1
|
Rajendran V, Sivaraja YR. Zinc pyrithione inhibits blood-stage parasites of Plasmodium falciparum and its combinatorial effect with dihydro-artemisinin and chloroquine in culture. Parasitol Int 2025; 107:103041. [PMID: 39947389 DOI: 10.1016/j.parint.2025.103041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 03/15/2025]
Abstract
The malarial parasite Plasmodium falciparum has evolved resistance to several antimalarial drugs, posing a significant challenge to the effective management and treatment of malaria in endemic areas. Drug repurposing has emerged as a potential alternative strategy for addressing this issue. This study aimed to identify an FDA-approved microbicidal agent, zinc pyrithione (ZPT), against mixed blood-stage parasites of P. falciparum chloroquine-sensitive (Pf3D7) and resistant strains (PfINDO). Based on the time-inhibition kinetics assay, the parasite viability was significantly inhibited by ZPT treatment for 96 h (0.77 μM and 0.37 μM) and 72 h (0.63 μM and 0.61 μM), followed by 48 h (0.76 μM and 1.32 μM) and moderate inhibitory effects for 12 and 24 h in both Pf3D7 and PfINDO culture. Stage-specific treatment revealed that trophozoites and schizonts exposed to ZPT were more susceptible than ring-stage parasites. Phenotypic assays revealed that trophozoites and schizonts failed to mature and exhibited aberrant morphologies such as condensed nuclei, as determined by Giemsa staining. Furthermore, ZPT in combination with dihydro-artemisinin and chloroquine demonstrated additive interactions in both Pf3D7 and PfINDO parasites. At therapeutic dosages, ZPT failed to cause hemolysis in human erythrocytes. Overall, this study demonstrated a time-dependent effect of ZPT on the blood stages of human P. falciparum in culture, suggesting its utility in clinical settings.
Collapse
Affiliation(s)
- Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| | - Yuvan Raja Sivaraja
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
2
|
Akoth M, Odhiambo J, Omolo B. Genome-wide association studies on malaria in Sub-Saharan Africa: A scoping review. PLoS One 2025; 20:e0309268. [PMID: 40378106 PMCID: PMC12083797 DOI: 10.1371/journal.pone.0309268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/02/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Malaria remains one of the leading causes of death in Sub-Saharan Africa (SSA). The scoping review mapped evidence in research on existing studies on malaria genome-wide association studies (GWAS) in SSA. METHODS A scoping review was conducted to map existing studies in genome-wide association on malaria in SSA, with a review period between 1st January 2000 and 31st December 2024. The searches were made with the last search done in January 2025. The extracted data were analyzed using R software and SRplot. Relevant studies were identified through electronic searching of Google Scholar, Pubmed, Scopus, and Web of Science databases. Two independent reviewers followed the inclusion-exclusion criteria to extract relevant studies. Data from the studies were collected and synthesized using Excel and Zotero software. RESULTS We identified 89 studies for inclusion. Most of these studies (n = 42, [Formula: see text]) used a case-control study design, while the rest used cross-sectional, cohort, longitudinal, family-based, and experimental study designs. These studies were conducted between 2000 and 2024, with a noticeable increase in publications from 2012. Most studies were carried out in Kenya (n = 23), Gambia (n = 18), Cameroon (n = 15), and Tanzania (n = 9), primarily exploring genetic variants associated with malaria susceptibility, resistance, and severity. CONCLUSION Many case-control studies in Kenya and Gambia reported genetic variants in malaria susceptibility, resistance, and severity. GWAS on malaria is scarce in SSA, and even fewer studies are model-based. Consequently, there is a pressing need for more genome-wide research on malaria in SSA.
Collapse
Affiliation(s)
- Morine Akoth
- Strathmore Institute of Mathematical Sciences, Strathmore University, Ole Sangale Road, Nairobi, Kenya
| | - John Odhiambo
- Strathmore Institute of Mathematical Sciences, Strathmore University, Ole Sangale Road, Nairobi, Kenya
| | - Bernard Omolo
- Strathmore Institute of Mathematical Sciences, Strathmore University, Ole Sangale Road, Nairobi, Kenya
- Division of Mathematics & Computer Science, University of South Carolina-Upstate, Spartanburg, South Carolina, USA
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, South Africa
| |
Collapse
|
3
|
Kore M, Acharya D, Sharma L, Vembar SS, Sundriyal S. Development and experimental validation of a machine learning model for the prediction of new antimalarials. BMC Chem 2025; 19:28. [PMID: 39885590 PMCID: PMC11783816 DOI: 10.1186/s13065-025-01395-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
A large set of antimalarial molecules (N ~ 15k) was employed from ChEMBL to build a robust random forest (RF) model for the prediction of antiplasmodial activity. Rather than depending on high throughput screening (HTS) data, molecules tested at multiple doses against blood stages of Plasmodium falciparum were used for model development. The open-access and code-free KNIME platform was used to develop a workflow to train the model on 80% of data (N ~ 12k). The hyperparameter values were optimized to achieve the highest predictive accuracy with nine different molecular fingerprints (MFPs), among which Avalon MFPs (referred to as RF-1) provided the best results. RF-1 displayed 91.7% accuracy, 93.5% precision, 88.4% sensitivity and 97.3% area under the Receiver operating characteristic (AUROC) for the remaining 20% test set. The predictive performance of RF-1 was comparable to that of the malaria inhibitor prediction platform (MAIP), a recently reported consensus model based on a large proprietary dataset. However, hits obtained from RF-1 and MAIP from a commercial library did not overlap, suggesting that these two models are complementary. Finally, RF-1 was used to screen small molecules under clinical investigations for repurposing. Six molecules were purchased, out of which two human kinase inhibitors were identified to have single-digit micromolar antiplasmodial activity. One of the hits (compound 1) was a potent inhibitor of β-hematin, suggesting the involvement of parasite hemozoin (Hz) synthesis in the parasiticidal effect. The training and test sets are provided as supplementary information, allowing others to reproduce this work.
Collapse
Affiliation(s)
- Mukul Kore
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333 031, India
| | - Dimple Acharya
- Institute of Bioinformatics and Applied Biotechnology, Electronics City Phase I, Helix Biotech Park, Bengaluru, Karnataka, 560100, India
| | - Lakshya Sharma
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333 031, India
| | - Shruthi Sridhar Vembar
- Institute of Bioinformatics and Applied Biotechnology, Electronics City Phase I, Helix Biotech Park, Bengaluru, Karnataka, 560100, India
| | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333 031, India.
| |
Collapse
|
4
|
Chen H, Liu X, Wei B, Tian Y, Li Y, Zhang J, Tan H, Li J. Identification of a novel butenolide signal system to regulate high production of tylosin in Streptomyces fradiae. Appl Microbiol Biotechnol 2025; 109:18. [PMID: 39841199 PMCID: PMC11754346 DOI: 10.1007/s00253-024-13396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025]
Abstract
Identifying hormone-like quorum sensing (QS) molecules in streptomycetes is challenging due to low production levels but is essential for understanding secondary metabolite biosynthesis and morphological differentiation. This work reports the discovery of a novel γ-butenolide-type signaling molecule (SFB1) via overexpressing its biosynthetic gene (orf18) in Streptomyces fradiae. SFB1 was found to be essential for production of tylosin through dissociating the binding of its receptor TylP (a transcriptional repressor) to target genes, thus activating the expression of tylosin biosynthetic gene cluster (tyl). Meanwhile, SFB1 biosynthesis is negatively regulated by TylQ (another transcriptional repressor); the disruption of its coding gene tylQ led to increased production of SFB1, which in turn increased the yield of tylosin. Using tylQ disrupted mutant as chassis cell, co-overexpressing transcriptional activators TylR and TylS further increased tylosin yield to 3926 ± 110 mg/L, representing a 2.93-fold improvement over the wild-type strain. Since the quorum sensing signaling system can affect the biosynthesis of many secondary metabolites, thereby this strategy may also be readily applied for improving the titers of other microbial metabolites. KEY POINTS: • SFB1 is a novel γ-butenolide-type quorum sensing signaling molecule of S. fradiae. • SFB1 regulates the production of tylosin. • Engineering SFB1 regulatory cascade improves tylosin production.
Collapse
Affiliation(s)
- Huliang Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baoting Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqing Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jine Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Lee J, Matuschewski K, van Dooren G, Maier AG, Rug M. Lipid droplet dynamics are essential for the development of the malaria parasite Plasmodium falciparum. J Cell Sci 2024; 137:jcs262162. [PMID: 38962997 DOI: 10.1242/jcs.262162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
Lipid droplets (LDs) are organelles that are central to lipid and energy homeostasis across all eukaryotes. In the malaria-causing parasite Plasmodium falciparum the roles of LDs in lipid acquisition from its host cells and their metabolism are poorly understood, despite the high demand for lipids in parasite membrane synthesis. We systematically characterised LD size, composition and dynamics across the disease-causing blood infection. Applying split fluorescence emission analysis and three-dimensional (3D) focused ion beam-scanning electron microscopy (FIB-SEM), we observed a decrease in LD size in late schizont stages. LD contraction likely signifies a switch from lipid accumulation to lipid utilisation in preparation for parasite egress from host red blood cells. We demonstrate connections between LDs and several parasite organelles, pointing to potential functional interactions. Chemical inhibition of triacylglyerol (TAG) synthesis or breakdown revealed essential LD functions for schizogony and in counteracting lipid toxicity. The dynamics of lipid synthesis, storage and utilisation in P. falciparum LDs might provide a target for new anti-malarial intervention strategies.
Collapse
Affiliation(s)
- Jiwon Lee
- Centre for Advanced Microscopy, The Australian National University, Canberra ACT, 2601, Australia
- Research School of Biology, The Australian National University, Canberra ACT, 2601, Australia
| | - Kai Matuschewski
- Molecular Parasitology, Humboldt University, 10099 Berlin, Germany
| | - Giel van Dooren
- Research School of Biology, The Australian National University, Canberra ACT, 2601, Australia
| | - Alexander G Maier
- Research School of Biology, The Australian National University, Canberra ACT, 2601, Australia
| | - Melanie Rug
- Centre for Advanced Microscopy, The Australian National University, Canberra ACT, 2601, Australia
| |
Collapse
|
6
|
Vijayasurya, Gupta S, Shah S, Pappachan A. Drug repurposing for parasitic protozoan diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:23-58. [PMID: 38942539 DOI: 10.1016/bs.pmbts.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Protozoan parasites are major hazards to human health, society, and the economy, especially in equatorial regions of the globe. Parasitic diseases, including leishmaniasis, malaria, and others, contribute towards majority of morbidity and mortality. Around 1.1 million people die from these diseases annually. The lack of licensed vaccinations worsens the worldwide impact of these diseases, highlighting the importance of safe and effective medications for their prevention and treatment. However, the appearance of drug resistance in parasites continuously affects the availability of medications. The demand for novel drugs motivates global antiparasitic drug discovery research, necessitating the implementation of many innovative ways to maintain a continuous supply of promising molecules. Drug repurposing has come out as a compelling tool for drug development, offering a cost-effective and efficient alternative to standard de novo approaches. A thorough examination of drug repositioning candidates revealed that certain drugs may not benefit significantly from their original indications. Still, they may exhibit more pronounced effects in other disorders. Furthermore, certain medications can produce a synergistic effect, resulting in enhanced therapeutic effectiveness when given together. In this chapter, we outline the approaches employed in drug repurposing (sometimes referred to as drug repositioning), propose novel strategies to overcome these hurdles and fully exploit the promise of drug repurposing. We highlight a few major human protozoan diseases and a range of exemplary drugs repurposed for various protozoan infections, providing excellent outcomes for each disease.
