1
|
Romet-Lemonne G, Leduc C, Jégou A, Wioland H. Mechanics of Single Cytoskeletal Filaments. Annu Rev Biophys 2025; 54:303-327. [PMID: 39929532 DOI: 10.1146/annurev-biophys-030722-120914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The cytoskeleton comprises networks of different biopolymers, which serve various cellular functions. To accomplish these tasks, their mechanical properties are of particular importance. Understanding them requires detailed knowledge of the mechanical properties of the individual filaments that make up these networks, in particular, microtubules, actin filaments, and intermediate filaments. Far from being homogeneous beams, cytoskeletal filaments have complex mechanical properties, which are directly related to the specific structural arrangement of their subunits. They are also versatile, as the filaments' mechanics and biochemistry are tightly coupled, and their properties can vary with the cellular context. In this review, we summarize decades of research on cytoskeletal filament mechanics, highlighting their most salient features and discussing recent insights from this active field of research.
Collapse
Affiliation(s)
| | - Cécile Leduc
- Université Paris-Cité, CNRS, Institut Jacques Monod, Paris, France; , , ,
| | - Antoine Jégou
- Université Paris-Cité, CNRS, Institut Jacques Monod, Paris, France; , , ,
| | - Hugo Wioland
- Université Paris-Cité, CNRS, Institut Jacques Monod, Paris, France; , , ,
| |
Collapse
|
2
|
Uyeda TQP, Yamazaki Y, Kijima ST, Noguchi TQP, Ngo KX. Multiple Mechanisms to Regulate Actin Functions: "Fundamental" Versus Lineage-Specific Mechanisms and Hierarchical Relationships. Biomolecules 2025; 15:279. [PMID: 40001582 PMCID: PMC11853071 DOI: 10.3390/biom15020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Eukaryotic actin filaments play a central role in numerous cellular functions, with each function relying on the interaction of actin filaments with specific actin-binding proteins. Understanding the mechanisms that regulate these interactions is key to uncovering how actin filaments perform diverse roles at different cellular locations. Several distinct classes of actin regulatory mechanisms have been proposed and experimentally supported. However, these mechanisms vary in their nature and hierarchy. For instance, some operate under the control of others, highlighting hierarchical relationships. Additionally, while certain mechanisms are fundamental and ubiquitous across eukaryotes, others are lineage-specific. Here, we emphasize the fundamental importance and functional significance of the following actin regulatory mechanisms: the biochemical regulation of actin nucleators, the ATP hydrolysis-dependent aging of actin filaments, thermal fluctuation- and mechanical strain-dependent conformational changes of actin filaments, and cooperative conformational changes induced by actin-binding proteins.
Collapse
Affiliation(s)
- Taro Q. P. Uyeda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Shinjuku, Japan
| | - Yosuke Yamazaki
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Kanagawa, Japan;
| | - Saku T. Kijima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Ibaraki, Japan;
| | - Taro Q. P. Noguchi
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, Miyakonojo 885-0006, Miyazaki, Japan;
| | - Kien Xuan Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan;
| |
Collapse
|
3
|
Matsubayashi HT, Razavi S, Rock TW, Nakajima D, Nakamura H, Kramer DA, Matsuura T, Chen B, Murata S, Nomura SM, Inoue T. Light-guided actin polymerization drives directed motility in protocells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617543. [PMID: 39464024 PMCID: PMC11507749 DOI: 10.1101/2024.10.14.617543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Motility is a hallmark of life's dynamic processes, enabling cells to actively chase prey, repair wounds, and shape organs. Recreating these intricate behaviors using well-defined molecules remains a major challenge at the intersection of biology, physics, and molecular engineering. Although the polymerization force of the actin cytoskeleton is characterized as a primary driver of cell motility, recapitulating this process in protocellular systems has proven elusive. The difficulty lies in the daunting task of distilling key components from motile cells and integrating them into model membranes in a physiologically relevant manner. To address this, we developed a method to optically control actin polymerization with high spatiotemporal precision within cell-mimetic lipid vesicles known as giant unilamellar vesicles (GUVs). Within these active protocells, the reorganization of actin networks triggered outward membrane extensions as well as the unidirectional movement of GUVs at speeds of up to 0.43 μm/min, comparable to typical adherent mammalian cells. Notably, our findings reveal a synergistic interplay between branched and linear actin forms in promoting membrane protrusions, highlighting the cooperative nature of these cytoskeletal elements. This approach offers a powerful platform for unraveling the intricacies of cell migration, designing synthetic cells with active morphodynamics, and advancing bioengineering applications, such as self-propelled delivery systems and autonomous tissue-like materials.
Collapse
Affiliation(s)
- Hideaki T. Matsubayashi
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
| | - Shiva Razavi
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University
- Department of Biological Engineering, School of Engineering, Massachusetts Institute of Technology
| | - T. Willow Rock
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| | - Daichi Nakajima
- Department of Robotics, Graduate School of Engineering, Tohoku University
| | - Hideki Nakamura
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
- Hakubi Center for Advanced Research, Kyoto University
- Department of Synthetic Chemistry and Biological Chemistry, School of Engineering, Kyoto University
| | - Daniel A. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University
| | | | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University
| | - Satoshi Murata
- Department of Robotics, Graduate School of Engineering, Tohoku University
| | | | - Takanari Inoue
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| |
Collapse
|
4
|
Kuroda R. Left-Right Asymmetry in Invertebrates: From Molecules to Organisms. Annu Rev Cell Dev Biol 2024; 40:97-117. [PMID: 38985858 DOI: 10.1146/annurev-cellbio-111822-010628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Although most animals appear symmetric externally, they exhibit chirality within their body cavity, i.e., in terms of asymmetric organ position, directional organ looping, and lateralized organ function. Left-right (LR) asymmetry is determined genetically by intricate molecular interactions that occur during development. Key genes have been elucidated in several species. There are common mechanisms in vertebrates and invertebrates, but some appear to exhibit unique mechanisms. This review focuses on LR asymmetry formation in invertebrates, particularly Drosophila, ascidians, and mollusks. It aims to understand the role of the genes that are key to creating LR asymmetry and how chirality information is converted/transmitted across the hierarchies from molecules to cells and from cells to tissues.
Collapse
Affiliation(s)
- Reiko Kuroda
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM), World Premier International Research Center Initiative (WPI), Hiroshima University, Hiroshima, Japan
- Frontier Research Institute, Chubu University, Kasugai, Japan;
| |
Collapse
|
5
|
Neahring L, Cho NH, He Y, Liu G, Fernandes J, Rux CJ, Nakos K, Subramanian R, Upadhyayula S, Yildiz A, Dumont S. Torques within and outside the human spindle balance twist at anaphase. J Cell Biol 2024; 223:e202312046. [PMID: 38869473 PMCID: PMC11176257 DOI: 10.1083/jcb.202312046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
At each cell division, nanometer-scale motors and microtubules give rise to the micron-scale spindle. Many mitotic motors step helically around microtubules in vitro, and most are predicted to twist the spindle in a left-handed direction. However, the human spindle exhibits only slight global twist, raising the question of how these molecular torques are balanced. Here, we find that anaphase spindles in the epithelial cell line MCF10A have a high baseline twist, and we identify factors that both increase and decrease this twist. The midzone motors KIF4A and MKLP1 are together required for left-handed twist at anaphase, and we show that KIF4A generates left-handed torque in vitro. The actin cytoskeleton also contributes to left-handed twist, but dynein and its cortical recruitment factor LGN counteract it. Together, our work demonstrates that force generators regulate twist in opposite directions from both within and outside the spindle, preventing strong spindle twist during chromosome segregation.
Collapse
Affiliation(s)
- Lila Neahring
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Nathan H. Cho
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Yifei He
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Gaoxiang Liu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jonathan Fernandes
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Caleb J. Rux
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- UC Berkeley/UC San Francisco Graduate Group in Bioengineering, Berkeley, CA, USA
| | - Konstantinos Nakos
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Srigokul Upadhyayula
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ahmet Yildiz
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Physics Department, University of California Berkeley, Berkeley, CA, USA
| | - Sophie Dumont
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California San Francisco, San Francisco, CA, USA
- UC Berkeley/UC San Francisco Graduate Group in Bioengineering, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Li X, Chen B. Dynamics of multicellular swirling on micropatterned substrates. Proc Natl Acad Sci U S A 2024; 121:e2400804121. [PMID: 38900800 PMCID: PMC11214149 DOI: 10.1073/pnas.2400804121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Chirality plays a crucial role in biology, as it is highly conserved and fundamentally important in the developmental process. To better understand the relationship between the chirality of individual cells and that of tissues and organisms, we develop a generalized mechanics model of chiral polarized particles to investigate the swirling dynamics of cell populations on substrates. Our analysis reveals that cells with the same chirality can form distinct chiral patterns on ring-shaped or rectangular substrates. Interestingly, our studies indicate that an excessively strong or weak individual cellular chirality hinders the formation of such chiral patterns. Our studies also indicate that there exists the influence distance of substrate boundaries in chiral patterns. Smaller influence distances are observed when cell-cell interactions are weaker. Conversely, when cell-cell interactions are too strong, multiple cells tend to be stacked together, preventing the formation of chiral patterns on substrates in our analysis. Additionally, we demonstrate that the interaction between cells and substrate boundaries effectively controls the chiral distribution of cellular orientations on ring-shaped substrates. This research highlights the significance of coordinating boundary features, individual cellular chirality, and cell-cell interactions in governing the chiral movement of cell populations and provides valuable mechanics insights into comprehending the intricate connection between the chirality of single cells and that of tissues and organisms.
