1
|
Sanchez C, Ramirez A, Hodgson L. Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology. J Microsc 2025; 298:123-184. [PMID: 38357769 PMCID: PMC11324865 DOI: 10.1111/jmi.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Genetically encoded, fluorescent protein (FP)-based Förster resonance energy transfer (FRET) biosensors are microscopy imaging tools tailored for the precise monitoring and detection of molecular dynamics within subcellular microenvironments. They are characterised by their ability to provide an outstanding combination of spatial and temporal resolutions in live-cell microscopy. In this review, we begin by tracing back on the historical development of genetically encoded FP labelling for detection in live cells, which lead us to the development of early biosensors and finally to the engineering of single-chain FRET-based biosensors that have become the state-of-the-art today. Ultimately, this review delves into the fundamental principles of FRET and the design strategies underpinning FRET-based biosensors, discusses their diverse applications and addresses the distinct challenges associated with their implementation. We place particular emphasis on single-chain FRET biosensors for the Rho family of guanosine triphosphate hydrolases (GTPases), pointing to their historical role in driving our understanding of the molecular dynamics of this important class of signalling proteins and revealing the intricate relationships and regulatory mechanisms that comprise Rho GTPase biology in living cells.
Collapse
Affiliation(s)
- Colline Sanchez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrea Ramirez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis Hodgson
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Bertolotti P, Gallinardi F, Ghidoli M, Bertarelli C, Lanzani G, Paternò GM. Photocontrol of bacterial membrane potential regulates antibiotic persistence in B. subtilis. EUROPEAN PHYSICAL JOURNAL PLUS 2025; 140:336. [PMID: 40291950 PMCID: PMC12021945 DOI: 10.1140/epjp/s13360-025-06263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025]
Abstract
Bacterial persistence and resistance to antibiotics pose critical challenges in healthcare and environmental contexts. Recent studies revealing that bacteria possess a dynamic electrical membrane potential open new avenues for influencing bacterial behaviour and drug susceptibility. In this work, we present a novel light-responsive strategy to modulate bacterial antibiotic persistence using Ziapin2, an azobenzene photoswitch previously shown to alter bacterial membrane potential. We selected two broad-spectrum antibiotics with distinct modes of action: Kanamycin, which requires cytosolic uptake to inhibit protein synthesis, and Ampicillin, which targets cell wall polymerization at the cell envelope, to probe the role of membrane potential in antibiotic efficacy. Our findings show that when Bacillus subtilis is exposed to Kanamycin and Ziapin2, photoactivation (470 nm) significantly impacts bacterial viability: under illumination, the previously lethal effects of Kanamycin are markedly reduced, suggesting that membrane potential changes drive altered antibiotic uptake or intracellular accumulation. In contrast, Ampicillin-treated samples remain largely unaffected by light-induced membrane modulation, consistent with its action at the external cell envelope. Taken together, these results indicate that membrane potential manipulation can selectively influence the activity of antibiotics whose intracellular uptake is critical to their function. This proof-of-concept study underscores the potential of non-genetic, light-based interventions to modulate bacterial susceptibility in real time. Future work will expand this approach by exploring additional antibiotic classes and novel azobenzene derivatives, ultimately advancing our understanding of bacterial bioelectric regulation and its applications in antimicrobial therapies.
Collapse
Affiliation(s)
- Pietro Bertolotti
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milan, Italy
| | - Federico Gallinardi
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Biotechnology and Bioscience, Università di Milano – Bicocca, Building U3 – BIOS, Piazza della Scienza 2, 20126 Milan, Italy
| | - Marta Ghidoli
- Department of Chemistry, Materials and Chemical Engineering, “Giulio Natta” Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Chiara Bertarelli
- Department of Chemistry, Materials and Chemical Engineering, “Giulio Natta” Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Guglielmo Lanzani
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Giuseppe Maria Paternò
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
3
|
Zhu J, Liang M, Sun K, Wei Y, Guo R, Zhang L, Shi J, Ma D, Hu Q, Huang G, Lu P. De novo design of transmembrane fluorescence-activating proteins. Nature 2025; 640:249-257. [PMID: 39972138 DOI: 10.1038/s41586-025-08598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/09/2024] [Indexed: 02/21/2025]
Abstract
The recognition of ligands by transmembrane proteins is essential for the exchange of materials, energy and information across biological membranes. Progress has been made in the de novo design of transmembrane proteins1-6, as well as in designing water-soluble proteins to bind small molecules7-12, but de novo design of transmembrane proteins that tightly and specifically bind to small molecules remains an outstanding challenge13. Here we present the accurate design of ligand-binding transmembrane proteins by integrating deep learning and energy-based methods. We designed pre-organized ligand-binding pockets in high-quality four-helix backbones for a fluorogenic ligand, and generated a transmembrane span using gradient-guided hallucination. The designer transmembrane proteins specifically activated fluorescence of the target fluorophore with mid-nanomolar affinity, exhibiting higher brightness and quantum yield compared to those of enhanced green fluorescent protein. These proteins were highly active in the membrane fraction of live bacterial and eukaryotic cells following expression. The crystal and cryogenic electron microscopy structures of the designer protein-ligand complexes were very close to the structures of the design models. We showed that the interactions between ligands and transmembrane proteins within the membrane can be accurately designed. Our work paves the way for the creation of new functional transmembrane proteins, with a wide range of applications including imaging, ligand sensing and membrane transport.
Collapse
Affiliation(s)
- Jingyi Zhu
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Mingfu Liang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Ke Sun
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yu Wei
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Ruiying Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Lijing Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Junhui Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Dan Ma
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Qi Hu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Gaoxingyu Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Peilong Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
4
|
Akabuogu E, Carneiro da Cunha Martorelli V, Krašovec R, Roberts IS, Waigh TA. Emergence of ion-channel-mediated electrical oscillations in Escherichia coli biofilms. eLife 2025; 13:RP92525. [PMID: 40117333 PMCID: PMC11928028 DOI: 10.7554/elife.92525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
Bacterial biofilms are communities of bacteria usually attached to solid strata and often differentiated into complex structures. Communication across biofilms has been shown to involve chemical signaling and, more recently, electrical signaling in Gram-positive biofilms. We report for the first time, community-level synchronized membrane potential dynamics in three-dimensional Escherichia coli biofilms. Two hyperpolarization events are observed in response to light stress. The first requires mechanically sensitive ion channels (MscK, MscL, and MscS) and the second needs the Kch-potassium channel. The channels mediated both local spiking of single E. coli biofilms and long-range coordinated electrical signaling in E. coli biofilms. The electrical phenomena are explained using Hodgkin-Huxley and 3D fire-diffuse-fire agent-based models. These data demonstrate that electrical wavefronts based on potassium ions are a mechanism by which signaling occurs in Gram-negative biofilms and as such may represent a conserved mechanism for communication across biofilms.
Collapse
Affiliation(s)
- Emmanuel Akabuogu
- Division of Infection, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Victor Carneiro da Cunha Martorelli
- Division of Infection, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Rok Krašovec
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health University of Manchester, Manchester, United Kingdom
| | - Ian S Roberts
- Division of Infection, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Thomas A Waigh
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Li J, Shao N, Zhang Y, Liu X, Zhang H, Tian L, Piatkevich KD, Zhang D, Lee HJ. Screening of Vibrational Spectroscopic Voltage Indicator by Stimulated Raman Scattering Microscopy. SMALL METHODS 2025:e2402124. [PMID: 40095346 DOI: 10.1002/smtd.202402124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Genetically encoded voltage indicators (GEVIs) have significantly advanced voltage imaging, offering spatial details at cellular and subcellular levels not easily accessible with electrophysiology. In addition to fluorescence imaging, certain chemical bond vibrations are sensitive to membrane potential changes, presenting an alternative imaging strategy; however, challenges in signal sensitivity and membrane specificity highlight the need to develop vibrational spectroscopic GEVIs (vGEVIs) in mammalian cells. To address this need, a vGEVI screening approach is developed that employs hyperspectral stimulated Raman scattering (hSRS) imaging synchronized with an induced transmembrane voltage (ITV) stimulation, revealing unique spectroscopic signatures of sensors expressed on membranes. Specifically, by screening various rhodopsin-based voltage sensors in live mammalian cells, a characteristic peak associated with retinal bound to the sensor is identified in one of the GEVIs, Archon, which exhibited a 70 cm-1 red shift relative to the membrane-bound retinal. Notably, this peak is responsive to changes in membrane potential. Overall, hSRS-ITV presents a promising platform for screening vGEVIs, paving the way for advancements in vibrational spectroscopic voltage imaging.
Collapse
Affiliation(s)
- Jingyuan Li
- College of Biomedical Engineering & Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310058, China
| | - Ninghui Shao
- College of Biomedical Engineering & Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310058, China
| | - Yongqing Zhang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Xingxin Liu
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Hanbin Zhang
- School of Life Sciences, Westlake Laboratory of Life Sciences and Biomedicine, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, 310024, China
| | - Liangfei Tian
- College of Biomedical Engineering & Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310058, China
| | - Kiryl D Piatkevich
- School of Life Sciences, Westlake Laboratory of Life Sciences and Biomedicine, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, 310024, China
| | - Delong Zhang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou, 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration of Zhejiang University, Hangzhou, 310027, China
| | - Hyeon Jeong Lee
- College of Biomedical Engineering & Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration of Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
6
|
Roy D, Michalet X, Miller EW, Bharadwaj K, Weiss S. Toward measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime. BIOPHYSICAL REPORTS 2025; 5:100196. [PMID: 39798601 PMCID: PMC11835658 DOI: 10.1016/j.bpr.2025.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Membrane potential (MP) changes can provide a simple readout of bacterial functional and metabolic state or stress levels. While several optical methods exist for measuring fast changes in MP in excitable cells, there is a dearth of such methods for absolute and precise measurements of steady-state MPs in bacterial cells. Conventional electrode-based methods for the measurement of MP are not suitable for calibrating optical methods in small bacterial cells. While optical measurement based on Nernstian indicators have been successfully used, they do not provide absolute or precise quantification of MP or its changes. We present a novel, calibrated MP recording approach to address this gap. In this study, we used a fluorescence lifetime-based approach to obtain a single-cell-resolved distribution of the membrane potential and its changes upon extracellular chemical perturbation in a population of bacterial cells for the first time. Our method is based on 1) a unique VoltageFluor (VF) optical transducer, whose fluorescence lifetime varies as a function of MP via photoinduced electron transfer and 2) a quantitative phasor-FLIM analysis for high-throughput readout. This method allows MP changes to be easily visualized, recorded and quantified. By artificially modulating potassium concentration gradients across the membrane using an ionophore, we have obtained a Bacillus subtilis-specific MP versus VF lifetime calibration and estimated the MP for unperturbed B. subtilis cells to be -65 mV (in minimal salts glycerol glutamate [MSgg]), -127 mV (in M9), and that for chemically depolarized cells as -14 mV (in MSgg). We observed a population-level MP heterogeneity of ∼6-10 mV indicating a considerable degree of diversity of physiological and metabolic states among individual cells. Our work paves the way for deeper insights into bacterial electrophysiology and bioelectricity research.