Collapse
Affiliation(s)
- Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Smit Shah
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.
| |
Collapse
|
7
|
Berger F, Gomez GM, Sanchez CP, Posch B, Planelles G, Sohraby F, Nunes-Alves A, Lanzer M. pH-dependence of the Plasmodium falciparum chloroquine resistance transporter is linked to the transport cycle. Nat Commun 2023; 14:4234. [PMID: 37454114 PMCID: PMC10349806 DOI: 10.1038/s41467-023-39969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
The chloroquine resistance transporter, PfCRT, of the human malaria parasite Plasmodium falciparum is sensitive to acidic pH. Consequently, PfCRT operates at 60% of its maximal drug transport activity at the pH of 5.2 of the digestive vacuole, a proteolytic organelle from which PfCRT expels drugs interfering with heme detoxification. Here we show by alanine-scanning mutagenesis that E207 is critical for pH sensing. The E207A mutation abrogates pH-sensitivity, while preserving drug substrate specificity. Substituting E207 with Asp or His, but not other amino acids, restores pH-sensitivity. Molecular dynamics simulations and kinetics analyses suggest an allosteric binding model in which PfCRT can accept both protons and chloroquine in a partial noncompetitive manner, with increased proton concentrations decreasing drug transport. Further simulations reveal that E207 relocates from a peripheral to an engaged location during the transport cycle, forming a salt bridge with residue K80. We propose that the ionized carboxyl group of E207 acts as a hydrogen acceptor, facilitating transport cycle progression, with pH sensing as a by-product.
Collapse
Affiliation(s)
- Fiona Berger
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Guillermo M Gomez
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Cecilia P Sanchez
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Britta Posch
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Gabrielle Planelles
- INSERM, Centre de Recherche des Cordeliers, Unité 1138, CNRS ERL8228, Université Pierre et Marie Curie and Université Paris-Descartes, Paris, 75006, France
| | - Farzin Sohraby
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Ariane Nunes-Alves
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Zhang G, Niu G, Hooker–Romera D, Shabani S, Ramelow J, Wang X, Butler NS, James AA, Li J. Targeting plasmodium α-tubulin-1 to block malaria transmission to mosquitoes. Front Cell Infect Microbiol 2023; 13:1132647. [PMID: 37009496 PMCID: PMC10064449 DOI: 10.3389/fcimb.2023.1132647] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
Plasmodium ookinetes use an invasive apparatus to invade mosquito midguts, and tubulins are the major structural proteins of this apical complex. We examined the role of tubulins in malaria transmission to mosquitoes. Our results demonstrate that the rabbit polyclonal antibodies (pAb) against human α-tubulin significantly reduced the number of P. falciparum oocysts in Anopheles gambiae midguts, while rabbit pAb against human β-tubulin did not. Further studies showed that pAb, specifically against P. falciparum α-tubulin-1, also significantly limited P. falciparum transmission to mosquitoes. We also generated mouse monoclonal antibodies (mAb) using recombinant P. falciparum α-tubulin-1. Out of 16 mAb, two mAb, A3 and A16, blocked P. falciparum transmission with EC50 of 12 μg/ml and 2.8 μg/ml. The epitopes of A3 and A16 were determined to be a conformational and linear sequence of EAREDLAALEKDYEE, respectively. To understand the mechanism of the antibody-blocking activity, we studied the accessibility of live ookinete α-tubulin-1 to antibodies and its interaction with mosquito midgut proteins. Immunofluorescent assays showed that pAb could bind to the apical complex of live ookinetes. Moreover, both ELISA and pull-down assays demonstrated that insect cell-expressed mosquito midgut protein, fibrinogen-related protein 1 (FREP1), interacts with P. falciparum α-tubulin-1. Since ookinete invasion is directional, we conclude that the interaction between Anopheles FREP1 protein and Plasmodium α-tubulin-1 anchors and orients the ookinete invasive apparatus towards the midgut PM and promotes the efficient parasite infection in the mosquito.
Collapse
Affiliation(s)
- Genwei Zhang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Guodong Niu
- Department of Biological Sciences, Biomolecule Sciences Institute, Florida International University, Miami, FL, United States
| | - Diana Hooker–Romera
- Department of Biological Sciences, Biomolecule Sciences Institute, Florida International University, Miami, FL, United States
| | - Sadeq Shabani
- Department of Biological Sciences, Biomolecule Sciences Institute, Florida International University, Miami, FL, United States
| | - Julian Ramelow
- Biomedical Sciences Graduate Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Xiaohong Wang
- Department of Biological Sciences, Biomolecule Sciences Institute, Florida International University, Miami, FL, United States
| | - Noah S. Butler
- Departments of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Anthony A. James
- Department of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Jun Li
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
- Department of Biological Sciences, Biomolecule Sciences Institute, Florida International University, Miami, FL, United States
- Biomedical Sciences Graduate Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
9
|
Beri D, Singh M, Rodriguez M, Goyal N, Rasquinha G, Liu Y, An X, Yazdanbakhsh K, Lobo CA. Global Metabolomic Profiling of Host Red Blood Cells Infected with Babesia divergens Reveals Novel Antiparasitic Target Pathways. Microbiol Spectr 2023; 11:e0468822. [PMID: 36786651 PMCID: PMC10100774 DOI: 10.1128/spectrum.04688-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023] Open
Abstract
Babesia divergens is an apicomplexan parasite that infects human red blood cells (RBCs), initiating cycles of invasion, replication, and egress, resulting in extensive metabolic modification of the host cells. Babesia is an auxotroph for most of the nutrients required to sustain these cycles. There are currently limited studies on the biochemical pathways that support these critical processes, necessitating the high-resolution global metabolomics approach described here to uncover the metabolic interactions between parasite and host RBC. Our results reveal an extensive parasite-mediated modulation of RBC metabolite levels of all classes, including lipids, amino acids, carbohydrates, and nucleotides, with numerous metabolic species varying in proportion to the level of infection. Many of these molecules are scavenged from the host RBCs. This is in accord with the needs of a rapidly proliferating parasite with limited biosynthetic capabilities. Probing these pathways in depth, we used growth inhibition assays to quantitate parasite susceptibility to drugs targeting these pathways and stimulated emission depletion (STED) microscopy to obtain high-resolution images of drug-treated parasites to correlate changes in morphology with specific metabolic blocks in order to validate the data generated by the untargeted metabolomics platform. Thus, interruption of cholesterol scavenging from the host cell led to premature parasite egress, while chemical targeting of the hydrolysis of acyl glycerides led to the buildup of malformed parasites that could not successfully egress. This is the first report detailing the global metabolomic profile of the B. divergens-infected RBC. Besides deciphering diverse aspects of the host-parasite relationship, our results can be exploited by others to uncover further drug targets in the host-parasite biochemical network. IMPORTANCE Human babesiosis is caused by apicomplexan parasites of the Babesia genus and is associated with transfusion-transmitted illness and relapsing disease in immunosuppressed populations. Through its continuous cycles of invasion, proliferation, and egress, B. divergens radically changes the metabolic environment of the host red blood cell, allowing us opportunities to study potential chemical vulnerabilities that can be targeted by drugs. This is the first global metabolomic profiling of Babesia-infected human red blood cells, and our analysis revealed perturbation in all biomolecular classes at levels proportional to the level of infection. In particular, lipids and energy flux pathways in the host cell were altered by infection. We validated the changes in key metabolic pathways by performing inhibition assays accompanied by high-resolution microscopy. Overall, this global metabolomics analysis of Babesia-infected red blood cells has helped to uncover novel aspects of parasite biology and identified potential biochemical pathways that can be targeted for chemotherapeutic intervention.
Collapse
Affiliation(s)
- Divya Beri
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Manpreet Singh
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Marilis Rodriguez
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Naman Goyal
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | | | - Yunfeng Liu
- Department of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Xiuli An
- Department of Membrane Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Karina Yazdanbakhsh
- Department of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Cheryl A. Lobo
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| |
Collapse
|
10
|
Tannic acid (TA)-based coating modified membrane enhanced by successive inkjet printing of Fe3+ and sodium periodate (SP) for efficient oil-water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120873] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Ciallella HL, Russo DP, Sharma S, Li Y, Sloter E, Sweet L, Huang H, Zhu H. Predicting Prenatal Developmental Toxicity Based On the Combination of Chemical Structures and Biological Data. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5984-5998. [PMID: 35451820 PMCID: PMC9191745 DOI: 10.1021/acs.est.2c01040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
For hazard identification, classification, and labeling purposes, animal testing guidelines are required by law to evaluate the developmental toxicity potential of new and existing chemical products. However, guideline developmental toxicity studies are costly, time-consuming, and require many laboratory animals. Computational modeling has emerged as a promising, animal-sparing, and cost-effective method for evaluating the developmental toxicity potential of chemicals, such as endocrine disruptors, without the use of animals. We aimed to develop a predictive and explainable computational model for developmental toxicants. To this end, a comprehensive dataset of 1244 chemicals with developmental toxicity classifications was curated from public repositories and literature sources. Data from 2140 toxicological high-throughput screening assays were extracted from PubChem and the ToxCast program for this dataset and combined with information about 834 chemical fragments to group assays based on their chemical-mechanistic relationships. This effort revealed two assay clusters containing 83 and 76 assays, respectively, with high positive predictive rates for developmental toxicants identified with animal testing guidelines (PPV = 72.4 and 77.3% during cross-validation). These two assay clusters can be used as developmental toxicity models and were applied to predict new chemicals for external validation. This study provides a new strategy for constructing alternative chemical developmental toxicity evaluations that can be replicated for other toxicity modeling studies.
Collapse
Affiliation(s)
- Heather L. Ciallella
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08103, USA
| | - Daniel P. Russo
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08103, USA
- Department of Chemistry, Rutgers University, Camden, NJ, 08102, USA
| | - Swati Sharma
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08103, USA
| | - Yafan Li
- The Lubrizol Corporation, Wickliffe, OH, 44092, USA
| | - Eddie Sloter
- The Lubrizol Corporation, Wickliffe, OH, 44092, USA
| | - Len Sweet
- The Lubrizol Corporation, Wickliffe, OH, 44092, USA
| | - Heng Huang
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Hao Zhu
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08103, USA
- Department of Chemistry, Rutgers University, Camden, NJ, 08102, USA
| |
Collapse
|
12
|
Mechanistic basis for multidrug resistance and collateral drug sensitivity conferred to the malaria parasite by polymorphisms in PfMDR1 and PfCRT. PLoS Biol 2022; 20:e3001616. [PMID: 35507548 PMCID: PMC9067703 DOI: 10.1371/journal.pbio.3001616] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/31/2022] [Indexed: 01/16/2023] Open
Abstract
Polymorphisms in the Plasmodium falciparum multidrug resistance protein 1 (pfmdr1) gene and the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene alter the malaria parasite’s susceptibility to most of the current antimalarial drugs. However, the precise mechanisms by which PfMDR1 contributes to multidrug resistance have not yet been fully elucidated, nor is it understood why polymorphisms in pfmdr1 and pfcrt that cause chloroquine resistance simultaneously increase the parasite’s susceptibility to lumefantrine and mefloquine—a phenomenon known as collateral drug sensitivity. Here, we present a robust expression system for PfMDR1 in Xenopus oocytes that enables direct and high-resolution biochemical characterizations of the protein. We show that wild-type PfMDR1 transports diverse pharmacons, including lumefantrine, mefloquine, dihydroartemisinin, piperaquine, amodiaquine, methylene blue, and chloroquine (but not the antiviral drug amantadine). Field-derived mutant isoforms of PfMDR1 differ from the wild-type protein, and each other, in their capacities to transport these drugs, indicating that PfMDR1-induced changes in the distribution of drugs between the parasite’s digestive vacuole (DV) and the cytosol are a key driver of both antimalarial resistance and the variability between multidrug resistance phenotypes. Of note, the PfMDR1 isoforms prevalent in chloroquine-resistant isolates exhibit reduced capacities for chloroquine, lumefantrine, and mefloquine transport. We observe the opposite relationship between chloroquine resistance-conferring mutations in PfCRT and drug transport activity. Using our established assays for characterizing PfCRT in the Xenopus oocyte system and in live parasite assays, we demonstrate that these PfCRT isoforms transport all 3 drugs, whereas wild-type PfCRT does not. We present a mechanistic model for collateral drug sensitivity in which mutant isoforms of PfMDR1 and PfCRT cause chloroquine, lumefantrine, and mefloquine to remain in the cytosol instead of sequestering within the DV. This change in drug distribution increases the access of lumefantrine and mefloquine to their primary targets (thought to be located outside of the DV), while simultaneously decreasing chloroquine’s access to its target within the DV. The mechanistic insights presented here provide a basis for developing approaches that extend the useful life span of antimalarials by exploiting the opposing selection forces they exert upon PfCRT and PfMDR1.
