1
|
Khalizieva A, Moser SC, Bouwman P, Jonkers J. BRCA1 and BRCA2: from cancer susceptibility to synthetic lethality. Genes Dev 2025; 39:86-108. [PMID: 39510841 PMCID: PMC11789497 DOI: 10.1101/gad.352083.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The discovery of BRCA1 and BRCA2 as tumor susceptibility genes and their role in genome maintenance has transformed our understanding of hereditary breast and ovarian cancer. This review traces the evolution of BRCA1/2 research over the past 30 years, highlighting key discoveries in the field and their contributions to tumor development. Additionally, we discuss current preventive measures for BRCA1/2 mutation carriers and targeted treatment options based on the concept of synthetic lethality. Finally, we explore the challenges of acquired therapy resistance and discuss potential alternative avenues for targeting BRCA1/2 mutant tumors.
Collapse
Affiliation(s)
- Anna Khalizieva
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sarah C Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Peter Bouwman
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
2
|
Li W, Chen G, Wang Y, Jiang Y, Wu N, Hu M, Wu T, Yue W. Functional Analysis of BARD1 Missense Variants on Homology-Directed Repair in Ovarian and Breast Cancers. Mol Carcinog 2025; 64:91-107. [PMID: 39387837 DOI: 10.1002/mc.23829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/07/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Women with germline BRCA1 mutations face an increased risk of developing breast and ovarian cancers. BARD1 (BRCA1 associated RING domain 1) is an essential heterodimeric partner of BRCA1, and mutations in BARD1 are also associated with these cancers. While BARD1 mutations are recognized for their cancer susceptibility, the exact roles of numerous BARD1 missense mutations remain unclear. In this study, we conducted functional assays to assess the homology-directed DNA repair (HDR) activity of all BARD1 missense substitutions identified in 55 breast and ovarian cancer samples, using the real-world data from the COSMIC and cBioPortal databases. Seven BARD1 variants (V85M, P187A, G491R, R565C, P669L, T719R, and Q730L) were confirmed to impair DNA damage repair. Furthermore, cells harboring these BARD1 variants exhibited increased sensitivity to the chemotherapeutic drugs, cisplatin, and olaparib, compared to cells expressing wild-type BARD1. These findings collectively suggest that these seven missense BARD1 variants are likely pathogenic and may respond well to cisplatin-olaparib combination therapy. This study not only enhances our understanding of BARD1's role in DNA damage repair but also offers valuable insights into predicting therapy responses in patients with specific BARD1 missense mutations.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Gynecology and Obstetrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Guansheng Chen
- Department of Gynecology and Obstetrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Gynecology and Obstetrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yuening Jiang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
| | - Nanlin Wu
- Department of Pathology, Chuzhou First People's Hospital, Anhui, China
| | - Mingjie Hu
- School of Life Science, Bengbu Medical University, Anhui, China
| | - Taju Wu
- School of Life Science, Bengbu Medical University, Anhui, China
| | - Wei Yue
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Interdisciplinary Eye Research Institute (EYE-X Institute), Bengbu Medical University, Anhui, China
| |
Collapse
|
3
|
Chauhan AS, Jhujh SS, Stewart GS. E3 ligases: a ubiquitous link between DNA repair, DNA replication and human disease. Biochem J 2024; 481:923-944. [PMID: 38985307 PMCID: PMC11346458 DOI: 10.1042/bcj20240124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024]
Abstract
Maintenance of genome stability is of paramount importance for the survival of an organism. However, genomic integrity is constantly being challenged by various endogenous and exogenous processes that damage DNA. Therefore, cells are heavily reliant on DNA repair pathways that have evolved to deal with every type of genotoxic insult that threatens to compromise genome stability. Notably, inherited mutations in genes encoding proteins involved in these protective pathways trigger the onset of disease that is driven by chromosome instability e.g. neurodevelopmental abnormalities, neurodegeneration, premature ageing, immunodeficiency and cancer development. The ability of cells to regulate the recruitment of specific DNA repair proteins to sites of DNA damage is extremely complex but is primarily mediated by protein post-translational modifications (PTMs). Ubiquitylation is one such PTM, which controls genome stability by regulating protein localisation, protein turnover, protein-protein interactions and intra-cellular signalling. Over the past two decades, numerous ubiquitin (Ub) E3 ligases have been identified to play a crucial role not only in the initiation of DNA replication and DNA damage repair but also in the efficient termination of these processes. In this review, we discuss our current understanding of how different Ub E3 ligases (RNF168, TRAIP, HUWE1, TRIP12, FANCL, BRCA1, RFWD3) function to regulate DNA repair and replication and the pathological consequences arising from inheriting deleterious mutations that compromise the Ub-dependent DNA damage response.
Collapse
Affiliation(s)
- Anoop S. Chauhan
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Satpal S. Jhujh
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Grant S. Stewart
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| |
Collapse
|
4
|
Salas-Lloret D, García-Rodríguez N, Soto-Hidalgo E, González-Vinceiro L, Espejo-Serrano C, Giebel L, Mateos-Martín ML, de Ru AH, van Veelen PA, Huertas P, Vertegaal ACO, González-Prieto R. BRCA1/BARD1 ubiquitinates PCNA in unperturbed conditions to promote continuous DNA synthesis. Nat Commun 2024; 15:4292. [PMID: 38769345 PMCID: PMC11106271 DOI: 10.1038/s41467-024-48427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
Deficiencies in the BRCA1 tumor suppressor gene are the main cause of hereditary breast and ovarian cancer. BRCA1 is involved in the Homologous Recombination DNA repair pathway and, together with BARD1, forms a heterodimer with ubiquitin E3 activity. The relevance of the BRCA1/BARD1 ubiquitin E3 activity for tumor suppression and DNA repair remains controversial. Here, we observe that the BRCA1/BARD1 ubiquitin E3 activity is not required for Homologous Recombination or resistance to Olaparib. Using TULIP2 methodology, which enables the direct identification of E3-specific ubiquitination substrates, we identify substrates for BRCA1/BARD1. We find that PCNA is ubiquitinated by BRCA1/BARD1 in unperturbed conditions independently of RAD18. PCNA ubiquitination by BRCA1/BARD1 avoids the formation of ssDNA gaps during DNA replication and promotes continuous DNA synthesis. These results provide additional insight about the importance of BRCA1/BARD1 E3 activity in Homologous Recombination.