Collapse
Affiliation(s)
- Xi Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou310027, People’s Republic of China
| | - Bin Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou310027, People’s Republic of China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, People’s Republic of China
| |
Collapse
|
7
|
Maxian O, Mogilner A. Helical motors and formins synergize to compact chiral filopodial bundles: A theoretical perspective. Eur J Cell Biol 2024; 103:151383. [PMID: 38237507 DOI: 10.1016/j.ejcb.2023.151383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/28/2024] Open
Abstract
Chiral actin bundles have been shown to play an important role in cell dynamics, but our understanding of the molecular mechanisms which combine to generate chirality remains incomplete. To address this, we numerically simulate a crosslinked filopodial bundle under the actions of helical myosin motors and/or formins and examine the collective buckling and twisting of the actin bundle. We first show that a number of proposed mechanisms to buckle polymerizing actin bundles without motor activity fail under biologically-realistic parameters. We then demonstrate that a simplified model of myosin spinning action at the bundle base effectively "braids" the bundle, but cannot control compaction at the fiber tips. Finally, we show that formin-mediated polymerization and motor activity can act synergitically to compact filopodium bundles, as motor activity bends filaments into shapes that activate twist forces induced by formins. Stochastic fluctuations of actin polymerization rates and slower cross linking dynamics both increase buckling and decrease compaction. We discuss implications of our findings for mechanisms of cytoskeletal chirality.
Collapse
Affiliation(s)
- Ondrej Maxian
- Courant Institute, New York University, New York, NY 10012, USA; Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60615, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60615, USA
| | - Alex Mogilner
- Courant Institute, New York University, New York, NY 10012, USA; Department of Biology, New York University, New York, NY 10012, USA.
| |
Collapse
|
8
|
Glazenburg MM, Hettema NM, Laan L, Remy O, Laloux G, Brunet T, Chen X, Tee YH, Wen W, Rizvi MS, Jolly MK, Riddell M. Perspectives on polarity - exploring biological asymmetry across scales. J Cell Sci 2024; 137:jcs261987. [PMID: 38441500 PMCID: PMC11382653 DOI: 10.1242/jcs.261987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
In this Perspective, Journal of Cell Science invited researchers working on cell and tissue polarity to share their thoughts on unique, emerging or open questions relating to their field. The goal of this article is to feature 'voices' from scientists around the world and at various career stages, to bring attention to innovative and thought-provoking topics of interest to the cell biology community. These voices discuss intriguing questions that consider polarity across scales, evolution, development and disease. What can yeast and protists tell us about the evolution of cell and tissue polarity in animals? How are cell fate and development influenced by emerging dynamics in cell polarity? What can we learn from atypical and extreme polarity systems? How can we arrive at a more unified biophysical understanding of polarity? Taken together, these pieces demonstrate the broad relevance of the fascinating phenomenon of cell polarization to diverse fundamental biological questions.
Collapse
Affiliation(s)
- Marieke Margaretha Glazenburg
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - Nynke Marije Hettema
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - Liedewij Laan
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - Ophélie Remy
- Institut de Duve, UCLouvain, 75 avenue Hippocrate, 1200 Brussels, Belgium
| | - Géraldine Laloux
- Institut de Duve, UCLouvain, 75 avenue Hippocrate, 1200 Brussels, Belgium
| | - Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR 3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, 25-28 rue du docteur Roux, 75015 Paris, France
| | - Xin Chen
- Howard Hughes Medical Institute and Department of Biology, Johns Hopkins University, Levi Hall 137, 3400 North Charles Street, Baltimore, MD 21218-2685, USA
| | - Yee Han Tee
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Mohd Suhail Rizvi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Meghan Riddell
- Department of Physiology and Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| |
Collapse
|
9
|
Yamazaki Y, Miyata Y, Morigaki K, Miyazaki M. Controlling Physical and Biochemical Parameters of Actin Nucleation Using a Patterned Model Lipid Membrane. NANO LETTERS 2024; 24:1825-1834. [PMID: 38294155 DOI: 10.1021/acs.nanolett.3c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Self-assembly of nanoscale actin cytoskeletal proteins into filamentous networks requires organizing actin nucleation areas on the plasma membrane through recruiting actin nucleators and nucleation-promoting factors (NPFs) to the areas. To investigate impacts of the nucleation geometry on actin network assembly, we localized NPF or nucleator on defined micropatterns of laterally mobile lipid bilayers confined in a framework of a polymerized lipid bilayer. We demonstrated that actin network assembly in purified protein mixtures was confined on NPF- or nucleator-localized fluid bilayers. By controlling the shape and size of nucleation areas as well as the density and types of localized NPFs and nucleators, we showed that these parameters regulate actin network architectures. Actin network assembly in Xenopus egg extracts was also spatially controlled by patterning bilayers containing phosphatidylinositol 4,5-bisphoshate (PI(4,5)P2), an essential lipid signaling mediator. Therefore, the system provides a promising platform to investigate the physical and biochemical principles for actin network assembly.
Collapse
Affiliation(s)
- Yosuke Yamazaki
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Yuuri Miyata
- Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan
| | - Kenichi Morigaki
- Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan
- Biosignal Research Center, Kobe University, Hyogo 657-8501, Japan
| | - Makito Miyazaki
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris F-75005, France
| |
Collapse
|
10
|
Neahring L, He Y, Cho NH, Liu G, Fernandes J, Rux CJ, Nakos K, Subramanian R, Upadhyayula S, Yildiz A, Dumont S. Torques within and outside the human spindle balance twist at anaphase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570990. [PMID: 38405786 PMCID: PMC10888964 DOI: 10.1101/2023.12.10.570990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
At each cell division, nanometer-scale motors and microtubules give rise to the micron-scale spindle. Many mitotic motors step helically around microtubules in vitro, and most are predicted to twist the spindle in a left-handed direction. However, the human spindle exhibits only slight global twist, raising the question of how these molecular torques are balanced. Here, using lattice light sheet microscopy, we find that anaphase spindles in the epithelial cell line MCF10A have a high baseline twist, and we identify factors that both increase and decrease this twist. The midzone motors KIF4A and MKLP1 are redundantly required for left-handed twist at anaphase, and we show that KIF4A generates left-handed torque in vitro. The actin cytoskeleton also contributes to left-handed twist, but dynein and its cortical recruitment factor LGN counteract it. Together, our work demonstrates that force generators regulate twist in opposite directions from both within and outside the spindle, preventing strong spindle twist during chromosome segregation.
Collapse
Affiliation(s)
- Lila Neahring
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Developmental & Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Yifei He
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Nathan H. Cho
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Gaoxiang Liu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jonathan Fernandes
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Caleb J. Rux
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- UC Berkeley/UC San Francisco Graduate Group in Bioengineering, Berkeley, CA, USA
| | - Konstantinos Nakos
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Srigokul Upadhyayula
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ahmet Yildiz
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Physics Department, University of California Berkeley, Berkeley, CA, USA
| | - Sophie Dumont
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Developmental & Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California San Francisco, San Francisco, CA, USA
- UC Berkeley/UC San Francisco Graduate Group in Bioengineering, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Sato Y, Yoshimura K, Matsuda K, Haraguchi T, Marumo A, Yamagishi M, Sato S, Ito K, Yajima J. Membrane-bound myosin IC drives the chiral rotation of the gliding actin filament around its longitudinal axis. Sci Rep 2023; 13:19908. [PMID: 37963943 PMCID: PMC10646037 DOI: 10.1038/s41598-023-47125-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Myosin IC, a single-headed member of the myosin I family, specifically interacts with anionic phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2) in the cell membrane via the pleckstrin homology domain located in the myosin IC tail. Myosin IC is widely expressed and physically links the cell membrane to the actin cytoskeleton; it plays various roles in membrane-associated physiological processes, including establishing cellular chirality, lipid transportation, and mechanosensing. In this study, we evaluated the motility of full-length myosin IC of Drosophila melanogaster via the three-dimensional tracking of quantum dots bound to actin filaments that glided over a membrane-bound myosin IC-coated surface. The results revealed that myosin IC drove a left-handed rotational motion in the gliding actin filament around its longitudinal axis, indicating that myosin IC generated a torque perpendicular to the gliding direction of the actin filament. The quantification of the rotational motion of actin filaments on fluid membranes containing different PI(4,5)P2 concentrations revealed that the rotational pitch was longer at lower PI(4,5)P2 concentrations. These results suggest that the torque generated by membrane-bound myosin IC molecules can be modulated based on the phospholipid composition of the cell membrane.