Collapse
|
13
|
Guevara‐Pulido J, Jiménez RA, Morantes SJ, Jaramillo DN, Acosta‐Guzmán P. Design, Synthesis, and Development of 4‐[(7‐Chloroquinoline‐4‐yl)amino]phenol as a Potential SARS‐CoV‐2 Mpro Inhibitor. ChemistrySelect 2022; 7:e202200125. [PMID: 35601684 PMCID: PMC9111044 DOI: 10.1002/slct.202200125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
A series of chloroquine analogs were designed to search for a less toxic chloroquine derivative as a potential SARS‐CoV‐2 Mpro inhibitor. Herein, an ANN‐based QSAR model was built to predict the IC50 values of each analog using the experimental values of other 4‐aminoquinolines as the training set. Subsequently, molecular docking was used to evaluate each analog's binding affinity to Mpro. The analog that showed the greatest affinity and lowest IC50 values was synthesized and characterized for its posterior incorporation into a polycaprolactone‐based nanoparticulate system. After characterizing the loaded nanoparticles, an in vitro drug release assay was carried out, and the cytotoxicity of the analog and loaded nanoparticles was evaluated using murine fibroblast (L929) and human lung adenocarcinoma (A549) cell lines. Results show that the synthesized analog is much less toxic than chloroquine and that the nanoparticulate system allowed for the prolonged release of the analog without evidence of adverse effects on the cell lines used; therefore, suggesting that the analog could be a potential therapeutic option for COVID‐19.
Collapse
|
14
|
Ngan DK, Xu T, Xia M, Zheng W, Huang R. Repurposing drugs as COVID-19 therapies: a toxicity evaluation. Drug Discov Today 2022; 27:1983-1993. [PMID: 35395401 PMCID: PMC8983078 DOI: 10.1016/j.drudis.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022]
Abstract
Drug repurposing is an appealing method to address the Coronavirus 2019 (COVID-19) pandemic because of the low cost and efficiency. We analyzed our in-house database of approved drug screens and compared their activity profiles with results from a severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) cytopathic effect (CPE) assay. The activity profiles of the human ether-à-go-go-related gene (hERG), phospholipidosis (PLD), and many cytotoxicity screens were found significantly correlated with anti-SARS-CoV-2 activity. hERG inhibition is a nonspecific off-target effect that has contributed to promiscuous drug interactions, whereas drug-induced PLD is an undesirable effect linked to hERG blockers. Thus, this study identifies preferred drug candidates as well as chemical structures that should be avoided because of their potential to induce toxicity. Lastly, we highlight the hERG liability of anti-SARS-CoV-2 drugs currently enrolled in clinical trials.
Collapse
Affiliation(s)
- Deborah K Ngan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Tuan Xu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Wei Zheng
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| |
Collapse
|
15
|
Kingston DGI, Cassera MB. Antimalarial Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2022; 117:1-106. [PMID: 34977998 DOI: 10.1007/978-3-030-89873-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Natural products have made a crucial and unique contribution to human health, and this is especially true in the case of malaria, where the natural products quinine and artemisinin and their derivatives and analogues, have saved millions of lives. The need for new drugs to treat malaria is still urgent, since the most dangerous malaria parasite, Plasmodium falciparum, has become resistant to quinine and most of its derivatives and is becoming resistant to artemisinin and its derivatives. This volume begins with a short history of malaria and follows this with a summary of its biology. It then traces the fascinating history of the discovery of quinine for malaria treatment and then describes quinine's biosynthesis, its mechanism of action, and its clinical use, concluding with a discussion of synthetic antimalarial agents based on quinine's structure. The volume then covers the discovery of artemisinin and its development as the source of the most effective current antimalarial drug, including summaries of its synthesis and biosynthesis, its mechanism of action, and its clinical use and resistance. A short discussion of other clinically used antimalarial natural products leads to a detailed treatment of other natural products with significant antiplasmodial activity, classified by compound type. Although the search for new antimalarial natural products from Nature's combinatorial library is challenging, it is very likely to yield new antimalarial drugs. The chapter thus ends by identifying over ten natural products with development potential as clinical antimalarial agents.
Collapse
Affiliation(s)
- David G I Kingston
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Maria Belen Cassera
- Department of Biochemistry and Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
16
|
Oberstaller J, Zoungrana L, Bannerman CD, Jahangiri S, Dwivedi A, Silva JC, Adams JH, Takala-Harrison S. Integration of population and functional genomics to understand mechanisms of artemisinin resistance in Plasmodium falciparum. Int J Parasitol Drugs Drug Resist 2021; 16:119-128. [PMID: 34102588 PMCID: PMC8187163 DOI: 10.1016/j.ijpddr.2021.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/05/2021] [Accepted: 05/21/2021] [Indexed: 11/05/2022]
Abstract
Resistance to antimalarial drugs, and in particular to the artemisinin derivatives and their partner drugs, threatens recent progress toward regional malaria elimination and eventual global malaria eradication. Population-level studies utilizing whole-genome sequencing approaches have facilitated the identification of regions of the parasite genome associated with both clinical and in vitro drug-resistance phenotypes. However, the biological relevance of genes identified in these analyses and the establishment of a causal relationship between genotype and phenotype requires functional characterization. Here we examined data from population genomic and transcriptomic studies in the context of data generated from recent functional studies, using a new population genetic approach designed to identify potential favored mutations within the region of a selective sweep (iSAFE). We identified several genes functioning in pathways now known to be associated with artemisinin resistance that were supported in early population genomic studies, as well as potential new drug targets/pathways for further validation and consideration for treatment of artemisinin-resistant Plasmodium falciparum. In addition, we establish the utility of iSAFE in identifying positively-selected mutations in population genomic studies, potentially accelerating the time to functional validation of candidate genes.
Collapse
Affiliation(s)
- Jenna Oberstaller
- Center for Global Health and Infectious Disease Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Linda Zoungrana
- Center for Global Health and Infectious Disease Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Carl D Bannerman
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Samira Jahangiri
- Center for Global Health and Infectious Disease Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Ankit Dwivedi
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - John H Adams
- Center for Global Health and Infectious Disease Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
How much epigenetics and quantitative trait loci (QTL) mapping tell us about parasitism maintenance and resistance/susceptibility to hosts. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166214. [PMID: 34271118 DOI: 10.1016/j.bbadis.2021.166214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023]
Abstract
Interactions between the environment, parasites, vectors, and/or intermediate hosts are complex and involve several factors that define the success or failure of an infection. Among these interactions that can affect infections by a parasite, it is possible to highlight the genetic and epigenetic mechanisms in hosts and parasites. The interaction between genetics, epigenetics, infection, and the host's internal and external environment is decisive and dictates the outcome of a parasitic infection and the resistance, susceptibility, and transmission of this parasite. Epigenetic changes become important mediators in the regulation of gene expression, allowing the evasion of the parasite to immune host barriers, its transmission to new hosts, and the end of its development cycle. Epigenetics is a new frontier in the understanding of the interaction mechanisms between parasite and host that, along with information from the gene regions associated with complex phenotypic variations, the Quantitative Trait Loci, brings new possibilities to investigate more modern and efficient approaches to the treatment, control, and eradication of parasitic diseases. In this brief review, a general overview of the use of epigenetic information and mapping of Quantitative Trait Loci was summarized, both in genes of parasites and hosts, for understanding the mechanisms of resistance and/or susceptibility in parasitic relationships; also, the main search platforms were quantitatively compared, aiming to facilitate access data produced over a period of twenty years.
Collapse
|
18
|
Chemoprotective antimalarials identified through quantitative high-throughput screening of Plasmodium blood and liver stage parasites. Sci Rep 2021; 11:2121. [PMID: 33483532 PMCID: PMC7822874 DOI: 10.1038/s41598-021-81486-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022] Open
Abstract
The spread of Plasmodium falciparum parasites resistant to most first-line antimalarials creates an imperative to enrich the drug discovery pipeline, preferably with curative compounds that can also act prophylactically. We report a phenotypic quantitative high-throughput screen (qHTS), based on concentration–response curves, which was designed to identify compounds active against Plasmodium liver and asexual blood stage parasites. Our qHTS screened over 450,000 compounds, tested across a range of 5 to 11 concentrations, for activity against Plasmodium falciparum asexual blood stages. Active compounds were then filtered for unique structures and drug-like properties and subsequently screened in a P. berghei liver stage assay to identify novel dual-active antiplasmodial chemotypes. Hits from thiadiazine and pyrimidine azepine chemotypes were subsequently prioritized for resistance selection studies, yielding distinct mutations in P. falciparum cytochrome b, a validated antimalarial drug target. The thiadiazine chemotype was subjected to an initial medicinal chemistry campaign, yielding a metabolically stable analog with sub-micromolar potency. Our qHTS methodology and resulting dataset provides a large-scale resource to investigate Plasmodium liver and asexual blood stage parasite biology and inform further research to develop novel chemotypes as causal prophylactic antimalarials.