Collapse
Grants
- KWF-KIG 11367/2017-2 KWF Kankerbestrijding (Dutch Cancer Society)
- EMERGIA20_00276 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- EMERGIA21_00057 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- 310913 EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
- MICIU/AEI/10.13039/501100011033 and by European Union NextGenerationEU/PRTR - Grants: CNS2022-135216 ; MICIU/AEI/10.13039/501100011033 and by European Union : PID2021-122361NA-I00
Collapse
Affiliation(s)
- Daniel Salas-Lloret
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Néstor García-Rodríguez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- Andalusian Centre for Regenerative Medicine and Molecular Biology (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Emily Soto-Hidalgo
- Andalusian Centre for Regenerative Medicine and Molecular Biology (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Lourdes González-Vinceiro
- Andalusian Centre for Regenerative Medicine and Molecular Biology (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Carmen Espejo-Serrano
- Andalusian Centre for Regenerative Medicine and Molecular Biology (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Lisanne Giebel
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - María Luisa Mateos-Martín
- Institute of Biomedicine of Seville, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Proteomics Facility, Sevilla, Spain
| | - Arnoud H de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Pablo Huertas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- Andalusian Centre for Regenerative Medicine and Molecular Biology (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands.
- Andalusian Centre for Regenerative Medicine and Molecular Biology (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain.
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
5
|
Georgieva D, Wang N, Taglialatela A, Jerabek S, Reczek CR, Lim PX, Sung J, Du Q, Horiguchi M, Jasin M, Ciccia A, Baer R, Egli D. BRCA1 and 53BP1 regulate reprogramming efficiency by mediating DNA repair pathway choice at replication-associated double-strand breaks. Cell Rep 2024; 43:114006. [PMID: 38554279 PMCID: PMC11272184 DOI: 10.1016/j.celrep.2024.114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 11/26/2023] [Accepted: 03/11/2024] [Indexed: 04/01/2024] Open
Abstract
Reprogramming to pluripotency is associated with DNA damage and requires the functions of the BRCA1 tumor suppressor. Here, we leverage separation-of-function mutations in BRCA1/2 as well as the physical and/or genetic interactions between BRCA1 and its associated repair proteins to ascertain the relevance of homology-directed repair (HDR), stalled fork protection (SFP), and replication gap suppression (RGS) in somatic cell reprogramming. Surprisingly, loss of SFP and RGS is inconsequential for the transition to pluripotency. In contrast, cells deficient in HDR, but proficient in SFP and RGS, reprogram with reduced efficiency. Conversely, the restoration of HDR function through inactivation of 53bp1 rescues reprogramming in Brca1-deficient cells, and 53bp1 loss leads to elevated HDR and enhanced reprogramming in mouse and human cells. These results demonstrate that somatic cell reprogramming is especially dependent on repair of replication-associated double-strand breaks (DSBs) by the HDR activity of BRCA1 and BRCA2 and can be improved in the absence of 53BP1.
Collapse
Affiliation(s)
- Daniela Georgieva
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA
| | - Ning Wang
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA
| | - Angelo Taglialatela
- Columbia University Stem Cell Initiative, New York, NY 10032, USA; Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Stepan Jerabek
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA; Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 160 00 Praha 6, Czech Republic
| | - Colleen R Reczek
- Department of Pathology & Cell Biology, Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pei Xin Lim
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julie Sung
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Qian Du
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michiko Horiguchi
- Department of Pathology & Cell Biology, Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alberto Ciccia
- Columbia University Stem Cell Initiative, New York, NY 10032, USA; Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard Baer
- Department of Pathology & Cell Biology, Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dieter Egli
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA; Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
6
|
Wolfe AR, Cui T, Baie S, Corrales-Guerrero S, Webb A, Castro-Aceituno V, Shyu DL, Karasinska JM, Topham JT, Renouf DJ, Schaeffer DF, Halloran M, Packard R, Robb R, Chen W, Denko N, Lisanti M, Thompson TC, Frank P, Williams TM. Nutrient scavenging-fueled growth in pancreatic cancer depends on caveolae-mediated endocytosis under nutrient-deprived conditions. SCIENCE ADVANCES 2024; 10:eadj3551. [PMID: 38427741 PMCID: PMC10906919 DOI: 10.1126/sciadv.adj3551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by its nutrient-scavenging ability, crucial for tumor progression. Here, we investigated the roles of caveolae-mediated endocytosis (CME) in PDAC progression. Analysis of patient data across diverse datasets revealed a strong association of high caveolin-1 (Cav-1) expression with higher histologic grade, the most aggressive PDAC molecular subtypes, and worse clinical outcomes. Cav-1 loss markedly promoted longer overall and tumor-free survival in a genetically engineered mouse model. Cav-1-deficient tumor cell lines exhibited significantly reduced proliferation, particularly under low nutrient conditions. Supplementing cells with albumin rescued the growth of Cav-1-proficient PDAC cells, but not in Cav-1-deficient PDAC cells under low glutamine conditions. In addition, Cav-1 depletion led to significant metabolic defects, including decreased glycolytic and mitochondrial metabolism, and downstream protein translation signaling pathways. These findings highlight the crucial role of Cav-1 and CME in fueling pancreatic tumorigenesis, sustaining tumor growth, and promoting survival through nutrient scavenging.
Collapse
Affiliation(s)
- Adam R. Wolfe
- Department of Radiation Oncology, The University of Arkansas for Medical Sciences, The Winthrop P. Rockefeller Cancer Institute, Little Rock, AR, USA
| | - Tiantian Cui
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Sooin Baie
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | | | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | | | - Duan-Liang Shyu
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | | | | | - Daniel J. Renouf
- Pancreas Centre BC, Vancouver, BC, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - David F. Schaeffer
- Pancreas Centre BC, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | - Megan Halloran
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Rebecca Packard
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Ryan Robb
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wei Chen
- Department of Pathology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Nicholas Denko
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Michael Lisanti
- Translational Medicine, University of Salford, Greater Manchester M5 4WT, UK
- Lunella Biotech, Inc., 145 Richmond Road, Ottawa, ON K1Z 1A1, Canada
| | - Timothy C. Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, USA
| | - Philippe Frank
- SGS France, Health & Nutrition, Saint-Benoît, France
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR, 1069 Tours, France
| | | |
Collapse
|
7
|
Tsukada K, Jones SE, Bannister J, Durin MA, Vendrell I, Fawkes M, Fischer R, Kessler BM, Chapman JR, Blackford AN. BLM and BRCA1-BARD1 coordinate complementary mechanisms of joint DNA molecule resolution. Mol Cell 2024; 84:640-658.e10. [PMID: 38266639 DOI: 10.1016/j.molcel.2023.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 10/10/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1, and RMI2 to form the BTR complex, which dissolves double Holliday junctions and DNA replication intermediates to promote sister chromatid disjunction before cell division. In its absence, structure-specific nucleases like the SMX complex (comprising SLX1-SLX4, MUS81-EME1, and XPF-ERCC1) can cleave joint DNA molecules instead, but cells deficient in both BTR and SMX are not viable. Here, we identify a negative genetic interaction between BLM loss and deficiency in the BRCA1-BARD1 tumor suppressor complex. We show that this is due to a previously overlooked role for BARD1 in recruiting SLX4 to resolve DNA intermediates left unprocessed by BLM in the preceding interphase. Consequently, cells with defective BLM and BRCA1-BARD1 accumulate catastrophic levels of chromosome breakage and micronucleation, leading to cell death. Thus, we reveal mechanistic insights into SLX4 recruitment to DNA lesions, with potential clinical implications for treating BRCA1-deficient tumors.
