mohammad
- Research Follower, INTI International University, 71800 Negeri Sembilan, Malaysia; Electronic Marketing and Social Media, Economic and Administrative Sciences, Zarqa University, Jordan.
| | - Asokan Vasudevan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia.
| | - Ahmad Hussein Alzewmel
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Rishiv Kalia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - J Bethanney Janney
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Hatif Abdulrazaq Yasin
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
12
|
Liu S, Liu C, He Y, Li J. Benign non-immune cells in tumor microenvironment. Front Immunol 2025; 16:1561577. [PMID: 40248695 PMCID: PMC12003390 DOI: 10.3389/fimmu.2025.1561577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 04/19/2025] Open
Abstract
The tumor microenvironment (TME) is a highly complex and continuous evolving ecosystem, consisting of a diverse array of cellular and non-cellular components. Among these, benign non-immune cells, including cancer-associated fibroblasts (CAFs), adipocytes, endothelial cells (ECs), pericytes (PCs), Schwann cells (SCs) and others, are crucial factors for tumor development. Benign non-immune cells within the TME interact with both tumor cells and immune cells. These interactions contribute to tumor progression through both direct contact and indirect communication. Numerous studies have highlighted the role that benign non-immune cells exert on tumor progression and potential tumor-promoting mechanisms via multiple signaling pathways and factors. However, these benign non-immune cells may play different roles across cancer types. Therefore, it is important to understand the potential roles of benign non-immune cells within the TME based on tumor heterogeneity. A deep understanding allows us to develop novel cancer therapies by targeting these cells. In this review, we will introduce several types of benign non-immune cells that exert on different cancer types according to tumor heterogeneity and their roles in the TME.
Collapse
Affiliation(s)
- Shaowen Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunhui Liu
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Li
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
13
|
Guan X, Shen Y, Zhao C, Li X, Li X, Lu D, Wang L, Liu L, Wu S, Huang B, Guo L, Xu H. Cascade-Responsive Nanoprodrug Disrupts Immune-Fibroblast Communications for Potentiated Cancer Mechanoimmunotherapy. Adv Healthc Mater 2025; 14:e2500176. [PMID: 40079115 DOI: 10.1002/adhm.202500176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/02/2025] [Indexed: 03/14/2025]
Abstract
The abnormal tumor mechanical microenvironment due to specific cancer-associated fibroblasts (CAFs) subset and low tumor immunogenicity caused by inefficient conversion of active chemotherapeutic agents are two key obstacles that impede patients with desmoplastic tumors from achieving stable and complete immune responses. Herein, it is demonstrated that FAP-α+CAFs-induced stromal stiffness accelerated tumor progression by precluding cytotoxic T lymphocytes. Subsequently, a cascade-responsive nanoprodrug capable of re-educating FAP-α+CAFs and amplifying tumor immunogenicity for potentiated cancer mechanoimmunotherapy is ingeniously designed. Benefiting from the active targeted release of angiotensin II receptor antagonist (losartan) guided by FAP-α cleavable peptide and the efficient conversion of topoisomerase I inhibitor (7-Ethyl-10-hydroxycamptothecin) prodrug under high glutathione/esterase within tumor cells, this regimen created an immune-activated landscape that retarded primary tumor growth and counteracted resistance to immune checkpoint inhibitor in mice with triple-negative breast cancer. This nanoprodrug-assisted mechanoimmunotherapy can serve as a universal strategy for conferring efficient tumoricidal immunity in "immune excluded" desmoplastic tumor interventions.
Collapse
Affiliation(s)
- Xin Guan
- Department of Ultrasound, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361000, P. R. China
| | - Yuting Shen
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Chongke Zhao
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Xiao Li
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Xiaolong Li
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Dan Lu
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Lifan Wang
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Linna Liu
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Shengbo Wu
- Department of Ultrasound, Zhejiang Hospital, Hangzhou, 310013, P. R. China
| | - Bin Huang
- Department of Ultrasound, Zhejiang Hospital, Hangzhou, 310013, P. R. China
| | - Lehang Guo
- Department of Medical Ultrasound and Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Huixiong Xu
- Department of Ultrasound, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361000, P. R. China
| |
Collapse
|
14
|
Li Q, Liu H. Investigating the Prognostic Role of Telomerase-Related Cellular Senescence Gene Signatures in Breast Cancer Using Machine Learning. Biomedicines 2025; 13:826. [PMID: 40299459 PMCID: PMC12024799 DOI: 10.3390/biomedicines13040826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/24/2025] [Accepted: 03/29/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Telomeres and cellular senescence are critical biological processes implicated in cancer development and progression, including breast cancer, through their influence on genomic stability and modulation of the tumor microenvironment. Methods: This study integrated bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) data to establish a gene signature associated with telomere maintenance and cellular senescence for prognostic prediction in breast cancer. Telomere-related genes (TEGs) and senescence-associated genes were curated from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A comprehensive machine learning framework incorporating 101 algorithmic combinations across 10 survival modeling approaches, including random survival forests and ridge regression, was employed to develop a robust prognostic model. Results: A set of 19 key telomere- and senescence-related genes was identified as the optimal prognostic signature. The model demonstrated strong predictive accuracy and was successfully validated in multiple independent cohorts. Functional enrichment analyses indicated significant associations with immune responses and aging-related pathways. Single-cell transcriptomic analysis revealed marked cellular heterogeneity, identifying distinct subpopulations (fibroblasts and immune cells) with divergent risk scores and biological pathway activity. Additionally, pseudo-time trajectory analysis and intercellular communication mapping provided insights into the dynamic evolution of the tumor microenvironment. Immunohistochemical (IHC) validation using data from the Human Protein Atlas confirmed differential protein expression between normal and tumor tissues for several of the selected genes, reinforcing their biological relevance and clinical utility. Conclusions: This study presents a novel 19-gene telomere- and senescence-associated signature with strong prognostic value in breast cancer. These findings enhance our understanding of tumor heterogeneity and may inform precision oncology approaches and future therapeutic strategies.
Collapse
Affiliation(s)
| | - Hongde Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China;
| |
Collapse
|
15
|
Qin J, Han C, Li H, Wang Z, Hu X, Liu L, Zhu S, Zhao J, Sun Y, Wei Y. Relationship between PD-L1 expression and [ 18F]FAPI versus [ 18F]FDG uptake on PET/CT in lung cancer. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07201-6. [PMID: 40113644 DOI: 10.1007/s00259-025-07201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE To investigate the correlation between [18F] labeled fibroblast activation protein inhibitor (FAPI) positron emission tomography (PET)/computed tomography (CT) uptake and programmed death ligand 1 (PD-L1) expression in lung cancer and evaluate the predictive value of [18F]FAPI PET/CT for PD-L1 expression compared with [18F]fluorodeoxyglucose ([18F]FDG) PET/CT. METHODS This single-center retrospective study consecutively enrolled patients with pathologically confirmed lung cancer who underwent [18F]FAPI and [18F]FDG PET/CT scans within 2 weeks, with a minimum interval of 20 h. PD-L1 expression was assessed using immunohistochemistry and stratified into three groups. PET/CT uptake parameters included the maximum standard uptake value (SUVmax) in the biopsy tumor or mediastinal metastasis lymph nodes area and the mean SUVs (SUVmean) of normal tissue (lung and blood). The ratios of SUVmax to the SUVmean for each normal tissue were denoted as the tumor-to-background ratios (TBRlung and TBRblood). All statistical analyses were conducted using IBM SPSS Statistics. Normality was assessed, and for non-normally distributed data, the Kruskal-Wallis and Mann-Whitney U tests were applied. Associations between variables were evaluated using Spearman's rank correlation. All tests were two-sided, with a P-value < 0.05 considered statistically significant. RESULTS Among the 75 cases included on the final analysis, the TBRblood and TBRlung derived from [18F]FAPI PET/CT were significantly positively correlated with PD-L1 expression (r = 0.32, P < 0.01; r = 0.26, P < 0.05). Additionally, cases with high PD-L1 expression showed significantly higher [18F]FAPI uptake values (mean TBRlung=36.16; mean TBRblood=10.75) compared with those with low PD-L1 expression (mean TBRlung=25.10; mean TBRblood=8.04). No statistically significant correlation was observed between [18F]FDG uptake values and PD-L1 expression level. Receiver operating characteristic analysis identified TBRblood on [18F]FAPI PET/CT with a cutoff value of 7.76 (area under the curve = 0.68, P < 0.01, sensitivity = 75%, and specificity = 53.49%) as a significant predictor of the level of PD-L1 expression. CONCLUSION [18F]FAPI uptake was positively correlated with PD-L1 expression in lung cancer. The combination of [18F]FAPI PET/CT and PD-L1 expression may offer a more comprehensive approach to assessing the response of lung cancer to immunotherapy. TRIAL REGISTRATION This study was approved by the Clinical Research Ethics Committee of our institution (institutional review board approval no. SDZLEC2021-112-02).
Collapse
Affiliation(s)
- Jingjie Qin
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Chao Han
- Shandong University Cancer Center, Jinan, Shandong, China
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haoqian Li
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Zhendan Wang
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xudong Hu
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Lanping Liu
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Shouhui Zhu
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Jingjing Zhao
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Yuhong Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Yuchun Wei
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China.
| |
Collapse
|
16
|
Chen K, Wang S, Fu S, Kim J, Park P, Liu R, Lei K. 4(3 H)-Quinazolinone: A Natural Scaffold for Drug and Agrochemical Discovery. Int J Mol Sci 2025; 26:2473. [PMID: 40141117 PMCID: PMC11941892 DOI: 10.3390/ijms26062473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
4(3H)-quinazolinone is a functional scaffold that exists widely both in natural products and synthetic organic compounds. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antimalarial, antibacterial, antifungal, and herbicidal, etc. In this review, we highlight the medicinal and agrochemical versatility of the 4(3H)-quinazolinone scaffold according to the studies published in the past six years (2019-2024), and comprehensively give a summary of the target recognition, structure-activity relationship, and mechanism of its analogs. The present review is expected to provide valuable guidance for discovering novel lead compounds containing 4(3H)-quinazolinone moiety in both drug and agrochemical research.