Collapse
Affiliation(s)
- Yusei Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Kohei Yoshimura
- Department of Biology, Graduate School of Science, Chiba University, 1-33, Inage, Chiba, Japan
| | - Kyohei Matsuda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Takeshi Haraguchi
- Department of Biology, Graduate School of Science, Chiba University, 1-33, Inage, Chiba, Japan
| | - Akisato Marumo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Masahiko Yamagishi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Suguru Sato
- Department of Biology, Graduate School of Science, Chiba University, 1-33, Inage, Chiba, Japan
| | - Kohji Ito
- Department of Biology, Graduate School of Science, Chiba University, 1-33, Inage, Chiba, Japan.
| | - Junichiro Yajima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
- Komaba Institute for Science, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
- Research Center for Complex Systems Biology, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
12
|
Li W, Chung WL, Kozlov MM, Medalia O, Geiger B, Bershadsky AD. Chiral growth of adherent filopodia. Biophys J 2023; 122:3704-3721. [PMID: 37301982 PMCID: PMC10541518 DOI: 10.1016/j.bpj.2023.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/03/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
Adherent filopodia are elongated finger-like membrane protrusions, extending from the edges of diverse cell types and participating in cell adhesion, spreading, migration, and environmental sensing. The formation and elongation of filopodia are driven by the polymerization of parallel actin filaments, comprising the filopodia cytoskeletal core. Here, we report that adherent filopodia, formed during the spreading of cultured cells on galectin-8-coated substrates, tend to change the direction of their extension in a chiral fashion, acquiring a left-bent shape. Cryoelectron tomography examination indicated that turning of the filopodia tip to the left is accompanied by the displacement of the actin core bundle to the right of the filopodia midline. Reduction of the adhesion to galectin-8 by treatment with thiodigalactoside abolished this filopodia chirality. By modulating the expression of a variety of actin-associated filopodia proteins, we identified myosin-X and formin DAAM1 as major filopodia chirality promoting factors. Formin mDia1, actin filament elongation factor VASP, and actin filament cross-linker fascin were also shown to be involved. Thus, the simple actin cytoskeleton of filopodia, together with a small number of associated proteins are sufficient to drive a complex navigation process, manifested by the development of left-right asymmetry in these cellular protrusions.
Collapse
Affiliation(s)
- Wenhong Li
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Wen-Lu Chung
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Benjamin Geiger
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Alexander D Bershadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
13
|
Zhao Y, Yang J, Liu M, Zhao J. Switchable Double Inversion of Chirality in a Helical Polyelectrolyte. ACS Macro Lett 2023:667-672. [PMID: 37156738 DOI: 10.1021/acsmacrolett.3c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Switchable inversion of chirality between opposite handedness by varying pH is discovered for a histidine pendant polymer, polymethyl (4-vinylbenzoyl) histidinate (PBHis), as demonstrated by the circular dichroism as well as the changes of hydrodynamic radius measured by fluorescence correlation spectroscopy at the single molecular level. The polyelectrolyte is found to take an M-helicity below pH 8.0 and change into P-helicity above pH 8.0. Such helicity further inverses into M-chirality above pH 10.6. All these helical structures with opposite handedness can be switched using pH variations. The mechanism of such a unique phenomenon is attributed to the protonation and deprotonation of the imidazole group and the hydroxide-ion-mediated hydrogen bonding, which determine the mutual orientation between the adjacent side groups under the hydrogen bonds and π-π stacking and therefore the handedness of the helical structure.
Collapse
Affiliation(s)
- Yang Zhao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfa Yang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Zhao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Actin polymerisation and crosslinking drive left-right asymmetry in single cell and cell collectives. Nat Commun 2023; 14:776. [PMID: 36774346 PMCID: PMC9922260 DOI: 10.1038/s41467-023-35918-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/06/2023] [Indexed: 02/13/2023] Open
Abstract
Deviations from mirror symmetry in the development of bilateral organisms are common but the mechanisms of initial symmetry breaking are insufficiently understood. The actin cytoskeleton of individual cells self-organises in a chiral manner, but the molecular players involved remain essentially unidentified and the relationship between chirality of an individual cell and cell collectives is unclear. Here, we analysed self-organisation of the chiral actin cytoskeleton in individual cells on circular or elliptical patterns, and collective cell alignment in confined microcultures. Screening based on deep-learning analysis of actin patterns identified actin polymerisation regulators, depletion of which suppresses chirality (mDia1) or reverses chirality direction (profilin1 and CapZβ). The reversed chirality is mDia1-independent but requires the function of actin-crosslinker α-actinin1. A robust correlation between the effects of a variety of actin assembly regulators on chirality of individual cells and cell collectives is revealed. Thus, actin-driven cell chirality may underlie tissue and organ asymmetry.
Collapse
|
15
|
Carling PJ, Ryan BJ, McGuinness W, Kataria S, Humble SW, Milde S, Duce JA, Kapadia N, Zuercher WJ, Davis JB, Di Daniel E, Wade-Martins R. Multiparameter phenotypic screening for endogenous TFEB and TFE3 translocation identifies novel chemical series modulating lysosome function. Autophagy 2023; 19:692-705. [PMID: 35786165 PMCID: PMC9851200 DOI: 10.1080/15548627.2022.2095834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The accumulation of toxic protein aggregates in multiple neurodegenerative diseases is associated with defects in the macroautophagy/autophagy-lysosome pathway. The amelioration of disease phenotypes across multiple models of neurodegeneration can be achieved through modulating the master regulator of lysosome function, TFEB (transcription factor EB). Using a novel multi-parameter high-throughput screen for cytoplasmic:nuclear translocation of endogenous TFEB and the related transcription factor TFE3, we screened the Published Kinase Inhibitor Set 2 (PKIS2) library as proof of principle and to identify kinase regulators of TFEB and TFE3. Given that TFEB and TFE3 are responsive to cellular stress we have established assays for cellular toxicity and lysosomal function, critical to ensuring the identification of hit compounds with only positive effects on lysosome activity. In addition to AKT inhibitors which regulate TFEB localization, we identified a series of quinazoline-derivative compounds that induced TFEB and TFE3 translocation. A novel series of structurally-related analogs was developed, and several compounds induced TFEB and TFE3 translocation at higher potency than previously screened compounds. KINOMEscan and cell-based KiNativ kinase profiling revealed high binding for the PRKD (protein kinase D) family of kinases, suggesting good selectivity for these compounds. We describe and utilize a cellular target-validation platform using CRISPRi knockdown and orthogonal PRKD inhibitors to demonstrate that the activity of these compounds is independent of PRKD inhibition. The more potent analogs induced subsequent upregulation of the CLEAR gene network and cleared pathological HTT protein in a cellular model of proteinopathy, demonstrating their potential to alleviate neurodegeneration-relevant phenotypes. Abbreviations: AD: Alzheimer disease; AK: adenylate kinase; CLEAR: coordinated lysosomal expression and regulation; CQ: chloroquine; HD: Huntington disease; PD: Parkinson disease; PKIS2: Published Kinase Inhibitor Set 2; PRKD: protein kinase D; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Phillippa J Carling
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.,Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Brent J Ryan
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - William McGuinness
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Shikha Kataria
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.,Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Stewart W Humble
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.,Inherited Neurodegenerative Diseases Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD USA
| | - Stefan Milde
- ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Cambridge
| | - James A Duce
- ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Cambridge
| | - Nirav Kapadia
- Structural Genomics Consortium, UNC, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - William J Zuercher
- Structural Genomics Consortium, UNC, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - John B Davis
- Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Elena Di Daniel
- Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Sun X, Alushin GM. Cellular force-sensing through actin filaments. FEBS J 2022; 290:2576-2589. [PMID: 35778931 PMCID: PMC9945651 DOI: 10.1111/febs.16568] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023]
Abstract
The actin cytoskeleton orchestrates cell mechanics and facilitates the physical integration of cells into tissues, while tissue-scale forces and extracellular rigidity in turn govern cell behaviour. Here, we discuss recent evidence that actin filaments (F-actin), the core building blocks of the actin cytoskeleton, also serve as molecular force sensors. We delineate two classes of proteins, which interpret forces applied to F-actin through enhanced binding interactions: 'mechanically tuned' canonical actin-binding proteins, whose constitutive F-actin affinity is increased by force, and 'mechanically switched' proteins, which bind F-actin only in the presence of force. We speculate mechanically tuned and mechanically switched actin-binding proteins are biophysically suitable for coordinating cytoskeletal force-feedback and mechanical signalling processes, respectively. Finally, we discuss potential mechanisms mediating force-activated actin binding, which likely occurs both through the structural remodelling of F-actin itself and geometric rearrangements of higher-order actin networks. Understanding the interplay of these mechanisms will enable the dissection of force-activated actin binding's specific biological functions.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University. New York, NY, USA.,Correspondence: ;
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University. New York, NY, USA.,Correspondence: ;
| |
Collapse
|
17
|
How torque on formins is relaxed strongly affects cellular swirling. Biophys J 2022; 121:2952-2961. [PMID: 35773996 PMCID: PMC9388394 DOI: 10.1016/j.bpj.2022.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/05/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Chirality is a common and essential characteristic at varied scales of living organisms. By adapting the rotational clutch-filament model we previously developed, we investigate the effect of torque relaxation of a formin on cellular chiral swirling. Since it is still unclear how the torque on a formin is exactly relaxed, we probe three types of torque relaxation, as suggested in the literature. Our analysis indicates that, when a formin periodically undergoes positive and negative rotation during processive capping to relax the torque, cells hardly rotate. When the switch between the positive and the negative rotation during the processive capping is randomly regulated by the torque, our analysis indicates that cells can only slightly rotate either counterclockwise or clockwise. When a formin relaxes the torque by transiently loosening its contact either with the membrane at its anchored site or with the actin filament, we find that cells can prominently rotate either counterclockwise or clockwise, in good consistency with the experiment. Thus, our studies indicate that how the torque on a formin is relaxed strongly affects cellular swirling and suggest an efficient type of torque relaxation in switching cellular swirling.