Collapse
Affiliation(s)
- Debjit Roy
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California
| | - Xavier Michalet
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California; California Nano Systems Institute, University of California at Los Angeles, Los Angeles, California.
| | - Evan W Miller
- Departments of Chemistry, Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, California
| | - Kiran Bharadwaj
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California
| | - Shimon Weiss
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California; Department of Physiology, University of California at Los Angeles, Los Angeles, California; California Nano Systems Institute, University of California at Los Angeles, Los Angeles, California; Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
7
|
Brooks FP, Gong D, Davis HC, Park P, Qi Y, Cohen AE. Photophysics-informed two-photon voltage imaging using FRET-opsin voltage indicators. SCIENCE ADVANCES 2025; 11:eadp5763. [PMID: 39772682 PMCID: PMC11708879 DOI: 10.1126/sciadv.adp5763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Microbial rhodopsin-derived genetically encoded voltage indicators (GEVIs) are powerful tools for mapping bioelectrical dynamics in cell culture and in live animals. Förster resonance energy transfer (FRET)-opsin GEVIs use voltage-dependent quenching of an attached fluorophore, achieving high brightness, speed, and voltage sensitivity. However, the voltage sensitivity of most FRET-opsin GEVIs has been reported to decrease or vanish under two-photon (2P) excitation. Here, we investigated the photophysics of the FRET-opsin GEVIs Voltron1 and Voltron2. We found that the previously reported negative-going voltage sensitivities of both GEVIs came from photocycle intermediates, not from the opsin ground states. The voltage sensitivities of both GEVIs were nonlinear functions of illumination intensity; for Voltron1, the sensitivity reversed the sign under low-intensity illumination. Using photocycle-optimized 2P illumination protocols, we demonstrate 2P voltage imaging with Voltron2 in the barrel cortex of a live mouse. These results open the door to high-speed 2P voltage imaging of FRET-opsin GEVIs in vivo.
Collapse
Affiliation(s)
| | | | | | - Pojeong Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Yitong Qi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
8
|
McCaig CD. Long-Distance Electron Transport in Unicellular Organisms and Biofilms. Rev Physiol Biochem Pharmacol 2025; 187:29-38. [PMID: 39838005 DOI: 10.1007/978-3-031-68827-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Electrical forces are widespread in single-celled organisms and underpin sophisticated communication systems. Bacterial biofilm colonies, for example, attract new members electrically. Bacteria also join together end to end and engage in long-distance electron transport along bacterial filaments over centimetres. This transport of electrons across around 10,000 cells separates life-essential redox reactions spatially and keeps "colleagues breathing" in otherwise challenging aquatic sediments.
Collapse
Affiliation(s)
- Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
9
|
Shukla S, Comerci CJ, Süel GM, Jahed Z. Bioelectronic tools for understanding the universal language of electrical signaling across species and kingdoms. Biosens Bioelectron 2025; 267:116843. [PMID: 39426280 DOI: 10.1016/j.bios.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Modern bioelectronic tools are rapidly advancing to detect electric potentials within networks of electrogenic cells, such as cardiomyocytes, neurons, and pancreatic beta cells. However, it is becoming evident that electrical signaling is not limited to the animal kingdom but may be a universal form of cell-cell communication. In this review, we discuss the existing evidence of, and tools used to collect, subcellular, single-cell and network-level electrical signals across kingdoms, including bacteria, plants, fungi, and even viruses. We discuss how cellular networks employ altered electrical "circuitry" and intercellular mechanisms across kingdoms, and we assess the functionality and scalability of cutting-edge nanobioelectronics to collect electrical signatures regardless of cell size, shape, or function. Researchers today aim to design micro- and nano-topographic structures which harness mechanosensitive membrane and cytoskeletal pathways that enable tight electrical coupling to subcellular compartments within high-throughput recording systems. Finally, we identify gaps in current knowledge of inter-species and inter-kingdom electrical signaling and propose critical milestones needed to create a central theory of electrical signaling across kingdoms. Our discussion demonstrates the need for high resolution, high throughput tools which can probe multiple, diverse cell types at once in their native or experimentally-modeled environments. These advancements will not only reveal the underlying biophysical laws governing the universal language of electrical communication, but can enable bidirectional electrical communication and manipulation of biological systems.
Collapse
Affiliation(s)
- Shivani Shukla
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States
| | - Colin J Comerci
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Gürol M Süel
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Zeinab Jahed
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
10
|
Nguyen TN, Shalaby RA, Lee E, Kim SS, Ro Kim Y, Kim S, Je HS, Kwon HS, Chung E. Ultrafast optical imaging techniques for exploring rapid neuronal dynamics. NEUROPHOTONICS 2025; 12:S14608. [PMID: 40017464 PMCID: PMC11867703 DOI: 10.1117/1.nph.12.s1.s14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Optical neuroimaging has significantly advanced our understanding of brain function, particularly through techniques such as two-photon microscopy, which captures three-dimensional brain structures with sub-cellular resolution. However, traditional methods struggle to record fast, complex neuronal interactions in real time, which are crucial for understanding brain networks and developing treatments for neurological diseases such as Alzheimer's, Parkinson's, and chronic pain. Recent advancements in ultrafast imaging technologies, including kilohertz two-photon microscopy, light field microscopy, and event-based imaging, are pushing the boundaries of temporal resolution in neuroimaging. These techniques enable the capture of rapid neural events with unprecedented speed and detail. This review examines the principles, applications, and limitations of these technologies, highlighting their potential to revolutionize neuroimaging and improve the diagnose and treatment of neurological disorders. Despite challenges such as photodamage risks and spatial resolution trade-offs, integrating these approaches promises to enhance our understanding of brain function and drive future breakthroughs in neuroscience and medicine. Continued interdisciplinary collaboration is essential to fully leverage these innovations for advancements in both basic and clinical neuroscience.
Collapse
Affiliation(s)
- Tien Nhat Nguyen
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Reham A. Shalaby
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Eunbin Lee
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Sang Seong Kim
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Young Ro Kim
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts United States
- Harvard Medical School, Department of Radiology, Boston, Massachusetts, United States
| | - Seonghoon Kim
- Tsinghua University, Institute for Brain and Cognitive Sciences, Beijing, China
- Hangzhou Zhuoxi Institute of Brain and Intelligence, Hangzhou, China
| | - Hyunsoo Shawn Je
- Duke-NUS Medical School, Program in Neuroscience and Behavioral Disorders, Singapore
| | - Hyuk-Sang Kwon
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Euiheon Chung
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
- Gwangju Institute of Science and Technology, AI Graduate School, Gwangju, Republic of Korea
| |
Collapse
|
11
|
Roy D, Michalet X, Miller EW, Bharadwaj K, Weiss S. Towards measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598880. [PMID: 38915670 PMCID: PMC11195253 DOI: 10.1101/2024.06.13.598880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Membrane potential (MP) changes can provide a simple readout of bacterial functional and metabolic state or stress levels. While several optical methods exist for measuring fast changes in MP in excitable cells, there is a dearth of such methods for absolute and precise measurements of steady-state membrane potentials (MPs) in bacterial cells. Conventional electrode-based methods for the measurement of MP are not suitable for calibrating optical methods in small bacterial cells. While optical measurement based on Nernstian indicators have been successfully used, they do not provide absolute or precise quantification of MP or its changes. We present a novel, calibrated MP recording approach to address this gap. In this study, we used a fluorescence lifetime-based approach to obtain a single-cell resolved distribution of the membrane potential and its changes upon extracellular chemical perturbation in a population of bacterial cells for the first time. Our method is based on (i) a unique VoltageFluor (VF) optical transducer, whose fluorescence lifetime varies as a function of MP via photoinduced electron transfer (PeT) and (ii) a quantitative phasor-FLIM analysis for high-throughput readout. This method allows MP changes to be easily visualized, recorded and quantified. By artificially modulating potassium concentration gradients across the membrane using an ionophore, we have obtained a Bacillus subtilis-specific MP versus VF lifetime calibration and estimated the MP for unperturbed B. subtilis cells to be -65 mV (in MSgg), 127 mV (in M9) and that for chemically depolarized cells as -14 mV (in MSgg). We observed a population level MP heterogeneity of ~6-10 mV indicating a considerable degree of diversity of physiological and metabolic states among individual cells. Our work paves the way for deeper insights into bacterial electrophysiology and bioelectricity research.