Collapse
Affiliation(s)
- Kaima Tsukada
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Samuel E Jones
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Julius Bannister
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Mary-Anne Durin
- MRC Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - J Ross Chapman
- MRC Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
8
|
Yueh WT, Glass DJ, Johnson N. Brca1 Mouse Models: Functional Insights and Therapeutic Opportunities. J Mol Biol 2024; 436:168372. [PMID: 37979908 PMCID: PMC10882579 DOI: 10.1016/j.jmb.2023.168372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Brca1 mouse models were first reported in the mid-1990's shortly after cloning the human gene. Since then, many mouse models with a range of mutations have been generated, some mimic patient mutations, others are designed to probe specific protein domains and functions. In this review, we discuss early and recent studies using engineered Brca1 mouse alleles, and their implications for understanding Brca1 protein function in the context of DNA repair, tumorigenesis, and anti-cancer therapeutics.
Collapse
Affiliation(s)
- Wei-Ting Yueh
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - David J Glass
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Neil Johnson
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
9
|
Hughes T, Rose AM. The emergence of Fanconi anaemia type S: a phenotypic spectrum of biallelic BRCA1 mutations. Front Oncol 2023; 13:1278004. [PMID: 38146508 PMCID: PMC10749362 DOI: 10.3389/fonc.2023.1278004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/23/2023] [Indexed: 12/27/2023] Open
Abstract
BRCA1 is involved in the Fanconi anaemia (FA) pathway, which coordinates repair of DNA interstrand cross-links. FA is a rare genetic disorder characterised by bone marrow failure, cancer predisposition and congenital abnormalities, caused by biallelic mutations affecting proteins in the FA pathway. Germline monoallelic pathogenic BRCA1 mutations are known to be associated with hereditary breast/ovarian cancer, however biallelic mutations of BRCA1 were long predicted to be incompatible with embryonic viability, hence BRCA1 was not considered to be a canonical FA gene. Despite this, several patients with biallelic pathogenic BRCA1 mutations and FA-like phenotypes have been identified - defining a new FA type (FA-S) and designating BRCA1 as an FA gene. This report presents a scoping review of the cases of biallelic BRCA1 mutations identified to date, discusses the functional effects of the mutations identified, and proposes a phenotypic spectrum of BRCA1 mutations based upon available clinical and genetic data. We report that this FA-S cohort phenotype includes short stature, microcephaly, facial dysmorphisms, hypo/hyperpigmented lesions, intellectual disability, chromosomal sensitivity to crosslinking agents and predisposition to breast/ovarian cancer and/or childhood cancers, with some patients exhibiting sensitivity to chemotherapy. Unlike most other types of FA, FA-S patients lack bone marrow failure.
Collapse
Affiliation(s)
- Tirion Hughes
- University of Oxford Medical School, Oxford, United Kingdom
| | - Anna M. Rose
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Wu-Baer F, Wong M, Tschoe L, Lin CS, Jiang W, Zha S, Baer R. ATM/ATR Phosphorylation of CtIP on Its Conserved Sae2-like Domain Is Required for Genotoxin-Induced DNA Resection but Dispensable for Animal Development. Cells 2023; 12:2762. [PMID: 38067190 PMCID: PMC10706839 DOI: 10.3390/cells12232762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Homology-directed repair (HDR) of double-strand DNA breaks (DSBs) is dependent on enzymatic resection of DNA ends by the Mre11/Rad50/Nbs1 complex. DNA resection is triggered by the CtIP/Sae2 protein, which allosterically promotes Mre11-mediated endonuclease DNA cleavage at a position internal to the DSB. Although the mechanics of resection, including the initial endonucleolytic step, are largely conserved in eucaryotes, CtIP and its functional counterpart in Saccharomyces cerevisiae (Sae2) share only a modest stretch of amino acid homology. Nonetheless, this stretch contains two highly conserved phosphorylation sites for cyclin-dependent kinases (T843 in mouse) and the damage-induced ATM/ATR kinases (T855 in mouse), both of which are required for DNA resection. To explore the function of ATM/ATR phosphorylation at Ctip-T855, we generated and analyzed mice expressing the Ctip-T855A mutant. Surprisingly, unlike Ctip-null mice and Ctip-T843A-expressing mice, both of which undergo embryonic lethality, homozygous CtipT855A/T855A mice develop normally. Nonetheless, they are hypersensitive to ionizing radiation, and CtipT855A/T855A mouse embryo fibroblasts from these mice display marked defects in DNA resection, chromosomal stability, and HDR-mediated repair of DSBs. Thus, although ATM/ATR phosphorylation of CtIP-T855 is not required for normal animal development, it enhances CtIP-mediated DNA resection in response to acute stress, such as genotoxin exposure.
Collapse
Affiliation(s)
- Foon Wu-Baer
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; (F.W.-B.); (M.W.); (L.T.); (W.J.); (S.Z.)
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Madeline Wong
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; (F.W.-B.); (M.W.); (L.T.); (W.J.); (S.Z.)
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Lydia Tschoe
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; (F.W.-B.); (M.W.); (L.T.); (W.J.); (S.Z.)
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Chyuan-Sheng Lin
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wenxia Jiang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; (F.W.-B.); (M.W.); (L.T.); (W.J.); (S.Z.)
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shan Zha
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; (F.W.-B.); (M.W.); (L.T.); (W.J.); (S.Z.)
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard Baer
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; (F.W.-B.); (M.W.); (L.T.); (W.J.); (S.Z.)
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
11
|
Burdett H, Foglizzo M, Musgrove LJ, Kumar D, Clifford G, Campbell L, Heath GR, Zeqiraj E, Wilson M. BRCA1-BARD1 combines multiple chromatin recognition modules to bridge nascent nucleosomes. Nucleic Acids Res 2023; 51:11080-11103. [PMID: 37823591 PMCID: PMC10639053 DOI: 10.1093/nar/gkad793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
Chromatin association of the BRCA1-BARD1 heterodimer is critical to promote homologous recombination repair of DNA double-strand breaks (DSBs) in S/G2. How the BRCA1-BARD1 complex interacts with chromatin that contains both damage induced histone H2A ubiquitin and inhibitory H4K20 methylation is not fully understood. We characterised BRCA1-BARD1 binding and enzymatic activity to an array of mono- and di-nucleosome substrates using biochemical, structural and single molecule imaging approaches. We found that the BRCA1-BARD1 complex preferentially interacts and modifies di-nucleosomes over mono-nucleosomes, allowing integration of H2A Lys-15 ubiquitylation signals with other chromatin modifications and features. Using high speed- atomic force microscopy (HS-AFM) to monitor how the BRCA1-BARD1 complex recognises chromatin in real time, we saw a highly dynamic complex that bridges two nucleosomes and associates with the DNA linker region. Bridging is aided by multivalent cross-nucleosome interactions that enhance BRCA1-BARD1 E3 ubiquitin ligase catalytic activity. Multivalent interactions across nucleosomes explain how BRCA1-BARD1 can recognise chromatin that retains partial di-methylation at H4 Lys-20 (H4K20me2), a parental histone mark that blocks BRCA1-BARD1 interaction with nucleosomes, to promote its enzymatic and DNA repair activities.