Collapse
|
18
|
Kadzik RS, Homa KE, Kovar DR. F-Actin Cytoskeleton Network Self-Organization Through Competition and Cooperation. Annu Rev Cell Dev Biol 2021; 36:35-60. [PMID: 33021819 DOI: 10.1146/annurev-cellbio-032320-094706] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many fundamental cellular processes such as division, polarization, endocytosis, and motility require the assembly, maintenance, and disassembly of filamentous actin (F-actin) networks at specific locations and times within the cell. The particular function of each network is governed by F-actin organization, size, and density as well as by its dynamics. The distinct characteristics of different F-actin networks are determined through the coordinated actions of specific sets of actin-binding proteins (ABPs). Furthermore, a cell typically assembles and uses multiple F-actin networks simultaneously within a common cytoplasm, so these networks must self-organize from a common pool of shared globular actin (G-actin) monomers and overlapping sets of ABPs. Recent advances in multicolor imaging and analysis of ABPs and their associated F-actin networks in cells, as well as the development of sophisticated in vitro reconstitutions of networks with ensembles of ABPs, have allowed the field to start uncovering the underlying principles by which cells self-organize diverse F-actin networks to execute basic cellular functions.
Collapse
Affiliation(s)
- Rachel S Kadzik
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; , .,Department of Molecular BioSciences, Northwestern University, Evanston, Illinois 60208, USA;
| | - Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; ,
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; , .,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
19
|
CYK-1/Formin activation in cortical RhoA signaling centers promotes organismal left-right symmetry breaking. Proc Natl Acad Sci U S A 2021; 118:2021814118. [PMID: 33972425 PMCID: PMC8157923 DOI: 10.1073/pnas.2021814118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Proper left-right symmetry breaking is essential for animal development, and in many cases, this process is actomyosin-dependent. In Caenorhabditis elegans embryos active torque generation in the actomyosin layer promotes left-right symmetry breaking by driving chiral counterrotating cortical flows. While both Formins and Myosins have been implicated in left-right symmetry breaking and both can rotate actin filaments in vitro, it remains unclear whether active torques in the actomyosin cortex are generated by Formins, Myosins, or both. We combined the strength of C. elegans genetics with quantitative imaging and thin film, chiral active fluid theory to show that, while Non-Muscle Myosin II activity drives cortical actomyosin flows, it is permissive for chiral counterrotation and dispensable for chiral symmetry breaking of cortical flows. Instead, we find that CYK-1/Formin activation in RhoA foci is instructive for chiral counterrotation and promotes in-plane, active torque generation in the actomyosin cortex. Notably, we observe that artificially generated large active RhoA patches undergo rotations with consistent handedness in a CYK-1/Formin-dependent manner. Altogether, we conclude that CYK-1/Formin-dependent active torque generation facilitates chiral symmetry breaking of actomyosin flows and drives organismal left-right symmetry breaking in the nematode worm.
Collapse
|
20
|
Hu J, Liu T, Choo P, Wang S, Reese T, Sample AD, Odom TW. Single-Nanoparticle Orientation Sensing by Deep Learning. ACS CENTRAL SCIENCE 2020; 6:2339-2346. [PMID: 33376795 PMCID: PMC7760486 DOI: 10.1021/acscentsci.0c01252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 06/12/2023]
Abstract
This paper describes a computational imaging platform to determine the orientation of anisotropic optical probes under differential interference contrast (DIC) microscopy. We established a deep-learning model based on data sets of DIC images collected from metal nanoparticle optical probes at different orientations. This model predicted the in-plane angle of gold nanorods with an error below 20°, the inherent limit of the DIC method. Using low-symmetry gold nanostars as optical probes, we demonstrated the detection of in-plane particle orientation in the full 0-360° range. We also showed that orientation predictions of the same particle were consistent even with variations in the imaging background. Finally, the deep-learning model was extended to enable simultaneous prediction of in-plane and out-of-plane rotation angles for a multibranched nanostar by concurrent analysis of DIC images measured at multiple wavelengths.
Collapse
Affiliation(s)
- Jingtian Hu
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Tingting Liu
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Priscilla Choo
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Shengjie Wang
- Paul
G. Allen Center for Computer
Science & Engineering, University of
Washington, Seattle, Washington 98195, United States
| | - Thaddeus Reese
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Alexander D. Sample
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W. Odom
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| |
Collapse
|
21
|
Mechanically tuning actin filaments to modulate the action of actin-binding proteins. Curr Opin Cell Biol 2020; 68:72-80. [PMID: 33160108 DOI: 10.1016/j.ceb.2020.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022]
Abstract
In cells, the actin cytoskeleton is regulated by an interplay between mechanics and biochemistry. A key mechanism, which has emerged based on converging indications from structural, cellular, and biophysical data, depicts the actin filament as a mechanically tunable substrate: mechanical stress applied to an actin filament induces conformational changes, which modify the binding and the regulatory action of actin-binding proteins. For a long time, however, direct evidence of this mechanotransductive mechanism was very scarce. This situation is changing rapidly, and recent in vitro single-filament studies using different techniques have revealed that several actin-binding proteins are able to sense tension, curvature, and/or torsion, applied to actin filaments. Here, we discuss these recent advances and their possible implications.
Collapse
|
22
|
Pimpale LG, Middelkoop TC, Mietke A, Grill SW. Cell lineage-dependent chiral actomyosin flows drive cellular rearrangements in early Caenorhabditis elegans development. eLife 2020; 9:54930. [PMID: 32644039 PMCID: PMC7394549 DOI: 10.7554/elife.54930] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/05/2020] [Indexed: 12/15/2022] Open
Abstract
Proper positioning of cells is essential for many aspects of development. Daughter cell positions can be specified via orienting the cell division axis during cytokinesis. Rotatory actomyosin flows during division have been implied in specifying and reorienting the cell division axis, but how general such reorientation events are, and how they are controlled, remains unclear. We followed the first nine divisions of Caenorhabditis elegans embryo development and demonstrate that chiral counter-rotating flows arise systematically in early AB lineage, but not in early P/EMS lineage cell divisions. Combining our experiments with thin film active chiral fluid theory we identify a mechanism by which chiral counter-rotating actomyosin flows arise in the AB lineage only, and show that they drive lineage-specific spindle skew and cell reorientation events. In conclusion, our work sheds light on the physical processes that underlie chiral morphogenesis in early development.
Collapse
Affiliation(s)
- Lokesh G Pimpale
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Biotechnology Center, TU Dresden, Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Teije C Middelkoop
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Biotechnology Center, TU Dresden, Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Alexander Mietke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Chair of Scientific Computing for Systems Biology, Faculty of Computer Science, TU Dresden, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany.,Department of Mathematics, Massachusetts Institute of Technology, Cambridge, United States
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Biotechnology Center, TU Dresden, Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| |
Collapse
|
23
|
Le S, Yu M, Bershadsky A, Yan J. Mechanical regulation of formin-dependent actin polymerization. Semin Cell Dev Biol 2020; 102:73-80. [DOI: 10.1016/j.semcdb.2019.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
|
24
|
Abstract
Left-right (L-R) asymmetry of visceral organs in animals is established during embryonic development via a stepwise process. While some steps are conserved, different strategies are employed among animals for initiating the breaking of body symmetry. In zebrafish (teleost),
Xenopus (amphibian), and mice (mammal), symmetry breaking is elicited by directional fluid flow at the L-R organizer, which is generated by motile cilia and sensed by mechanoresponsive cells. In contrast, birds and reptiles do not rely on the cilia-driven fluid flow. Invertebrates such as
Drosophila and snails employ another distinct mechanism, where the symmetry breaking process is underpinned by cellular chirality acquired downstream of the molecular interaction of myosin and actin. Here, we highlight the convergent entry point of actomyosin interaction and planar cell polarity to the diverse L-R symmetry breaking mechanisms among animals.
Collapse
Affiliation(s)
- Hiroshi Hamada
- Organismal Pattterning Lab, RIKEN Center for Biosystems Dynamics Research, RIKEN, Kobe, Hyogo, Japan
| | - Patrick Tam
- Embryology Unit, Children's Medical Research Institute and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Suzuki E, Chikireddy J, Dmitrieff S, Guichard B, Romet-Lemonne G, Jégou A. Geometrical Constraints Greatly Hinder Formin mDia1 Activity. NANO LETTERS 2020; 20:22-32. [PMID: 31797667 PMCID: PMC7086397 DOI: 10.1021/acs.nanolett.9b02241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Formins are one of the central players in the assembly of most actin networks in cells. The sensitivity of these processive molecular machines to mechanical tension is now well established. However, how the activity of formins is affected by geometrical constraints related to network architecture, such as filament cross-linking and formin spatial confinement, remains largely unknown. Combining microfluidics and micropatterning, we reconstituted in vitro mDia1 formin-elongated filament bundles induced by fascin, with different geometrical constraints on the formins, and measured the impact of these constraints on formin elongation rate and processivity. When filaments are not bundled, the anchoring details of formins have only a mild impact on their processivity and do not affect their elongation rate. When formins are unanchored, we show that filament bundling by fascin reduces both their elongation rate and their processivity. Strikingly, when filaments elongated by surface-anchored formins are cross-linked together, formin elongation rate immediately decreases and processivity is reduced up to 24-fold depending on the cumulative impact of formin rotational and translational freedom. Our results reveal an unexpected crosstalk between the constraints at the filament and the formin levels. We anticipate that in cells the molecular details of formin anchoring to the plasma membrane strongly modulate formin activity at actin filament barbed ends.