Collapse
Affiliation(s)
- Debjit Roy
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Xavier Michalet
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
- California Nano Systems Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Evan W. Miller
- Departments of Chemistry, Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California at Berkeley, CA 94720, USA
| | - Kiran Bharadwaj
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Shimon Weiss
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095, USA
- California Nano Systems Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
12
|
Mulder OJ, Kostman MP, Almodaimegh A, Edge MD, Larkin JW. An Agent-Based Model of Metabolic Signaling Oscillations in Bacillus subtilis Biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629727. [PMID: 39763919 PMCID: PMC11702635 DOI: 10.1101/2024.12.20.629727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Microbes of nearly every species can form biofilms, communities of cells bound together by a self-produced matrix. It is not understood how variation at the cellular level impacts putatively beneficial, colony-level behaviors, such as cell-to-cell signaling. Here we investigate this problem with an agent-based computational model of metabolically driven electrochemical signaling in Bacillus subtilis biofilms. In this process, glutamate-starved interior cells release potassium, triggering a depolarizing wave that spreads to exterior cells and limits their glutamate uptake. More nutrients diffuse to the interior, temporarily reducing glutamate stress and leading to oscillations. In our model, each cell has a membrane potential coupled to metabolism. As a simulated biofilm grows, collective membrane potential oscillations arise spontaneously as cells deplete nutrients and trigger potassium release, reproducing experimental observations. We further validate our model by comparing spatial signaling patterns and cellular signaling rates with those observed experimentally. By oscillating external glutamate and potassium, we find that biofilms synchronize to external potassium more strongly than to glutamate, providing a potential mechanism for previously observed biofilm synchronization. By tracking cellular glutamate concentrations, we find that oscillations evenly distribute nutrients in space: non-oscillating biofilms have an external layer of well-fed cells surrounding a starved core, whereas oscillating biofilms exhibit a relatively uniform distribution of glutamate. Our work shows the potential of agent-based models to connect cellular properties to collective phenomena and facilitates studies of how inheritance of cellular traits can affect the evolution of group behaviors.
Collapse
Affiliation(s)
- Obadiah J. Mulder
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | | | | | - Michael D. Edge
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Joseph W. Larkin
- Departments of Biology and Physics, Boston University, Boston, MA, USA
| |
Collapse
|
13
|
Mougkogiannis P, Nikolaidou A, Adamatzky A. On Emergence of Spontaneous Oscillations in Kombucha and Proteinoids. BIONANOSCIENCE 2024; 15:65. [PMID: 39980746 PMCID: PMC11835939 DOI: 10.1007/s12668-024-01678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 02/22/2025]
Abstract
An important part of studying living systems is figuring out the complicated steps that lead to order from chaos. Spontaneous oscillations are a key part of self-organisation in many biological and chemical networks, including kombucha and proteinoids. This study examines the spontaneous oscillations in kombucha and proteinoids, specifically exploring their potential connection to the origin of life. As a community of bacteria and yeast work together, kombucha shows remarkable spontaneous oscillations in its biochemical parts. This system can keep a dynamic balance and organise itself thanks to metabolic processes and complex chemical reactions. Similarly, proteinoids, which may have been primitive forms of proteins, undergo spontaneous fluctuations in their structure and function periodically. Because these oscillations happen on their own, they may play a very important part in the development of early life forms. This paper highlights the fundamental principles governing the transition from chaos to order in living systems by examining the key factors that influence the frequency and characteristics of spontaneous oscillations in kombucha and proteinoids. Looking into these rhythms not only helps us understand where life came from but also shows us ways to make self-organising networks in synthetic biology and biotechnology. There is significant discussion over the emergence of biological order from chemical disorder. This article contributes to the ongoing discussion by examining at the theoretical basis, experimental proof, and implications of spontaneous oscillations. The results make it clear that random oscillations are an important part of the change from nonliving to living matter. They also give us important information about what life is all about.
Collapse
Affiliation(s)
| | - Anna Nikolaidou
- Unconventional Computing Laboratory, University of the West of England, Bristol, BS16 1QY UK
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol, BS16 1QY UK
| |
Collapse
|
14
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
15
|
Villette V, Yang S, Valenti R, Macklin JJ, Bradley J, Mathieu B, Lombardini A, Podgorski K, Dieudonné S, Schreiter ER, Abdelfattah AS. A novel rhodopsin-based voltage indicator for simultaneous two-photon optical recording with GCaMP in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623698. [PMID: 39605646 PMCID: PMC11601395 DOI: 10.1101/2024.11.15.623698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Genetically encoded voltage indicators (GEVIs) allow optical recording of membrane potential from targeted cells in vivo. However, red GEVIs that are compatible with two-photon microscopy and that can be multiplexed in vivo with green reporters like GCaMP, are currently lacking. To address this gap, we explored diverse rhodopsin proteins as GEVIs and engineered a novel GEVI, 2Photron, based on a rhodopsin from the green algae Klebsormidium nitens. 2Photron, combined with two photon ultrafast local volume excitation (ULoVE), enabled multiplexed readout of spiking and subthreshold voltage simultaneously with GCaMP calcium signals in visual cortical neurons of awake, behaving mice. These recordings revealed the cell-specific relationship of spiking and subthreshold voltage dynamics with GCaMP responses, highlighting the challenges of extracting underlying spike trains from calcium imaging.
Collapse
Affiliation(s)
- Vincent Villette
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Shang Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Rosario Valenti
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - John J. Macklin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jonathan Bradley
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Benjamin Mathieu
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Alberto Lombardini
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | | | - Stéphane Dieudonné
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Eric R. Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ahmed S. Abdelfattah
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02906, USA
| |
Collapse
|
16
|
Dai Y, Zhou Z, Yu W, Ma Y, Kim K, Rivera N, Mohammed J, Lantelme E, Hsu-Kim H, Chilkoti A, You L. Biomolecular condensates regulate cellular electrochemical equilibria. Cell 2024; 187:5951-5966.e18. [PMID: 39260373 PMCID: PMC11490381 DOI: 10.1016/j.cell.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/22/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Control of the electrochemical environment in living cells is typically attributed to ion channels. Here, we show that the formation of biomolecular condensates can modulate the electrochemical environment in bacterial cells, which affects cellular processes globally. Condensate formation generates an electric potential gradient, which directly affects the electrochemical properties of a cell, including cytoplasmic pH and membrane potential. Condensate formation also amplifies cell-cell variability of their electrochemical properties due to passive environmental effect. The modulation of the electrochemical equilibria further controls cell-environment interactions, thus directly influencing bacterial survival under antibiotic stress. The condensate-mediated shift in intracellular electrochemical equilibria drives a change of the global gene expression profile. Our work reveals the biochemical functions of condensates, which extend beyond the functions of biomolecules driving and participating in condensate formation, and uncovers a role of condensates in regulating global cellular physiology.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Zhengqing Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Wen Yu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Yuefeng Ma
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Kyeri Kim
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nelson Rivera
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Javid Mohammed
- Department of Immunology, Duke University, Durham, NC 27705, USA
| | - Erica Lantelme
- Department of Pathology and Immunology, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Immunology, Duke University, Durham, NC 27705, USA.
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Immunology, Duke University, Durham, NC 27705, USA; Center for Quantitative Biodesign, Duke University, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
17
|
Yang RZ, Wang DD, Li SM, Liu PP, Kang JS. Development and Application of a Mitochondrial Genetically Encoded Voltage Indicator in Narcosis. Neurosci Bull 2024; 40:1529-1544. [PMID: 38829505 PMCID: PMC11422539 DOI: 10.1007/s12264-024-01235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/11/2024] [Indexed: 06/05/2024] Open
Abstract
Mitochondrial membrane potential (MMP) plays a crucial role in the function of cells and organelles, involving various cellular physiological processes, including energy production, formation of reactive oxygen species (ROS), unfolded protein stress, and cell survival. Currently, there is a lack of genetically encoded fluorescence indicators (GEVIs) for MMP. In our screening of various GEVIs for their potential monitoring MMP, the Accelerated Sensor of Action Potentials (ASAP) demonstrated optimal performance in targeting mitochondria and sensitivity to depolarization in multiple cell types. However, mitochondrial ASAPs also displayed sensitivity to ROS in cardiomyocytes. Therefore, two ASAP mutants resistant to ROS were generated. A double mutant ASAP3-ST exhibited the highest voltage sensitivity but weaker fluorescence. Overall, four GEVIs capable of targeting mitochondria were obtained and named mitochondrial potential indicators 1-4 (MPI-1-4). In vivo, fiber photometry experiments utilizing MPI-2 revealed a mitochondrial depolarization during isoflurane-induced narcosis in the M2 cortex.
Collapse
Affiliation(s)
- Run-Zhou Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Dian-Dian Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Sen-Miao Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Pei-Pei Liu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jian-Sheng Kang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
18
|
Tsao KK, Imai S, Chang M, Hario S, Terai T, Campbell RE. The best of both worlds: Chemigenetic fluorescent sensors for biological imaging. Cell Chem Biol 2024; 31:1652-1664. [PMID: 39236713 PMCID: PMC11466441 DOI: 10.1016/j.chembiol.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
Synthetic-based fluorescent chemosensors and protein-based fluorescent biosensors are two well-established classes of tools for visualizing and monitoring biological processes in living tissues. Chemigenetic sensors, created using a combination of both synthetic parts and protein parts, are an emerging class of tools that aims to combine the strengths, and overcome the drawbacks, of traditional chemosensors and biosensors. This review will survey the landscape of strategies used for fluorescent chemigenetic sensor design. These strategies include: attachment of synthetic elements to proteins using in vitro protein conjugation; attachment of synthetic elements to proteins using autonomous protein labeling; and translational incorporation of unnatural amino acids.
Collapse
Affiliation(s)
- Kelvin K Tsao
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shosei Imai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Michael Chang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Saaya Hario
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takuya Terai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Robert E Campbell
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; CERVO, Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec, QC G1J 2G3, Canada.
| |
Collapse
|
19
|
Monk T, Dennler N, Ralph N, Rastogi S, Afshar S, Urbizagastegui P, Jarvis R, van Schaik A, Adamatzky A. Electrical Signaling Beyond Neurons. Neural Comput 2024; 36:1939-2029. [PMID: 39141803 DOI: 10.1162/neco_a_01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 08/16/2024]
Abstract
Neural action potentials (APs) are difficult to interpret as signal encoders and/or computational primitives. Their relationships with stimuli and behaviors are obscured by the staggering complexity of nervous systems themselves. We can reduce this complexity by observing that "simpler" neuron-less organisms also transduce stimuli into transient electrical pulses that affect their behaviors. Without a complicated nervous system, APs are often easier to understand as signal/response mechanisms. We review examples of nonneural stimulus transductions in domains of life largely neglected by theoretical neuroscience: bacteria, protozoans, plants, fungi, and neuron-less animals. We report properties of those electrical signals-for example, amplitudes, durations, ionic bases, refractory periods, and particularly their ecological purposes. We compare those properties with those of neurons to infer the tasks and selection pressures that neurons satisfy. Throughout the tree of life, nonneural stimulus transductions time behavioral responses to environmental changes. Nonneural organisms represent the presence or absence of a stimulus with the presence or absence of an electrical signal. Their transductions usually exhibit high sensitivity and specificity to a stimulus, but are often slow compared to neurons. Neurons appear to be sacrificing the specificity of their stimulus transductions for sensitivity and speed. We interpret cellular stimulus transductions as a cell's assertion that it detected something important at that moment in time. In particular, we consider neural APs as fast but noisy detection assertions. We infer that a principal goal of nervous systems is to detect extremely weak signals from noisy sensory spikes under enormous time pressure. We discuss neural computation proposals that address this goal by casting neurons as devices that implement online, analog, probabilistic computations with their membrane potentials. Those proposals imply a measurable relationship between afferent neural spiking statistics and efferent neural membrane electrophysiology.