Collapse
|
19
|
Martin RE. The transportome of the malaria parasite. Biol Rev Camb Philos Soc 2019; 95:305-332. [PMID: 31701663 DOI: 10.1111/brv.12565] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Membrane transport proteins, also known as transporters, control the movement of ions, nutrients, metabolites, and waste products across the membranes of a cell and are central to its biology. Proteins of this type also serve as drug targets and are key players in the phenomenon of drug resistance. The malaria parasite has a relatively reduced transportome, with only approximately 2.5% of its genes encoding transporters. Even so, assigning functions and physiological roles to these proteins, and ascertaining their contributions to drug action and drug resistance, has been very challenging. This review presents a detailed critique and synthesis of the disruption phenotypes, protein subcellular localisations, protein functions (observed or predicted), and links to antimalarial drug resistance for each of the parasite's transporter genes. The breadth and depth of the gene disruption data are particularly impressive, with at least one phenotype determined in the parasite's asexual blood stage for each transporter gene, and multiple phenotypes available for 76% of the genes. Analysis of the curated data set revealed there to be relatively little redundancy in the Plasmodium transportome; almost two-thirds of the parasite's transporter genes are essential or required for normal growth in the asexual blood stage of the parasite, and this proportion increased to 78% when the disruption phenotypes available for the other parasite life stages were included in the analysis. These observations, together with the finding that 22% of the transportome is implicated in the parasite's resistance to existing antimalarials and/or drugs within the development pipeline, indicate that transporters are likely to serve, or are already serving, as drug targets. Integration of the different biological and bioinformatic data sets also enabled the selection of candidates for transport processes known to be essential for parasite survival, but for which the underlying proteins have thus far remained undiscovered. These include potential transporters of pantothenate, isoleucine, or isopentenyl diphosphate, as well as putative anion-selective channels that may serve as the pore component of the parasite's 'new permeation pathways'. Other novel insights into the parasite's biology included the identification of transporters for the potential development of antimalarial treatments, transmission-blocking drugs, prophylactics, and genetically attenuated vaccines. The syntheses presented herein set a foundation for elucidating the functions and physiological roles of key members of the Plasmodium transportome and, ultimately, to explore and realise their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rowena E Martin
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
20
|
Devillers J, Devillers H. Toxicity profiling and prioritization of plant-derived antimalarial agents. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:801-824. [PMID: 31565973 DOI: 10.1080/1062936x.2019.1665844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Human malaria is the most widespread mosquito-borne life-threatening disease worldwide. In the absence of effective vaccines, prevention and treatment of malaria only depend on prophylaxis and drug-based therapy either in monotherapy or in combination. Unfortunately, the number of available antimalarial drugs presenting different mechanisms of action is rather limited. In addition, the appearance of drug-resistance in the parasite strains impacts the efficacy of the treatments. As a result, there is a crucial need to find new drugs to circumvent resistance problems. In the quest to identify new antimalarial agents a huge number of plant-derived compounds (PDCs) have been investigated. Surprisingly in the in silico PDC screening programs, toxicity filters are either never used or so simple that their interest is limited. In this context, the goal of this study was to show how to take advantage of validated toxicity QSAR models for refining the selection of PDCs. From an original data set of 507 PDCs collected from the literature, the use of toxicity filters for endocrine disruption, developmental toxicity, and hepatotoxicity in conjunction with classical pharmacokinetic filters allowed us to obtain a list of 31 compounds of potential interest. The pros and cons of such a strategy have been discussed.
Collapse
Affiliation(s)
| | - H Devillers
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay , Jouy-en-Josas , France
| |
Collapse
|
21
|
Huang R, Zhu H, Shinn P, Ngan D, Ye L, Thakur A, Grewal G, Zhao T, Southall N, Hall MD, Simeonov A, Austin CP. The NCATS Pharmaceutical Collection: a 10-year update. Drug Discov Today 2019; 24:2341-2349. [PMID: 31585169 DOI: 10.1016/j.drudis.2019.09.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022]
Abstract
The National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection (NPC), a comprehensive collection of clinically approved drugs, was made a public resource in 2011. Over the past decade, the NPC has been systematically profiled for activity across an array of pathways and disease models, generating an unparalleled amount of data. These data have not only enabled the identification of new repurposing candidates with several in clinical trials, but also uncovered new biological insights into drug targets and disease mechanisms. This retrospective provides an update on the NPC in terms of both successes and lessons learned. We also report our efforts in bringing the NPC up-to-date with drugs approved in recent years.
Collapse
Affiliation(s)
- Ruili Huang
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA.
| | - Hu Zhu
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Paul Shinn
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Deborah Ngan
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Lin Ye
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Ashish Thakur
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Gurmit Grewal
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Tongan Zhao
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Noel Southall
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Mathew D Hall
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Anton Simeonov
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Christopher P Austin
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| |
Collapse
|
22
|
Abou-El-Naga IF, Said DE, Gaafar MR, Ahmed SM, El-Deeb SA. A new scope for orlistat: Effect of approved anti-obesity drug against experimental microsporidiosis. Med Mycol 2019. [PMID: 29529254 DOI: 10.1093/mmy/myy005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
As the current therapies for intestinal microsporidiosis are either inconsistent in their efficacies or hampered by several adverse effects, alternative antimicrosporidial agents are being sought. The present study is the first that was designed to evaluate the potency of orlistat, an approved anti-obesity drug, against intestinal microsporidiosis caused by both Enterocytozoon bieneusi and Encephalitozoon intestinalis. Results were assessed through studying fecal and intestinal spore load, intestinal histopathological changes, viability, and infectivity of spores from treated animals. Results showed that orlistat has promising antimicrosporidia potential, with better results in E. intestinalis than E. bieneusi. The animals that received orlistat showed statistically significant decrease in the fecal and intestinal spore load, when compared to the corresponding control infected nontreated mice. The results were insignificant compared to fumagillin and albendazole. Light microscopic examination of stained intestinal sections revealed amelioration of the pathological changes and decreased inflammatory cells detected in the control infected nontreated mice. Spores encountered from stool of orlistat-treated E. bieneusi and E. intestinalis mice showed low viability and significant reduction of infectivity versus their control. Thus, considering the results of the present work, orlistat proved its effectiveness against the intestinal microsporidial infection.
Collapse
Affiliation(s)
| | - D E Said
- Department of Medical Parasitology
| | | | - S M Ahmed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Egypt
| | | |
Collapse
|
23
|
Ashton TD, Devine SM, Möhrle JJ, Laleu B, Burrows JN, Charman SA, Creek DJ, Sleebs BE. The Development Process for Discovery and Clinical Advancement of Modern Antimalarials. J Med Chem 2019; 62:10526-10562. [DOI: 10.1021/acs.jmedchem.9b00761] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Trent D. Ashton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Shane M. Devine
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jörg J. Möhrle
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Benoît Laleu
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Jeremy N. Burrows
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Susan A. Charman
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Darren J. Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
24
|
Plasmodium Genomics and Genetics: New Insights into Malaria Pathogenesis, Drug Resistance, Epidemiology, and Evolution. Clin Microbiol Rev 2019; 32:32/4/e00019-19. [PMID: 31366610 DOI: 10.1128/cmr.00019-19] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protozoan Plasmodium parasites are the causative agents of malaria, a deadly disease that continues to afflict hundreds of millions of people every year. Infections with malaria parasites can be asymptomatic, with mild or severe symptoms, or fatal, depending on many factors such as parasite virulence and host immune status. Malaria can be treated with various drugs, with artemisinin-based combination therapies (ACTs) being the first-line choice. Recent advances in genetics and genomics of malaria parasites have contributed greatly to our understanding of parasite population dynamics, transmission, drug responses, and pathogenesis. However, knowledge gaps in parasite biology and host-parasite interactions still remain. Parasites resistant to multiple antimalarial drugs have emerged, while advanced clinical trials have shown partial efficacy for one available vaccine. Here we discuss genetic and genomic studies of Plasmodium biology, host-parasite interactions, population structures, mosquito infectivity, antigenic variation, and targets for treatment and immunization. Knowledge from these studies will advance our understanding of malaria pathogenesis, epidemiology, and evolution and will support work to discover and develop new medicines and vaccines.
Collapse
|
25
|
Sanchez CP, Moliner Cubel S, Nyboer B, Jankowska-Döllken M, Schaeffer-Reiss C, Ayoub D, Planelles G, Lanzer M. Phosphomimetic substitution at Ser-33 of the chloroquine resistance transporter PfCRT reconstitutes drug responses in Plasmodium falciparum. J Biol Chem 2019; 294:12766-12778. [PMID: 31285265 DOI: 10.1074/jbc.ra119.009464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/24/2019] [Indexed: 01/01/2023] Open
Abstract
The chloroquine resistance transporter PfCRT of the human malaria parasite Plasmodium falciparum confers resistance to the former first-line antimalarial drug chloroquine, and it modulates the responsiveness to a wide range of quinoline and quinoline-like compounds. PfCRT is post-translationally modified by phosphorylation, palmitoylation, and, possibly, ubiquitination. However, the impact of these post-translational modifications on P. falciparum biology and, in particular, the drug resistance-conferring activity of PfCRT has remained elusive. Here, we confirm phosphorylation at Ser-33 and Ser-411 of PfCRT of the chloroquine-resistant P. falciparum strain Dd2 and show that kinase inhibitors can sensitize drug responsiveness. Using CRISPR/Cas9 genome editing to generate genetically engineered PfCRT variants in the parasite, we further show that substituting Ser-33 with alanine reduced chloroquine and quinine resistance by ∼50% compared with the parental P. falciparum strain Dd2, whereas the phosphomimetic amino acid aspartic acid could fully and glutamic acid could partially reconstitute the level of chloroquine/quinine resistance. Transport studies conducted in the parasite and in PfCRT-expressing Xenopus laevis oocytes linked phosphomimetic substitution at Ser-33 to increased transport velocity. Our data are consistent with phosphorylation of Ser-33 relieving an autoinhibitory intramolecular interaction within PfCRT, leading to a stimulated drug transport activity. Our findings shed additional light on the function of PfCRT and suggest that chloroquine could be reevaluated as an antimalarial drug by targeting the kinase in P. falciparum that phosphorylates Ser-33 of PfCRT.
Collapse
Affiliation(s)
- Cecilia P Sanchez
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Sonia Moliner Cubel
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Britta Nyboer
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Monika Jankowska-Döllken
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien (IPHC) UMR 7178, 67037 Strasbourg, France
| | - Daniel Ayoub
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien (IPHC) UMR 7178, 67037 Strasbourg, France
| | - Gabrielle Planelles
- INSERM, Centre de Recherche des Cordeliers, Unité 1138, CNRS, ERL8228, Université Pierre et Marie Curie and Université Paris-Descartes, 75006 Paris, France
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
26
|
Mechanisms of resistance to the partner drugs of artemisinin in the malaria parasite. Curr Opin Pharmacol 2018; 42:71-80. [PMID: 30142480 DOI: 10.1016/j.coph.2018.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/19/2018] [Accepted: 07/26/2018] [Indexed: 01/24/2023]
Abstract
The deployment of artemisinin-based combination therapies (ACTs) has been, and continues to be, integral to reducing the number of malaria cases and deaths. However, their efficacy is being increasingly jeopardized by the emergence and spread of parasites that are resistant (or partially resistant) to the artemisinin derivatives and to their partner drugs, with the efficacy of the latter being especially crucial for treatment success. A detailed understanding of the genetic determinants of resistance to the ACT partner drugs, and the mechanisms by which they mediate resistance, is required for the surveillance of molecular markers and to optimize the efficacy and lifespan of the partner drugs through resistance management strategies. We summarize new insights into the molecular basis of parasite resistance to the ACTs, such as recently-uncovered determinants of parasite susceptibility to the artemisinin derivatives, piperaquine, lumefantrine, and mefloquine, and outline the mechanisms through which polymorphisms in these determinants may be conferring resistance.
Collapse
|
27
|
Sima N, Sun W, Gorshkov K, Shen M, Huang W, Zhu W, Xie X, Zheng W, Cheng X. Small Molecules Identified from a Quantitative Drug Combinational Screen Resensitize Cisplatin's Response in Drug-Resistant Ovarian Cancer Cells. Transl Oncol 2018; 11:1053-1064. [PMID: 29982103 PMCID: PMC6034569 DOI: 10.1016/j.tranon.2018.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 12/29/2022] Open
Abstract
Drug resistance to chemotherapy occurs in many ovarian cancer patients resulting in failure of treatment. Exploration of drug resistance mechanisms and identification of new therapeutics that overcome the drug resistance can improve patient prognosis. Following a quantitative combination screen of 6060 approved drugs and bioactive compounds in a cisplatin-resistant A2780-cis ovarian cancer cell line, 38 active compounds with IC50s under 1 μM suppressed the growth of cisplatin-resistant ovarian cancer cells. Among these confirmed compounds, CUDC-101, OSU-03012, oligomycin A, VE-821, or Torin2 in a combination with cisplatin restored cisplatin's apoptotic response in the A2780-cis cells, while SR-3306, GSK-923295, SNX-5422, AT-13387, and PF-05212384 directly suppressed the growth of A2780-cis cells. One of the mechanisms for overcoming cisplatin resistance in these cells is mediated by the inhibition of epidermal growth factor receptor (EGFR), though not all the EGFR inhibitors are equally active. The increased levels of total EGFR and phosphorylated-EGFR (p-EGFR) in the A2780-cis cells were reduced after the combined treatment of cisplatin with EGFR inhibitors. In addition, a knockdown of EGFR mRNA reduced cisplatin resistance in the A2780-cis cells. Therefore, the top active compounds identified in this work can be studied further as potential treatments for cisplatin-resistant ovarian cancer. The quantitative combinational screening approach is a useful method for identifying effective compounds and drug combinations against drug-resistant cancer cells.