Collapse
Affiliation(s)
- Ke Chen
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Shumin Wang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| | - Shuyue Fu
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| | - Junehyun Kim
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Phumbum Park
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Rui Liu
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Kang Lei
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| |
Collapse
|
17
|
Lu Y, Chen Y, Wang Z, Shen H, Xu L, Huang C, Tong Y, Shao Y, Zhang H, Fu Z. Single-cell and spatial transcriptome profiling reveal CTHRC1+ fibroblasts promote EMT through WNT5A signaling in colorectal cancer. J Transl Med 2025; 23:282. [PMID: 40050872 PMCID: PMC11884118 DOI: 10.1186/s12967-025-06236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/11/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs), known for facilitating the progression and metastasis of colorectal cancer (CRC), have become a promising therapeutic target. However, the significant heterogeneity of CAFs and their intricate crosstalk with tumor cells present substantial challenges in the development of precise and effective therapeutic strategies. METHODS Single-cell RNA sequencing (scRNA-seq) technology was used to identify various cell subtypes. Spatial transcriptomics (ST) was employed to map the spatial niches and colocalization patterns of these cell subtypes. Cell-cell interactions among these subtypes were analysed via CellChat and NicheNet software. Tumor cell invasion, migration, and proliferation were assessed through wound healing assays, transwell assays, colony formation assays, and xenograft mouse models. RESULTS We identified a significant spatial colocalization between CTHRC1+ CAFs and a distinct subtype of malignant epithelial cells, both residing within the EMT-active spatial niche. Our results demonstrate that CTHRC1+ CAFs, as a major source of WNT5A, promote epithelial-mesenchymal transition (EMT) and enhance tumor cell invasiveness by upregulating MSLN expression in adjacent malignant epithelial cells. This signaling axis contributes significantly to CRC progression and metastasis. CONCLUSIONS Targeting the CTHRC1+ CAF-WNT5A-MSLN signaling axis presents a promising therapeutic strategy for advanced CRC patients. Our study provides new insights into the role of CAFs in CRC progression and offers potential avenues for developing targeted therapies to disrupt this pathway.
Collapse
Affiliation(s)
- Yunfei Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenling Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hengyang Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changzhi Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Tong
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Shao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongqiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
18
|
Yamazaki M, Ishimoto T. Targeting Cancer-Associated Fibroblasts: Eliminate or Reprogram? Cancer Sci 2025; 116:613-621. [PMID: 39745128 PMCID: PMC11875776 DOI: 10.1111/cas.16443] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 03/05/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment (TME). Given their various roles in tumor progression and treatment resistance, CAFs are promising therapeutic targets in cancer. The elimination of tumor-promoting CAFs has been investigated in various animal models to determine whether it effectively suppresses tumor growth. Based on recent evidence, several simple strategies have been proposed to eliminate tumor-promoting CAFs and attenuate these features. In addition, attention has focused on the critical role that CAFs play in the immunosuppressive TME. Therefore, the functional reprogramming of CAFs in combination with immune checkpoint inhibitors has also been investigated as a possible therapeutic approach. However, although potential targets in CAFs have been widely characterized, the plasticity and heterogeneity of CAFs complicate the understanding of their properties and present difficulties for clinical application. Moreover, the identification of tumor-suppressive CAFs highlights the necessity for the development of therapeutic approaches that can distinguish and switch between tumor-promoting and tumor-suppressive CAFs in an appropriate manner. In this review, we introduce the origins and diversity of CAFs, their role in cancer, and current therapeutic strategies aimed at targeting CAFs, including ongoing clinical evaluations.
Collapse
Affiliation(s)
- Masaya Yamazaki
- Division of CarcinogenesisThe Cancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Takatsugu Ishimoto
- Division of CarcinogenesisThe Cancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- International Research Center of Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
19
|
Panja P, Manne U, Awasthi V, Bhattacharya R, Mukherjee P. Interrogation of the tumor microenvironment by nanoparticles. Cancer Lett 2025; 612:217454. [PMID: 39805387 DOI: 10.1016/j.canlet.2025.217454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
The tumor microenvironment (TME) plays a pivotal role in cancer progression by fostering intricate multicellular crosstalk among cancer cells, stromal cells, and immune cells. This review explores the emerging paradigm of utilizing nanoparticles to disrupt this crosstalk within the TME as a therapeutic strategy. Nanoparticles are engineered with precise physicochemical properties to target specific cell types and deliver therapeutic payloads, thereby inhibiting critical signaling pathways involved in tumor growth, invasion, and metastasis. The mechanisms involved include modulation of the immune response, interference with growth factor signaling, and induction of programmed cell death in cancer cells. Challenges such as biocompatibility, efficient delivery, and potential development of resistance are discussed alongside promising advancements in nanoparticle design. Moving forward, integration of nanoparticle-based therapies with existing treatment modalities holds great potential for enhancing therapeutic efficacy and personalized medicine in cancer therapy.
Collapse
Affiliation(s)
- Prasanta Panja
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Suite 309, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
20
|
Caramella-Pereira F, Zheng Q, Hicks JL, Roy S, Jones T, Pomper M, Antony L, Meeker AK, Yegnasubramanian S, De Marzo AM, Brennen WN. Overexpression of fibroblast activation protein (FAP) in the stroma of proliferative inflammatory atrophy (PIA) and primary adenocarcinoma of the prostate. Pathology 2025:S0031-3025(25)00093-5. [PMID: 40187966 DOI: 10.1016/j.pathol.2024.12.637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 04/07/2025]
Abstract
Fibroblast activation protein (FAP) is a serine protease upregulated at sites of tissue remodelling and cancer that represents a promising therapeutic and molecular imaging target. In prostate cancer, studies of FAP expression using tissue microarrays are conflicting, such that its clinical potential is unclear. Furthermore, little is known regarding FAP expression in benign prostatic tissues. Here we demonstrated, using a novel iterative multiplex immunohistochemistry assay in standard tissue sections, that FAP was nearly absent in normal regions but was increased consistently in regions of proliferative inflammatory atrophy (PIA). In carcinoma, FAP was expressed in all cases but was highly heterogeneous. High FAP levels were associated with increased pathological stage and cribriform morphology. We verified that FAP levels in cancer correlated with CD163+ M2 macrophage density. In this first report to quantify FAP protein in benign prostate and primary tumours, using standard large tissue sections, we clarify that FAP is present in all primary prostatic carcinomas, supporting its potential clinical relevance. The finding of high levels of FAP within PIA supports the injury/regeneration model for its pathogenesis and suggests that it harbours a protumourigenic stroma, yet high levels of FAP in benign regions could lead to false-positive FAP-based molecular imaging results in clinically localised prostate cancer.
Collapse
Affiliation(s)
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessica L Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sujayita Roy
- Microbiology Devices for Regulatory Authorization or Clearance, Food and Drug Administration, Silver Spring, MD, USA
| | - Tracy Jones
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin Pomper
- Department of Radiology, UT Southwestern, Dallas TX, USA
| | - Lizamma Antony
- Department of Oncology, and Urology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and the James Buchanan Brady Urological Research Institute, Baltimore, MD, USA
| | - Alan K Meeker
- Department of Pathology, Oncology, and Urology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and the James Buchanan Brady Urological Research Institute, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Departments of Oncology, Pathology and Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and the James Buchanan Brady Urological Research Institute, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Pathology, Oncology, and Urology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and the James Buchanan Brady Urological Research Institute, Baltimore, MD, USA.
| | - W Nathaniel Brennen
- Department of Oncology, and Urology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and the James Buchanan Brady Urological Research Institute, Baltimore, MD, USA
| |
Collapse
|
21
|
Kwon JY, Vera RE, Fernandez-Zapico ME. The multi-faceted roles of cancer-associated fibroblasts in pancreatic cancer. Cell Signal 2025; 127:111584. [PMID: 39756502 PMCID: PMC11807759 DOI: 10.1016/j.cellsig.2024.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
The tumor microenvironment (TME) has been linked with the pathogenesis of pancreatic ductal adenocarcinoma (PDAC), the most common histological subtype of pancreatic cancer. A central component of the TME are cancer-associated fibroblasts (CAFs), which can either suppress or promote tumor growth in a context-dependent manner. In this review, we will discuss the multi-faceted roles of CAFs in tumor-stroma interactions influencing cancer initiation, progression and therapeutic response.
Collapse
Affiliation(s)
- John Y Kwon
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | - Renzo E Vera
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | | |
Collapse
|
22
|
Wei R, Song J, Liu C, Zhao Z, Liu X, Yamamoto M, Tsukamoto T, Nomura S, Liu F, Wang Y, Liu X. FAP upregulates PD-L1 expression in cancer-associated fibroblasts to exacerbate T cells dysfunction and suppress anti-tumor immunity. Cancer Lett 2025; 612:217475. [PMID: 39828123 DOI: 10.1016/j.canlet.2025.217475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
FAP-positive cancer-associated fibroblasts (CAFs), recognized as a critical subset of CAFs, have been implicated in fostering an immunosuppressive tumor microenvironment in various cancers. However, their potential mechanisms of immunosuppression, particularly in modulating T cells, remain elusive. In this study, multiple internal cohorts consisting of 328 patients as well as 5 external cohorts were integrated to delineate the association between unfavorable prognosis or therapeutic resistance and FAP+ CAFs in gastric cancer patients. Subsequently, using in vivo mice models and in vitro co-culture system, we found that elevated infiltration levels of FAP+ CAF exacerbated immunosuppression in the tumor microenvironment by facilitating CD8+ T cells dysfunction. Mechanistically, FAP impeded the degradation of STAT1 protein in CAFs, thereby sustaining PD-L1 transcription and fostering T cell exhaustion. Treatment with PD-L1 neutralizing antibodies effectively attenuated FAP-mediated immunosuppression, restoring anti-tumor immunity of T cells. Overall, our findings underscore the vital role of FAP+ CAFs in directly suppressing T cell-mediated anti-tumor immunity via PD-L1 upregulation, paving the way for the development of FAP-targeted therapies in clinical settings.