Collapse
|
26
|
The many implications of actin filament helicity. Semin Cell Dev Biol 2019; 102:65-72. [PMID: 31862222 DOI: 10.1016/j.semcdb.2019.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/15/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
One of the best known features of actin filaments is their helical structure. A number of essential properties emerge from this molecular arrangement of actin subunits. Here, we give an overview of the mechanical and biochemical implications of filament helicity, at different scales. In particular, a number of recent studies have highlighted the role of filament helicity in the adaptation to and the generation of mechanical torsion, and in the modulation of the filament's interaction with very different actin-binding proteins (such as myosins, cross-linkers, formins, and cofilin). Helicity can thus be seen as a key factor for the regulation of actin assembly, and as a link between biochemical regulators and their mechanical context. In addition, actin filament helicity appears to play an essential role in the establishment of chirality at larger scales, up to the organismal scale. Altogether, helicity appears to be an essential feature contributing to the regulation of actin assembly dynamics, and to actin's ability to organize cells at a larger scale.
Collapse
|
27
|
Qiao Z, Sun H, Ng JTY, Ma Q, Koh SH, Mu Y, Miao Y, Gao YG. Structural and computational examination of the Arabidopsis profilin-Poly-P complex reveals mechanistic details in profilin-regulated actin assembly. J Biol Chem 2019; 294:18650-18661. [PMID: 31653702 PMCID: PMC6901310 DOI: 10.1074/jbc.ra119.011307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/18/2019] [Indexed: 11/06/2022] Open
Abstract
Profilins are abundant cytosolic proteins that are universally expressed in eukaryotes and that regulate actin filament elongation by binding to both monomeric actin (G-actin) and formin proteins. The atypical profilin Arabidopsis AtPRF3 has been reported to cooperate with canonical profilin isoforms in suppressing formin-mediated actin polymerization during plant innate immunity responses. AtPRF3 has a 37-amino acid-long N-terminal extension (NTE), and its suppressive effect on actin assembly is derived from enhanced interaction with the polyproline (Poly-P) of the formin AtFH1. However, the molecular mechanism remains unclear. Here, we solved the crystal structures of AtPRF3Δ22 and AtPRF3Δ37, as well as AtPRF2 apo form and in complex with AtFH1 Poly-P at 1.5-3.6 Å resolutions. By combining these structures with molecular modeling, we found that AtPRF3Δ22 NTE has high plasticity, with a primary "closed" conformation that can adopt an open conformation that enables Poly-P binding. Furthermore, using molecular dynamics simulation and free-energy calculations of protein-protein binding, along with experimental validation, we show that the AtPRF3Δ22 binds to Poly-P in an adaptive manner, thereby enabling different binding modes that maintain the interaction through disordered sequences. Together, our structural and simulation results suggest that the dynamic conformational changes of the AtPRF3 NTE upon Poly-P binding modulate their interactions to fine-tune formin-mediated actin assembly.
Collapse
Affiliation(s)
- Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - He Sun
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Justin Tze Yang Ng
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Qianqian Ma
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Si Hui Koh
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 637371 Singapore.
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore; Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 138673 Singapore; Nanyang Technological University Institute of Structural Biology, Nanyang Technological University, 639798 Singapore.
| |
Collapse
|
28
|
Wioland H, Suzuki E, Cao L, Romet-Lemonne G, Jegou A. The advantages of microfluidics to study actin biochemistry and biomechanics. J Muscle Res Cell Motil 2019; 41:175-188. [PMID: 31749040 PMCID: PMC7109186 DOI: 10.1007/s10974-019-09564-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/26/2019] [Indexed: 11/24/2022]
Abstract
The regulated assembly of actin filaments is essential in nearly all cell types. Studying actin assembly dynamics can pose many technical challenges. A number of these challenges can be overcome by using microfluidics to observe and manipulate single actin filaments under an optical microscope. In particular, microfluidics can be tremendously useful for applying different mechanical stresses to actin filaments and determining how the physical context of the filaments affects their regulation by biochemical factors. In this review, we summarize the main features of microfluidics for the study of actin assembly dynamics, and we highlight some recent developments that have emerged from the combination of microfluidics and other techniques. We use two case studies to illustrate our points: the rapid assembly of actin filaments by formins and the disassembly of filaments by actin depolymerizing factor (ADF)/cofilin. Both of these protein families play important roles in cells. They regulate actin assembly through complex molecular mechanisms that are sensitive to the filaments’ mechanical context, with multiple activities that need to be quantified separately. Microfluidics-based experiments have been extremely useful for gaining insight into the regulatory actions of these two protein families.
Collapse
Affiliation(s)
- Hugo Wioland
- Institut Jacques Monod, CNRS, Université de Paris, 75013, Paris, France
| | - Emiko Suzuki
- Institut Jacques Monod, CNRS, Université de Paris, 75013, Paris, France
| | - Luyan Cao
- Institut Jacques Monod, CNRS, Université de Paris, 75013, Paris, France
| | | | - Antoine Jegou
- Institut Jacques Monod, CNRS, Université de Paris, 75013, Paris, France.
| |
Collapse
|
29
|
MELEKOĞLU A, KARAHAN O. Hücre İskeleti Yapıları ve Hastalıklarla Etkileşimleri. ACTA MEDICA ALANYA 2019. [DOI: 10.30565/medalanya.528070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
ADF/cofilin regulation from a structural viewpoint. J Muscle Res Cell Motil 2019; 41:141-151. [DOI: 10.1007/s10974-019-09546-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/17/2019] [Indexed: 01/11/2023]
|
31
|
Abstract
Formins polymerize actin filaments for the cytokinetic contractile ring. Using in vitro reconstitution of fission yeast contractile ring precursor nodes containing formins and myosin, a new study shows that formin-mediated polymerization is strongly inhibited upon the capture and pulling of actin filaments by myosin, a result that has broad implications for cellular mechanosensing.
Collapse
Affiliation(s)
| | - Brandon G Horan
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
32
|
Cells with Broken Left–Right Symmetry: Roles of Intrinsic Cell Chirality in Left–Right Asymmetric Epithelial Morphogenesis. Symmetry (Basel) 2019. [DOI: 10.3390/sym11040505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chirality is a fundamental feature in biology, from the molecular to the organismal level. An animal has chirality in the left–right asymmetric structure and function of its body. In general, chirality occurring at the molecular and organ/organism scales has been studied separately. However, recently, chirality was found at the cellular level in various species. This “cell chirality” can serve as a link between molecular chirality and that of an organ or animal. Cell chirality is observed in the structure, motility, and cytoplasmic dynamics of cells and the mechanisms of cell chirality formation are beginning to be understood. In all cases studied so far, proteins that interact chirally with F-actin, such as formin and myosin I, play essential roles in cell chirality formation or the switching of a cell’s enantiomorphic state. Thus, the chirality of F-actin may represent the ultimate origin of cell chirality. Links between cell chirality and left–right body asymmetry are also starting to be revealed in various animal species. In this review, the mechanisms of cell chirality formation and its roles in left–right asymmetric development are discussed, with a focus on the fruit fly Drosophila, in which many of the pioneering studies were conducted.
Collapse
|
33
|
Torsional stress generated by ADF/cofilin on cross-linked actin filaments boosts their severing. Proc Natl Acad Sci U S A 2019; 116:2595-2602. [PMID: 30692249 PMCID: PMC6377502 DOI: 10.1073/pnas.1812053116] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Actin filaments assemble into ordered networks able to exert forces and shape cells. In response, filaments are exposed to mechanical stress which can potentially modulate their interactions with regulatory proteins. We developed in vitro tools to manipulate single filaments and study the impact of mechanics on the activity of actin depolymerizing factor (ADF)/cofilin, the central player in actin disassembly. While tension has almost no effect, curvature enhances severing by ADF/cofilin. We also discovered a mechanism that boosts the severing of anchored filaments: When binding to these filaments, ADF/cofilin locally increases their natural helicity, generating a torque that accelerates filament fragmentation up to 100-fold. As a consequence, interconnected filament networks are severed far more efficiently than independent filaments. Proteins of the actin depolymerizing factor (ADF)/cofilin family are the central regulators of actin filament disassembly. A key function of ADF/cofilin is to sever actin filaments. However, how it does so in a physiological context, where filaments are interconnected and under mechanical stress, remains unclear. Here, we monitor and quantify the action of ADF/cofilin in different mechanical situations by using single-molecule, single-filament, and filament network techniques, coupled to microfluidics. We find that local curvature favors severing, while tension surprisingly has no effect on cofilin binding and weakly enhances severing. Remarkably, we observe that filament segments that are held between two anchoring points, thereby constraining their twist, experience a mechanical torque upon cofilin binding. We find that this ADF/cofilin-induced torque does not hinder ADF/cofilin binding, but dramatically enhances severing. A simple model, which faithfully recapitulates our experimental observations, indicates that the ADF/cofilin-induced torque increases the severing rate constant 100-fold. A consequence of this mechanism, which we verify experimentally, is that cross-linked filament networks are severed by cofilin far more efficiently than nonconnected filaments. We propose that this mechanochemical mechanism is critical to boost ADF/cofilin’s ability to sever highly connected filament networks in cells.