Collapse
Affiliation(s)
- Hayden Burdett
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Martina Foglizzo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Laura J Musgrove
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Dhananjay Kumar
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Gillian Clifford
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Lisa J Campbell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - George R Heath
- Astbury Centre for Structural Molecular Biology, School of Physics & Astronomy and Biomedical Sciences, Faculty of Engineering & Physical Sciences and Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Marcus D Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
12
|
Wang M, Li W, Tomimatsu N, Yu CH, Ji JH, Alejo S, Witus SR, Alimbetov D, Fitzgerald O, Wu B, Wang Q, Huang Y, Gan Y, Dong F, Kwon Y, Sareddy GR, Curiel TJ, Habib AA, Hromas R, Dos Santos Passos C, Yao T, Ivanov DN, Brzovic PS, Burma S, Klevit RE, Zhao W. Crucial roles of the BRCA1-BARD1 E3 ubiquitin ligase activity in homology-directed DNA repair. Mol Cell 2023; 83:3679-3691.e8. [PMID: 37797621 PMCID: PMC10591799 DOI: 10.1016/j.molcel.2023.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023]
Abstract
The tumor-suppressor breast cancer 1 (BRCA1) in complex with BRCA1-associated really interesting new gene (RING) domain 1 (BARD1) is a RING-type ubiquitin E3 ligase that modifies nucleosomal histone and other substrates. The importance of BRCA1-BARD1 E3 activity in tumor suppression remains highly controversial, mainly stemming from studying mutant ligase-deficient BRCA1-BARD1 species that we show here still retain significant ligase activity. Using full-length BRCA1-BARD1, we establish robust BRCA1-BARD1-mediated ubiquitylation with specificity, uncover multiple modes of activity modulation, and construct a truly ligase-null variant and a variant specifically impaired in targeting nucleosomal histones. Cells expressing either of these BRCA1-BARD1 separation-of-function alleles are hypersensitive to DNA-damaging agents. Furthermore, we demonstrate that BRCA1-BARD1 ligase is not only required for DNA resection during homology-directed repair (HDR) but also contributes to later stages for HDR completion. Altogether, our findings reveal crucial, previously unrecognized roles of BRCA1-BARD1 ligase activity in genome repair via HDR, settle prior controversies regarding BRCA1-BARD1 ligase functions, and catalyze new efforts to uncover substrates related to tumor suppression.
Collapse
Affiliation(s)
- Meiling Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Wenjing Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nozomi Tomimatsu
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Corey H Yu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jae-Hoon Ji
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Salvador Alejo
- Department of Obstetrics & Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Samuel R Witus
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Dauren Alimbetov
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - O'Taveon Fitzgerald
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Bo Wu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Qijing Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yuxin Huang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yaqi Gan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Felix Dong
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Gangadhara R Sareddy
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tyler J Curiel
- Geisel School of Medicine at Dartmouth and Department of Medicine, Dartmouth Health, Lebanon, NH 03765, USA
| | - Amyn A Habib
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert Hromas
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Carolina Dos Santos Passos
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Dmitri N Ivanov
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Peter S Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
13
|
Zhong AX, Chen Y, Chen PL. BRCA1 the Versatile Defender: Molecular to Environmental Perspectives. Int J Mol Sci 2023; 24:14276. [PMID: 37762577 PMCID: PMC10532398 DOI: 10.3390/ijms241814276] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The evolving history of BRCA1 research demonstrates the profound interconnectedness of a single protein within the web of crucial functions in human cells. Mutations in BRCA1, a tumor suppressor gene, have been linked to heightened breast and ovarian cancer risks. However, despite decades of extensive research, the mechanisms underlying BRCA1's contribution to tissue-specific tumor development remain elusive. Nevertheless, much of the BRCA1 protein's structure, function, and interactions has been elucidated. Individual regions of BRCA1 interact with numerous proteins to play roles in ubiquitination, transcription, cell checkpoints, and DNA damage repair. At a cellular scale, these BRCA1 functions coordinate tumor suppression, R-loop prevention, and cellular differentiation, all of which may contribute to BRCA1's role in cancer tissue specificity. As research on BRCA1 and breast cancer continues to evolve, it will become increasingly evident that modern materials such as Bisphenol A should be examined for their relationship with DNA stability, cancer incidence, and chemotherapy. Overall, this review offers a comprehensive understanding of BRCA1's many roles at a molecular, cellular, organismal, and environmental scale. We hope that the knowledge gathered here highlights both the necessity of BRCA1 research and the potential for novel strategies to prevent and treat cancer in individuals carrying BRCA1 mutations.
Collapse
Affiliation(s)
- Amy X. Zhong
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Yumay Chen
- Department of Medicine, Division of Endocrinology, University of California, Irvine, CA 92697, USA;
| | - Phang-Lang Chen
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
14
|
Bassi N, Hovland HN, Rasheed K, Jarhelle E, Pedersen N, Mchaina EK, Bakkan SME, Iversen N, Høberg-Vetti H, Haukanes BI, Knappskog PM, Aukrust I, Ognedal E, Van Ghelue M. Functional analyses of rare germline BRCA1 variants by transcriptional activation and homologous recombination repair assays. BMC Cancer 2023; 23:368. [PMID: 37085799 PMCID: PMC10122298 DOI: 10.1186/s12885-023-10790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Damaging alterations in the BRCA1 gene have been extensively described as one of the main causes of hereditary breast and ovarian cancer (HBOC). BRCA1 alterations can lead to impaired homologous recombination repair (HRR) of double-stranded DNA breaks, a process which involves the RING, BRCT and coiled-coil domains of the BRCA1 protein. In addition, the BRCA1 protein is involved in transcriptional activation (TA) of several genes through its C-terminal BRCT domain. METHODS In this study, we have investigated the effect on HRR and TA of 11 rare BRCA1 missense variants classified as variants of uncertain clinical significance (VUS), located within or in close proximity to the BRCT domain, with the aim of generating additional knowledge to guide the correct classification of these variants. The variants were selected from our previous study "BRCA1 Norway", which is a collection of all BRCA1 variants detected at the four medical genetic departments in Norway. RESULTS All variants, except one, showed a significantly reduced HRR activity compared to the wild type (WT) protein. Two of the variants (p.Ala1708Val and p.Trp1718Ser) also exhibited low TA activity similar to the pathogenic controls. The variant p.Trp1718Ser could be reclassified to likely pathogenic. However, for ten of the variants, the total strength of pathogenic evidence was not sufficient for reclassification according to the CanVIG-UK BRCA1/BRCA2 gene-specific guidelines for variant interpretation. CONCLUSIONS When including the newly achieved functional evidence with other available information, one VUS was reclassified to likely pathogenic. Eight of the investigated variants affected only one of the assessed activities of BRCA1, highlighting the importance of comparing results obtained from several functional assays to better understand the consequences of BRCA1 variants on protein function. This is especially important for multifunctional proteins such as BRCA1.