Collapse
Affiliation(s)
- Rongyuan Wei
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Junquan Song
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenchen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhenxiong Zhao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xuanjun Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Masami Yamamoto
- Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fenglin Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Yanong Wang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Xiaowen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Lu X, Gou Z, Chen H, Li L, Chen F, Bao C, Bu H, Zhang Z. Extracellular matrix cancer-associated fibroblasts promote stromal fibrosis and immune exclusion in triple-negative breast cancer. J Pathol 2025; 265:385-399. [PMID: 39846260 DOI: 10.1002/path.6395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/05/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
The impact of high heterogeneity of cancer-associated fibroblasts (CAFs) on triple-negative breast cancer (TNBC) immunotherapy response has not been fully elucidated, restricting progress in precision immuno-oncology. We integrated single-cell transcriptomic data from 18 TNBC patients and analyzed fibroblast subpopulations. Extracellular matrix CAFs (ecmCAFs) were identified as a fibroblast subpopulation with distinct ECM-associated characteristics. The ecmCAFs were significantly enriched in TNBC patients with residual disease after neoadjuvant immunotherapy and contributed to a fibrotic tumor microenvironment and T-cell exclusion. Secreted phosphoprotein 1 (SPP1) positive macrophages (SPP1+ Mφs) were closely localized to ecmCAFs and produced more transforming growth factor beta (TGFB1), interleukin 1 beta (IL1B), and SPP1 under hypoxic conditions. SPP1+ Mφs were found to facilitate the differentiation of normal breast fibroblasts to ecmCAFs, thus promoting ECM remodeling and stromal fibrosis. Our work revealed the critical role of ecmCAFs in generating a desmoplastic architecture and driving immunosuppression in TNBC. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Xunxi Lu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, PR China
- Laboratory of Breast Pathology and Artificial Intelligence, West China Hospital, Sichuan University, Chengdu, PR China
| | - Zongchao Gou
- Breast Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, PR China
| | - Hong Chen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Fei Chen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Chunjuan Bao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, PR China
- Laboratory of Breast Pathology and Artificial Intelligence, West China Hospital, Sichuan University, Chengdu, PR China
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, PR China
- Laboratory of Breast Pathology and Artificial Intelligence, West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
24
|
Alfred MO, Ochola L, Okeyo K, Bae E, Ogongo P, Odongo D, Njaanake K, Robinson JP. Application of microphysiological systems to unravel the mechanisms of schistosomiasis egg extravasation. Front Cell Infect Microbiol 2025; 15:1521265. [PMID: 40041145 PMCID: PMC11876127 DOI: 10.3389/fcimb.2025.1521265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
Despite decades of control efforts, the prevalence of schistosomiasis remains high in many endemic regions, posing significant challenges to global health. One of the key factors contributing to the persistence of the disease is the complex life cycle of the Schistosoma parasite, the causative agent, which involves multiple stages of development and intricate interactions with its mammalian hosts and snails. Among the various stages of the parasite lifecycle, the deposition of eggs and their migration through host tissues is significant, as they initiate the onset of the disease pathology by inducing inflammatory reactions and tissue damage. However, our understanding of the mechanisms underlying Schistosoma egg extravasation remains limited, hindering efforts to develop effective interventions. Microphysiological systems, particularly organ-on-a-chip systems, offer a promising approach to study this phenomenon in a controlled experimental setting because they allow the replication of physiological microenvironments in vitro. This review provides an overview of schistosomiasis, introduces the concept of organ-on-a-chip technology, and discusses its potential applications in the field of schistosomiasis research.
Collapse
Affiliation(s)
- Martin Omondi Alfred
- Department of Medical Microbiology and Immunology, University of Nairobi, Hospital Road, Kenyatta National Hospital, Nairobi, Kenya
- Department of Tropical and Infectious Diseases, Kenya Institute of Primate Research, Nairobi, Kenya
| | - Lucy Ochola
- Department of Tropical and Infectious Diseases, Kenya Institute of Primate Research, Nairobi, Kenya
| | - Kennedy Okeyo
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Euiwon Bae
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Paul Ogongo
- Department of Tropical and Infectious Diseases, Kenya Institute of Primate Research, Nairobi, Kenya
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - David Odongo
- Department of Medical Microbiology and Immunology, University of Nairobi, Hospital Road, Kenyatta National Hospital, Nairobi, Kenya
| | - Kariuki Njaanake
- Department of Medical Microbiology and Immunology, University of Nairobi, Hospital Road, Kenyatta National Hospital, Nairobi, Kenya
| | - J. Paul Robinson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
25
|
Li Y, He C, Shen AN, Wang Y, Xu ZP, Zhang L, Wang R. pH of Microenvironment Directly Modulates the Phenotype and Function of Cancer-Associated Fibroblasts. ACS OMEGA 2025; 10:3937-3943. [PMID: 39926491 PMCID: PMC11799978 DOI: 10.1021/acsomega.4c09716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/07/2024] [Accepted: 12/26/2024] [Indexed: 02/11/2025]
Abstract
Cancer-associated fibroblasts within the tumor microenvironment have been studied extensively, including their differential roles in promoting cancer growth and metastasis, promoting an immune suppressive microenvironment, and reshaping the stiffness of the extracellular matrix. Fibroblasts have diverse functions owing to their heterogeneous phenotypes shaped by the microenvironment. Increased acidity is a crucial feature of the tumor microenvironment, contributing to the generation of cancer-associated fibroblasts. Our data show that a low pH drives the formation of cancer-associated fibroblasts in vitro, while increasing pH activates the self-remodeling features of these cells by limiting their proliferation and downregulating the production of extracellular matrix-associated proteins. Our findings show that cancer-associated fibroblasts are a versatile population that can be reprogramed toward a quiescent phenotype with reduced acidity in the tumor microenvironment. pH regulation could be a potential strategy to target fibroblasts for cancer therapy.
Collapse
Affiliation(s)
- Ying Li
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Gaoke
Innovation Center, Guangming District, Shenzhen, Guangdong 518132, P. R. China
| | - Chao He
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Gaoke
Innovation Center, Guangming District, Shenzhen, Guangdong 518132, P. R. China
| | - Ai Ning Shen
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Gaoke
Innovation Center, Guangming District, Shenzhen, Guangdong 518132, P. R. China
| | - Yu Wang
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Gaoke
Innovation Center, Guangming District, Shenzhen, Guangdong 518132, P. R. China
| | - Zhi Ping Xu
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Gaoke
Innovation Center, Guangming District, Shenzhen, Guangdong 518132, P. R. China
| | - Lingxiao Zhang
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus
C, Denmark
| | - Ran Wang
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Gaoke
Innovation Center, Guangming District, Shenzhen, Guangdong 518132, P. R. China
- Mater
Research Institute, The University of Queensland, St Lucia, Brisbane, Queensland 4102, Australia
| |
Collapse
|
26
|
Corvigno S, Fernebro J, Karlsson JS, Mezheieusky A, Martín-Bernabé A, De La Fuente LM, Westbom-Fremer S, Carlson JW, Klein C, Kannisto P, Hedenfalk I, Malander S, Östman A, Dahlstrand H. High prevalence of FAP+ cancer-associated fibroblasts predicts poor outcome in patients with high-grade serous ovarian cancer with high CD8 T-cell density. Gynecol Oncol 2025; 193:148-155. [PMID: 39914230 DOI: 10.1016/j.ygyno.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 03/03/2025]
Abstract
OBJECTIVE Studies have implied that fibroblasts may act as regulators of immune cells in the tumor microenvironment (TME). We investigated the clinical relevance of fibroblast activation protein (FAP) positive stroma in high-grade serous ovarian cancer (HGSC) in relation to CD8+ lymphocyte's infiltration. METHODS In a discovery cohort (N = 113) of HGSC, expression of FAP and CD8 in the TME was analyzed with immunohistochemistry. Results were correlated with overall survival (OS) and progression-free survival (PFS). The findings were validated in an independent cohort of HGSC (N = 121) and in public available datasets. RESULTS High infiltration of CD8+ cells in the TME of HGSC was found to be associated with longer OS, as previously known. Increased expression of FAP was associated with shorter median PFS (11.4 vs. 18.6 months) in tumors with high density of CD8+ cells (HR 4.03, CI 95 % 1.38-11.72, p = 0.01). Similarly, in the validation cohort, high intensity of FAP in cases with high density of CD8+ cells was associated with shorter OS, 31.5 vs 76.9 months (HR 2.83; 95 % CI 1.17-6.86, p = 0.02). The results were consistent in multivariable analyses. The association between high FAP expression and poor outcome in high density CD8 HGSC was also confirmed in publicly available datasets. CONCLUSIONS The TME infiltration of FAP-positive fibroblasts is associated with poor prognosis in HGSC with high CD8+ cells density. Targeting the FAP+ subset of fibroblasts may unlock the local immune-activation in the TME thus enhance the positive prognostic effect of T-cells in ovarian cancer.