Collapse
Affiliation(s)
- Travis Monk
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Nik Dennler
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Nicholas Ralph
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Shavika Rastogi
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Saeed Afshar
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Pablo Urbizagastegui
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Russell Jarvis
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
| |
Collapse
|
20
|
Paternò GM. Materials-driven strategies in bacterial engineering. MRS COMMUNICATIONS 2024; 14:1027-1036. [PMID: 39404665 PMCID: PMC7616573 DOI: 10.1557/s43579-024-00623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/23/2024] [Indexed: 11/01/2024]
Abstract
This perspective article focuses on the innovative field of materials-based bacterial engineering, highlighting interdisciplinary research that employs material science to study, augment, and exploit the attributes of living bacteria. By utilizing exogenous abiotic material interfaces, researchers can engineer bacteria to perform new functions, such as enhanced bioelectric capabilities and improved photosynthetic efficiency. Additionally, materials can modulate bacterial communities and transform bacteria into biohybrid microrobots, offering promising solutions for sustainable energy production, environmental remediation, and medical applications. Finally, the perspective discusses a general paradigm for engineering bacteria through the materials-driven modulation of their transmembrane potential. This parameter regulates their ion channel activity and ultimately their bioenergetics, suggesting that controlling it could allow scientists to hack the bioelectric language bacteria use for communication, task execution, and environmental response. Graphical abstract
Collapse
Affiliation(s)
- Giuseppe Maria Paternò
- Physics Department, Politecnico Di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- Center for Nanoscience and Technology, Istituto Italiano Di Tecnologia, Via Rubattino 71, 20134 Milano, Italy
| |
Collapse
|
21
|
Nikolaev D, Mironov VN, Metelkina EM, Shtyrov AA, Mereshchenko AS, Demidov NA, Vyazmin SY, Tennikova TB, Moskalenko SE, Bondarev SA, Zhouravleva GA, Vasin AV, Panov MS, Ryazantsev MN. Rational Design of Far-Red Archaerhodopsin-3-Based Fluorescent Genetically Encoded Voltage Indicators: from Elucidation of the Fluorescence Mechanism in Archers to Novel Red-Shifted Variants. ACS PHYSICAL CHEMISTRY AU 2024; 4:347-362. [PMID: 39069984 PMCID: PMC11274289 DOI: 10.1021/acsphyschemau.3c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 07/30/2024]
Abstract
Genetically encoded voltage indicators (GEVIs) have found wide applications as molecular tools for visualization of changes in cell membrane potential. Among others, several classes of archaerhodopsin-3-based GEVIs have been developed and have proved themselves promising in various molecular imaging studies. To expand the application range for this type of GEVIs, new variants with absorption band maxima shifted toward the first biological window and enhanced fluorescence signal are required. Here, we integrate computational and experimental strategies to reveal structural factors that distinguish far-red bright archaerhodopsin-3-based GEVIs, Archers, obtained by directed evolution in a previous study (McIsaac et al., PNAS, 2014) and the wild-type archaerhodopsin-3 with an extremely dim fluorescence signal, aiming to use the obtained information in subsequent rational design. We found that the fluorescence can be enhanced by stabilization of a certain conformation of the protein, which, in turn, can be achieved by tuning the pK a value of two titratable residues. These findings were supported further by introducing mutations into wild-type archeorhodopsin-3 and detecting the enhancement of the fluorescence signal. Finally, we came up with a rational design and proposed previously unknown Archers variants with red-shifted absorption bands (λmax up to 640 nm) and potential-dependent bright fluorescence (quantum yield up to 0.97%).
Collapse
Affiliation(s)
- Dmitrii
M. Nikolaev
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
- Institute
of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str., St. Petersburg 195251, Russia
| | - Vladimir N. Mironov
- Saint
Petersburg Academic University, 8/3 Khlopina Street, St.
Petersburg 194021, Russia
| | - Ekaterina M. Metelkina
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| | - Andrey A. Shtyrov
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| | - Andrey S. Mereshchenko
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| | - Nikita A. Demidov
- Saint
Petersburg Academic University, 8/3 Khlopina Street, St.
Petersburg 194021, Russia
| | - Sergey Yu. Vyazmin
- Saint
Petersburg Academic University, 8/3 Khlopina Street, St.
Petersburg 194021, Russia
| | - Tatiana B. Tennikova
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| | - Svetlana E. Moskalenko
- Department
of Genetics and Biotechnology, Saint Petersburg
State University, 7/9
Universitetskaya emb, St. Petersburg 199034, Russia
- Vavilov
Institute of General Genetics, St. Petersburg
Branch, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Stanislav A. Bondarev
- Department
of Genetics and Biotechnology, Saint Petersburg
State University, 7/9
Universitetskaya emb, St. Petersburg 199034, Russia
- Laboratory
of Amyloid Biology, Saint Petersburg State
University, St. Petersburg 199034, Russia
| | - Galina A. Zhouravleva
- Department
of Genetics and Biotechnology, Saint Petersburg
State University, 7/9
Universitetskaya emb, St. Petersburg 199034, Russia
- Laboratory
of Amyloid Biology, Saint Petersburg State
University, St. Petersburg 199034, Russia
| | - Andrey V. Vasin
- Institute
of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str., St. Petersburg 195251, Russia
| | - Maxim S. Panov
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
- St.
Petersburg State Chemical Pharmaceutical University, Professor Popov str., 14, lit. A, St. Petersburg 197022, Russia
| | - Mikhail N. Ryazantsev
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, St. Petersburg 198504, Russia
| |
Collapse
|
22
|
Nguyen TVP, Wu Y, Yao T, Trinh JT, Zeng L, Chemla YR, Golding I. Coinfecting phages impede each other's entry into the cell. Curr Biol 2024; 34:2841-2853.e18. [PMID: 38878771 PMCID: PMC11233250 DOI: 10.1016/j.cub.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/15/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024]
Abstract
The developmental choice made by temperate phages, between cell death (lysis) and viral dormancy (lysogeny), is influenced by the relative abundance of viruses and hosts in the environment. The paradigm for this abundance-driven decision is phage lambda of E. coli, whose propensity to lysogenize increases with the number of viruses coinfecting the same bacterium. It is believed that lambda uses this number to infer whether phages or bacteria outnumber each other. However, this interpretation is premised on an accurate mapping between the extracellular phage-to-bacteria ratio and the intracellular multiplicity of infection (MOI). Here, we show this premise to be faulty. By simultaneously labeling phage capsids and genomes, we find that, while the number of phages landing on each cell reliably samples the population ratio, the number of phages entering the cell does not. Single-cell infections, performed in a microfluidic device and interpreted using a stochastic model, reveal that the probability and rate of phage entry decrease with the number of adsorbed phages. This decrease reflects an MOI-dependent perturbation to host physiology caused by phage attachment, as evidenced by compromised membrane integrity and loss of membrane potential. The dependence of entry dynamics on the surrounding medium results in a strong impact on the infection outcome, while the protracted entry of coinfecting phages increases the heterogeneity in infection outcome at a given MOI. Our findings in lambda, and similar results we obtained for phages T5 and P1, demonstrate the previously unappreciated role played by entry dynamics in determining the outcome of bacteriophage infection.
Collapse
Affiliation(s)
- Thu Vu Phuc Nguyen
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuchen Wu
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Tianyou Yao
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jimmy T Trinh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Yann R Chemla
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ido Golding
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
23
|
Leong LM, Storace DA. Imaging different cell populations in the mouse olfactory bulb using the genetically encoded voltage indicator ArcLight. NEUROPHOTONICS 2024; 11:033402. [PMID: 38288247 PMCID: PMC10823906 DOI: 10.1117/1.nph.11.3.033402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/31/2024]
Abstract
Genetically encoded voltage indicators (GEVIs) are protein-based optical sensors that allow for measurements from genetically defined populations of neurons. Although in vivo imaging in the mammalian brain with early generation GEVIs was difficult due to poor membrane expression and low signal-to-noise ratio, newer and more sensitive GEVIs have begun to make them useful for answering fundamental questions in neuroscience. We discuss principles of imaging using GEVIs and genetically encoded calcium indicators, both useful tools for in vivo imaging of neuronal activity, and review some of the recent mechanistic advances that have led to GEVI improvements. We provide an overview of the mouse olfactory bulb (OB) and discuss recent studies using the GEVI ArcLight to study different cell types within the bulb using both widefield and two-photon microscopy. Specific emphasis is placed on using GEVIs to begin to study the principles of concentration coding in the OB, how to interpret the optical signals from population measurements in the in vivo brain, and future developments that will push the field forward.