Collapse
|
34
|
Zimmermann D, Kovar DR. Feeling the force: formin's role in mechanotransduction. Curr Opin Cell Biol 2019; 56:130-140. [PMID: 30639952 DOI: 10.1016/j.ceb.2018.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 11/15/2022]
Abstract
Fundamental cellular processes such as division, polarization, and motility require the tightly regulated spatial and temporal assembly and disassembly of the underlying actin cytoskeleton. The actin cytoskeleton has been long viewed as a central player facilitating diverse mechanotransduction pathways due to the notion that it is capable of receiving, processing, transmitting, and generating mechanical stresses. Recent work has begun to uncover the roles of mechanical stresses in modulating the activity of key regulatory actin-binding proteins and their interactions with actin filaments, thereby controlling the assembly (formin and Arp2/3 complex) and disassembly (ADF/Cofilin) of actin filament networks. In this review, we will focus on discussing the current molecular understanding of how members of the formin protein family sense and respond to forces and the potential implications for formin-mediated mechanotransduction in cells.
Collapse
Affiliation(s)
- Dennis Zimmermann
- Massachusetts Institute of Technology, David H. Koch Institute for Integrative Cancer Research, 77 Massachusetts Ave, 76-361F, Cambridge, MA 02139-4307, United States.
| | - David R Kovar
- The University of Chicago, Department of Molecular Genetics and Cell Biology, 90 E. 58th Street, CSLC 212, Chicago, IL 60637, United States.
| |
Collapse
|
35
|
Abstract
Formin homology proteins (formins) are a highly conserved family of cytoskeletal remodeling proteins that are involved in a diverse array of cellular functions. Formins are best known for their ability to regulate actin dynamics, but the same functional domains also govern stability and organization of microtubules. It is thought that this dual activity allows them to coordinate the activity of these two major cytoskeletal networks and thereby influence cellular architecture. Golgi ribbon assembly is dependent upon cooperative interactions between actin filaments and cytoplasmic microtubules originating both at the Golgi itself and from the centrosome. Similarly, centrosome assembly, centriole duplication, and centrosome positioning are also reliant on a dialogue between both cytoskeletal networks. As presented in this chapter, a growing body of evidence suggests that multiple formin proteins play essential roles in these central cellular processes.
Collapse
Affiliation(s)
- John Copeland
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
36
|
Courtemanche N. Mechanisms of formin-mediated actin assembly and dynamics. Biophys Rev 2018; 10:1553-1569. [PMID: 30392063 DOI: 10.1007/s12551-018-0468-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Cellular viability requires tight regulation of actin cytoskeletal dynamics. Distinct families of nucleation-promoting factors enable the rapid assembly of filament nuclei that elongate and are incorporated into diverse and specialized actin-based structures. In addition to promoting filament nucleation, the formin family of proteins directs the elongation of unbranched actin filaments. Processive association of formins with growing filament ends is achieved through continuous barbed end binding of the highly conserved, dimeric formin homology (FH) 2 domain. In cooperation with the FH1 domain and C-terminal tail region, FH2 dimers mediate actin subunit addition at speeds that can dramatically exceed the rate of spontaneous assembly. Here, I review recent biophysical, structural, and computational studies that have provided insight into the mechanisms of formin-mediated actin assembly and dynamics.
Collapse
Affiliation(s)
- Naomi Courtemanche
- Department of Genetics, Cell and Developmental Biology, University of Minnesota, 420 Washington Ave SE, 6-130 MCB, Minneapolis, MN, 55455, USA.
| |
Collapse
|
37
|
Kubota H, Miyazaki M, Ogawa T, Shimozawa T, Kinosita K, Ishiwata S. Processive Nanostepping of Formin mDia1 Loosely Coupled with Actin Polymerization. NANO LETTERS 2018; 18:6617-6624. [PMID: 30251858 DOI: 10.1021/acs.nanolett.8b03277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Formins are actin-binding proteins that construct nanoscale machinery with the growing barbed end of actin filaments and serve as key regulators of actin polymerization and depolymerization. To maintain the regulation of actin dynamics, formins have been proposed to processively move at every association or dissociation of a single actin molecule toward newly formed barbed ends. However, the current models for the motile mechanisms were established without direct observation of the elementary processes of this movement. Here, using optical tweezers, we demonstrate that formin mDia1 moves stepwise, observed at a nanometer spatial resolution. The movement was composed of forward and backward steps with unitary step sizes of 2.8 and -2.4 nm, respectively, which nearly equaled the actin subunit length (∼2.7 nm), consistent with the generally accepted models. However, in addition to steps equivalent to the length of a single actin subunit, those equivalent to the length of two or three subunits were frequently observed. Our findings suggest that the coupling between mDia1 stepping and actin polymerization is not tight but loose, which may be achieved by the multiple binding states of mDia1, providing insights into the synergistic functions of biomolecules for the efficient construction and regulation of nanofilaments.
Collapse
Affiliation(s)
- Hiroaki Kubota
- Department of Physics, Faculty of Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan
| | - Makito Miyazaki
- Department of Physics, Faculty of Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan
| | - Taisaku Ogawa
- Department of Physics, Faculty of Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan
| | - Togo Shimozawa
- Department of Life Science and Medical Bioscience, Faculty of Science and Engineering , Waseda University , 2-2 Wakamatsuchou , Shinjuku-ku, Tokyo 162-8480 , Japan
| | - Kazuhiko Kinosita
- Department of Physics, Faculty of Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan
| |
Collapse
|
38
|
Watanabe N, Tohyama K, Yamashiro S. Mechanostress resistance involving formin homology proteins: G- and F-actin homeostasis-driven filament nucleation and helical polymerization-mediated actin polymer stabilization. Biochem Biophys Res Commun 2018; 506:323-329. [PMID: 30309655 DOI: 10.1016/j.bbrc.2018.09.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/30/2018] [Indexed: 01/28/2023]
Abstract
The actin cytoskeleton has two faces. One side provides the relatively stable scaffold to maintain the shape of cell cortex fit to the organs. The other side rapidly changes morphology in response to extracellular stimuli including chemical signal and physical strain. Our series of studies employing single-molecule speckle analysis of actin have revealed diverse F-actin lifetimes spanning a range of seconds to minutes in live cells. The dynamic part of the actin turnover is tightly coupled with actin nucleation activities of formin homology proteins (formins), which serve as rapid and efficient F-actin restoration mechanisms in cells under physical stress. More recently, our two studies revealed stabilization of F-actin either by actomyosin contractile force or by helical rotation of processively-actin polymerizing diaphanous-related formin mDia1. These findings quantitatively explain our proposed anti-mechanostress cascade in that G-actin released from F-actin upon loss of tension triggers frequent nucleation and subsequent fast elongation of F-actin by formins. This formin-restored F-actin may become specifically stabilized over long distance by helical polymerization-mediated filament untwisting. In this review, we discuss how and to what extent formins-mediated F-actin restoration might confer mechanostress resistance to the cell. We also give thought to the possible involvement of helical polymerization-mediated filament untwisting in the formation of diverse actin architectures including chirality control.
Collapse
Affiliation(s)
- Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Japan.
| | - Kiyoshi Tohyama
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Japan
| | - Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Japan
| |
Collapse
|
39
|
Sakamoto S, Thumkeo D, Ohta H, Zhang Z, Huang S, Kanchanawong P, Fuu T, Watanabe S, Shimada K, Fujihara Y, Yoshida S, Ikawa M, Watanabe N, Saitou M, Narumiya S. mDia1/3 generate cortical F-actin meshwork in Sertoli cells that is continuous with contractile F-actin bundles and indispensable for spermatogenesis and male fertility. PLoS Biol 2018; 16:e2004874. [PMID: 30256801 PMCID: PMC6175529 DOI: 10.1371/journal.pbio.2004874] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 10/08/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
Formin is one of the two major classes of actin binding proteins (ABPs) with nucleation and polymerization activity. However, despite advances in our understanding of its biochemical activity, whether and how formins generate specific architecture of the actin cytoskeleton and function in a physiological context in vivo remain largely obscure. It is also unknown how actin filaments generated by formins interact with other ABPs in the cell. Here, we combine genetic manipulation of formins mammalian diaphanous homolog1 (mDia1) and 3 (mDia3) with superresolution microscopy and single-molecule imaging, and show that the formins mDia1 and mDia3 are dominantly expressed in Sertoli cells of mouse seminiferous tubule and together generate a highly dynamic cortical filamentous actin (F-actin) meshwork that is continuous with the contractile actomyosin bundles. Loss of mDia1/3 impaired these F-actin architectures, induced ectopic noncontractile espin1-containing F-actin bundles, and disrupted Sertoli cell-germ cell interaction, resulting in impaired spermatogenesis. These results together demonstrate the previously unsuspected mDia-dependent regulatory mechanism of cortical F-actin that is indispensable for mammalian sperm development and male fertility.