Collapse
Affiliation(s)
- Sara Corvigno
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Josefin Fernebro
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Gynecologic Oncology, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Josefin Severin Karlsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden.
| | - Artur Mezheieusky
- IGP, Uppsala University, Sweden; Vall d'Hebron Institute of Oncology, Molecular oncology group, Barcelona, Spain
| | | | - Laura Martin De La Fuente
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Sofia Westbom-Fremer
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Joseph W Carlson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Pathology and Laboratory Medicine, University of Southern California, Los Angeles, USA
| | | | - Paivi Kannisto
- Department of Obstetrics and Gynecology, Skåne University Hospital and Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences Lund, Lund University and University Hospital, Lund, Sweden
| | - Susanne Malander
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Hanna Dahlstrand
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Gynecologic Oncology, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
27
|
Zhang Y, Liu YJ, Mei J, Yang ZX, Qian XP, Huang W. An Analysis Regarding the Association Between DAZ Interacting Zinc Finger Protein 1 (DZIP1) and Colorectal Cancer (CRC). Mol Biotechnol 2025; 67:527-547. [PMID: 38334905 DOI: 10.1007/s12033-024-01065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 02/10/2024]
Abstract
Colorectal cancer (CRC) is the third most common malignant disease worldwide, and its incidence is increasing, but the molecular mechanisms of this disease are highly heterogeneous and still far from being fully understood. Increasing evidence suggests that fibrosis mediated by abnormal activation of fibroblasts based in the microenvironment is associated with a poor prognosis. However, the function and pathogenic mechanisms of fibroblasts in CRC remain unclear. Here, combining scrna-seq and clinical specimen data, DAZ Interacting Protein 1 (DZIP1) was found to be expressed on fibroblasts and cancer cells and positively correlated with stromal deposition. Importantly, pseudotime-series analysis showed that DZIP1 levels were up-regulated in malignant transformation of fibroblasts and experimentally confirmed that DZIP1 modulates activation of fibroblasts and promotes epithelial-mesenchymal transition (EMT) in tumor cells. Further studies showed that DZIP1 expressed by tumor cells also has a driving effect on EMT and contributes to the recruitment of more fibroblasts. A similar phenomenon was observed in xenografted nude mice. And it was confirmed in xenograft mice that downregulation of DZIP1 expression significantly delayed tumor formation and reduced tumor size in CRC cells. Taken together, our findings suggested that DZIP1 was a regulator of the CRC mesenchymal phenotype. The revelation of targeting DZIP1 provides a new avenue for CRC therapy.
Collapse
Affiliation(s)
- Yu Zhang
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School Nanjing University, Nanjing, 210029, Jiangsu, China
- Department of Oncology, Nanjing Tianyinshan Hospital, Nanjing, 211199, Jiangsu, China
| | - Yuan-Jie Liu
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Jia Mei
- Department of Pathology, Affiliated Jinling Hospital, Medical School Nanjing University, Nanjing, 210029, Jiangsu, China
| | - Zhao-Xu Yang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School Nanjing University, Nanjing, 210029, Jiangsu, China
| | - Xiao-Ping Qian
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Clinical Cancer Institute of Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Wei Huang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
28
|
Cheng Y, Chen X, Feng L, Yang Z, Xiao L, Xiang B, Wang X, Liu D, Lin P, Shi J, Song G, Qian W, Zhang B, Xu Y, Gao Z, Chen L, Wu Y, Ma J, Lin Y, Zhao H, Peng L, Mao X, Liu Y, Hou H, Yang M, Ji Y, Wang X, Zhou J, Xu X, Liu X, Wei W, Zhang X, Gao Q, Zhou H, Sun Y, Wu K, Fan J. Stromal architecture and fibroblast subpopulations with opposing effects on outcomes in hepatocellular carcinoma. Cell Discov 2025; 11:1. [PMID: 39870619 PMCID: PMC11772884 DOI: 10.1038/s41421-024-00747-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/29/2024] [Indexed: 01/29/2025] Open
Abstract
Dissecting the spatial heterogeneity of cancer-associated fibroblasts (CAFs) is vital for understanding tumor biology and therapeutic design. By combining pathological image analysis with spatial proteomics, we revealed two stromal archetypes in hepatocellular carcinoma (HCC) with different biological functions and extracellular matrix compositions. Using paired single-cell RNA and epigenomic sequencing with Stereo-seq, we revealed two fibroblast subsets CAF-FAP and CAF-C7, whose spatial enrichment strongly correlated with the two stromal archetypes and opposing patient prognosis. We discovered two functional units, one is the intratumor inflammatory hub featured by CAF-FAP plus CD8_PDCD1 proximity and the other is the marginal wound-healing hub with CAF-C7 plus Macrophage_SPP1 co-localization. Inhibiting CAF-FAP combined with anti-PD-1 in orthotopic HCC models led to improved tumor regression than either monotherapy. Collectively, our findings suggest stroma-targeted strategies for HCC based on defined stromal archetypes, raising the concept that CAFs change their transcriptional program and intercellular crosstalk according to the spatial context.
Collapse
Affiliation(s)
- Yifei Cheng
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaofang Chen
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Feng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhicheng Yang
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liyun Xiao
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
| | - Bin Xiang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaodong Wang
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Dongbin Liu
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
| | - Penghui Lin
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
| | - Jieyi Shi
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guohe Song
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wulei Qian
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Boan Zhang
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yanan Xu
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lv Chen
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingcheng Wu
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqiang Ma
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Youpei Lin
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haichao Zhao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lihua Peng
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
| | | | - Yang Liu
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Hou
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyu Yang
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoying Wang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xun Xu
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, Guangdong, China
| | - Xiyang Liu
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Wu Wei
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hu Zhou
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yidi Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Kui Wu
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, Guangdong, China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Chen J, Ma P, Xu J, Zang M, Li W. Glycosylation-Targeting Aptamer for the Feasible Construction of a Dual Aptamer-Based Plasmonic Immunosandwich Assay in Cancer Diagnostics. Anal Chem 2025; 97:203-211. [PMID: 39710916 DOI: 10.1021/acs.analchem.4c03770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Fibroblast activation protein (FAP) is an important antigen in the tumor microenvironment, which plays a crucial role in promoting extracellular matrix remodeling and tumor cell metastasis. A circulating form of soluble FAP has also been identified in the serum, becoming a biomarker for pan-cancer diagnosis and prognosis. However, the current peptide substrate-based enzymatic activity detection or antibody-dependent detection methods have been hindered by insufficient selectivity and complex operations, so it is valuable to develop effective nucleic acid aptamers as FAP affinity ligands. In order to deeply explore the biomimetic recognition technology, this study proposed an elaborate aptamer screening strategy for targeting the protein characteristic structure. Taking the glycosylation of the FAP protein as a target, four FAP-specific aptamers with high performance were successfully generated. Further, using the champion aptamer as a recognition tool and combining it with ultrasensitive detection technology-surface enhanced Raman scattering (SERS), a novel dual aptamer-based sandwich sensor was constructed for the rapid determination of FAP. Due to the dual-specific recognition of the orthogonal aptamer pair, the sandwich method obviously improved the selectivity to FAP protein, with a maximum cross-reactivity of less than 8% and a quantitation limit of 100 pg/mL. It was conveniently applied in high-sensitive and high-selective detection of serum FAP in cancer patient samples. Therefore, the research of this study not only opens new access for the selection of antiglycan aptamers but also boosts the application of the FAP aptamer as a recognition tool in cancer diagnostics.
Collapse
Affiliation(s)
- Junyang Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pengfei Ma
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Jiayu Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingxi Zang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
30
|
Shariati A, Khezrpour A, Shariati F, Afkhami H, Yarahmadi A, Alavimanesh S, Kamrani S, Modarressi MH, Khani P. DNA vaccines as promising immuno-therapeutics against cancer: a new insight. Front Immunol 2025; 15:1498431. [PMID: 39872522 PMCID: PMC11769820 DOI: 10.3389/fimmu.2024.1498431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Cancer is one of the leading causes of mortality around the world and most of our conventional treatments are not efficient enough to combat this deadly disease. Harnessing the power of the immune system to target cancer cells is one of the most appealing methods for cancer therapy. Nucleotide-based cancer vaccines, especially deoxyribonucleic acid (DNA) cancer vaccines are viable novel cancer treatments that have recently garnered significant attention. DNA cancer vaccines are made of plasmid molecules that encode tumor-associated or tumor-specific antigens (TAAs or TSAs), and possibly some other immunomodulatory adjuvants such as pro-inflammatory interleukins. Following the internalization of plasmids into cells, their genes are expressed and the tumor antigens are loaded on major histocompatibility molecules to be presented to T-cells. After the T-cells have been activated, they will look for tumor antigens and destroy the tumor cells upon encountering them. As with any other treatment, there are pros and cons associated with using these vaccines. They are relatively safe, usually well-tolerated, stable, easily mass-produced, cost-effective, and easily stored and transported. They can induce a systemic immune response effective on both the primary tumor and metastases. The main disadvantage of DNA vaccines is their poor immunogenicity. Several approaches including structural modification, combination therapy with conventional and novel cancer treatments (such as chemotherapy, radiotherapy, and immune checkpoint blockade (ICB)), and the incorporation of adjuvants into the plasmid structure have been studied to enhance the vaccine's immunogenicity and improve the clinical outcome of cancer patients. In this review, we will discuss some of the most promising optimization strategies and examine some of the important trials regarding these vaccines.
Collapse
Affiliation(s)
- Alireza Shariati
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Arya Khezrpour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Shariati
- Department of Genetics, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sina Kamrani
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
31
|
Cao Z, Quazi S, Arora S, Osellame LD, Burvenich IJ, Janes PW, Scott AM. Cancer-associated fibroblasts as therapeutic targets for cancer: advances, challenges, and future prospects. J Biomed Sci 2025; 32:7. [PMID: 39780187 PMCID: PMC11715488 DOI: 10.1186/s12929-024-01099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/09/2024] [Indexed: 01/11/2025] Open
Abstract
Research into cancer treatment has been mainly focused on developing therapies to directly target cancer cells. Over the past decade, extensive studies have revealed critical roles of the tumour microenvironment (TME) in cancer initiation, progression, and drug resistance. Notably, cancer-associated fibroblasts (CAFs) have emerged as one of the primary contributors in shaping TME, creating a favourable environment for cancer development. Many preclinical studies have identified promising targets on CAFs, demonstrating remarkable efficacy of some CAF-targeted treatments in preclinical models. Encouraged by these compelling findings, therapeutic strategies have now advanced into clinical evaluation. We aim to provide a comprehensive review of relevant subjects on CAFs, including CAF-related markers and targets, their multifaceted roles, and current landscape of ongoing clinical trials. This knowledge can guide future research on CAFs and advocate for clinical investigations targeting CAFs.