Collapse
Affiliation(s)
- Lee Min Leong
- Florida State University, Department of Biological Science, Tallahassee, Florida, United States
| | - Douglas A. Storace
- Florida State University, Department of Biological Science, Tallahassee, Florida, United States
- Florida State University, Program in Neuroscience, Tallahassee, Florida, United States
- Florida State University, Institute of Molecular Biophysics, Tallahassee, Florida, United States
| |
Collapse
|
24
|
Lo WC, Krasnopeeva E, Pilizota T. Bacterial Electrophysiology. Annu Rev Biophys 2024; 53:487-510. [PMID: 38382113 DOI: 10.1146/annurev-biophys-030822-032215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial ion fluxes are involved in the generation of energy, transport, and motility. As such, bacterial electrophysiology is fundamentally important for the bacterial life cycle, but it is often neglected and consequently, by and large, not understood. Arguably, the two main reasons for this are the complexity of measuring relevant variables in small cells with a cell envelope that contains the cell wall and the fact that, in a unicellular organism, relevant variables become intertwined in a nontrivial manner. To help give bacterial electrophysiology studies a firm footing, in this review, we go back to basics. We look first at the biophysics of bacterial membrane potential, and then at the approaches and models developed mostly for the study of neurons and eukaryotic mitochondria. We discuss their applicability to bacterial cells. Finally, we connect bacterial membrane potential with other relevant (electro)physiological variables and summarize methods that can be used to both measure and influence bacterial electrophysiology.
Collapse
Affiliation(s)
- Wei-Chang Lo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | | | - Teuta Pilizota
- School of Biological Sciences, Centre for Engineering Biology, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
25
|
Bourqqia-Ramzi M, Mansilla-Guardiola J, Muñoz-Rodriguez D, Quarta E, Lombardo-Hernandez J, Murciano-Cespedosa A, Conejero-Meca FJ, Mateos González Á, Geuna S, Garcia-Esteban MT, Herrera-Rincon C. From the Microbiome to the Electrome: Implications for the Microbiota-Gut-Brain Axis. Int J Mol Sci 2024; 25:6233. [PMID: 38892419 PMCID: PMC11172653 DOI: 10.3390/ijms25116233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The gut microbiome plays a fundamental role in metabolism, as well as the immune and nervous systems. Microbial imbalance (dysbiosis) can contribute to subsequent physical and mental pathologies. As such, interest has been growing in the microbiota-gut-brain brain axis and the bioelectrical communication that could exist between bacterial and nervous cells. The aim of this study was to investigate the bioelectrical profile (electrome) of two bacterial species characteristic of the gut microbiome: a Proteobacteria Gram-negative bacillus Escherichia coli (E. coli), and a Firmicutes Gram-positive coccus Enterococcus faecalis (E. faecalis). We analyzed both bacterial strains to (i) validate the fluorescent probe bis-(1,3-dibutylbarbituric acid) trimethine oxonol, DiBAC4(3), as a reliable reporter of the changes in membrane potential (Vmem) for both bacteria; (ii) assess the evolution of the bioelectric profile throughout the growth of both strains; (iii) investigate the effects of two neural-type stimuli on Vmem changes: the excitatory neurotransmitter glutamate (Glu) and the inhibitory neurotransmitter γ-aminobutyric acid (GABA); (iv) examine the impact of the bioelectrical changes induced by neurotransmitters on bacterial growth, viability, and cultivability using absorbance, live/dead fluorescent probes, and viable counts, respectively. Our findings reveal distinct bioelectrical profiles characteristic of each bacterial species and growth phase. Importantly, neural-type stimuli induce Vmem changes without affecting bacterial growth, viability, or cultivability, suggesting a specific bioelectrical response in bacterial cells to neurotransmitter cues. These results contribute to understanding the bacterial response to external stimuli, with potential implications for modulating bacterial bioelectricity as a novel therapeutic target.
Collapse
Affiliation(s)
- Marwane Bourqqia-Ramzi
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy
| | - Jesús Mansilla-Guardiola
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
- Unit of Microbiology, Department of Genetic, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - David Muñoz-Rodriguez
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
| | - Elisa Quarta
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Torino, 10126 Turin, Italy
| | - Juan Lombardo-Hernandez
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
| | - Antonio Murciano-Cespedosa
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
- Neuro-Computing and Neuro-Robotics Research Group, Neural Plasticity Research Group Instituto Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco José Conejero-Meca
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
| | - Álvaro Mateos González
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Turin, Italy
| | - María Teresa Garcia-Esteban
- Unit of Microbiology, Department of Genetic, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Celia Herrera-Rincon
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
| |
Collapse
|
26
|
Biquet-Bisquert A, Carrio B, Meyer N, Fernandes TFD, Abkarian M, Seduk F, Magalon A, Nord AL, Pedaci F. Spatiotemporal dynamics of the proton motive force on single bacterial cells. SCIENCE ADVANCES 2024; 10:eadl5849. [PMID: 38781330 PMCID: PMC11114223 DOI: 10.1126/sciadv.adl5849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Electrochemical gradients across biological membranes are vital for cellular bioenergetics. In bacteria, the proton motive force (PMF) drives essential processes like adenosine triphosphate production and motility. Traditionally viewed as temporally and spatially stable, recent research reveals a dynamic PMF behavior at both single-cell and community levels. Moreover, the observed lateral segregation of respiratory complexes could suggest a spatial heterogeneity of the PMF. Using a light-activated proton pump and detecting the activity of the bacterial flagellar motor, we perturb and probe the PMF of single cells. Spatially homogeneous PMF perturbations reveal millisecond-scale temporal dynamics and an asymmetrical capacitive response. Localized perturbations show a rapid lateral PMF homogenization, faster than proton diffusion, akin to the electrotonic potential spread observed in passive neurons, explained by cable theory. These observations imply a global coupling between PMF sources and consumers along the membrane, precluding sustained PMF spatial heterogeneity but allowing for rapid temporal changes.
Collapse
Affiliation(s)
- Anaïs Biquet-Bisquert
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Baptiste Carrio
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Nathan Meyer
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Thales F. D. Fernandes
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Manouk Abkarian
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Farida Seduk
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402 Marseille, France
| | - Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402 Marseille, France
| | - Ashley L. Nord
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Francesco Pedaci
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| |
Collapse
|
27
|
Brooks FP, Davis HC, Park P, Qi Y, Cohen AE. Photophysics-informed two-photon voltage imaging using FRET-opsin voltage indicators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587540. [PMID: 38617370 PMCID: PMC11014499 DOI: 10.1101/2024.04.01.587540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Microbial rhodopsin-derived genetically encoded voltage indicators (GEVIs) are powerful tools for mapping bioelectrical dynamics in cell culture and in live animals. Förster resonance energy transfer (FRET)-opsin GEVIs use voltage-dependent changes in opsin absorption to modulate the fluorescence of an attached fluorophore, achieving high brightness, speed, and voltage sensitivity. However, the voltage sensitivity of most FRET-opsin GEVIs has been reported to decrease or vanish under two-photon (2P) excitation. Here we investigated the photophysics of the FRET-opsin GEVIs Voltron1 and 2. We found that the voltage sensitivity came from a photocycle intermediate, not from the opsin ground state. The voltage sensitivities of both GEVIs were nonlinear functions of illumination intensity; for Voltron1, the sensitivity reversed sign under low-intensity illumination. Using photocycle-optimized 2P illumination protocols, we demonstrate 2P voltage imaging with Voltron2 in barrel cortex of a live mouse. These results open the door to high-speed 2P voltage imaging of FRET-opsin GEVIs in vivo.
Collapse
Affiliation(s)
| | | | - Pojeong Park
- Department of Chemistry and Chemical Biology, Harvard University
| | - Yitong Qi
- Department of Chemistry and Chemical Biology, Harvard University
| | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University
| |
Collapse
|
28
|
Gao J, Zhou K, Li H, Li Y, Yang K, Wang W. Intermittent proton bursts of single lactic acid bacteria. Chem Sci 2024; 15:3516-3523. [PMID: 38455010 PMCID: PMC10915832 DOI: 10.1039/d3sc06238d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
Lactic acid bacteria are a kind of probiotic microorganisms that efficiently convert carbohydrates to lactic acids, thus playing essential roles in fermentation and food industry. While conventional wisdom often suggests continuous release of protons from bacteria during acidification, here we developed a methodology to measure the dynamics of proton release at the single bacteria level, and report on the discovery of a proton burst phenomenon, i.e., the intermittent efflux of protons, of single Lactobacillus plantarum bacteria. When placing an individual bacterium in an oil-sealed microwell, efflux and accumulation of protons consequently reduced the pH in the confined extracellular medium, which was monitored with fluorescent pH indicators in a high-throughput and real-time manner. In addition to the slow and continuous proton release behavior (as expected), stochastic and intermittent proton burst events were surprisingly observed with a typical timescale of several seconds. It was attributed to the regulatory response of bacteria by activating H+-ATPase to compensate the stochastic and transient depolarizations of membrane potential. These findings not only revealed an unprecedented proton burst phenomenon in lactic acid bacteria, but also shed new lights on the intrinsic roles of H+-ATPase in membrane potential homeostasis, with implications for both fermentation industry and bacterial electrophysiology.
Collapse
Affiliation(s)
- Jia Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| | - Kai Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| | - Haoran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| | - Yaohua Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| | - Kairong Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| |
Collapse
|
29
|
Akabuogu E, Zhang L, Krašovec R, Roberts IS, Waigh TA. Electrical Impedance Spectroscopy with Bacterial Biofilms: Neuronal-like Behavior. NANO LETTERS 2024; 24:2234-2241. [PMID: 38320294 PMCID: PMC10885197 DOI: 10.1021/acs.nanolett.3c04446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
Negative capacitance at low frequencies for spiking neurons was first demonstrated in 1941 (K. S. Cole) by using extracellular electrodes. The phenomenon subsequently was explained by using the Hodgkin-Huxley model and is due to the activity of voltage-gated potassium ion channels. We show that Escherichia coli (E. coli) biofilms exhibit significant stable negative capacitances at low frequencies when they experience a small DC bias voltage in electrical impedance spectroscopy experiments. Using a frequency domain Hodgkin-Huxley model, we characterize the conditions for the emergence of this feature and demonstrate that the negative capacitance exists only in biofilms containing living cells. Furthermore, we establish the importance of the voltage-gated potassium ion channel, Kch, using knock-down mutants. The experiments provide further evidence for voltage-gated ion channels in E. coli and a new, low-cost method to probe biofilm electrophysiology, e.g., to understand the efficacy of antibiotics. We expect that the majority of bacterial biofilms will demonstrate negative capacitances.