Collapse
Affiliation(s)
- Nicola Bassi
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway
| | - Henrikke Nilsen Hovland
- Familial Cancer Center, Haukeland University Hospital, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kashif Rasheed
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
- Present address: Institute for Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Elisabeth Jarhelle
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway
- Northern Norway Family Cancer Center, University Hospital of North Norway, Tromsø, Norway
| | - Nikara Pedersen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Eunice Kabanyana Mchaina
- Familial Cancer Center, Haukeland University Hospital, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | | | - Nina Iversen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Hildegunn Høberg-Vetti
- Familial Cancer Center, Haukeland University Hospital, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Bjørn Ivar Haukanes
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Per Morten Knappskog
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingvild Aukrust
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Elisabet Ognedal
- Familial Cancer Center, Haukeland University Hospital, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Marijke Van Ghelue
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway
- Northern Norway Family Cancer Center, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, University of Tromsø, Tromsø, Norway
| |
Collapse
|
15
|
Biswas K, Mohammed A, Sharan SK, Shoemaker RH. Genetically engineered mouse models for hereditary cancer syndromes. Cancer Sci 2023; 114:1800-1815. [PMID: 36715493 PMCID: PMC10154891 DOI: 10.1111/cas.15737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Advances in molecular diagnostics have led to improved diagnosis and molecular understanding of hereditary cancers in the clinic. Improving the management, treatment, and potential prevention of cancers in carriers of predisposing mutations requires preclinical experimental models that reflect the key pathogenic features of the specific syndrome associated with the mutations. Numerous genetically engineered mouse (GEM) models of hereditary cancer have been developed. In this review, we describe the models of Lynch syndrome and hereditary breast and ovarian cancer syndrome, the two most common hereditary cancer predisposition syndromes. We focus on Lynch syndrome models as illustrative of the potential for using mouse models to devise improved approaches to prevention of cancer in a high-risk population. GEM models are an invaluable tool for hereditary cancer models. Here, we review GEM models for some hereditary cancers and their potential use in cancer prevention studies.
Collapse
Affiliation(s)
- Kajal Biswas
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| | - Altaf Mohammed
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
16
|
Li Q, Kaur A, Okada K, McKenney RJ, Engebrecht J. Differential requirement for BRCA1-BARD1 E3 ubiquitin ligase activity in DNA damage repair and meiosis in the Caenorhabditis elegans germ line. PLoS Genet 2023; 19:e1010457. [PMID: 36716349 PMCID: PMC9910797 DOI: 10.1371/journal.pgen.1010457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/09/2023] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
The tumor suppressor BRCA1-BARD1 complex regulates many cellular processes; of critical importance to its tumor suppressor function is its role in genome integrity. Although RING E3 ubiquitin ligase activity is the only known enzymatic activity of the complex, the in vivo requirement for BRCA1-BARD1 E3 ubiquitin ligase activity has been controversial. Here we probe the role of BRCA1-BARD1 E3 ubiquitin ligase activity in vivo using C. elegans. Genetic, cell biological, and biochemical analyses of mutants defective for E3 ligase activity suggest there is both E3 ligase-dependent and independent functions of the complex in the context of DNA damage repair and meiosis. We show that E3 ligase activity is important for nuclear accumulation of the complex and specifically to concentrate at meiotic recombination sites but not at DNA damage sites in proliferating germ cells. While BRCA1 alone is capable of monoubiquitylation, BARD1 is required with BRCA1 to promote polyubiquitylation. We find that the requirement for E3 ligase activity and BARD1 in DNA damage signaling and repair can be partially alleviated by driving the nuclear accumulation and self-association of BRCA1. Our data suggest that in addition to E3 ligase activity, BRCA1 may serve a structural role for DNA damage signaling and repair while BARD1 plays an accessory role to enhance BRCA1 function.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, California, United States of America
| | - Arshdeep Kaur
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Kyoko Okada
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Richard J. McKenney
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, California, United States of America
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, California, United States of America
| |
Collapse
|
17
|
Abreu RBV, Gomes TT, Nepomuceno TC, Li X, Fuchshuber-Moraes M, De Gregoriis G, Suarez-Kurtz G, Monteiro ANA, Carvalho MA. Functional Restoration of BRCA1 Nonsense Mutations by Aminoglycoside-Induced Readthrough. Front Pharmacol 2022; 13:935995. [PMID: 35837282 PMCID: PMC9273842 DOI: 10.3389/fphar.2022.935995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
BRCA1 is a major tumor suppressor that functions in the accurate repair of DNA double-strand breaks via homologous recombination (HR). Nonsense mutations in BRCA1 lead to inactive truncated protein products and are associated with high risk of breast and ovarian cancer. These mutations generate premature termination codons (PTCs). Different studies have shown that aminoglycosides can induce PTC suppression by promoting stop codon readthrough and restoring full-length (FL) protein expression. The use of these compounds has been studied in clinical trials for genetic diseases such as cystic fibrosis and Duchenne muscular dystrophy, with encouraging results. Here we show proof-of-concept data demonstrating that the aminoglycoside G418 can induce BRCA1 PTC readthrough and restore FL protein synthesis and function. We first demonstrate that G418 treatment restores BRCA1 FL protein synthesis in HCC1395, a human breast tumor cell line carrying the R1751X mutation. HCC1395 cells treated with G418 also recover HR DNA repair and restore cell cycle checkpoint activation. A set of naturally occurring BRCA1 nonsense variants encoding different PTCs was evaluated in a GFP C-terminal BRCA1 construct model and BRCA1 PTC readthrough levels vary depending on the stop codon context. Because PTC readthrough could generate FL protein carrying pathogenic missense mutations, variants representing the most probable acquired amino acid substitutions in consequence of readthrough were functionally assessed by a validated transcription activation assay. Overall, this is the first study that evaluates the readthrough of PTC variants with clinical relevance in the breast and ovarian cancer-predisposing gene BRCA1.