Collapse
Affiliation(s)
- Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
| | - Sadia Quazi
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sakshi Arora
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Laura D Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ingrid J Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peter W Janes
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
- Department of Medicine, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
32
|
Zou J, Jiang C, Hu Q, Jia X, Wang S, Wan S, Mao Y, Zhang D, Zhang P, Dai B, Li Y. Tumor microenvironment-responsive engineered hybrid nanomedicine for photodynamic-immunotherapy via multi-pronged amplification of reactive oxygen species. Nat Commun 2025; 16:424. [PMID: 39762214 PMCID: PMC11704041 DOI: 10.1038/s41467-024-55658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Reactive oxygen species (ROS) is promising in cancer therapy by accelerating tumor cell death, whose therapeutic efficacy, however, is greatly limited by the hypoxia in the tumor microenvironment (TME) and the antioxidant defense. Amplification of oxidative stress has been successfully employed for tumor therapy, but the interactions between cancer cells and the other factors of TME usually lead to inadequate tumor treatments. To tackle this issue, we develop a pH/redox dual-responsive nanomedicine based on the remodeling of cancer-associated fibroblasts (CAFs) for multi-pronged amplification of ROS (ZnPP@FQOS). It is demonstrated that ROS generated by ZnPP@FQOS is endogenously/exogenously multiply amplified owing to the CAFs remodeling and down-regulation of anti-oxidative stress in cancer cells, ultimately achieving the efficient photodynamic therapy in a female tumor-bearing mouse model. More importantly, ZnPP@FQOS is verified to enable the stimulation of enhanced immune responses and systemic immunity. This strategy remarkably potentiates the efficacy of photodynamic-immunotherapy, thus providing a promising enlightenment for tumor therapy.
Collapse
Grants
- This work was financially supported by the National Key Research and Development Program of China (No. 2022YFC2403203, Y.L.), the National Natural Science Foundation of China (No. 22305081, D.Z.), Basic Research Program of Shanghai (No. 21JC1406003, Y.L.), Leading Talents in Shanghai in 2018, the Key Field Research Program (No. 2023AB054, Y.L.), Shanghai Sailing Program (23YF1408600, D.Z.) and the Innovation Program of Shanghai Municipal Education Commission (No. 2023ZKZD33, P.Z.)
Collapse
Affiliation(s)
- Jinglin Zou
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiangsheng Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinlin Jia
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuqi Wang
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Shiyue Wan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanqing Mao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dapeng Zhang
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China.
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China.
| |
Collapse
|
33
|
Gong Y, Kang J, Wang M, Hayati F, Syed Abdul Rahim SS, Poh Wah Goh L. The trends and hotspots of immunotherapy for metastatic colorectal cancer from 2013 to 2022: A bibliometric and visual analysis. Hum Vaccin Immunother 2024; 20:2312599. [PMID: 38356280 PMCID: PMC10877983 DOI: 10.1080/21645515.2024.2312599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Abstract
An increasing body of research indicates that immunotherapy has demonstrated substantial effectiveness in the realm of metastatic colorectal cancer(mCRC), especially among patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) (dMMR/MSI-H mCRC). This study constitutes the inaugural bibliometric and visual analysis of immunotherapy related to mCRC during the last decade. Between 2013 and the conclusion of 2022, we screened 306 articles from Web of Science and subjected them to analysis using CiteSpace and VOSviewer. The United States stood out as the primary contributor in this area, representing 33.33% of the publications, with China following closely at 24.51%. The most prolific institution has the lowest average citation rate. Sorbonne University were the most highly cited institutions. Notably, Frontiers In Oncology published the largest quantity of articles. Andre, Thierry, and Overman, Michael J. were prominent authors known for their prolific output and the high citation rates of their work. The focus areas in this field encompass "tumor microenvironment," "liver metastasis," "tumor-associated macrophages," "combination therapy" and "gut microbiota." Some keywords offer promise as potential biomarkers for evaluating the effectiveness of immunotherapeutic interventions.
Collapse
Affiliation(s)
- Yifan Gong
- Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Jianping Kang
- Orthopedics Ward 2, Yunnan Cancer Hospital, Kunming, China
| | - Mingting Wang
- Oncology Department, Affiliated Hospital of Panhihua University, Panzhihua, China
| | - Firdaus Hayati
- Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | | | - Lucky Poh Wah Goh
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
34
|
Ruan D, Wu S, Lin X, Zhao L, Cai J, Xu W, Pang Y, Xie Q, Qu X, Chen H. Current status of FAP-directed cancer theranostics: a bibliometric analysis. BIOPHYSICS REPORTS 2024; 10:388-402. [PMID: 39758423 PMCID: PMC11693499 DOI: 10.52601/bpr.2024.240022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/22/2024] [Indexed: 01/07/2025] Open
Abstract
Fibroblast activation protein (FAP) is a key molecule in the field of oncology, with significant impacts on tumor diagnosis and treatment. Importantly, it has paved the way for the development of radiotracers for quinoline-based FAP inhibitors (FAPIs), which are currently among the most promising radiotracers for PET imaging in cancer. We performed a bibliometric analysis of scientific publications related to FAP and FAPI-based radiotracers, which included the quantification and visualization of current research trends and prospects based on various bibliometric indicators. In our survey of FAP-related studies in the Web of Science Core Collection databases, R and VOSviewer were used for visualization and bibliometric analyses based on country, institute, author, journal, and keywords. We also examined the methodology, radionuclide type, imaging instruments, and major diseases associated with studies on FAPI-based radiotracers. The results revealed 2,664 FAP-related publications from 1992 to the present. Germany, the USA, and China dominated paper publications, multinational collaborations, and societal impacts on FAP research. Southwest Medical University was the most productive institute, while Haberkorn Uwe authored the most cited papers and the highest H-index. The European Journal of Nuclear Medicine and Molecular Imaging and the Journal of Nuclear Medicine were the most influential periodicals. Keywords "FAP", "68Ga-FAPI", and "PET/CT" emerged as the most significant in this field. This study may help elucidate current research trends, hotspots, and directions for future research.
Collapse
Affiliation(s)
- Dan Ruan
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Development and Translation of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
- National Institute for Data Science in Health and Medicine, Department of Electronic Science, Intelligent Medical Imaging R & D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361102, Fujian, China
| | - Simin Wu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Development and Translation of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Xuehua Lin
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Development and Translation of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Liang Zhao
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Development and Translation of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Jiayu Cai
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Development and Translation of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Weizhi Xu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Development and Translation of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Yizhen Pang
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Development and Translation of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Qiang Xie
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaobo Qu
- National Institute for Data Science in Health and Medicine, Department of Electronic Science, Intelligent Medical Imaging R & D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361102, Fujian, China
| | - Haojun Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Development and Translation of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, Fujian, China
| |
Collapse
|
35
|
Shan H, Tian G, Zhang Y, Qiu Z. Exploring the molecular mechanisms and therapeutic potential of SMAD4 in colorectal cancer. Cancer Biol Ther 2024; 25:2392341. [PMID: 39164192 PMCID: PMC11340766 DOI: 10.1080/15384047.2024.2392341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Colorectal Cancer (CRC) is the third most common cancer worldwide, and the occurrence and development of CRC are influenced by the molecular biology characteristics of CRC, especially alterations in key signaling pathways. The transforming growth factor-β (TGF-β) plays a crucial role in cellular growth, differentiation, migration, and apoptosis, with SMAD4 protein serving as a key transcription factor in the TGF-β signaling pathway, thus playing a significant role in the onset and progression of CRC. CRC is one of the malignancies with a high mortality rate worldwide. Despite significant research progress in recent years, especially regarding the role of SMAD4, its dual role in the early and late stages of tumor progression has promoted further discussion on its complexity as a therapeutic target, highlighting the urgent need for a deeper analysis of its role in CRC. This review aims to explore the function of SMAD4 protein in CRC and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hui Shan
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guangyu Tian
- Department of Oncology, Jiangdu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Yeqing Zhang
- Department of Vascular Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhiyuan Qiu
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
36
|
Zhang J, Huang J, Yang Q, Zeng L, Deng K. Regulatory mechanisms of macrophage-myofibroblast transdifferentiation: A potential therapeutic strategy for fibrosis. Biochem Biophys Res Commun 2024; 737:150915. [PMID: 39486135 DOI: 10.1016/j.bbrc.2024.150915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Macrophage-myofibroblast transdifferentiation (MMT), a fibrotic process impacting diverse tissue types, has garnered recent scholarly interest. Within damaged tissues, the role of myofibroblasts is pivotal in the accumulation of excessive fibrous connective tissue, leading to persistent scarring or organ dysfunction. Consequently, the examination of MMT-related fibrosis is imperative. This review underscores MMT as a fundamental mechanism in myofibroblast generation during tissue fibrosis, and its exploration is crucial for elucidating the regulatory mechanisms underlying this process. Gaining insight into these mechanisms promises to facilitate the development of therapeutic approaches aimed at inhibiting and reversing fibrosis, thereby offering potential avenues for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Junchao Zhang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Jinfa Huang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Qian Yang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Lingling Zeng
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Kaixian Deng
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.
| |
Collapse
|
37
|
Asadi M, Zafari V, Sadeghi-Mohammadi S, Shanehbandi D, Mert U, Soleimani Z, Caner A, Zarredar H. The role of tumor microenvironment and self-organization in cancer progression: Key insights for therapeutic development. BIOIMPACTS : BI 2024; 15:30713. [PMID: 40256216 PMCID: PMC12008505 DOI: 10.34172/bi.30713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/08/2024] [Accepted: 11/20/2024] [Indexed: 04/22/2025]
Abstract
Introduction The tumor microenvironment (TME) plays a pivotal role in cancer progression, influencing tumor initiation, growth, invasion, metastasis, and response to therapies. This study explores the dynamic interactions within the TME, particularly focusing on self-organization-a process by which tumor cells and their microenvironment reciprocally shape one another, leading to cancer progression and resistance. Understanding these interactions can reveal new prognostic markers and therapeutic targets within the TME, such as extracellular matrix (ECM) components, immune cells, and cytokine signaling pathways. Methods A comprehensive search method was employed to investigate the current academic literature on TME, particularly focusing on self-organization in the context of cancer progression and resistance across the PubMed, Google Scholar, and Science Direct databases. Results Recent studies suggest that therapies that disrupt TME self-organization could improve patient outcomes by defeating drug resistance and increasing the effectiveness of conventional therapy. Additionally, this research highlights the essential of understanding the biophysical properties of the TME, like cytoskeletal alterations, in the development of more effective malignancy therapy. Conclusion This review indicated that targeting the ECM and immune cells within the TME can improve therapy effectiveness. Also, by focusing on TME self-organization, we can recognize new therapeutic plans to defeat drug resistance.