Collapse
Affiliation(s)
- Satoko Sakamoto
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Dean Thumkeo
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail: (DT); (SN)
| | - Hiroshi Ohta
- Department of Anatomy and Cell Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Zhen Zhang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Shuangru Huang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Takayoshi Fuu
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sadanori Watanabe
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kentaro Shimada
- Research Institute for Microbial Disease, Osaka University, Osaka, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Disease, Osaka University, Osaka, Japan
| | | | - Masahito Ikawa
- Research Institute for Microbial Disease, Osaka University, Osaka, Japan
| | - Naoki Watanabe
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuh Narumiya
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail: (DT); (SN)
| |
Collapse
|
40
|
Yu M, Le S, Efremov AK, Zeng X, Bershadsky A, Yan J. Effects of Mechanical Stimuli on Profilin- and Formin-Mediated Actin Polymerization. NANO LETTERS 2018; 18:5239-5247. [PMID: 29976069 DOI: 10.1021/acs.nanolett.8b02211] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Self-assembling actin filaments not only form the basis of the cytoskeleton network in cells but also are utilized as nanosized building blocks to make novel active matter in which the dynamic polymerization and depolymerization of actin filaments play a key role. Formins belong to a main family of actin nucleation factors that bind to the barbed end of actin filaments and regulate actin polymerization through an interaction with profilin. Due to actomyosin contractility and relative rotation between formin and actin filaments, formin-dependent actin polymerization is subject to force and rotation constraints. However, it remains unclear how force and rotation constraints affect formin-dependent actin polymerization in the presence of profilin. Here, we show that for rotation-unconstrained actin filaments, elongation is accelerated by both force and profilin. The combined effect leads to surprisingly fast actin elongation that can approach the diffusion-limited rate at forces of a few piconewtons. The elongation of rotation-constrained filaments is also accelerated by profilin but is insensitive to applied force. We show that FH2, the main actin binding domain, plays the primary mechanosensing role. Together, the findings not only significantly advance our understanding of the mechanochemical regulation of formin-mediated actin polymerization in cells but also can potentially be utilized to make novel actin-based active matter.
Collapse
Affiliation(s)
- Miao Yu
- Mechanobiology Institute, National University of Singapore , Singapore 117411
- Department of Physics , National University of Singapore , Singapore 117542
| | - Shimin Le
- Mechanobiology Institute, National University of Singapore , Singapore 117411
- Department of Physics , National University of Singapore , Singapore 117542
| | - Artem K Efremov
- Mechanobiology Institute, National University of Singapore , Singapore 117411
- Centre for Bioimaging Sciences , National University of Singapore , Singapore 117546
| | - Xiangjun Zeng
- Department of Physics , National University of Singapore , Singapore 117542
| | - Alexander Bershadsky
- Mechanobiology Institute, National University of Singapore , Singapore 117411
- Department of Molecular Cell Biology , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore , Singapore 117411
- Department of Physics , National University of Singapore , Singapore 117542
- Centre for Bioimaging Sciences , National University of Singapore , Singapore 117546
| |
Collapse
|
41
|
Cao L, Kerleau M, Suzuki EL, Wioland H, Jouet S, Guichard B, Lenz M, Romet-Lemonne G, Jegou A. Modulation of formin processivity by profilin and mechanical tension. eLife 2018; 7:34176. [PMID: 29799413 PMCID: PMC5969902 DOI: 10.7554/elife.34176] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/06/2018] [Indexed: 12/22/2022] Open
Abstract
Formins are major regulators of actin networks. They enhance actin filament dynamics by remaining processively bound to filament barbed ends. How biochemical and mechanical factors affect formin processivity are open questions. Monitoring individual actin filaments in a microfluidic flow, we report that formins mDia1 and mDia2 dissociate faster under higher ionic strength and when actin concentration is increased. Profilin, known to increase the elongation rate of formin-associated filaments, surprisingly decreases the formin dissociation rate, by bringing formin FH1 domains in transient contact with the barbed end. In contrast, piconewton tensile forces applied to actin filaments accelerate formin dissociation by orders of magnitude, largely overcoming profilin-mediated stabilization. We developed a model of formin conformations showing that our data indicates the existence of two different dissociation pathways, with force favoring one over the other. How cells limit formin dissociation under tension is now a key question for future studies.
Collapse
Affiliation(s)
- Luyan Cao
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Mikael Kerleau
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Emiko L Suzuki
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Hugo Wioland
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Sandy Jouet
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | | | - Martin Lenz
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | | | - Antoine Jegou
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| |
Collapse
|
42
|
Helical rotation of the diaphanous-related formin mDia1 generates actin filaments resistant to cofilin. Proc Natl Acad Sci U S A 2018; 115:E5000-E5007. [PMID: 29760064 PMCID: PMC5984536 DOI: 10.1073/pnas.1803415115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The complex interplay between actin regulatory proteins facilitates the formation of diverse cellular actin structures. Formin homology proteins (formins) play an essential role in the formation of actin stress fibers and yeast actin cables, to which the major actin depolymerizing factor cofilin barely associates. In vitro, F-actin decorated with cofilin exhibits a marked increase in the filament twist. On the other hand, a mammalian formin mDia1 rotates along the long-pitch actin helix during processive actin elongation (helical rotation). Helical rotation may impose torsional force on F-actin in the opposite direction of the cofilin-induced twisting. Here, we show that helical rotation of mDia1 converts F-actin resistant to cofilin both in vivo and in vitro. F-actin assembled by mDia1 without rotational freedom became more resistant to the severing and binding activities of cofilin than freely rotatable F-actin. Electron micrographic analysis revealed untwisting of the long-pitch helix of F-actin elongating from mDia1 on tethering of both mDia1 and the pointed end side of the filament. In cells, single molecules of mDia1ΔC63, an activated mutant containing N-terminal regulatory domains, showed tethering to cell structures more frequently than autoinhibited wild-type mDia1 and mDia1 devoid of N-terminal domains. Overexpression of mDia1ΔC63 induced the formation of F-actin, which has prolonged lifetime and accelerates dissociation of cofilin. Helical rotation of formins may thus serve as an F-actin stabilizing mechanism by which a barbed end-bound molecule can enhance the stability of a filament over a long range.
Collapse
|
43
|
mDia1 senses both force and torque during F-actin filament polymerization. Nat Commun 2017; 8:1650. [PMID: 29162803 PMCID: PMC5698482 DOI: 10.1038/s41467-017-01745-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 10/12/2017] [Indexed: 11/08/2022] Open
Abstract
Formins, an important family of force-bearing actin-polymerizing factors, function as homodimers that bind with the barbed end of actin filaments through a ring-like structure assembled from dimerized FH2 domains. It has been hypothesized that force applied to formin may facilitate transition of the FH2 ring from an inhibitory closed conformation to a permissive open conformation, speeding up actin polymerization. We confirm this hypothesis for mDia1 dependent actin polymerization by stretching a single-actin filament in the absence of profilin using magnetic tweezers, and observe that increasing force from 0.5 to 10 pN can drastically speed up the actin polymerization rate. Further, we find that this force-promoted actin polymerization requires torsionally unconstrained actin filament, suggesting that mDia1 also senses torque. As actin filaments are subject to complex mechanical constraints in living cells, these results provide important insights into how formin senses these mechanical constraints and regulates actin organization accordingly.
Collapse
|
44
|
Zimmermann D, Homa KE, Hocky GM, Pollard LW, De La Cruz EM, Voth GA, Trybus KM, Kovar DR. Mechanoregulated inhibition of formin facilitates contractile actomyosin ring assembly. Nat Commun 2017; 8:703. [PMID: 28951543 PMCID: PMC5614989 DOI: 10.1038/s41467-017-00445-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/27/2017] [Indexed: 11/20/2022] Open
Abstract
Cytokinesis physically separates dividing cells by forming a contractile actomyosin ring. The fission yeast contractile ring has been proposed to assemble by Search-Capture-Pull-Release from cytokinesis precursor nodes that include the molecular motor type-II myosin Myo2 and the actin assembly factor formin Cdc12. By successfully reconstituting Search-Capture-Pull in vitro, we discovered that formin Cdc12 is a mechanosensor, whereby myosin pulling on formin-bound actin filaments inhibits Cdc12-mediated actin assembly. We mapped Cdc12 mechanoregulation to its formin homology 1 domain, which facilitates delivery of new actin subunits to the elongating actin filament. Quantitative modeling suggests that the pulling force of the myosin propagates through the actin filament, which behaves as an entropic spring, and thereby may stretch the disordered formin homology 1 domain and impede formin-mediated actin filament elongation. Finally, live cell imaging of mechano-insensitive formin mutant cells established that mechanoregulation of formin Cdc12 is required for efficient contractile ring assembly in vivo. The fission yeast cytokinetic ring assembles by Search-Capture-Pull-Release from precursor nodes that include formin Cdc12 and myosin Myo2. The authors reconstitute Search-Capture-Pull in vitro and find that Myo2 pulling on Cdc12-associated actin filaments mechano-inhibits Cdc12-mediated assembly, which enables proper ring assembly in vivo.
Collapse
Affiliation(s)
- Dennis Zimmermann
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 E. 58th St., CSLC 212, Chicago, IL, 60637, USA
| | - Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 E. 58th St., CSLC 212, Chicago, IL, 60637, USA
| | - Glen M Hocky
- Department of Chemistry, The James Franck Institute and Institute for Biophysical Dynamics and Computation Institute, The University of Chicago, 5735 S. Ellis Ave., Searle Chemistry Laboratory 231, Chicago, IL, 60637, USA
| | - Luther W Pollard
- Department of Molecular Physiology and Biophysics, University of Vermont, 149 Beaumont Ave., HSRF 130, Burlington, VT, 05405, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208114, 266 Whitney Ave., New Haven, CT, 06520-8114, USA
| | - Gregory A Voth
- Department of Chemistry, The James Franck Institute and Institute for Biophysical Dynamics and Computation Institute, The University of Chicago, 5735 S. Ellis Ave., Searle Chemistry Laboratory 231, Chicago, IL, 60637, USA.