Collapse
Affiliation(s)
- Emmanuel
U. Akabuogu
- Division
of Infection, Lydia Becker Institute of Immunology and Inflammation,
School of Biological Sciences, University
of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
- Biological
Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Lin Zhang
- Biological
Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Rok Krašovec
- Division
of Evolution, Infection and Genomics, School of Biological Sciences,
Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United
Kingdom
| | - Ian S. Roberts
- Division
of Infection, Lydia Becker Institute of Immunology and Inflammation,
School of Biological Sciences, University
of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Thomas A. Waigh
- Biological
Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Photon
Science Institute, Alan
Turing Building, Oxford Road, Manchester, M13 9PY, United
Kingdom
| |
Collapse
|
30
|
Deisl C, Moe OW, Hilgemann DW. Constitutive Plasma Membrane Turnover in T-REx293 cells via Ordered Membrane Domain Endocytosis under Mitochondrial Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576124. [PMID: 38293164 PMCID: PMC10827192 DOI: 10.1101/2024.01.17.576124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Clathrin/dynamin-independent endocytosis of ordered plasma membrane domains (ordered membrane domain endocytosis, OMDE) can become massive in response to cytoplasmic Ca elevations, G protein activation by non-hydrolyzable GTP analogs, and enhanced oxidative metabolism. In patch-clamped murine bone marrow macrophages (BMMs), cytoplasmic succinate and pyruvate, but not β-hydroxybutyrate, induce OMDE of 75% of the plasma membrane within 2 min. The responses require palmitoylation of membrane proteins, being decreased by 70% in BMMs lacking the acyltransferase, DHHC5, by treatment with carnitine to shift long-chain acyl groups from cytoplasmic to mitochondrial acyl-CoAs, by bromopalmitate/albumin complexes to block DHHCs, and by the mitochondria-specific cyclosporin, NIM811, to block permeability transition pores that may release mitochondrial coenzyme A into the cytoplasm. Using T-REx293 cells, OMDE amounts to 40% with succinate, pyruvate, or GTPγS, and it is inhibited by actin cytoskeleton disruption. Pyruvate-induced OMDE is blocked by the hydrophobic antioxidant, edaravone, which prevents permeability transition pore openings. Using fluorescent 3kD dextrans to monitor endocytosis, OMDE appears to be constitutively active in T-REx293 cells but not in BMMs. After 1 h without substrates or bicarbonate, pyruvate and hydroxybutyrate inhibit constitutive OMDE, as expected for a shift of CoA from long-chain acyl-CoAs to other CoA metabolites. In the presence of bicarbonate, pyruvate strongly enhances OMDE, which is then blocked by β-hydroxybutyrate, bromopalmitate/albumin complexes, cyclosporines, or edaravone. After pyruvate responses, T-REx293 cells grow normally with no evidence for apoptosis. Fatty acid-free albumin (15 μM) inhibits basal OMDE in T-REx293 cells, as do cyclosporines, carnitine, and RhoA blockade. Surprisingly, OMDE in the absence of substrates and bicarbonate is not inhibited by siRNA knockdown of the acyltransferases, DHHC5 or DHHC2, which are required for activated OMDE in patch clamp experiments. We verify biochemically that small CoA metabolites decrease long-chain acyl-CoAs. We verify also that palmitoylations of many PM-associated proteins decrease and increase when OMDE is inhibited and stimulated, respectively, by different metabolites. STED microscopy reveals that vesicles formed during constitutive OMDE in T-REX293 cells have 90 to 130 nm diameters. In summary, OMDE is likely a major G-protein-dependent endocytic mechanism that can be constitutively active in some cell types, albeit not BMMs. OMDE depends on different DHHC acyltransferases in different circumstances and can be limited by local supplies of fatty acids, CoA, and long-chain acyl-CoAs.
Collapse
Affiliation(s)
- Christine Deisl
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Orson W Moe
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
31
|
Gwin CM, Gupta KR, Lu Y, Shao L, Rego EH. Spatial segregation and aging of metabolic processes underlie phenotypic heterogeneity in mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569614. [PMID: 38076906 PMCID: PMC10705497 DOI: 10.1101/2023.12.01.569614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Individual cells within clonal populations of mycobacteria vary in size, growth rate, and antibiotic susceptibility. Heterogeneity is, in part, determined by LamA, a protein found exclusively in mycobacteria. LamA localizes to sites of new cell wall synthesis where it recruits proteins important for polar growth and establishing asymmetry. Here, we report that in addition to this function, LamA interacts with complexes involved in oxidative phosphorylation (OXPHOS) at a subcellular location distinct from cell wall synthesis. Importantly, heterogeneity depends on a unique extension of the mycobacterial ATP synthase, and LamA mediates the coupling between ATP production and cell growth in single cells. Strikingly, as single cells age, concentrations of proteins important for oxidative phosphorylation become less abundant, and older cells rely less on oxidative phosphorylation for growth. Together, our data reveal that central metabolism is spatially organized within a single mycobacterium and varies within a genetically identical population of mycobacteria. Designing therapeutic regimens to account for this heterogeneity may help to treat mycobacterial infections faster and more completely.
Collapse
Affiliation(s)
- Celena M. Gwin
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Kuldeepkumar R. Gupta
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Yao Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Lin Shao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - E. Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| |
Collapse
|
32
|
Nestorovich EM, Bezrukov SM. Beta-Barrel Channel Response to High Electric Fields: Functional Gating or Reversible Denaturation? Int J Mol Sci 2023; 24:16655. [PMID: 38068977 PMCID: PMC10706840 DOI: 10.3390/ijms242316655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Ion channels exhibit gating behavior, fluctuating between open and closed states, with the transmembrane voltage serving as one of the essential regulators of this process. Voltage gating is a fundamental functional aspect underlying the regulation of ion-selective, mostly α-helical, channels primarily found in excitable cell membranes. In contrast, there exists another group of larger, and less selective, β-barrel channels of a different origin, which are not directly associated with cell excitability. Remarkably, these channels can also undergo closing, or "gating", induced by sufficiently strong electric fields. Once the field is removed, the channels reopen, preserving a memory of the gating process. In this study, we explored the hypothesis that the voltage-induced closure of the β-barrel channels can be seen as a form of reversible protein denaturation by the high electric fields applied in model membranes experiments-typically exceeding twenty million volts per meter-rather than a manifestation of functional gating. Here, we focused on the bacterial outer membrane channel OmpF reconstituted into planar lipid bilayers and analyzed various characteristics of the closing-opening process that support this idea. Specifically, we considered the nearly symmetric response to voltages of both polarities, the presence of multiple closed states, the stabilization of the open conformation in channel clusters, the long-term gating memory, and the Hofmeister effects in closing kinetics. Furthermore, we contemplate the evolutionary aspect of the phenomenon, proposing that the field-induced denaturation of membrane proteins might have served as a starting point for their development into amazing molecular machines such as voltage-gated channels of nerve and muscle cells.
Collapse
Affiliation(s)
- Ekaterina M. Nestorovich
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Sergey M. Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
33
|
Dai Y, Zhou Z, Kim K, Rivera N, Mohammed J, Hsu-Kim H, Chilkoti A, You L. Global control of cellular physiology by biomolecular condensates through modulation of electrochemical equilibria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563018. [PMID: 37904914 PMCID: PMC10614965 DOI: 10.1101/2023.10.19.563018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Control of the electrochemical environment in living cells is typically attributed to ion channels. Here we show that the formation of biomolecular condensates can modulate the electrochemical environment in cells, which affects processes globally within the cell and interactions of the cell with its environment. Condensate formation results in the depletion or enrichment of certain ions, generating intracellular ion gradients. These gradients directly affect the electrochemical properties of a cell, including the cytoplasmic pH and hyperpolarization of the membrane potential. The modulation of the electrochemical equilibria between the intra- and extra-cellular environments by biomolecular condensates governs charge-dependent uptake of small molecules by cells, and thereby directly influences bacterial survival under antibiotic stress. The shift of the intracellular electrochemical equilibria by condensate formation also drives a global change of the gene expression profile. The control of the cytoplasmic environment by condensates is correlated with their volume fraction, which can be highly variable between cells due to the stochastic nature of gene expression at the single cell level. Thus, condensate formation can amplify cell-cell variability of the environmental effects induced by the shift of cellular electrochemical equilibria. Our work reveals new biochemical functions of condensates, which extend beyond the biomolecules driving and participating in condensate formation, and uncovers a new role of biomolecular condensates in cellular regulation.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO, 63130
| | - Zhengqing Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708
| | - Kyeri Kim
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708
| | - Nelson Rivera
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708
| | - Javid Mohammed
- Department of Immunology, Duke University, Durham, NC, 27705
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708
- Center for Quantitative Biodesign, Duke University, Durham, NC 27708
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708
- Center for Quantitative Biodesign, Duke University, Durham, NC 27708
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
34
|
Meyer CT, Kralj JM. Cell-autonomous diversification in bacteria arises from calcium dynamics self-organizing at a critical point. SCIENCE ADVANCES 2023; 9:eadg3028. [PMID: 37540744 PMCID: PMC10403213 DOI: 10.1126/sciadv.adg3028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/03/2023] [Indexed: 08/06/2023]
Abstract
How dynamic bacterial calcium is regulated, with kinetics faster than typical mechanisms of cellular adaptation, is unknown. We discover bacterial calcium fluctuations are temporal-fractals resulting from a property known as self-organized criticality (SOC). SOC processes are poised at a phase transition separating ordered and chaotic dynamical regimes and are observed in many natural and anthropogenic systems. SOC in bacterial calcium emerges due to calcium channel coupling mediated via membrane voltage. Environmental or genetic perturbations modify calcium dynamics and the critical exponent suggesting a continuum of critical attractors. Moving along this continuum alters the collective information capacity of bacterial populations. We find that the stochastic transition from motile to sessile lifestyle is partially mediated by SOC-governed calcium fluctuations through the regulation of c-di-GMP. In summary, bacteria co-opt the physics of phase transitions to maintain dynamic calcium equilibrium, and this enables cell-autonomous population diversification during surface colonization by leveraging the stochasticity inherent at a boundary between phases.