Collapse
Affiliation(s)
- Milad Asadi
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Venus Zafari
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Sanam Sadeghi-Mohammadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ufuk Mert
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir, Turkey
| | - Zahra Soleimani
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayşe Caner
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Dimitrieva S, Harrison JM, Chang J, Piquet M, Mino-Kenudson M, Gabriel M, Sagar V, Horn H, Lage K, Kim J, Li G, Weng S, Harris C, Kulkarni AS, Ting DT, Qadan M, Fagenholz PJ, Ferrone CR, Grauel AL, Laszewski T, Raza A, Riester M, Somerville T, Wagner JP, Dranoff G, Engelman JA, Kauffmann A, Leary R, Warshaw AL, Lillemoe KD, Fernández-del Castillo C, Ruddy DA, Liss AS, Cremasco V. Dynamic Evolution of Fibroblasts Revealed by Single-Cell RNA Sequencing of Human Pancreatic Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:3049-3066. [PMID: 39485038 PMCID: PMC11609929 DOI: 10.1158/2767-9764.crc-23-0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
SIGNIFICANCE Pancreatic cancer remains a high unmet medical need. Understanding the interactions between stroma and cancer cells in this disease may unveil new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
| | - Jon M. Harrison
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jonathan Chang
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Michelle Piquet
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Millicent Gabriel
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Vivek Sagar
- Oncology Data Science, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Heiko Horn
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kasper Lage
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julie Kim
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Gang Li
- Oncology Data Science, Novartis Biomedical Research, Basel, Switzerland
| | - Shaobu Weng
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Cynthia Harris
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Motaz Qadan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter J. Fagenholz
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristina R. Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Angelo L. Grauel
- Oncology Data Science, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Tyler Laszewski
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Alina Raza
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Markus Riester
- Oncology Data Science, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Tim Somerville
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Joel P. Wagner
- Oncology Data Science, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Glenn Dranoff
- Oncology, Novartis Biomedical Research, Cambridge, Massachusetts
| | | | - Audrey Kauffmann
- Oncology Data Science, Novartis Biomedical Research, Basel, Switzerland
| | - Rebecca Leary
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Andrew L. Warshaw
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keith D. Lillemoe
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - David A. Ruddy
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Andrew S. Liss
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Viviana Cremasco
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| |
Collapse
|
39
|
Song H, Lu T, Han D, Zhang J, Gan L, Xu C, Liu S, Li P, Zhang K, Hu Z, Li H, Li Y, Zhao X, Zhang J, Xing N, Shi C, Wen W, Yang F, Qin W. YAP1 Inhibition Induces Phenotype Switching of Cancer-Associated Fibroblasts to Tumor Suppressive in Prostate Cancer. Cancer Res 2024; 84:3728-3742. [PMID: 39137404 PMCID: PMC11565174 DOI: 10.1158/0008-5472.can-24-0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/29/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Prostate cancer rarely responds to immune-checkpoint blockade (ICB) therapies. Cancer-associated fibroblasts (CAF) are critical components of the immunologically "cold" tumor microenvironment and are considered a promising target to enhance the immunotherapy response. In this study, we aimed to reveal the mechanisms regulating CAF plasticity to identify potential strategies to switch CAFs from protumorigenic to antitumor phenotypes and to enhance ICB efficacy in prostate cancer. Integration of four prostate cancer single-cell RNA sequencing datasets defined protumorigenic and antitumor CAFs, and RNA-seq, flow cytometry, and a prostate cancer organoid model demonstrated the functions of two CAF subtypes. Extracellular matrix-associated CAFs (ECM-CAF) promoted collagen deposition and cancer cell progression, and lymphocyte-associated CAFs (Lym-CAF) exhibited an antitumor phenotype and induced the infiltration and activation of CD8+ T cells. YAP1 activity regulated the ECM-CAF phenotype, and YAP1 silencing promoted switching to Lym-CAFs. NF-κB p65 was the core transcription factor in the Lym-CAF subset, and YAP1 inhibited nuclear translocation of p65. Selective depletion of YAP1 in ECM-CAFs in vivo promoted CD8+ T-cell infiltration and activation and enhanced the therapeutic effects of anti-PD-1 treatment on prostate cancer. Overall, this study revealed a mechanism regulating CAF identity in prostate cancer and highlighted a therapeutic strategy for altering the CAF subtype to suppress tumor growth and increase sensitivity to ICB. Significance: YAP1 regulates cancer-associated fibroblast phenotypes and can be targeted to switch cancer-associated fibroblasts from a protumorigenic subtype that promotes extracellular matrix deposition to a tumor-suppressive subtype that stimulates antitumor immunity and immunotherapy efficacy.
Collapse
Affiliation(s)
- Hongtao Song
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Tong Lu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jiayu Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lunbiao Gan
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Chao Xu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shaojie Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Peng Li
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi’an, China
| | - Keying Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhihao Hu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hongji Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yu Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaolong Zhao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jingliang Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi’an, China
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
40
|
Santerre JP, Yang Y, Du Z, Wang W, Zhang X. Biomaterials' enhancement of immunotherapy for breast cancer by targeting functional cells in the tumor micro-environment. Front Immunol 2024; 15:1492323. [PMID: 39600709 PMCID: PMC11588700 DOI: 10.3389/fimmu.2024.1492323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Immunotherapy for breast cancer is now being considered clinically, and more recently, the number of investigations aimed specifically at nano-biomaterials-assisted immunotherapy for breast cancer treatment is growing. Alterations of the breast cancer micro-environment can play a critical role in anti-tumor immunity and cancer development, progression and metastasis. The improvement and rearrangement of tumor micro-environment (TME) may enhance the permeability of anti-tumor drugs. Therefore, targeting the TME is also an ideal and promising option during the selection of effective nano-biomaterial-based immuno-therapeutic strategies excepted for targeting intrinsic resistant mechanisms of the breast tumor. Although nano-biomaterials designed to specifically release loaded anti-tumor drugs in response to tumor hypoxia and low pH conditions have shown promises and the diversity of the TME components also supports a broad targeting potential for anti-tumor drug designs, yet the applications of nano-biomaterials for targeting immunosuppressive cells/immune cells in the TME for improving the breast cancer treating outcomes, have scarcely been addressed in a scientific review. This review provides a thorough discussion for the application of the different forms of nano-biomaterials, as carrier vehicles for breast cancer immunotherapy, targeting specific types of immune cells in the breast tumor microenvironment. In parallel, the paper provides a critical analysis of current advances/challenges with leading nano-biomaterial-mediated breast cancer immunotherapeutic strategies. The current review is timely and important to the cancer research field and will provide a critical tool for nano-biomaterial design and research groups pushing the clinical translation of new nano-biomaterial-based immuno-strategies targeting breast cancer TME, to further open new avenues for the understanding, prevention, diagnosis and treatment of breast cancer, as well as other cancer types.
Collapse
Affiliation(s)
- J. Paul Santerre
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Yangyang Yang
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Ziwei Du
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wenshuang Wang
- Department of Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xiaoqing Zhang
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
41
|
Dharani S, Cho H, Fernandez JP, Juillerat A, Valton J, Duchateau P, Poirot L, Das S. TALEN-edited allogeneic inducible dual CAR T cells enable effective targeting of solid tumors while mitigating off-tumor toxicity. Mol Ther 2024; 32:3915-3931. [PMID: 39169622 PMCID: PMC11573618 DOI: 10.1016/j.ymthe.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/29/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Adoptive cell therapy using chimeric antigen receptor (CAR) T cells has proven to be lifesaving for many cancer patients. However, its therapeutic efficacy has been limited in solid tumors. One key factor for this is cancer-associated fibroblasts (CAFs) that modulate the tumor microenvironment (TME) to inhibit T cell infiltration and induce "T cell dysfunction." Additionally, the sparsity of tumor-specific antigens (TSA) and expression of CAR-directed tumor-associated antigens (TAA) on normal tissues often results in "on-target off-tumor" cytotoxicity, raising safety concerns. Using TALEN-mediated gene editing, we present here an innovative CAR T cell engineering strategy to overcome these challenges. Our allogeneic "Smart CAR T cells" are designed to express a constitutive CAR, targeting FAP+ CAFs in solid tumors. Additionally, a second CAR targeting a TAA such as mesothelin is specifically integrated at a TCR signaling-inducible locus like PDCD1. FAPCAR-mediated CAF targeting induces expression of the mesothelin CAR, establishing an IF/THEN-gated circuit sensitive to dual antigen sensing. Using this approach, we observe enhanced anti-tumor cytotoxicity, while limiting "on-target off-tumor" toxicity. Our study thus demonstrates TALEN-mediated gene editing capabilities for design of allogeneic IF/THEN-gated dual CAR T cells that efficiently target immunotherapy-recalcitrant solid tumors while mitigating potential safety risks, encouraging clinical development of this strategy.