Collapse
Affiliation(s)
- Ni Sima
- Department of Gynecologic Oncology, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Wei Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Wei Huang
- Department of Gynecologic Oncology, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Wenge Zhu
- Department of Biochemistry and Molecular Biology, The George Washington University Medical School, Washington, DC
| | - Xing Xie
- Department of Gynecologic Oncology, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
28
|
Selection of Plasmodium falciparum cytochrome B mutants by putative PfNDH2 inhibitors. Proc Natl Acad Sci U S A 2018; 115:6285-6290. [PMID: 29844160 DOI: 10.1073/pnas.1804492115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malaria control is threatened by a limited pipeline of effective pharmaceuticals against drug-resistant strains of Plasmodium falciparum Components of the mitochondrial electron transport chain (ETC) are attractive targets for drug development, owing to exploitable differences between the parasite and human ETC. Disruption of ETC function interferes with metabolic processes including de novo pyrimidine synthesis, essential for nucleic acid replication. We investigated the effects of ETC inhibitor selection on two distinct P. falciparum clones, Dd2 and 106/1. Compounds CK-2-68 and RYL-552, substituted quinolones reported to block P. falciparum NADH dehydrogenase 2 (PfNDH2; a type II NADH:quinone oxidoreductase), unexpectedly selected mutations at the quinol oxidation (Qo) pocket of P. falciparum cytochrome B (PfCytB). Selection experiments with atovaquone (ATQ) on 106/1 parasites yielded highly resistant PfCytB Y268S mutants seen in clinical infections that fail ATQ-proguanil treatment. In contrast, ATQ pressure on Dd2 yielded moderately resistant parasites carrying a PfCytB M133I or K272R mutation. Strikingly, all ATQ-selected mutants demonstrated little change or slight increase of sensitivity to CK-2-68 or RYL-552. Molecular docking studies demonstrated binding of all three ETC inhibitors to the Qo pocket of PfCytB, where Y268 forms strong van der Waals interactions with the hydroxynaphthoquinone ring of ATQ but not the quinolone ring of CK-2-68 or RYL-552. Our results suggest that combinations of suitable ETC inhibitors may be able to subvert or delay the development of P. falciparum drug resistance.
Collapse
|
29
|
KalantarMotamedi Y, Eastman RT, Guha R, Bender A. A systematic and prospectively validated approach for identifying synergistic drug combinations against malaria. Malar J 2018; 17:160. [PMID: 29642892 PMCID: PMC5896032 DOI: 10.1186/s12936-018-2294-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 03/24/2018] [Indexed: 01/01/2023] Open
Abstract
Background Nearly half of the world’s population (3.2 billion people) were at risk of malaria in 2015, and resistance to current therapies is a major concern. While the standard of care includes drug combinations, there is a pressing need to identify new combinations that can bypass current resistance mechanisms. In the work presented here, a combined transcriptional drug repositioning/discovery and machine learning approach is proposed. Methods The integrated approach utilizes gene expression data from patient-derived samples, in combination with large-scale anti-malarial combination screening data, to predict synergistic compound combinations for three Plasmodium falciparum strains (3D7, DD2 and HB3). Both single compounds and combinations predicted to be active were prospectively tested in experiment. Results One of the predicted single agents, apicidin, was active with the AC50 values of 74.9, 84.1 and 74.9 nM in 3D7, DD2 and HB3 P. falciparum strains while its maximal safe plasma concentration in human is 547.6 ± 136.6 nM. Apicidin at the safe dose of 500 nM kills on average 97% of the parasite. The synergy prediction algorithm exhibited overall precision and recall of 83.5 and 65.1% for mild-to-strong, 48.8 and 75.5% for moderate-to-strong and 12.0 and 62.7% for strong synergies. Some of the prospectively predicted combinations, such as tacrolimus-hydroxyzine and raloxifene-thioridazine, exhibited significant synergy across the three P. falciparum strains included in the study. Conclusions Systematic approaches can play an important role in accelerating discovering novel combinational therapies for malaria as it enables selecting novel synergistic compound pairs in a more informed and cost-effective manner. Electronic supplementary material The online version of this article (10.1186/s12936-018-2294-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasaman KalantarMotamedi
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Richard T Eastman
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20852, USA
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20852, USA.
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
30
|
Tian J, Vandermosten L, Peigneur S, Moreels L, Rozenski J, Tytgat J, Herdewijn P, Van den Steen PE, De Jonghe S. Astemizole analogues with reduced hERG inhibition as potent antimalarial compounds. Bioorg Med Chem 2017; 25:6332-6344. [PMID: 29042223 DOI: 10.1016/j.bmc.2017.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/26/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023]
Abstract
Astemizole is a H1-antagonist endowed with antimalarial activity, but has hERG liabilities. Systematic structural modifications of astemizole led to the discovery of analogues that display very potent activity as inhibitors of the growth of the Plasmodium parasite, but show a decreased hERG inhibition, when compared to astemizole. These compounds can be used as starting point for the development of a new class of antimalarials.
Collapse
Affiliation(s)
- Junjun Tian
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Leen Vandermosten
- Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Steve Peigneur
- KU Leuven, Toxicology and Pharmacology, Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, PO Box 922, 3000 Leuven, Belgium
| | - Lien Moreels
- KU Leuven, Toxicology and Pharmacology, Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, PO Box 922, 3000 Leuven, Belgium
| | - Jef Rozenski
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Jan Tytgat
- KU Leuven, Toxicology and Pharmacology, Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, PO Box 922, 3000 Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Philippe E Van den Steen
- Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
31
|
Niu H, Yee R, Cui P, Tian L, Zhang S, Shi W, Sullivan D, Zhu B, Zhang W, Zhang Y. Identification of Agents Active against Methicillin-Resistant Staphylococcus aureus USA300 from a Clinical Compound Library. Pathogens 2017; 6:pathogens6030044. [PMID: 28930155 PMCID: PMC5618001 DOI: 10.3390/pathogens6030044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 01/26/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a significant threat for effective treatment of several difficult-to-treat infections in humans. To identify potential new treatment options for MRSA infections, we screened a clinical compound library consisting of 1524 compounds using a growth inhibition assay in 96-well plates. We identified 34 agents which are either bacteriostatic or bactericidal against log-phase clinical MRSA strain USA300. Among them, 9 candidates (thonzonium, cetylpyridinium, trilocarban, benzododecinium, bithionol, brilliant green, chlorquinaldol, methylbenzethonium and green violet) are known antiseptics, 11 candidates are known antibiotics currently recommended for the treatment of MRSA. We identified 9 new drug candidates, 5 of which (thiostrepton, carbomycin, spiramycin, clofazimine and chloroxine) are antibiotics used for treating other infections than S. aureus infections; 4 of which (quinaldine blue, closantel, dithiazanine iodide and pyrvinium pamoate) are drugs used for treating parasitic diseases or cancer. We ranked these new drug candidates according to their MICs against the MRSA strain USA300. Our findings may have implications for more effective treatment of MRSA infections.
Collapse
Affiliation(s)
- Hongxia Niu
- Lanzhou Center for Tuberculosis Research and Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Rebecca Yee
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Peng Cui
- Key Laboratory of Medical Molecular Virology, Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | - Lili Tian
- Beijing Research Institute for Tuberculosis Control, Beijing 100035, China.
| | - Shuo Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Wanliang Shi
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - David Sullivan
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Bingdong Zhu
- Lanzhou Center for Tuberculosis Research and Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Wenhong Zhang
- Key Laboratory of Medical Molecular Virology, Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
32
|
Leba LJ, Popovici J, Estevez Y, Pelleau S, Legrand E, Musset L, Duplais C. Antiplasmodial activities of dyes against Plasmodium falciparum asexual and sexual stages: Contrasted uptakes of triarylmethanes Brilliant green, Green S (E142), and Patent Blue V (E131) by erythrocytes. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:314-320. [PMID: 28886443 PMCID: PMC5587875 DOI: 10.1016/j.ijpddr.2017.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 11/07/2022]
Abstract
The search for safe antimalarial compounds acting against asexual symptom-responsible stages and sexual transmission-responsible forms of Plasmodium species is one of the major challenges in malaria elimination programs. So far, among current drugs approved for human use, only primaquine has transmission-blocking activity. The discovery of small molecules targeting different Plasmodium falciparum life stages remains a priority in antimalarial drug research. In this context, several independent studies have recently reported antiplasmodial and transmission-blocking activities of commonly used stains, dyes and fluorescent probes against P. falciparum including chloroquine-resistant isolates. Herein we have studied the antimalarial activities of dyes with different scaffold and we report that the triarylmethane dye (TRAM) Brilliant green inhibits the growth of asexual stages (IC50 ≤ 2 μM) and has exflagellation-blocking activity (IC50 ≤ 800 nM) against P. falciparum reference strains (3D7, 7G8) and chloroquine-resistant clinical isolate (Q206). In a second step we have investigated the antiplasmodial activities of two polysulfonated triarylmethane food dyes. Green S (E142) is weakly active against P. falciparum asexual stage (IC50 ≃ 17 μM) whereas Patent Blue V (E131) is inactive in both antimalarial assays. By applying liquid chromatography techniques for the culture supernatant analysis after cell washings and lysis, we report the detection of Brilliant green in erythrocytes, the selective uptake of Green S (E142) by infected erythrocytes, whereas Patent Blue V (E131) could not be detected within non-infected and 3D7-infected erythrocytes. Overall, our results suggest that two polysulfonated food dyes might display different affinity with transporters or channels on infected RBC membrane. Dyes are tested against P. falciparum 3D7, 7G8 lines, CQ-resistant field isolate Q206. Brilliant green is active against asexual and sexual stages of Plasmodium falciparum. Food dye Green S (E142) is weakly active against Plasmodium falciparum asexual forms. Food dye Green S (E142) is found in the cellular content of infected erythrocytes. Polysulfonated triarylmethane possibly interact with plasmodial surface anion channel.