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, 149 Beaumont Ave., HSRF 130, Burlington, VT, 05405, USA.
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 E. 58th St., CSLC 212, Chicago, IL, 60637, USA. .,Department of Biochemistry and Molecular Biology, The University of Chicago, 920 E. 58th St., CSLC 212, Chicago, IL, 60637, USA.
| |
Collapse
|
45
|
Abstract
Computational and structural studies have been indispensable in investigating the molecular origins of actin filament mechanical properties and modulation by the regulatory severing protein cofilin. All-atom molecular dynamics simulations of cofilactin filament structures determined by electron cryomicroscopy reveal how cofilin enhances the bending and twisting compliance of actin filaments. Continuum mechanics models suggest that buckled cofilactin filaments localize elastic energy at boundaries between bare and cofilin-decorated segments because of their nonuniform elasticity, thereby accelerating filament severing. Here, we develop mesoscopic length-scale (cofil)actin filament models and evaluate the effects of compressive and twisting loads on strain energy distribution at specific interprotein interfaces. The models reliably capture the filament bending and torsional rigidities and intersubunit torsional flexibility measured experimentally with purified protein components. Buckling is predicted to enhance cofilactin filament severing with minimal effects on cofilin occupancy, whereas filament twisting enhances cofilin dissociation without compromising filament integrity. Preferential severing at actin-cofilactin boundaries of buckled filaments is more prominent than predicted by continuum models because of the enhanced spatial resolution. The models developed here will be valuable for evaluating the effects of filament shape deformations on filament stability and interactions with regulatory proteins, and analysis of single filament manipulation assays.
Collapse
|
46
|
Kubota H, Miyazaki M, Ogawa T, Shimozawa T, Kinosita K, Ishiwata S. Biphasic Effect of Profilin Impacts the Formin mDia1 Force-Sensing Mechanism in Actin Polymerization. Biophys J 2017; 113:461-471. [PMID: 28746856 DOI: 10.1016/j.bpj.2017.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 11/29/2022] Open
Abstract
Formins are force-sensing proteins that regulate actin polymerization dynamics. Here, we applied stretching tension to individual actin filaments under the regulation of formin mDia1 to investigate the mechanical responses in actin polymerization dynamics. We found that the elongation of an actin filament was accelerated to a greater degree by stretching tension for ADP-G-actin than that for ATP-G-actin. An apparent decrease in the critical concentration of G-actin was observed, especially in ADP-G-actin. These results on two types of G-actin were reproduced by a simple kinetic model, assuming the rapid equilibrium between pre- and posttranslocated states of the formin homology domain two dimer. In addition, profilin concentration dramatically altered the force-dependent acceleration of actin filament elongation, which ranged from twofold to an all-or-none response. Even under conditions in which actin depolymerization occurred, applications of a several-piconewton stretching tension triggered rapid actin filament elongation. This extremely high force-sensing mechanism of mDia1 and profilin could be explained by the force-dependent coordination of the biphasic effect of profilin; i.e., an acceleration effect masked by a depolymerization effect became dominant under stretching tension, negating the latter to rapidly enhance the elongation rate. Our findings demonstrate that the biphasic effect of profilin is controlled by mechanical force, thus expanding the function of mDia1 as a mechanosensitive regulator of actin polymerization.
Collapse
Affiliation(s)
- Hiroaki Kubota
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Makito Miyazaki
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan; Waseda Bioscience Research Institute in Singapore (WABIOS), Singapore, Singapore.
| | - Taisaku Ogawa
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Togo Shimozawa
- Department of Life Science and Medical Bioscience, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Kazuhiko Kinosita
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
47
|
Fujiwara I, Narita A. Keeping the focus on biophysics and actin filaments in Nagoya: A report of the 2016 "now in actin" symposium. Cytoskeleton (Hoboken) 2017; 74:450-464. [PMID: 28681410 DOI: 10.1002/cm.21384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023]
Abstract
Regulatory systems in living cells are highly organized, enabling cells to response to various changes in their environments. Actin polymerization and depolymerization are crucial to establish cytoskeletal networks to maintain muscle contraction, cell motility, cell division, adhesion, organism development and more. To share and promote the biophysical understanding of such mechanisms in living creatures, the "Now in Actin Study: -Motor protein research reaching a new stage-" symposium was organized at Nagoya University, Japan on 12 and 13, December 2016. The organizers invited emeritus professor of Nagoya and Osaka Universities Fumio Oosawa and leading scientists worldwide as keynote speakers, in addition to poster presentations on cell motility studies by many researchers. Studies employing various biophysical, biochemical, cell and molecular biological and mathematical approaches provided the latest understanding of mechanisms of cell motility functions driven by actin, microtubules, actin-binding proteins, and other motor proteins.
Collapse
Affiliation(s)
- Ikuko Fujiwara
- Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Akihiro Narita
- Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| |
Collapse
|
48
|
Distinct VASP tetramers synergize in the processive elongation of individual actin filaments from clustered arrays. Proc Natl Acad Sci U S A 2017; 114:E5815-E5824. [PMID: 28667124 DOI: 10.1073/pnas.1703145114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ena/VASP proteins act as actin polymerases that drive the processive elongation of filament barbed ends in membrane protrusions or at the surface of bacterial pathogens. Based on previous analyses of fast and slow elongating VASP proteins by in vitro total internal reflection fluorescence microscopy (TIRFM) and kinetic and thermodynamic measurements, we established a kinetic model of Ena/VASP-mediated actin filament elongation. At steady state, it entails that tetrameric VASP uses one of its arms to processively track growing filament barbed ends while three G-actin-binding sites (GABs) on other arms are available to recruit and deliver monomers to the filament tip, suggesting that VASP operates as a single tetramer in solution or when clustered on a surface, albeit processivity and resistance toward capping protein (CP) differ dramatically between both conditions. Here, we tested the model by variation of the oligomerization state and by increase of the number of GABs on individual polypeptide chains. In excellent agreement with model predictions, we show that in solution the rates of filament elongation directly correlate with the number of free GABs. Strikingly, however, irrespective of the oligomerization state or presence of additional GABs, filament elongation on a surface invariably proceeded with the same rate as with the VASP tetramer, demonstrating that adjacent VASP molecules synergize in the elongation of a single filament. Additionally, we reveal that actin ATP hydrolysis is not required for VASP-mediated filament assembly. Finally, we show evidence for the requirement of VASP to form tetramers and provide an amended model of processive VASP-mediated actin assembly in clustered arrays.
Collapse
|
49
|
Thyssen GN, Fang DD, Turley RB, Florane CB, Li P, Mattison CP, Naoumkina M. A Gly65Val substitution in an actin, GhACT_LI1, disrupts cell polarity and F-actin organization resulting in dwarf, lintless cotton plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:111-121. [PMID: 28078746 DOI: 10.1111/tpj.13477] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
Actin polymerizes to form part of the cytoskeleton and organize polar growth in all eukaryotic cells. Species with numerous actin genes are especially useful for the dissection of actin molecular function due to redundancy and neofunctionalization. Here, we investigated the role of a cotton (Gossypium hirsutum) actin gene in the organization of actin filaments in lobed cotyledon pavement cells and the highly elongated single-celled trichomes that comprise cotton lint fibers. Using mapping-by-sequencing, virus-induced gene silencing, and molecular modeling, we identified the causative mutation of the dominant dwarf Ligon lintless Li1 short fiber mutant as a single Gly65Val amino acid substitution in a polymerization domain of an actin gene, GhACT_LI1 (Gh_D04G0865). We observed altered cell morphology and disrupted organization of F-actin in Li1 plant cells by confocal microscopy. Mutant leaf cells lacked interdigitation of lobes and F-actin did not uniformly decorate the nuclear envelope. While wild-type lint fiber trichome cells contained long longitudinal actin cables, the short Li1 fiber cells accumulated disoriented transverse cables. The polymerization-defective Gly65Val allele in Li1 plants likely disrupts processive elongation of F-actin, resulting in a disorganized cytoskeleton and reduced cell polarity, which likely accounts for the dominant gene action and diverse pleiotropic effects associated with the Li1 mutation. Lastly, we propose a model to account for these effects, and underscore the roles of actin organization in determining plant cell polarity, shape and plant growth.
Collapse
Affiliation(s)
- Gregory N Thyssen
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
- Cotton Chemistry and Utilization Research Unit, USDA-ARS-SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - Rickie B Turley
- Crop Genetics Research Unit, USDA-ARS, 141 Experiment Station Road, Stoneville, MS, 38776, USA
| | - Christopher B Florane
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - Ping Li
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - Christopher P Mattison
- Food Processing and Sensory Quality Research Unit, USDA-ARS-SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - Marina Naoumkina
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| |
Collapse
|
50
|
Abstract
A new study reports that dynamic actin fibers in cells on circular islands self-organize into a swirling counter-clockwise pattern and describes a basic cytoskeletal mechanism for the establishment of left-right asymmetry that is based on myosin contraction and twisting of the formin-actin filament.
Collapse
Affiliation(s)
- Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA; Department of Biology, New York University, 100 Washington Square East, 1009 Silver Center, New York, NY 10003, USA.
| | - Ben Fogelson
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| |
Collapse
|