Collapse
MESH Headings
- Humans
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Mice
- Mesothelin
- Gene Editing
- Cell Line, Tumor
- Transcription Activator-Like Effector Nucleases
- Tumor Microenvironment/immunology
- Neoplasms/therapy
- Neoplasms/immunology
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/immunology
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- GPI-Linked Proteins/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Membrane Proteins
- Endopeptidases
Collapse
Affiliation(s)
| | - Hana Cho
- Cellectis Inc, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Lubuela G, Beaufrère A, Albuquerque M, Pignollet C, Nicolle R, Lesurtel M, Bouattour M, Cros J, Paradis V. Prognostic impact of the tumour microenvironment in intrahepatic cholangiocarcinoma: identification of a peritumoural fibro-immune interface. Virchows Arch 2024; 485:901-911. [PMID: 39242455 DOI: 10.1007/s00428-024-03922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The tumour microenvironment (TME) of intrahepatic cholangiocarcinoma (iCCA) is complex and plays a role in prognosis and resistance to treatments. We aimed to decipher the iCCA TME phenotype using multiplex sequential immunohistochemistry (MS-IHC) to investigate which cell types and their spatial location may affect its prognosis. This was a retrospective study of 109 iCCA resected samples. For all cases, we used an open-source software to analyse a panel of markers (αSMA, FAP, CD8, CD163) by MS-IHC for characterize the different TME cells and their location. RNA sequencing was performed to determine the main iCCA transcriptomic classes. The association of the TME composition with overall survival (OS) was assessed by univariate and multivariate analyses. A high proportion of activated fibroblasts (FAP +) was significantly associated with poor OS (HR = 2.33, 95%CI = 1.43-3.81, p = 0.001). CD8 T lymphocytes excluded from the epithelial compartment were significantly associated with worse OS (HR = 1.86, 95% CI = 1.07-3.22, p = 0.014). The combination of a high proportion of FAP + fibroblasts and CD8 T lymphocytes excluded from the epithelial compartment, observed in 21 cases (19%), was significantly associated with poor OS on univariate (HR = 2.49, 95% CI = 1.44-4.28, p = 0.001) and multivariate analyses (HR = 2.77, 95% CI = 1.56-4.92, p < 0.001). In these cases, CD8 T lymphocytes were predominantly located at the tumour/non-tumour interface (19/21, 90%), and an association with the transcriptomic inflammatory stroma class was observed (10/21, 48%). Our results confirm the TME prognostic role in iCCA, highlighting the impact in the process of spatial heterogeneity, especially cell colocalization of immune and fibroblastic cells creating a peritumoural fibro-immune interface.
Collapse
Affiliation(s)
- Gwladys Lubuela
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
| | - Aurélie Beaufrère
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France.
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, SIRIC InsiTu, DMU DREAM, Beaujon Hospital, 100 Boulevard du Général Leclerc, 92110, Clichy, France.
| | - Miguel Albuquerque
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, SIRIC InsiTu, DMU DREAM, Beaujon Hospital, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| | - Camille Pignollet
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
| | - Rémy Nicolle
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
| | - Mickael Lesurtel
- AP-HP.Nord, Department of HPB Surgery & Liver Transplantation, Beaujon Hospital, Université Paris Cité, Clichy, France
| | - Mohamed Bouattour
- AP-HP.Nord, Liver Cancer Unit, DMU DIGEST, Beaujon Hospital, Clichy, France
| | - Jérôme Cros
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, SIRIC InsiTu, DMU DREAM, Beaujon Hospital, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| | - Valérie Paradis
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, SIRIC InsiTu, DMU DREAM, Beaujon Hospital, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| |
Collapse
|
43
|
Meng S, Hara T, Miura Y, Ishii H. Fibroblast activation protein constitutes a novel target of chimeric antigen receptor T-cell therapy in solid tumors. Cancer Sci 2024; 115:3532-3542. [PMID: 39169645 PMCID: PMC11531970 DOI: 10.1111/cas.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/23/2024] Open
Abstract
With recent advances in tumor immunotherapy, chimeric antigen receptor T (CAR-T) cell therapy has achieved unprecedented success in several hematologic tumors, significantly improving patient prognosis. However, in solid tumors, the efficacy of CAR-T cell therapy is limited because of high antigen uncertainty and the extremely restrictive tumor microenvironment (TME). This challenge has led to the exploration of new targets, among which fibroblast activation protein (FAP) has gained attention for its relatively stable and specific expression in the TME of various solid tumors, making it a potential new target for CAR-T cell therapy. This study comprehensively analyzed the biological characteristics of FAP and discussed its potential application in CAR-T cell therapy, including the theoretical basis, and preclinical and clinical research progress of targeting FAP with CAR-T cell therapy for solid tumor treatment. The challenges and future optimization directions of this treatment strategy were also explored, providing new perspectives and strategies for CAR-T cell therapy in solid tumors.
Collapse
Grants
- 2024 Princess Takamatsu Cancer Research Fund
- JP23ym0126809 Ministry of Education, Culture, Sports, Science and Technology
- JP24ym0126809 Ministry of Education, Culture, Sports, Science and Technology
- A20H0054100 Ministry of Education, Culture, Sports, Science and Technology
- T23KK01530 Ministry of Education, Culture, Sports, Science and Technology
- T22K195590 Ministry of Education, Culture, Sports, Science and Technology
- A22H031460 Ministry of Education, Culture, Sports, Science and Technology
- T23K183130 Ministry of Education, Culture, Sports, Science and Technology
- T23K195050 Ministry of Education, Culture, Sports, Science and Technology
- T24K199920 Ministry of Education, Culture, Sports, Science and Technology
- IFO Research Communications (2024)
- Oceanic Wellness Foundation (2024)
- Princess Takamatsu Cancer Research Fund
- Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yutaka Miura
- Laboratory for Chemistry and Life ScienceInstitute of Innovative Research, Tokyo Institute of TechnologyYokohamaKanagawaJapan
- Department of Life Science and Technology, School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaKanagawaJapan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
44
|
Al-Obaidi I, Sandhu C, Qureshi B, Seymour LW. The implications of oncolytic viruses targeting fibroblasts in enhancing the antitumoural immune response. Heliyon 2024; 10:e39204. [PMID: 39502212 PMCID: PMC11535324 DOI: 10.1016/j.heliyon.2024.e39204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Oncolytic viruses (OVs) are an emerging immunotherapy platform that selectively target tumour cells, inducing immunogenic cell death. This reverses the 'immune-desert' phenotype of tumours, enhancing antitumour immunity. However, oncolytic virotherapy has shown limited efficacy in solid tumours due to the presence of protumoural, immunosuppressive cancer-associated fibroblasts (CAFs). Recent studies have explored OVs that specifically target CAFs to enhance antitumoural immune responses, with promising results. Nevertheless, detailed interrogation of the experimental design of these studies casts doubt on their potential for successful clinical translation. Most studies targeted CAFs non-specifically, failing to acknowledge CAF heterogeneity, with antitumoural CAFs also present. Thus, use of transcriptomics is advisable to provide more focused targeting, limiting potential off-target toxicity. Furthermore, experiments to date have largely been conducted in murine models that do not faithfully recapitulate tumour microenvironments, potentially biasing the efficacy observed. Future work should make use of humanised patient-derived xenograft murine models for animal studies, after which primary human tumour biopsies should be utilised to more closely represent the patient population for maximal translation relevance. Additionally, approaches to enhance the antitumoural immune responses of this therapy should be prioritised, with the ultimate aim of achieving complete remission, which has not yet been observed pre-clinically.
Collapse
Affiliation(s)
- Ibrahem Al-Obaidi
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
- The Queen's College, High Street. Oxford, OX1 4AW, UK
| | - Ciaran Sandhu
- The Queen's College, High Street. Oxford, OX1 4AW, UK
| | - Bilal Qureshi
- Somerville College, Woodstock Road, Oxford, OX2 6HD, UK
| | - Leonard W. Seymour
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
45
|
Yu S, Wang S, Wang X, Xu X. The axis of tumor-associated macrophages, extracellular matrix proteins, and cancer-associated fibroblasts in oncogenesis. Cancer Cell Int 2024; 24:335. [PMID: 39375726 PMCID: PMC11459962 DOI: 10.1186/s12935-024-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The extracellular matrix (ECM) is a complex, dynamic network of multiple macromolecules that serve as a crucial structural and physical scaffold for neighboring cells. In the tumor microenvironment (TME), ECM proteins play a significant role in mediating cellular communication between cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Revealing the ECM modification of the TME necessitates the intricate signaling cascades that transpire among diverse cell populations and ECM proteins. The advent of single-cell sequencing has enabled the identification and refinement of specific cellular subpopulations, which has substantially enhanced our comprehension of the intricate milieu and given us a high-resolution perspective on the diversity of ECM proteins. However, it is essential to integrate single-cell data and establish a coherent framework. In this regard, we present a comprehensive review of the relationships among ECM, TAMs, and CAFs. This encompasses insights into the ECM proteins released by TAMs and CAFs, signaling integration in the TAM-ECM-CAF axis, and the potential applications and limitations of targeted therapies for CAFs. This review serves as a reliable resource for focused therapeutic strategies while highlighting the crucial role of ECM proteins as intermediates in the TME.
Collapse
Affiliation(s)
- Shuhong Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Siyu Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
46
|
Carlomagno S, Setti C, Ortolani F, Sivori S. Pancreatic ductal adenocarcinoma microenvironment: Soluble factors and cancer associated fibroblasts as modulators of NK cell functions. Immunol Lett 2024; 269:106898. [PMID: 39019404 DOI: 10.1016/j.imlet.2024.106898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is the most frequent pancreatic cancer and represents one of the most aggressive human neoplasms. Typically identified at advance stage disease, most PDAC tumors are unresectable and resistant to standard therapies. The immunosuppressive microenvironment in PDAC impedes tumor control but a greater understanding of the complex stromal interactions within the tumor microenvironment (TME) and the development of strategies capable of restoring antitumor effector immune responses could be crucial to fight this aggressive tumor and its spread. Natural Killer (NK) cells play a crucial role in cancer immunosurveillance and represent an attractive target for immunotherapies, both as cell therapy and as a pharmaceutical target. This review describes some crucial components of the PDAC TME (collagens, soluble factors and fibroblasts) that can influence the presence, phenotype and function of NK cells in PDAC patients tumor tissue. This focused overview highlights the therapeutic relevance of dissecting the complex stromal composition to define new strategies for NK cell-based immunotherapies to improve the treatment of PDAC.