Collapse
|
35
|
Meng X, Ganapathy S, van Roemburg L, Post M, Brinks D. Voltage Imaging with Engineered Proton-Pumping Rhodopsins: Insights from the Proton Transfer Pathway. ACS PHYSICAL CHEMISTRY AU 2023; 3:320-333. [PMID: 37520318 PMCID: PMC10375888 DOI: 10.1021/acsphyschemau.3c00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 08/01/2023]
Abstract
Voltage imaging using genetically encoded voltage indicators (GEVIs) has taken the field of neuroscience by storm in the past decade. Its ability to create subcellular and network level readouts of electrical dynamics depends critically on the kinetics of the response to voltage of the indicator used. Engineered microbial rhodopsins form a GEVI subclass known for their high voltage sensitivity and fast response kinetics. Here we review the essential aspects of microbial rhodopsin photocycles that are critical to understanding the mechanisms of voltage sensitivity in these proteins and link them to insights from efforts to create faster, brighter and more sensitive microbial rhodopsin-based GEVIs.
Collapse
Affiliation(s)
- Xin Meng
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
| | - Srividya Ganapathy
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
- Department
of Pediatrics & Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, California 92093, United States
| | - Lars van Roemburg
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
| | - Marco Post
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
| | - Daan Brinks
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
- Department
of Molecular Genetics, Erasmus University
Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
36
|
Phelps SM, Tutol JN, Advani D, Peng W, Dodani SC. Unlocking chloride sensing in the red at physiological pH with a fluorescent rhodopsin-based host. Chem Commun (Camb) 2023; 59:8460-8463. [PMID: 37337864 PMCID: PMC11136539 DOI: 10.1039/d3cc01786a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Chloride is a vital ion for all forms of life. Protein-based fluorescent biosensors can enable researchers to visualize chloride in cells but remain underdeveloped. Here, we demonstrate how a single point mutation in an engineered microbial rhodopsin results in ChloRED-1-CFP. This membrane-bound host is a far-red emitting, ratiometric sensor that provides a reversible readout of chloride in live bacteria at physiological pH, setting the stage to investigate the roles of chloride in diverse biological contexts.
Collapse
Affiliation(s)
- Shelby M Phelps
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Jasmine N Tutol
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Deeya Advani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Weicheng Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
37
|
Bowman AJ, Huang C, Schnitzer MJ, Kasevich MA. Wide-field fluorescence lifetime imaging of neuron spiking and subthreshold activity in vivo. Science 2023; 380:1270-1275. [PMID: 37347862 PMCID: PMC10361454 DOI: 10.1126/science.adf9725] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
The development of voltage-sensitive fluorescent probes suggests fluorescence lifetime as a promising readout for electrical activity in biological systems. Existing approaches fail to achieve the speed and sensitivity required for voltage imaging in neuroscience applications. We demonstrated that wide-field electro-optic fluorescence lifetime imaging microscopy (EO-FLIM) allows lifetime imaging at kilohertz frame-acquisition rates, spatially resolving action potential propagation and subthreshold neural activity in live adult Drosophila. Lifetime resolutions of <5 picoseconds at 1 kilohertz were achieved for single-cell voltage recordings. Lifetime readout is limited by photon shot noise, and the method provides strong rejection of motion artifacts and technical noise sources. Recordings revealed local transmembrane depolarizations, two types of spikes with distinct fluorescence lifetimes, and phase locking of spikes to an external mechanical stimulus.
Collapse
Affiliation(s)
- Adam J Bowman
- Physics Department, Stanford University, Stanford, CA 94305, USA
| | - Cheng Huang
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Mark J Schnitzer
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Mark A Kasevich
- Physics Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
38
|
Nguyen TVP, Wu Y, Yao T, Trinh JT, Zeng L, Chemla YR, Golding I. CO-INFECTING PHAGES IMPEDE EACH OTHER'S ENTRY INTO THE CELL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543643. [PMID: 37333217 PMCID: PMC10274716 DOI: 10.1101/2023.06.05.543643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Bacteriophage lambda tunes its propensity to lysogenize based on the number of viral genome copies inside the infected cell. Viral self-counting is believed to serve as a way of inferring the abundance of available hosts in the environment. This interpretation is premised on an accurate mapping between the extracellular phage-to-bacteria ratio and the intracellular multiplicity of infection (MOI). However, here we show this premise to be untrue. By simultaneously labeling phage capsids and genomes, we find that, while the number of phages landing on each cell reliably samples the population ratio, the number of phages entering the cell does not. Single-cell infections, followed in a microfluidic device and interpreted using a stochastic model, reveal that the probability and rate of individual phage entries decrease with MOI. This decrease reflects an MOI-dependent perturbation to host physiology caused by phage landing, evidenced by compromised membrane integrity and loss of membrane potential. The dependence of phage entry dynamics on the surrounding medium is found to result in a strong impact of environmental conditions on the infection outcome, while the protracted entry of co-infecting phages increases the cell-to-cell variability in infection outcome at a given MOI. Our findings demonstrate the previously unappreciated role played by entry dynamics in determining the outcome of bacteriophage infection.
Collapse
Affiliation(s)
- Thu Vu Phuc Nguyen
- Department of Physics, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX 77030, USA
| | - Yuchen Wu
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Tianyou Yao
- Department of Physics, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Jimmy T. Trinh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Yann R. Chemla
- Department of Physics, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Ido Golding
- Department of Physics, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX 77030, USA
- Department of Microbiology, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| |
Collapse
|
39
|
Ciaunica A, Shmeleva EV, Levin M. The brain is not mental! coupling neuronal and immune cellular processing in human organisms. Front Integr Neurosci 2023; 17:1057622. [PMID: 37265513 PMCID: PMC10230067 DOI: 10.3389/fnint.2023.1057622] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023] Open
Abstract
Significant efforts have been made in the past decades to understand how mental and cognitive processes are underpinned by neural mechanisms in the brain. This paper argues that a promising way forward in understanding the nature of human cognition is to zoom out from the prevailing picture focusing on its neural basis. It considers instead how neurons work in tandem with other type of cells (e.g., immune) to subserve biological self-organization and adaptive behavior of the human organism as a whole. We focus specifically on the immune cellular processing as key actor in complementing neuronal processing in achieving successful self-organization and adaptation of the human body in an ever-changing environment. We overview theoretical work and empirical evidence on "basal cognition" challenging the idea that only the neuronal cells in the brain have the exclusive ability to "learn" or "cognize." The focus on cellular rather than neural, brain processing underscores the idea that flexible responses to fluctuations in the environment require a carefully crafted orchestration of multiple cellular and bodily systems at multiple organizational levels of the biological organism. Hence cognition can be seen as a multiscale web of dynamic information processing distributed across a vast array of complex cellular (e.g., neuronal, immune, and others) and network systems, operating across the entire body, and not just in the brain. Ultimately, this paper builds up toward the radical claim that cognition should not be confined to one system alone, namely, the neural system in the brain, no matter how sophisticated the latter notoriously is.
Collapse
Affiliation(s)
- Anna Ciaunica
- Centre for Philosophy of Science, Faculty of Science, University of Lisbon, Lisbon, Portugal
- Faculty of Brain Sciences, Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Evgeniya V. Shmeleva
- Department of Biology, Tufts University, Medford, MA, United States
- Allen Discovery Center, Tufts University, Medford, MA, United States
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, United States
- Allen Discovery Center, Tufts University, Medford, MA, United States
| |
Collapse
|
40
|
Ganapathy S, Meng X, Mossel D, Jagt M, Brinks D. Expanding the family of genetically encoded voltage indicators with a candidate Heliorhodopsin exhibiting near-infrared fluorescence. J Biol Chem 2023; 299:104771. [PMID: 37127067 DOI: 10.1016/j.jbc.2023.104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023] Open
Abstract
Genetically encoded voltage indicators (GEVIs), particularly those based on microbial rhodopsins, are gaining traction in neuroscience as fluorescent sensors for imaging voltage dynamics with high-spatiotemporal precision. Here we establish a novel GEVI candidate based on the recently discovered subfamily of the microbial rhodopsin clade, termed heliorhodopsins. We discovered that upon excitation at 530-560nm, wild type heliorhodopsin exhibits near infra-red fluorescence which is sensitive to membrane voltage. We characterized the fluorescence brightness, photostability, voltage sensitivity and kinetics of wild type heliorhodopsin in HEK293T cells and further examined the impact of mutating key residues near the retinal chromophore. The S237A mutation significantly improved the fluorescence response of heliorhodopsin by 76% providing a highly promising starting point for further protein evolution.
Collapse
Affiliation(s)
- Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands; Department of Pediatrics & Cellular and Molecular Medicine, UCSD School of Medicine, San Diego, USA
| | - Xin Meng
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Delizzia Mossel
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Mels Jagt
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Daan Brinks
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands; Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
41
|
de Souza‐Guerreiro TC, Bondelli G, Grobas I, Donini S, Sesti V, Bertarelli C, Lanzani G, Asally M, Paternò GM. Membrane Targeted Azobenzene Drives Optical Modulation of Bacterial Membrane Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205007. [PMID: 36710255 PMCID: PMC10015841 DOI: 10.1002/advs.202205007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/17/2023] [Indexed: 05/29/2023]
Abstract
Recent studies have shown that bacterial membrane potential is dynamic and plays signaling roles. Yet, little is still known about the mechanisms of membrane potential dynamics regulation-owing to a scarcity of appropriate research tools. Optical modulation of bacterial membrane potential could fill this gap and provide a new approach for studying and controlling bacterial physiology and electrical signaling. Here, the authors show that a membrane-targeted azobenzene (Ziapin2) can be used to photo-modulate the membrane potential in cells of the Gram-positive bacterium Bacillus subtilis. It is found that upon exposure to blue-green light (λ = 470 nm), isomerization of Ziapin2 in the bacteria membrane induces hyperpolarization of the potential. To investigate the origin of this phenomenon, ion-channel-deletion strains and ion channel blockers are examined. The authors found that in presence of the chloride channel blocker idanyloxyacetic acid-94 (IAA-94) or in absence of KtrAB potassium transporter, the hyperpolarization response is attenuated. These results reveal that the Ziapin2 isomerization can induce ion channel opening in the bacterial membrane and suggest that Ziapin2 can be used for studying and controlling bacterial electrical signaling. This new optical tool could contribute to better understand various microbial phenomena, such as biofilm electric signaling and antimicrobial resistance.