Collapse
Affiliation(s)
- Louis-Jérôme Leba
- Laboratoire de parasitologie, CNR du paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana, France; UMR QualiSud, Université de Guyane, 97300 Cayenne, France
| | - Jean Popovici
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Yannick Estevez
- CNRS, UMR8172 EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, 97300 Cayenne, French Guiana, France
| | - Stéphane Pelleau
- Laboratoire de parasitologie, CNR du paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Eric Legrand
- Laboratoire de parasitologie, CNR du paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana, France; Research Unit of Genetics and Genomics of Insect Vectors Institut Pasteur, Paris, France
| | - Lise Musset
- Laboratoire de parasitologie, CNR du paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Christophe Duplais
- CNRS, UMR8172 EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, 97300 Cayenne, French Guiana, France.
| |
Collapse
|
33
|
Ramakrishnan G, Chandra N, Srinivasan N. Exploring anti-malarial potential of FDA approved drugs: an in silico approach. Malar J 2017; 16:290. [PMID: 28720135 PMCID: PMC5516367 DOI: 10.1186/s12936-017-1937-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/13/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The critically important issue on emergence of drug-resistant malarial parasites is compounded by cross resistance, where resistance to one drug confers resistance to other chemically similar drugs or those that share mode of action. This aspect requires discovery of new anti-malarial compounds or formulation of new combination therapy. The current study attempts to contribute towards accelerating anti-malarial drug development efforts, by exploring the potential of existing FDA-approved drugs to target proteins of Plasmodium falciparum. METHODS Using comparative sequence and structure analyses, FDA-approved drugs, originally developed against other pathogens, were identified as potential repurpose-able candidates against P. falciparum. The rationale behind the undertaken approach is the likeliness of small molecules to bind to homologous targets. Such a study of evolutionary relationships between established targets and P. falciparum proteins aided in identification of approved drug candidates that can be explored for their anti-malarial potential. RESULTS Seventy-one FDA-approved drugs were identified that could be repurposed against P. falciparum. A total of 89 potential targets were recognized, of which about 70 are known to participate in parasite housekeeping machinery, protein biosynthesis, metabolic pathways and cell growth and differentiation, which can be prioritized for chemotherapeutic interventions. An additional aspect of prioritization of predicted repurpose-able drugs has been explored on the basis of ability of the drugs to permeate cell membranes, i.e., lipophilicity, since the parasite resides within a parasitophorous vacuole, within the erythrocyte, during the blood stages of infection. Based on this consideration, 46 of 71 FDA-approved drugs have been identified as feasible repurpose-able candidates against P. falciparum, and form a first-line for laboratory investigations. At least five of the drugs identified in the current analysis correspond to existing antibacterial agents already under use as repurposed anti-malarial agents. CONCLUSIONS The drug-target associations predicted, primarily by taking advantage of evolutionary information, provide a valuable resource of attractive and feasible candidate drugs that can be readily taken through further stages of anti-malarial drug development pipeline.
Collapse
Affiliation(s)
- Gayatri Ramakrishnan
- Indian Institute of Science Mathematics Initiative, Indian Institute of Science, Bangalore, 560012, India.,Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|
34
|
Vogrinc D, Kunej T. Drug repositioning: computational approaches and research examples classified according to the evidence level. Discoveries (Craiova) 2017; 5:e75. [PMID: 32309593 PMCID: PMC6941545 DOI: 10.15190/d.2017.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 01/04/2023] Open
Abstract
Increasing need for novel drugs and their application for treating diseases are the main reasons for the development of bioinformatics platforms for drug repositioning. The use of existing approved drugs for treating other diseases reduces cost and time needed for a drug to come to clinical use. Different strategies for drug repositioning have been reported. The use of several omics types is becoming increasingly important in drug repositioning. Although there are several public databases intended for drug repositioning, not many successful cases of novel use of drugs have been reported in the literature and transferred to clinical use. Additionally, the study approaches in published literature are very heterogeneous. A classification scheme - Drug Repositioning Evidence Level (DREL) - for drug repositioning projects, according to the level of scientific evidence has been proposed previously. In the present study, we have reviewed main databases and bioinformatics approaches enabling drug repositioning studies. We also reviewed six published studies and evaluated them according to the DREL classification. The evaluated cases used drug repositioning approach for therapy of rheumatoid arthritis, cancer, coronary artery disease, diabetes, and gulf war illness. The drug repositioning study field could benefit from clearer definition in published articles therefore including drug repositioning DREL classification scheme could be included in published original and review studies. Novel bioinformatics approaches to improve prediction of drug-target interactions, continuous updating of the databases, and development of novel validation techniques are needed to facilitate the development of the drug repositioning field. Although there are still many challenges in drug repositioning and personalized medicine, stratification of patients based on their molecular signatures and testing of signature-targeting drugs should improve drug efficacy in clinical trials.
Collapse
Affiliation(s)
- David Vogrinc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Slovenia
| |
Collapse
|
35
|
A Variant PfCRT Isoform Can Contribute to Plasmodium falciparum Resistance to the First-Line Partner Drug Piperaquine. mBio 2017; 8:mBio.00303-17. [PMID: 28487425 PMCID: PMC5424201 DOI: 10.1128/mbio.00303-17] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Current efforts to reduce the global burden of malaria are threatened by the rapid spread throughout Asia of Plasmodium falciparum resistance to artemisinin-based combination therapies, which includes increasing rates of clinical failure with dihydroartemisinin plus piperaquine (PPQ) in Cambodia. Using zinc finger nuclease-based gene editing, we report that addition of the C101F mutation to the chloroquine (CQ) resistance-conferring PfCRT Dd2 isoform common to Asia can confer PPQ resistance to cultured parasites. Resistance was demonstrated as significantly higher PPQ concentrations causing 90% inhibition of parasite growth (IC90) or 50% parasite killing (50% lethal dose [LD50]). This mutation also reversed Dd2-mediated CQ resistance, sensitized parasites to amodiaquine, quinine, and artemisinin, and conferred amantadine and blasticidin resistance. Using heme fractionation assays, we demonstrate that PPQ causes a buildup of reactive free heme and inhibits the formation of chemically inert hemozoin crystals. Our data evoke inhibition of heme detoxification in the parasite’s acidic digestive vacuole as the primary mode of both the bis-aminoquinoline PPQ and the related 4-aminoquinoline CQ. Both drugs also inhibit hemoglobin proteolysis at elevated concentrations, suggesting an additional mode of action. Isogenic lines differing in their pfmdr1 copy number showed equivalent PPQ susceptibilities. We propose that mutations in PfCRT could contribute to a multifactorial basis of PPQ resistance in field isolates. The global agenda to eliminate malaria depends on the continued success of artemisinin-based combination therapies (ACTs), which target the asexual blood stages of the intracellular parasite Plasmodium. Partial resistance to artemisinin, however, is now established in Southeast Asia, exposing the partner drugs to increased selective pressure. Plasmodium falciparum resistance to the first-line partner piperaquine (PPQ) is now spreading rapidly in Cambodia, resulting in clinical treatment failures. Here, we report that a variant form of the Plasmodium falciparum chloroquine resistance transporter, harboring a C101F mutation edited into the chloroquine (CQ)-resistant Dd2 isoform prevalent in Asia, can confer PPQ resistance in cultured parasites. This was accompanied by a loss of CQ resistance. Biochemical assays showed that PPQ, like CQ, inhibits the detoxification of reactive heme that is formed by parasite-mediated catabolism of host hemoglobin. We propose that novel PfCRT variants emerging in the field could contribute to a multigenic basis of PPQ resistance.
Collapse
|
36
|
Jida M, Sanchez CP, Urgin K, Ehrhardt K, Mounien S, Geyer A, Elhabiri M, Lanzer M, Davioud-Charvet E. A Redox-Active Fluorescent pH Indicator for Detecting Plasmodium falciparum Strains with Reduced Responsiveness to Quinoline Antimalarial Drugs. ACS Infect Dis 2017; 3:119-131. [PMID: 28183182 DOI: 10.1021/acsinfecdis.5b00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutational changes in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) have been associated with differential responses to a wide spectrum of biologically active compounds including current and former quinoline and quinoline-like antimalarial drugs. PfCRT confers altered drug responsiveness by acting as a transport system, expelling drugs from the parasite's digestive vacuole where these drugs exert, at least part of, their antiplasmodial activity. To preserve the efficacy of these invaluable drugs, novel functional tools are required for epidemiological surveys of parasite strains carrying mutant PfCRT variants and for drug development programs aimed at inhibiting or circumventing the action of PfCRT. Here we report the synthesis and characterization of a pH-sensitive fluorescent chloroquine analogue consisting of 7-chloro-N-{2-[(propan-2-yl)amino]ethyl}quinolin-4-amine functionalized with the fluorochrome 7-nitrobenzofurazan (NBD) (henceforth termed Fluo-CQ). In the parasite, Fluo-CQ accumulates in the digestive vacuole, giving rise to a strong fluorescence signal but only in parasites carrying the wild type PfCRT. In parasites carrying the mutant PfCRT, Fluo-CQ does not accumulate. The differential handling of the fluorescent probe, combined with live cell imaging, provides a diagnostic tool for quick detection of those P. falciparum strains that carry a PfCRT variant associated with altered responsiveness to quinoline and quinoline-like antimalarial drugs. In contrast to the accumulation studies, chloroquine (CQ)-resistant parasites were observed cross-resistant to Fluo-CQ when the chemical probe was tested in various CQ-sensitive and -resistant parasite strains. NBD derivatives were found to act as redox cyclers of two essential targets, using a coupled assay based on methemoglobin and the NADPH-dependent glutathione reductase (GRs) from P. falciparum. This redox activity is proposed to contribute to the dual action of Fluo-CQ on redox equilibrium and methemoglobin reduction via PfCRT-mediated drug efflux in the cytosol and then continuous redox-dependent shuttling between food vacuole and cytosol. Taking into account these physicochemical characteristics, a model was proposed to explain Fluo-CQ antimalarial effects involving the contribution of PfCRT-mediated transport, methemoglobin reduction, hematin binding, and NBD reduction activity catalyzed by PfGR in CQ-resistant versus CQ-sensitive parasites. Therefore, introduction of NBD fluorophore in drugs is not inert and should be taken into account in drug transport and imaging studies.
Collapse
Affiliation(s)
- Mouhamad Jida
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | - Cecilia P. Sanchez
- Zentrum
für Infektiologie, Parasitologie, Universität Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Karène Urgin
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | - Katharina Ehrhardt
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
- Zentrum
für Infektiologie, Parasitologie, Universität Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Saravanan Mounien
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | - Aurelia Geyer
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | - Mourad Elhabiri
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | - Michael Lanzer
- Zentrum
für Infektiologie, Parasitologie, Universität Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Elisabeth Davioud-Charvet
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| |
Collapse
|
37
|
Volkman SK, Herman J, Lukens AK, Hartl DL. Genome-Wide Association Studies of Drug-Resistance Determinants. Trends Parasitol 2016; 33:214-230. [PMID: 28179098 DOI: 10.1016/j.pt.2016.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/26/2016] [Accepted: 10/06/2016] [Indexed: 02/07/2023]
Abstract
Population genetic strategies that leverage association, selection, and linkage have identified drug-resistant loci. However, challenges and limitations persist in identifying drug-resistance loci in malaria. In this review we discuss the genetic basis of drug resistance and the use of genome-wide association studies, complemented by selection and linkage studies, to identify and understand mechanisms of drug resistance and response. We also discuss the implications of nongenetic mechanisms of drug resistance recently reported in the literature, and present models of the interplay between nongenetic and genetic processes that contribute to the emergence of drug resistance. Throughout, we examine artemisinin resistance as an example to emphasize challenges in identifying phenotypes suitable for population genetic studies as well as complications due to multiple-factor drug resistance.