Collapse
Affiliation(s)
- Renata B. V. Abreu
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Thiago T. Gomes
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Thales C. Nepomuceno
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Xueli Li
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | | | | | | | - Alvaro N. A. Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Marcelo A. Carvalho
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- Instituto Federal do Rio de Janeiro—IFRJ, Rio de Janeiro, Brazil
- *Correspondence: Marcelo A. Carvalho,
| |
Collapse
|
18
|
The Breast Cancer Protooncogenes HER2, BRCA1 and BRCA2 and Their Regulation by the iNOS/NOS2 Axis. Antioxidants (Basel) 2022; 11:antiox11061195. [PMID: 35740092 PMCID: PMC9227079 DOI: 10.3390/antiox11061195] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The expression of inducible nitric oxide synthase (iNOS; NOS2) and derived NO in various cancers was reported to exert pro- and anti-tumorigenic effects depending on the levels of expression and the tumor types. In humans, the breast cancer level of iNOS was reported to be overexpressed, to exhibit pro-tumorigenic activities, and to be of prognostic significance. Likewise, the expression of the oncogenes HER2, BRCA1, and BRCA2 has been associated with malignancy. The interrelationship between the expression of these protooncogenes and oncogenes and the expression of iNOS is not clear. We have hypothesized that there exist cross-talk signaling pathways between the breast cancer protooncogenes, the iNOS axis, and iNOS-mediated NO mutations of these protooncogenes into oncogenes. We review the molecular regulation of the expression of the protooncogenes in breast cancer and their interrelationships with iNOS expression and activities. In addition, we discuss the roles of iNOS, HER2, BRCA1/2, and NO metabolism in the pathophysiology of cancer stem cells. Bioinformatic analyses have been performed and have found suggested molecular alterations responsible for breast cancer aggressiveness. These include the association of BRCA1/2 mutations and HER2 amplifications with the dysregulation of the NOS pathway. We propose that future studies should be undertaken to investigate the regulatory mechanisms underlying the expression of iNOS and various breast cancer oncogenes, with the aim of identifying new therapeutic targets for the treatment of breast cancers that are refractory to current treatments.
Collapse
|
19
|
Clark KA, Paquette A, Tao K, Bell R, Boyle JL, Rosenthal J, Snow AK, Stark AW, Thompson BA, Unger J, Gertz J, Varley KE, Boucher KM, Goldgar DE, Foulkes WD, Thomas A, Tavtigian SV. Comprehensive evaluation and efficient classification of BRCA1 RING domain missense substitutions. Am J Hum Genet 2022; 109:1153-1174. [PMID: 35659930 PMCID: PMC9247830 DOI: 10.1016/j.ajhg.2022.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
BRCA1 is a high-risk susceptibility gene for breast and ovarian cancer. Pathogenic protein-truncating variants are scattered across the open reading frame, but all known missense substitutions that are pathogenic because of missense dysfunction are located in either the amino-terminal RING domain or the carboxy-terminal BRCT domain. Heterodimerization of the BRCA1 and BARD1 RING domains is a molecularly defined obligate activity. Hence, we tested every BRCA1 RING domain missense substitution that can be created by a single nucleotide change for heterodimerization with BARD1 in a mammalian two-hybrid assay. Downstream of the laboratory assay, we addressed three additional challenges: assay calibration, validation thereof, and integration of the calibrated results with other available data, such as computational evidence and patient/population observational data to achieve clinically applicable classification. Overall, we found that 15%-20% of BRCA1 RING domain missense substitutions are pathogenic. Using a Bayesian point system for data integration and variant classification, we achieved clinical classification of 89% of observed missense substitutions. Moreover, among missense substitutions not present in the human observational data used here, we find an additional 45 with concordant computational and functional assay evidence in favor of pathogenicity plus 223 with concordant evidence in favor of benignity; these are particularly likely to be classified as likely pathogenic and likely benign, respectively, once human observational data become available.
Collapse
Affiliation(s)
- Kathleen A Clark
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Andrew Paquette
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kayoko Tao
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Russell Bell
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Julie L Boyle
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Judith Rosenthal
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Angela K Snow
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Alex W Stark
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Bryony A Thompson
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua Unger
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Katherine E Varley
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kenneth M Boucher
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - David E Goldgar
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - William D Foulkes
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Research Institute McGill University Health Center, Montreal, QC H3T 1E2, Canada; Departments of Medicine, Human Genetics, and Oncology, McGill University, Montreal, QC H3T 1E2, Canada
| | - Alun Thomas
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Sean V Tavtigian
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
20
|
Hawsawi YM, Shams A, Theyab A, Abdali WA, Hussien NA, Alatwi HE, Alzahrani OR, Oyouni AAA, Babalghith AO, Alreshidi M. BARD1 mystery: tumor suppressors are cancer susceptibility genes. BMC Cancer 2022; 22:599. [PMID: 35650591 PMCID: PMC9161512 DOI: 10.1186/s12885-022-09567-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022] Open
Abstract
The full-length BRCA1-associated RING domain 1 (BARD1) gene encodes a 777-aa protein. BARD1 displays a dual role in cancer development and progression as it acts as a tumor suppressor and an oncogene. Structurally, BARD1 has homologous domains to BRCA1 that aid their heterodimer interaction to inhibit the progression of different cancers such as breast and ovarian cancers following the BRCA1-dependant pathway. In addition, BARD1 was shown to be involved in other pathways that are involved in tumor suppression (BRCA1-independent pathway) such as the TP53-dependent apoptotic signaling pathway. However, there are abundant BARD1 isoforms exist that are different from the full-length BARD1 due to nonsense and frameshift mutations, or deletions were found to be associated with susceptibility to various cancers including neuroblastoma, lung, breast, and cervical cancers. This article reviews the spectrum of BARD1 full-length genes and its different isoforms and their anticipated associated risk. Additionally, the study also highlights the role of BARD1 as an oncogene in breast cancer patients and its potential uses as a prognostic/diagnostic biomarker and as a therapeutic target for cancer susceptibility testing and treatment.