Collapse
Affiliation(s)
| | - Gaia Bondelli
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
| | - Iago Grobas
- Physical and Theoretical Chemistry LaboratoryOxfordOX1 3QZUK
| | - Stefano Donini
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
| | - Valentina Sesti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di MilanoMilano20133Italy
| | - Chiara Bertarelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di MilanoMilano20133Italy
| | - Guglielmo Lanzani
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
- Department of PhysicsPolitecnico di MilanoMilano20133Italy
| | - Munehiro Asally
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| | - Giuseppe Maria Paternò
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
- Department of PhysicsPolitecnico di MilanoMilano20133Italy
| |
Collapse
|
42
|
Li Y, Li H, Gao J, Niu B, Wang H, Wang W. Visualizing the Intermittent Gating of Na + /H + Antiporters in Single Native Bioluminescent Bacteria. Angew Chem Int Ed Engl 2023; 62:e202215800. [PMID: 36562656 DOI: 10.1002/anie.202215800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/24/2022]
Abstract
While the intermittent gating of ion channels has been well studied for decades, dynamics of the action of secondary transporters, another major pathway for ion transmembrane transports, remains largely unexplored in living cells. Herein, intermittent blinking of the spontaneous bioluminescence (BL) from single native bacteria, P. phosphoreum, was reported, investigated and attributed to the intermittent gating of sodium/proton antiporters (NhaA) between the active and inactive conformations. Each gating event caused the rapid depolarization and recovery of membrane potential within several seconds, accompanying with the apparent BL blinking due to the transient inhibitions on the activity of the respiratory chain. Temperature-dependent measurements further obtained an activation energy barrier of the conformational change of 20.3 kJ mol-1 .
Collapse
Affiliation(s)
- Yaohua Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University, Nanjing, 210023, China
| | - Haoran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University, Nanjing, 210023, China
| | - Jia Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University, Nanjing, 210023, China
| | - Ben Niu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University, Nanjing, 210023, China
| | - Huan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University, Nanjing, 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
43
|
Makino D, Ueki A, Matsumoto H, Nagamine K. Minimally invasive current-controlled electrical stimulation system for bacteria using highly capacitive conducting polymer-modified electrodes. Bioelectrochemistry 2023; 149:108290. [DOI: 10.1016/j.bioelechem.2022.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
|
44
|
Moradi A, Zeinoddini M, Robatjazi SM. Rapid Concentration and Detection of Vibrio cholerae Using Magnetic Nanoparticles. J WATER CHEM TECHNO+ 2023. [DOI: 10.3103/s1063455x2301006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
45
|
Nikolaev DM, Mironov VN, Shtyrov AA, Kvashnin ID, Mereshchenko AS, Vasin AV, Panov MS, Ryazantsev MN. Fluorescence Imaging of Cell Membrane Potential: From Relative Changes to Absolute Values. Int J Mol Sci 2023; 24:2435. [PMID: 36768759 PMCID: PMC9916766 DOI: 10.3390/ijms24032435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Membrane potential is a fundamental property of biological cells. Changes in membrane potential characterize a vast number of vital biological processes, such as the activity of neurons and cardiomyocytes, tumorogenesis, cell-cycle progression, etc. A common strategy to record membrane potential changes that occur in the process of interest is to utilize organic dyes or genetically-encoded voltage indicators with voltage-dependent fluorescence. Sensors are introduced into target cells, and alterations of fluorescence intensity are recorded with optical methods. Techniques that allow recording relative changes of membrane potential and do not take into account fluorescence alterations due to factors other than membrane voltage are already widely used in modern biological and biomedical studies. Such techniques have been reviewed previously in many works. However, in order to investigate a number of processes, especially long-term processes, the measured signal must be corrected to exclude the contribution from voltage-independent factors or even absolute values of cell membrane potential have to be evaluated. Techniques that enable such measurements are the subject of this review.
Collapse
Affiliation(s)
- Dmitrii M. Nikolaev
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, 29 Polytechnicheskaya str., 195251 Saint Petersburg, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
| | - Vladimir N. Mironov
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
| | - Andrey A. Shtyrov
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, 29 Polytechnicheskaya str., 195251 Saint Petersburg, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
| | - Iaroslav D. Kvashnin
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
| | - Andrey S. Mereshchenko
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 Saint Petersburg, Russia
| | - Andrey V. Vasin
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, 29 Polytechnicheskaya str., 195251 Saint Petersburg, Russia
| | - Maxim S. Panov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 Saint Petersburg, Russia
- Center for Biophysical Studies, Saint Petersburg State Chemical Pharmaceutical University, 14 Professor Popov str., lit. A, 197022 Saint Petersburg, Russia
| | - Mikhail N. Ryazantsev
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 Saint Petersburg, Russia
| |
Collapse
|
46
|
Hennes M, Bender N, Cronenberg T, Welker A, Maier B. Collective polarization dynamics in bacterial colonies signify the occurrence of distinct subpopulations. PLoS Biol 2023; 21:e3001960. [PMID: 36652440 PMCID: PMC9847958 DOI: 10.1371/journal.pbio.3001960] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Membrane potential in bacterial systems has been shown to be dynamic and tightly related to survivability at the single-cell level. However, little is known about spatiotemporal patterns of membrane potential in bacterial colonies and biofilms. Here, we discovered a transition from uncorrelated to collective dynamics within colonies formed by the human pathogen Neisseria gonorrhoeae. In freshly assembled colonies, polarization is heterogeneous with instances of transient and uncorrelated hyper- or depolarization of individual cells. As colonies reach a critical size, the polarization behavior transitions to collective dynamics: A hyperpolarized shell forms at the center, travels radially outward, and halts several micrometers from the colony periphery. Once the shell has passed, we detect an influx of potassium correlated with depolarization. Transient hyperpolarization also demarks the transition from volume to surface growth. By combining simulations and the use of an alternative electron acceptor for the respiratory chain, we provide strong evidence that local oxygen gradients shape the collective polarization dynamics. Finally, we show that within the hyperpolarized shell, tolerance against aminoglycoside antibiotics increases. These findings highlight that the polarization pattern can signify the differentiation into distinct subpopulations with different growth rates and antibiotic tolerance.
Collapse
Affiliation(s)
- Marc Hennes
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- * E-mail: (MH); (BM)
| | - Niklas Bender
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Tom Cronenberg
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Anton Welker
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Berenike Maier
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- * E-mail: (MH); (BM)
| |
Collapse
|
47
|
Van Thillo T, Van Deuren V, Dedecker P. Smart genetically-encoded biosensors for the chemical monitoring of living systems. Chem Commun (Camb) 2023; 59:520-534. [PMID: 36519509 DOI: 10.1039/d2cc05363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genetically-encoded biosensors provide the all-optical and non-invasive visualization of dynamic biochemical events within living systems, which has allowed the discovery of profound new insights. Twenty-five years of biosensor development has steadily improved their performance and has provided us with an ever increasing biosensor repertoire. In this feature article, we present recent advances made in biosensor development and provide a perspective on the future direction of the field.
Collapse
Affiliation(s)
- Toon Van Thillo
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Vincent Van Deuren
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| |
Collapse
|
48
|
Penzkofer A, Silapetere A, Hegemann P. Theoretical Investigation of the Photocycle Dynamics of the Archaerhodopsin 3 Based Fluorescent Voltage Sensor Archon2. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
QuasAr Odyssey: the origin of fluorescence and its voltage sensitivity in microbial rhodopsins. Nat Commun 2022; 13:5501. [PMID: 36127376 PMCID: PMC9489792 DOI: 10.1038/s41467-022-33084-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Rhodopsins had long been considered non-fluorescent until a peculiar voltage-sensitive fluorescence was reported for archaerhodopsin-3 (Arch3) derivatives. These proteins named QuasArs have been used for imaging membrane voltage changes in cell cultures and small animals. However due to the low fluorescence intensity, these constructs require use of much higher light intensity than other optogenetic tools. To develop the next generation of sensors, it is indispensable to first understand the molecular basis of the fluorescence and its modulation by the membrane voltage. Based on spectroscopic studies of fluorescent Arch3 derivatives, we propose a unique photo-reaction scheme with extended excited-state lifetimes and inefficient photoisomerization. Molecular dynamics simulations of Arch3, of the Arch3 fluorescent derivative Archon1, and of several its mutants have revealed different voltage-dependent changes of the hydrogen-bonding networks including the protonated retinal Schiff-base and adjacent residues. Experimental observations suggest that under negative voltage, these changes modulate retinal Schiff base deprotonation and promote a decrease in the populations of fluorescent species. Finally, we identified molecular constraints that further improve fluorescence quantum yield and voltage sensitivity. The authors present an in-depth investigation of excited state dynamics and molecular mechanism of the voltage sensing in microbial rhodopsins. Using a combination of spectroscopic investigations and molecular dynamics simulations, the study proposes the voltage-modulated deprotonation of the chromophore as the key event in the voltage sensing. Thus, molecular constraints that may further improve the fluorescence quantum yield and the voltage sensitivity are presented.
Collapse
|
50
|
Abstract
Considerable electric fields are present within living cells, and the role of bioelectricity has been well established at the organismal level. Yet much remains to be learned about electric-field effects on protein function. Here, we use phototriggered charge injection from a site-specifically attached ruthenium photosensitizer to directly demonstrate the effect of dynamic charge redistribution within a protein. We find that binding of an antibody to phosphoglycerate kinase (PGK) is increased twofold under illumination. Remarkably, illumination is found to suppress the enzymatic activity of PGK by a factor as large as three. These responses are sensitive to the photosensitizer position on the protein. Surprisingly, left (but not right) circularly polarized light elicits these responses, indicating that the electrons involved in the observed dynamics are spin polarized, due to spin filtration by protein chiral structures. Our results directly establish the contribution of electrical polarization as an allosteric signal within proteins. Future experiments with phototriggered charge injection will allow delineation of charge rearrangement pathways within proteins and will further depict their effects on protein function.
Collapse
|