Collapse
Affiliation(s)
- Sarah K Volkman
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Disease, Boston, MA, USA; The Broad Institute of MIT and Harvard, Infectious Disease Initiative, Cambridge, MA, USA; Simmons College, School of Nursing and Health Science, Boston, MA, USA.
| | - Jonathan Herman
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Disease, Boston, MA, USA; Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Amanda K Lukens
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Disease, Boston, MA, USA; The Broad Institute of MIT and Harvard, Infectious Disease Initiative, Cambridge, MA, USA
| | - Daniel L Hartl
- The Broad Institute of MIT and Harvard, Infectious Disease Initiative, Cambridge, MA, USA; Harvard University, Organismic and Evolutionary Biology, Cambridge, MA, USA
| |
Collapse
|
38
|
Richards SN, Nash MN, Baker ES, Webster MW, Lehane AM, Shafik SH, Martin RE. Molecular Mechanisms for Drug Hypersensitivity Induced by the Malaria Parasite's Chloroquine Resistance Transporter. PLoS Pathog 2016; 12:e1005725. [PMID: 27441371 PMCID: PMC4956231 DOI: 10.1371/journal.ppat.1005725] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/03/2016] [Indexed: 01/23/2023] Open
Abstract
Mutations in the Plasmodium falciparum ‘chloroquine resistance transporter’ (PfCRT) confer resistance to chloroquine (CQ) and related antimalarials by enabling the protein to transport these drugs away from their targets within the parasite’s digestive vacuole (DV). However, CQ resistance-conferring isoforms of PfCRT (PfCRTCQR) also render the parasite hypersensitive to a subset of structurally-diverse pharmacons. Moreover, mutations in PfCRTCQR that suppress the parasite’s hypersensitivity to these molecules simultaneously reinstate its sensitivity to CQ and related drugs. We sought to understand these phenomena by characterizing the functions of PfCRTCQR isoforms that cause the parasite to become hypersensitive to the antimalarial quinine or the antiviral amantadine. We achieved this by measuring the abilities of these proteins to transport CQ, quinine, and amantadine when expressed in Xenopus oocytes and complemented this work with assays that detect the drug transport activity of PfCRT in its native environment within the parasite. Here we describe two mechanistic explanations for PfCRT-induced drug hypersensitivity. First, we show that quinine, which normally accumulates inside the DV and therewithin exerts its antimalarial effect, binds extremely tightly to the substrate-binding site of certain isoforms of PfCRTCQR. By doing so it likely blocks the normal physiological function of the protein, which is essential for the parasite’s survival, and the drug thereby gains an additional killing effect. In the second scenario, we show that although amantadine also sequesters within the DV, the parasite’s hypersensitivity to this drug arises from the PfCRTCQR-mediated transport of amantadine from the DV into the cytosol, where it can better access its antimalarial target. In both cases, the mutations that suppress hypersensitivity also abrogate the ability of PfCRTCQR to transport CQ, thus explaining why rescue from hypersensitivity restores the parasite’s sensitivity to this antimalarial. These insights provide a foundation for understanding clinically-relevant observations of inverse drug susceptibilities in the malaria parasite. In acquiring resistance to one drug, many pathogens and cancer cells become hypersensitive to other drugs. This phenomenon could be exploited to combat existing drug resistance and to delay the emergence of resistance to new drugs. However, much remains to be understood about the mechanisms that underlie drug hypersensitivity in otherwise drug-resistant microbes. Here, we describe two mechanisms by which the Plasmodium falciparum ‘chloroquine resistance transporter’ (PfCRT) causes the malaria parasite to become hypersensitive to structurally-diverse drugs. First, we show that an antimalarial drug that normally exerts its killing effect within the parasite’s digestive vacuole is also able to bind extremely tightly to certain forms of PfCRT. This activity will block the natural, essential function of the protein and thereby provide the drug with an additional killing effect. The second mechanism arises when a cytosolic-acting drug that normally sequesters within the digestive vacuole is leaked back into the cytosol via PfCRT. In both cases, mutations that suppress hypersensitivity also abrogate the ability of PfCRT to transport chloroquine, thus explaining why rescue from hypersensitivity restores the parasite’s sensitivity to this antimalarial. These insights provide a foundation for understanding and exploiting the hypersensitivity of chloroquine-resistant parasites to several of the current antimalarials.
Collapse
Affiliation(s)
- Sashika N. Richards
- Research School of Biology, Australian National University, Canberra, Australia
| | - Megan N. Nash
- Research School of Biology, Australian National University, Canberra, Australia
| | - Eileen S. Baker
- Research School of Biology, Australian National University, Canberra, Australia
| | - Michael W. Webster
- Research School of Biology, Australian National University, Canberra, Australia
| | - Adele M. Lehane
- Research School of Biology, Australian National University, Canberra, Australia
| | - Sarah H. Shafik
- Research School of Biology, Australian National University, Canberra, Australia
| | - Rowena E. Martin
- Research School of Biology, Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
39
|
Mutations in the Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL) Confer Multidrug Resistance. mBio 2016; 7:mBio.00696-16. [PMID: 27381290 PMCID: PMC4958248 DOI: 10.1128/mbio.00696-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL) are associated with parasite resistance to the imidazolopiperazines, a potent class of novel antimalarial compounds that display both prophylactic and transmission-blocking activity, in addition to activity against blood-stage parasites. Here, we show that pfcarl encodes a protein, with a predicted molecular weight of 153 kDa, that localizes to the cis-Golgi apparatus of the parasite in both asexual and sexual blood stages. Utilizing clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene introduction of 5 variants (L830V, S1076N/I, V1103L, and I1139K), we demonstrate that mutations in pfcarl are sufficient to generate resistance against the imidazolopiperazines in both asexual and sexual blood-stage parasites. We further determined that the mutant PfCARL protein confers resistance to several structurally unrelated compounds. These data suggest that PfCARL modulates the levels of small-molecule inhibitors that affect Golgi-related processes, such as protein sorting or membrane trafficking, and is therefore an important mechanism of resistance in malaria parasites. Several previous in vitro evolution studies have implicated the Plasmodium falciparum cyclic amine resistance locus (PfCARL) as a potential target of imidazolopiperazines, potent antimalarial compounds with broad activity against different parasite life cycle stages. Given that the imidazolopiperazines are currently being tested in clinical trials, understanding their mechanism of resistance and the cellular processes involved will allow more effective clinical usage.
Collapse
|
40
|
Abstract
Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies.
Collapse
Affiliation(s)
- Alan H. Fairlamb
- Dundee Drug Discovery Unit, Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Neil A. R. Gow
- Aberdeen Fungal Group, Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology, School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Keith R. Matthews
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Andrew P. Waters
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
41
|
Profiling the Essential Nature of Lipid Metabolism in Asexual Blood and Gametocyte Stages of Plasmodium falciparum. Cell Host Microbe 2016; 18:371-81. [PMID: 26355219 DOI: 10.1016/j.chom.2015.08.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/29/2015] [Accepted: 08/13/2015] [Indexed: 11/23/2022]
Abstract
During its life cycle, Plasmodium falciparum undergoes rapid proliferation fueled by de novo synthesis and acquisition of host cell lipids. Consistent with this essential role, Plasmodium lipid synthesis enzymes are emerging as potential drug targets. To explore their broader potential for therapeutic interventions, we assayed the global lipid landscape during P. falciparum sexual and asexual blood stage (ABS) development. Using liquid chromatography-mass spectrometry, we analyzed 304 lipids constituting 24 classes in ABS parasites, infected red blood cell (RBC)-derived microvesicles, gametocytes, and uninfected RBCs. Ten lipid classes were previously uncharacterized in P. falciparum, and 70%-75% of the lipid classes exhibited changes in abundance during ABS and gametocyte development. Utilizing compounds that target lipid metabolism, we affirmed the essentiality of major classes, including triacylglycerols. These studies highlight the interplay between host and parasite lipid metabolism and provide a comprehensive analysis of P. falciparum lipids with candidate pathways for drug discovery efforts.
Collapse
|
42
|
Drug combination therapy increases successful drug repositioning. Drug Discov Today 2016; 21:1189-95. [PMID: 27240777 DOI: 10.1016/j.drudis.2016.05.015] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/28/2016] [Accepted: 05/23/2016] [Indexed: 11/21/2022]
Abstract
Repositioning of approved drugs has recently gained new momentum for rapid identification and development of new therapeutics for diseases that lack effective drug treatment. Reported repurposing screens have increased dramatically in number in the past five years. However, many newly identified compounds have low potency; this limits their immediate clinical applications because the known, tolerated plasma drug concentrations are lower than the required therapeutic drug concentrations. Drug combinations of two or more compounds with different mechanisms of action are an alternative approach to increase the success rate of drug repositioning.
Collapse
|
43
|
Eastman RT, Khine P, Huang R, Thomas CJ, Su XZ. PfCRT and PfMDR1 modulate interactions of artemisinin derivatives and ion channel blockers. Sci Rep 2016; 6:25379. [PMID: 27147113 PMCID: PMC4857081 DOI: 10.1038/srep25379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/15/2016] [Indexed: 01/01/2023] Open
Abstract
Treatment of the symptomatic asexual stage of Plasmodium falciparum relies almost exclusively on artemisinin (ART) combination therapies (ACTs) in endemic regions. ACTs combine ART or its derivative with a long-acting partner drug to maximize efficacy during the typical three-day regimen. Both laboratory and clinical studies have previously demonstrated that the common drug resistance determinants P. falciparum chloroquine resistance transporter (PfCRT) and multidrug resistance transporter (PfMDR1) can modulate the susceptibility to many current antimalarial drugs and chemical compounds. Here we investigated the parasite responses to dihydroartemisinin (DHA) and various Ca2+ and Na+ channel blockers and showed positively correlated responses between DHA and several channel blockers, suggesting potential shared transport pathways or mode of action. Additionally, we demonstrated that PfCRT and PfMDR1 could also significantly modulate the pharmacodynamic interactions of the compounds and that the interactions were influenced by the parasite genetic backgrounds. These results provide important information for better understanding of drug resistance and for assessing the overall impact of drug resistance markers on parasite response to ACTs.
Collapse
Affiliation(s)
- Richard T Eastman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,Division of Preclinical Development, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Pwint Khine
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ruili Huang
- Division of Preclinical Development, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Craig J Thomas
- Division of Preclinical Development, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
44
|
Oprea TI, Overington JP. Computational and Practical Aspects of Drug Repositioning. Assay Drug Dev Technol 2016; 13:299-306. [PMID: 26241209 DOI: 10.1089/adt.2015.29011.tiodrrr] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The concept of the hypothesis-driven or observational-based expansion of the therapeutic application of drugs is very seductive. This is due to a number of factors, such as lower cost of development, higher probability of success, near-term clinical potential, patient and societal benefit, and also the ability to apply the approach to rare, orphan, and underresearched diseases. Another highly attractive aspect is that the "barrier to entry" is low, at least in comparison to a full drug discovery operation. The availability of high-performance computing, and databases of various forms have also enhanced the ability to pose reasonable and testable hypotheses for drug repurposing, rescue, and repositioning. In this article we discuss several factors that are currently underdeveloped, or could benefit from clearer definition in articles presenting such work. We propose a classification scheme-drug repositioning evidence level (DREL)-for all drug repositioning projects, according to the level of scientific evidence. DREL ranges from zero, which refers to predictions that lack any experimental support, to four, which refers to drugs approved for the new indication. We also present a set of simple concepts that can allow rapid and effective filtering of hypotheses, leading to a focus on those that are most likely to lead to practical safe applications of an existing drug. Some promising repurposing leads for malaria (DREL-1) and amoebic dysentery (DREL-2) are discussed.
Collapse
Affiliation(s)
- Tudor I Oprea
- 1 Translational Informatics Division, Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - John P Overington
- 2 European Molecular Biology Laboratory-European Bioinformatics Institute , Wellcome Trust Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
45
|
Ahouidi AD, Amambua-Ngwa A, Awandare GA, Bei AK, Conway DJ, Diakite M, Duraisingh MT, Rayner JC, Zenonos ZA. Malaria Vaccine Development: Focusing Field Erythrocyte Invasion Studies on Phenotypic Diversity: The West African Merozoite Invasion Network (WAMIN). Trends Parasitol 2016; 32:274-283. [PMID: 26725306 PMCID: PMC7021314 DOI: 10.1016/j.pt.2015.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
Erythrocyte invasion by Plasmodium falciparum merozoites is an essential step for parasite survival and proliferation. Invasion is mediated by multiple ligands, which could be promising vaccine targets. The usage and sequence of these ligands differs between parasites, yet most studies of them have been carried out in only a few laboratory-adapted lines. To understand the true extent of natural variation in invasion phenotypes and prioritize vaccine candidates on a relevant evidence base, we need to develop and apply standardized assays to large numbers of field isolates. The West African Merozoite Invasion Network (WAMIN) has been formed to meet these goals, expand training in Plasmodium phenotyping, and perform large-scale field phenotyping studies in order to prioritize blood stage vaccine candidates.