Collapse
Affiliation(s)
- Yousef M Hawsawi
- King Faisal Specialist Hospital and Research Center- Research Center, KFSH&RC, MBC-J04, P.O. Box 40047, Jeddah, 21499, Saudi Arabia. .,College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia.
| | - Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Abdulrahman Theyab
- College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia.,Department of Pharmacology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.,Department of Laboratory Medicine, Security Forces Hospital, Mecca, Kingdom of Saudi Arabia
| | - Wed A Abdali
- King Faisal Specialist Hospital and Research Center- Research Center, KFSH&RC, MBC-J04, P.O. Box 40047, Jeddah, 21499, Saudi Arabia
| | - Nahed A Hussien
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.,Department of Biology, College of Science, Taif University, P.O Box 11099, Taif, 21944, Saudi Arabia
| | - Hanan E Alatwi
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.,Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Othman R Alzahrani
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.,Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Atif Abdulwahab A Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.,Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmad O Babalghith
- Medical genetics Department, College of Medicine, Umm Alqura University, Makkah, Saudi Arabia
| | - Mousa Alreshidi
- Departement of biology, College of Science, University of Hail, Hail, Saudi Arabia.,Molecular Diagnostic and Personalized Therapeutic Unit, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
21
|
Adamovich AI, Diabate M, Banerjee T, Nagy G, Smith N, Duncan K, Mendoza Mendoza E, Prida G, Freitas MA, Starita LM, Parvin JD. The functional impact of BRCA1 BRCT domain variants using multiplexed DNA double-strand break repair assays. Am J Hum Genet 2022; 109:618-630. [PMID: 35196514 DOI: 10.1016/j.ajhg.2022.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/26/2022] [Indexed: 11/30/2022] Open
Abstract
Pathogenic variants in BRCA1 are associated with a greatly increased risk of hereditary breast and ovarian cancer (HBOC). With the increased availability and affordability of genetic testing, many individuals have been identified with BRCA1 variants of uncertain significance (VUSs), which are individually detected in the population too infrequently to ascertain a clinical risk. Functional assays can be used to experimentally assess the effects of these variants. In this study, we used multiplexed DNA repair assays of variants in the BRCA1 carboxyl terminus to functionally characterize 2,271 variants for homology-directed repair function (HDR) and 1,427 variants for cisplatin resistance (CR). We found a high level of consistent results (Pearson's r = 0.74) in the two multiplexed functional assays with non-functional variants located within regions of the BRCA1 protein necessary for its tumor suppression activity. In addition, functional categorizations of variants tested in the multiplex HDR and CR assays correlated with known clinical significance and with other functional assays for BRCA1 (Pearson's r = 0.53 to 0.71). The results of the multiplex HDR and CR assays are useful resources for characterizing large numbers of BRCA1 VUSs.
Collapse
Affiliation(s)
- Aleksandra I Adamovich
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Mariame Diabate
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Tapahsama Banerjee
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Gregory Nagy
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Nahum Smith
- Department of Genome Sciences, University of Washington and Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Kathryn Duncan
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Erika Mendoza Mendoza
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Gisselle Prida
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Lea M Starita
- Department of Genome Sciences, University of Washington and Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Jeffrey D Parvin
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
22
|
Park D, Gharghabi M, Reczek CR, Plow R, Yungvirt C, Aldaz CM, Huebner K. Wwox Binding to the Murine Brca1-BRCT Domain Regulates Timing of Brip1 and CtIP Phospho-Protein Interactions with This Domain at DNA Double-Strand Breaks, and Repair Pathway Choice. Int J Mol Sci 2022; 23:ijms23073729. [PMID: 35409089 PMCID: PMC8999063 DOI: 10.3390/ijms23073729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Wwox-deficient human cells show elevated homologous recombination, leading to resistance to killing by double-strand break-inducing agents. Human Wwox binds to the Brca1 981-PPLF-984 Wwox-binding motif, likely blocking the pChk2 phosphorylation site at Brca1-S988. This phosphorylation site is conserved across mammalian species; the PPLF motif is conserved in primates but not in rodents. We now show that murine Wwox does not bind Brca1 near the conserved mouse Brca1 phospho-S971 site, leaving it open for Chk2 phosphorylation and Brca1 activation. Instead, murine Wwox binds to Brca1 through its BRCT domain, where pAbraxas, pBrip1, and pCtIP, of the A, B, and C binding complexes, interact to regulate double-strand break repair pathway response. In Wwox-deficient mouse cells, the Brca1-BRCT domain is thus accessible for immediate binding of these phospho-proteins. We confirm elevated homologous recombination in Wwox-silenced murine cells, as in human cells. Wwox-deficient murine cells showed increased ionizing radiation-induced Abraxas, Brca1, and CtIP foci and long resected single-strand DNA, early after ionizing radiation. Wwox deletion increased the basal level of Brca1-CtIP interaction and the expression level of the MRN-CtIP protein complex, key players in end-resection, and facilitated Brca1 release from foci. Inhibition of phospho-Chk2 phosphorylation of Brca1-S971 delays the end-resection; the delay of premature end-resection by combining Chk2 inhibition with ionizing radiation or carboplatin treatment restored ionizing radiation and platinum sensitivity in Wwox-deficient murine cells, as in human cells, supporting the use of murine in vitro and in vivo models in preclinical cancer treatment research.
Collapse
Affiliation(s)
- Dongju Park
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
- Correspondence: (D.P.); (K.H.); Tel.: +1-614-685-9124 (D.P.); +1-614-292-4850 (K.H.)
| | - Mehdi Gharghabi
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
- Department of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Colleen R. Reczek
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA;
| | - Rebecca Plow
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
| | - Charles Yungvirt
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
| | - C. Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054, USA;
| | - Kay Huebner
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
- Correspondence: (D.P.); (K.H.); Tel.: +1-614-685-9124 (D.P.); +1-614-292-4850 (K.H.)
| |
Collapse
|
23
|
Hu PZ, Chen XY, Xiong W, Yang ZJ, Li XR, Deng WZ, Gong LN, Deng H, Yuan LM. A BRCA1 Splice Site Variant Responsible for Familial Ovarian Cancer in a Han-Chinese Family. Curr Med Sci 2022; 42:666-672. [PMID: 35290602 DOI: 10.1007/s11596-022-2527-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 11/30/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Ovarian cancer (OC) is one of the most common and most lethal gynecological malignancies. OC has an age-dependent incidence and occurs more commonly in females older than 50 years old. Most OC patients are diagnosed at an advanced stage and have a poor prognosis. Germline mutations in the BRCA1 DNA repair associated gene (BRCA1) and the BRCA2 DNA repair associated gene (BRCA2) account for 20%-25% of epithelial ovarian cancer (EOC). BRCA1 germline mutations are more common in Chinese EOC patients. METHODS This study reported a three-generation Han-Chinese family containing four EOC patients and a rectal adenocarcinoma patient. Whole-exome sequencing was performed on two EOC patients and an unaffected individual. Variant validation was also performed in all available members by Sanger sequencing. RESULTS A heterozygous splice site variant, c.4358-2A>G in the BRCA1 gene, was identified. Bioinformatic analysis showed that the variant may change the splicing machinery. CONCLUSION The BRCA1 splice site variant, c.4358-2A>G was identified as the likely genetic cause for EOC, and may also be associated with the increased risk of rectal adenocarcinoma in the family. The findings were beneficial for genetic counseling, helpful for cancer prevention in other family members, and may facilitate therapy decision-making in the future to reduce cancer lethality.