Collapse
Affiliation(s)
- Simona Carlomagno
- Department of Medicine (DMED), University of Udine, Piazzale Kolbe 4, Udine 33100, Italy.
| | - Chiara Setti
- Department of Experimental Medicine (DIMES), University of Genoa, Via Leon Battista Alberti 2, Genoa 16132, Italy
| | - Fulvia Ortolani
- Department of Medicine (DMED), University of Udine, Piazzale Kolbe 4, Udine 33100, Italy
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, Via Leon Battista Alberti 2, Genoa 16132, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
47
|
Santi MD, Zhang M, Asam K, Yu G, Dong PM, Sheehan DH, Aouizerat BE, Thomas CM, Viet CT, Ye Y. Perineural Invasion Is Associated With Function-evoked Pain and Altered Extracellular Matrix in Patients With Head and Neck Squamous Cell Carcinoma. THE JOURNAL OF PAIN 2024; 25:104615. [PMID: 38936749 DOI: 10.1016/j.jpain.2024.104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is painful, and perineural invasion (PNI) has been associated with the worst pain. Pain due to HNSCC is diverse and may vary based on clinicopathological factors. This study aims to characterize different pain patterns linked with PNI, its influence on daily functioning, and gain insights into molecular changes and pathways associated with PNI-related pain in HNSCC patients. We conducted a cross-sectional study across 3 medical centers (n = 114), assessing pain phenotypes and their impact on daily functioning using 2 self-reported pain questionnaires, given to patients prior to their cancer surgery. Furthermore, we conducted RNA-seq analysis utilizing the The Cancer Genome Atlas dataset of HNSCC tumor from patients (n = 192) to identify genes relevant to both PNI and pain. Upon adjusting for demographic and clinicopathological variables using linear regression models, we found that PNI independently predicted function-evoked pain according to the University of Calfornia San Francisco Oral Cancer Pain Questionnaire, as well as the worst pain intensity reported in the Brief Pain Inventory. Distinct pain patterns were observed to be associated with daily activities in varying manners. Our molecular analyses revealed significant disruptions in pathways associated with the extracellular matrix structure and organization. The top differentially expressed genes linked to the extracellular matrix are implicated in cancer development, pain, and neurodegenerative diseases. Our data underscore the importance of properly categorizing pain phenotypes in future studies aiming to uncover mechanistic underpinnings of pain. Additionally, we have compiled a list of genes of interest that could serve as targets for both cancer and cancer pain management. PERSPECTIVE: PNI independently predicts function-evoked pain. Different pain phenotypes affect daily activities differently. We identified a list of candidate genes involved in the extracellular matrix structure and function that can be targeted for both cancer and cancer pain control.
Collapse
Affiliation(s)
- Maria D Santi
- Translational Research Center, College of Dentistry, New York University, New York, New York; Department of Molecular Pathobiology, Pain Research Center, College of Dentistry, New York University, New York, New York
| | - Morgan Zhang
- Translational Research Center, College of Dentistry, New York University, New York, New York; Department of Molecular Pathobiology, Pain Research Center, College of Dentistry, New York University, New York, New York
| | - Kesava Asam
- Translational Research Center, College of Dentistry, New York University, New York, New York
| | - Gary Yu
- Rory Meyers College of Nursing, New York University, New York, New York
| | - Phuong M Dong
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, California
| | - Delaney H Sheehan
- Department of Otolaryngology - Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bradley E Aouizerat
- Translational Research Center, College of Dentistry, New York University, New York, New York
| | - Carissa M Thomas
- Department of Otolaryngology - Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chi T Viet
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, California
| | - Yi Ye
- Translational Research Center, College of Dentistry, New York University, New York, New York; Department of Molecular Pathobiology, Pain Research Center, College of Dentistry, New York University, New York, New York.
| |
Collapse
|
48
|
Kim SM, Jang YJ. Enzymatic activity of fibroblast activation protein-α is essential for TGF-β1-induced fibroblastic differentiation of human periodontal ligament cells. Exp Cell Res 2024; 442:114230. [PMID: 39222867 DOI: 10.1016/j.yexcr.2024.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Human periodontal ligament cells (hPDLCs) contain multipotent postnatal stem cells that can differentiate into PDL fibroblasts, osteoblasts, and cementoblasts. Interaction between the extracellular environment and stem cells is an important factor for differentiation into other progenitor cells. To identify cell surface molecules that induce PDL fibroblastic differentiation, we developed a series of monoclonal antibodies against membrane/ECM molecules. One of these antibodies, an anti-PDL25 antibody, recognizes approximately a 100 kDa protein, and this antigenic molecule accumulates in the periodontal ligament region of tooth roots. By mass spectrometric analysis, we found that the antigenic molecule recognized by the anti-PDL25 antibody is fibroblast activation protein α (FAPα). The expression level of FAPα/PDL25 increased in TGF-β1-induced PDL fibroblasts, and this protein was localized in the cell boundaries and elongated processes of the fibroblastic cells. Ectopic expression of FAPα induced fibroblastic differentiation. In contrast, expression of representative markers for PDL differentiation was decreased by knock down and antibody blocking of FAPα/PDL25. Inhibition of dipeptidyl peptidase activity by a potent FAPα inhibitor dramatically inhibited PDL fibroblastic marker expression but did not affect in cell proliferation and migration.
Collapse
Affiliation(s)
- Seong-Min Kim
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea; Department of Oral Biochemistry, School of Dentistry, Dankook University, Cheonan, 31116, South Korea.
| |
Collapse
|
49
|
Dong L, Li Y, Song X, Sun C, Song X. SFRP1 mediates cancer-associated fibroblasts to suppress cancer cell proliferation and migration in head and neck squamous cell carcinoma. BMC Cancer 2024; 24:1165. [PMID: 39300373 PMCID: PMC11411997 DOI: 10.1186/s12885-024-12907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs), as key cell populations in the tumor microenvironment (TME), play a crucial role in tumor regulation. Previous studies on a prognostic signature of 8 CAF-related genes in head and neck squamous cell carcinoma (HNSCC) revealed that Secreted frizzled-related protein 1 (SFRP1) is one of the hub genes closely related to CAFs. SFRP1 is deficiently expressed in numerous types of cancer and is classified as a tumor suppressor gene. However, the role of SFRP1 in TME regulation in HNSCC remains unclear. This study aimed to explore the role of SFRP1 in the proliferation and migration of HNSCC cells by mediating CAFs and their regulatory mechanisms. METHODS The expression differences, prognosis, and immune infiltration of SFRP1 in HNSCC were analyzed using the TIMER and GEPIA2 databases. The expression of SFRP1 in HNSCC tumor tissues, as well as the expression and secretion of SFRP1 in CAFs and tumor cells, were examined. An indirect co-culture system was constructed to detect the proliferation, migration, and apoptosis of HNSCC cells, and to clarify the effect of SFRP1 on tumor cells by mediating CAFs. Furthermore, the expression and secretion of 10 cytokines derived from CAFs that act on immune cells were verified. RESULTS SFRP1 was differently expressed in HNSCC tumor tissues and highly expressed in CAFs. SFRP1 inhibited the proliferation and migration of tumor cells and promoted apoptosis by mediating CAFs. The detection of CAFs-derived factors suggested that the mechanism of action of SFRP1 was associated with the regulation of immune cells. CONCLUSION SFRP1 inhibits the proliferation and migration of HNSCC cells by mediating CAFs, and the mechanism of action is related to the regulation of immune cells, which may provide new research directions and therapeutic targets for HNSCC.
Collapse
Affiliation(s)
- Lei Dong
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, No.20, Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Yumei Li
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, No.20, Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiaoyu Song
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Qingdao University, Qingdao, China
| | - Caiyu Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, No.20, Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
| | - Xicheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, No.20, Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
| |
Collapse
|
50
|
Ariyoshi M, Yuge R, Kitadai Y, Shimizu D, Miyamoto R, Yamashita K, Hiyama Y, Takigawa H, Urabe Y, Oka S. WEE1 Inhibitor Adavosertib Exerts Antitumor Effects on Colorectal Cancer, Especially in Cases with p53 Mutations. Cancers (Basel) 2024; 16:3136. [PMID: 39335109 PMCID: PMC11429655 DOI: 10.3390/cancers16183136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Inhibition of WEE1, a key regulator of the G2/M checkpoint of the cell cycle, induces apoptosis by initiating mitosis without repairing DNA damage. However, the effects of WEE1 inhibitors on the tumor immune microenvironment in colorectal cancer (CRC) remain unclear. Here, we investigated the association between WEE1 expression and CRC clinicopathological features using surgically resected CRC specimens and assessed the antitumor effects of a WEE1 inhibitor using CRC cell lines and orthotopic transplantation mouse models. WEE1 expression was not correlated with the clinicopathological features of CRC. The WEE1 inhibitor suppressed cell proliferation in a concentration-dependent manner in all CRC cell lines. It also increased the percentage of cells in the G2/M phase and apoptotic cells, especially in cell lines with p53 mutations, but did not alter these cell percentages in most p53 wild-type cell lines. In the orthotopic mouse model of CRC, tumor volume was significantly reduced in the WEE1 inhibitor-treated group compared to that in the control group. RNA sequencing and immunohistochemistry analyses of mouse tumors revealed that treatment with the WEE1 inhibitor activated tumor immunity and suppressed stromal reactions. These results demonstrate the potential antitumor effects of WEE1 inhibitors in CRC, particularly in patients with p53 mutations.
Collapse
Affiliation(s)
| | - Ryo Yuge
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-0037, Japan; (M.A.); (Y.K.); (D.S.); (R.M.); (K.Y.); (Y.H.); (H.T.); (Y.U.); (S.O.)
| | | | | | | | | | | | | | | | | |
Collapse
|