Collapse
Affiliation(s)
- Ambroise D Ahouidi
- Laboratory of Bacteriology and Virology, Le Dantec Hospital, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | | | - Gordon A Awandare
- West African Center for Cell Biology of Infectious Pathogens and Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Amy K Bei
- Laboratory of Bacteriology and Virology, Le Dantec Hospital, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal; Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Mahamadou Diakite
- Faculty of Medicine, Pharmacy, and Odontostomatology, University of Bamako, Bamako, Mali
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK.
| | - Zenon A Zenonos
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| |
Collapse
|
46
|
MAGHSOODLOORAD S, HAGHIGHI A, SHARIFI SARASIABI K, TAGHIPOOR N, HOSSEINZADEH N, GACHKAR L, NAZEMALHOSSEINI MOJARRAD E, MAGHSOODLOORAD E. Genetic Diversity of Dihydropteroate synthetase Gene (dhps) of Plasmodium vivax in Hormozgan Province, Iran. IRANIAN JOURNAL OF PARASITOLOGY 2016; 11:98-103. [PMID: 27095975 PMCID: PMC4835476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND The present study was formulated in order to determine polymorphism of dihydropteroate synthetase gene (dhps) of Plasmodium vivax (P. vivax) in Hormozgan Province, southern Iran and mutations at codons 382, 383, 512, 553, and 585 associated with resistance of P. vivax to sulfadoxine. METHOD One-hundred eighteen isolates of P. vivax were prepared within 2007-2008 to determine dihydrofolate reductase-thymidylate synthase (dhfr-ts) gene. The isolates were determined in the study of genetic diversity of dihydropteroate synthetase gene (dhps) of P. vivax. The study was performed via PCR test and nucleotide sequencing. RESULTS Of 118 blood samples infected by P. vivax, 46 and 72 samples belonged to Minab and Jask, respectively. No mutation was detected at 5 target codons. However, among these 118 samples, three isolates (2.54%) were found to have a mutation at the new codon 421. CONCLUSION Since mutation was detected in dihydrofolate reductase (Pvdhfr) gene in the same samples but no mutation was found at five main codons of Pvdhps gene, it can be concluded that P. vivax, considering their mutations in Pvdhfr, is still susceptible to sulfadoxine and therefore, to fansidar in Hormozgan Province, Southern Iran.
Collapse
Affiliation(s)
- Somayeh MAGHSOODLOORAD
- Dept. of Parasitology and Mycology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran,Correspondence
| | - Ali HAGHIGHI
- Dept. of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Niloofar TAGHIPOOR
- Dept. of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahid HOSSEINZADEH
- Dept. of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Latif GACHKAR
- Tropical and Infectious Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
47
|
Miyamoto Y, Eckmann L. Drug Development Against the Major Diarrhea-Causing Parasites of the Small Intestine, Cryptosporidium and Giardia. Front Microbiol 2015; 6:1208. [PMID: 26635732 PMCID: PMC4652082 DOI: 10.3389/fmicb.2015.01208] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/16/2015] [Indexed: 12/23/2022] Open
Abstract
Diarrheal diseases are among the leading causes of morbidity and mortality in the world, particularly among young children. A limited number of infectious agents account for most of these illnesses, raising the hope that advances in the treatment and prevention of these infections can have global health impact. The two most important parasitic causes of diarrheal disease are Cryptosporidium and Giardia. Both parasites infect predominantly the small intestine and colonize the lumen and epithelial surface, but do not invade deeper mucosal layers. This review discusses the therapeutic challenges, current treatment options, and drug development efforts against cryptosporidiosis and giardiasis. The goals of drug development against Cryptosporidium and Giardia are different. For Cryptosporidium, only one moderately effective drug (nitazoxanide) is available, so novel classes of more effective drugs are a high priority. Furthermore, new genetic technology to identify potential drug targets and better assays for functional evaluation of these targets throughout the parasite life cycle are needed for advancing anticryptosporidial drug design. By comparison, for Giardia, several classes of drugs with good efficacy exist, but dosing regimens are suboptimal and emerging resistance begins to threaten clinical utility. Consequently, improvements in potency and dosing, and the ability to overcome existing and prevent new forms of drug resistance are priorities in antigiardial drug development. Current work on new drugs against both infections has revealed promising strategies and new drug leads. However, the primary challenge for further drug development is the underlying economics, as both parasitic infections are considered Neglected Diseases with low funding priority and limited commercial interest. If a new urgency in medical progress against these infections can be raised at national funding agencies or philanthropic organizations, meaningful and timely progress is possible in treating and possibly preventing cryptosporidiosis and giardiasis.
Collapse
Affiliation(s)
- Yukiko Miyamoto
- Department of Medicine, University of California at San Diego, La Jolla CA, USA
| | - Lars Eckmann
- Department of Medicine, University of California at San Diego, La Jolla CA, USA
| |
Collapse
|
48
|
Chemogenomic profiling of Plasmodium falciparum as a tool to aid antimalarial drug discovery. Sci Rep 2015; 5:15930. [PMID: 26541648 PMCID: PMC4635350 DOI: 10.1038/srep15930] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 10/01/2015] [Indexed: 11/17/2022] Open
Abstract
The spread of Plasmodium falciparum multidrug resistance highlights the urgency to discover new targets and chemical scaffolds. Unfortunately, lack of experimentally validated functional information about most P. falciparum genes remains a strategic hurdle. Chemogenomic profiling is an established tool for classification of drugs with similar mechanisms of action by comparing drug fitness profiles in a collection of mutants. Inferences of drug mechanisms of action and targets can be obtained by associations between shifts in drug fitness and specific genetic changes in the mutants. In this screen, P. falciparum, piggyBac single insertion mutants were profiled for altered responses to antimalarial drugs and metabolic inhibitors to create chemogenomic profiles. Drugs targeting the same pathway shared similar response profiles and multiple pairwise correlations of the chemogenomic profiles revealed novel insights into drugs’ mechanisms of action. A mutant of the artemisinin resistance candidate gene - “K13-propeller” gene (PF3D7_1343700) exhibited increased susceptibility to artemisinin drugs and identified a cluster of 7 mutants based on similar enhanced responses to the drugs tested. Our approach of chemogenomic profiling reveals artemisinin functional activity, linked by the unexpected drug-gene relationships of these mutants, to signal transduction and cell cycle regulation pathways.
Collapse
|
49
|
van Schalkwyk DA, Nash MN, Shafik SH, Summers RL, Lehane AM, Smith PJ, Martin RE. Verapamil-Sensitive Transport of Quinacrine and Methylene Blue via the Plasmodium falciparum Chloroquine Resistance Transporter Reduces the Parasite's Susceptibility to these Tricyclic Drugs. J Infect Dis 2015; 213:800-10. [PMID: 26503982 DOI: 10.1093/infdis/jiv509] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND It is becoming increasingly apparent that certain mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) alter the parasite's susceptibility to diverse compounds. Here we investigated the interaction of PfCRT with 3 tricyclic compounds that have been used to treat malaria (quinacrine [QC] and methylene blue [MB]) or to study P. falciparum (acridine orange [AO]). METHODS We measured the antiplasmodial activities of QC, MB, and AO against chloroquine-resistant and chloroquine-sensitive P. falciparum and determined whether QC and AO affect the accumulation and activity of chloroquine in these parasites. We also assessed the ability of mutant (PfCRT(Dd2)) and wild-type (PfCRT(D10)) variants of the protein to transport QC, MB, and AO when expressed at the surface of Xenopus laevis oocytes. RESULTS Chloroquine resistance-conferring isoforms of PfCRT reduced the susceptibility of the parasite to QC, MB, and AO. In chloroquine-resistant (but not chloroquine-sensitive) parasites, AO and QC increased the parasite's accumulation of, and susceptibility to, chloroquine. All 3 compounds were shown to bind to PfCRT(Dd2), and the transport of QC and MB via this protein was saturable and inhibited by the chloroquine resistance-reverser verapamil. CONCLUSIONS Our findings reveal that the PfCRT(Dd2)-mediated transport of tricyclic antimalarials reduces the parasite's susceptibility to these drugs.
Collapse
Affiliation(s)
| | - Megan N Nash
- Research School of Biology, Australian National University, Canberra, Australia
| | - Sarah H Shafik
- Research School of Biology, Australian National University, Canberra, Australia
| | - Robert L Summers
- Research School of Biology, Australian National University, Canberra, Australia
| | - Adele M Lehane
- Research School of Biology, Australian National University, Canberra, Australia
| | - Peter J Smith
- Division of Pharmacology, Department of Medicine, University of Cape Town, Rondebosch, South Africa
| | - Rowena E Martin
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
50
|
Cheng KCC, Cao S, Raveh A, MacArthur R, Dranchak P, Chlipala G, Okoneski MT, Guha R, Eastman RT, Yuan J, Schultz PJ, Su XZ, Tamayo-Castillo G, Matainaho T, Clardy J, Sherman DH, Inglese J. Actinoramide A Identified as a Potent Antimalarial from Titration-Based Screening of Marine Natural Product Extracts. JOURNAL OF NATURAL PRODUCTS 2015; 78:2411-2422. [PMID: 26465675 PMCID: PMC4633019 DOI: 10.1021/acs.jnatprod.5b00489] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Methods to identify the bioactive diversity within natural product extracts (NPEs) continue to evolve. NPEs constitute complex mixtures of chemical substances varying in structure, composition, and abundance. NPEs can therefore be challenging to evaluate efficiently with high-throughput screening approaches designed to test pure substances. Here we facilitate the rapid identification and prioritization of antimalarial NPEs using a pharmacologically driven, quantitative high-throughput-screening (qHTS) paradigm. In qHTS each NPE is tested across a concentration range from which sigmoidal response, efficacy, and apparent EC50s can be used to rank order NPEs for subsequent organism reculture, extraction, and fractionation. Using an NPE library derived from diverse marine microorganisms we observed potent antimalarial activity from two Streptomyces sp. extracts identified from thousands tested using qHTS. Seven compounds were isolated from two phylogenetically related Streptomyces species: Streptomyces ballenaensis collected from Costa Rica and Streptomyces bangulaensis collected from Papua New Guinea. Among them we identified actinoramides A and B, belonging to the unusually elaborated nonproteinogenic amino-acid-containing tetrapeptide series of natural products. In addition, we characterized a series of new compounds, including an artifact, 25-epi-actinoramide A, and actinoramides D, E, and F, which are closely related biosynthetic congeners of the previously reported metabolites.
Collapse
Affiliation(s)
- Ken Chih-Chien Cheng
- National Center of Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI 96720, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, C-643, Boston, Massachusetts 021151, USA
| | - Avi Raveh
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Ryan MacArthur
- National Center of Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Patricia Dranchak
- National Center of Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - George Chlipala
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Matthew T. Okoneski
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
- Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Rajarshi Guha
- National Center of Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Richard T. Eastman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20852, USA
| | - Jing Yuan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20852, USA
| | - Pamela J. Schultz
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20852, USA
| | - Giselle Tamayo-Castillo
- Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad (INBio), Santo Domingo de Heredia, Costa Rica & CIPRONA-Escuela de Química, Universidad de Costa Rica, 2060 San Pedro, Costa Rica
| | - Teatulohi Matainaho
- School of Medicine and Health Sciences, University of Papua New Guinea, Boroko, Papua New Guinea
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, C-643, Boston, Massachusetts 021151, USA
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
- Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - James Inglese
- National Center of Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| |
Collapse
|