Collapse
Affiliation(s)
- Peng-Zhi Hu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xiang-Yu Chen
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Zhi-Jian Yang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xiao-Rong Li
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Wen-Zhi Deng
- Department of Pathology, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Li-Na Gong
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Disease Genome Research Center, Central South University, Changsha, 410013, China
| | - La-Mei Yuan
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
24
|
Xu L, Zhang L, Sun J, Hu X, Kalvakolanu DV, Ren H, Guo B. Roles for the methyltransferase SETD8 in DNA damage repair. Clin Epigenetics 2022; 14:34. [PMID: 35246238 PMCID: PMC8897848 DOI: 10.1186/s13148-022-01251-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/20/2022] [Indexed: 12/28/2022] Open
Abstract
Epigenetic posttranslational modifications are critical for fine-tuning gene expression in various biological processes. SETD8 is so far the only known lysyl methyltransferase in mammalian cells to produce mono-methylation of histone H4 at lysine 20 (H4K20me1), a prerequisite for di- and tri-methylation. Importantly, SETD8 is related to a number of cellular activities, impinging upon tissue development, senescence and tumorigenesis. The double-strand breaks (DSBs) are cytotoxic DNA damages with deleterious consequences, such as genomic instability and cancer origin, if unrepaired. The homology-directed repair and canonical nonhomologous end-joining are two most prominent DSB repair pathways evolved to eliminate such aberrations. Emerging evidence implies that SETD8 and its corresponding H4K20 methylation are relevant to establishment of DSB repair pathway choice. Understanding how SETD8 functions in DSB repair pathway choice will shed light on the molecular basis of SETD8-deficiency related disorders and will be valuable for the development of new treatments. In this review, we discuss the progress made to date in roles for the lysine mono-methyltransferase SETD8 in DNA damage repair and its therapeutic relevance, in particular illuminating its involvement in establishment of DSB repair pathway choice, which is crucial for the timely elimination of DSBs.
Collapse
Affiliation(s)
- Libo Xu
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.,Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, People's Republic of China
| | - Ling Zhang
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.,Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, People's Republic of China
| | - Jicheng Sun
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Xindan Hu
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology, University of Maryland School Medicine, Baltimore, MD, USA
| | - Hui Ren
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.
| | - Baofeng Guo
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
25
|
Witus SR, Zhao W, Brzovic PS, Klevit RE. BRCA1/BARD1 is a nucleosome reader and writer. Trends Biochem Sci 2022; 47:582-595. [DOI: 10.1016/j.tibs.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023]
|
26
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
27
|
Tarpey MD, Amorese AJ, LaFave ER, Minchew EC, Fisher-Wellman KH, McClung JM, Hvastkovs EG, Spangenburg EE. Skeletal Muscle Function Is Dependent Upon BRCA1 to Maintain Genomic Stability. Exerc Sport Sci Rev 2021; 49:267-273. [PMID: 34091499 PMCID: PMC8495729 DOI: 10.1249/jes.0000000000000265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Breast Cancer gene 1 (BRCA1) is a large, multifunctional protein that regulates a variety of mechanisms in multiple different tissues. Our work established that Brca1 is expressed in skeletal muscle and localizes to the mitochondria and nucleus. Here, we propose BRCA1 expression is critical for the maintenance of force production and mitochondrial respiration in skeletal muscle.
Collapse
Affiliation(s)
- Michael D. Tarpey
- East Carolina University, Department of Physiology, Brody School of Medicine, Greenville, NC 27834
| | - Adam J. Amorese
- East Carolina University, Department of Physiology, Brody School of Medicine, Greenville, NC 27834
| | - Elizabeth R. LaFave
- East Carolina University, Department of Chemistry, 300 Science and Technology Bldg., Greenville, NC 27858
| | - Everett C. Minchew
- East Carolina University, Department of Physiology, Brody School of Medicine, Greenville, NC 27834
| | - Kelsey H. Fisher-Wellman
- East Carolina University, Department of Physiology, Brody School of Medicine, Greenville, NC 27834
- East Carolina Diabetes and Obesity Institute, 115 Heart Dr, East Carolina University, Greenville NC, 27834
| | - Joseph M. McClung
- East Carolina University, Department of Physiology, Brody School of Medicine, Greenville, NC 27834
- East Carolina Diabetes and Obesity Institute, 115 Heart Dr, East Carolina University, Greenville NC, 27834
| | - Eli G. Hvastkovs
- East Carolina University, Department of Chemistry, 300 Science and Technology Bldg., Greenville, NC 27858
| | - Espen E. Spangenburg
- East Carolina University, Department of Physiology, Brody School of Medicine, Greenville, NC 27834
- East Carolina Diabetes and Obesity Institute, 115 Heart Dr, East Carolina University, Greenville NC, 27834
| |
Collapse
|
28
|
Kim M, Park J, Bouhaddou M, Kim K, Rojc A, Modak M, Soucheray M, McGregor MJ, O'Leary P, Wolf D, Stevenson E, Foo TK, Mitchell D, Herrington KA, Muñoz DP, Tutuncuoglu B, Chen KH, Zheng F, Kreisberg JF, Diolaiti ME, Gordan JD, Coppé JP, Swaney DL, Xia B, van 't Veer L, Ashworth A, Ideker T, Krogan NJ. A protein interaction landscape of breast cancer. Science 2021; 374:eabf3066. [PMID: 34591612 PMCID: PMC9040556 DOI: 10.1126/science.abf3066] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Minkyu Kim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Jisoo Park
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA
| | - Mehdi Bouhaddou
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Kyumin Kim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Ajda Rojc
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Maya Modak
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Margaret Soucheray
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Michael J McGregor
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Patrick O'Leary
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Denise Wolf
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Erica Stevenson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Tzeh Keong Foo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Dominique Mitchell
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Kari A Herrington
- Department of Biochemistry and Biophysics, Center for Advanced Light Microscopy, University of California, San Francisco, CA, USA
| | - Denise P Muñoz
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Beril Tutuncuoglu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Kuei-Ho Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Fan Zheng
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA
| | - Jason F Kreisberg
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA
| | - Morgan E Diolaiti
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - John D Gordan
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Jean-Philippe Coppé
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Laura van 't Veer
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Alan Ashworth
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Trey Ideker
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA.,Department of Bioengineering, University of California, San Diego, CA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| |
Collapse
|
29
|
The BRCA1/BARD1 ubiquitin ligase and its substrates. Biochem J 2021; 478:3467-3483. [PMID: 34591954 DOI: 10.1042/bcj20200864] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022]
Abstract
Mutations in breast cancer type 1 susceptibility protein (BRCA1) and its heterodimeric binding partner BARD1 confer a high risk for the development of breast and ovarian cancers. The sole enzymatic function of the BRCA1/BARD1 complex is as a RING-type E3 ubiquitin (Ub) ligase, leading to the deposition of Ub signals onto a variety of substrate proteins. Distinct types of Ub signals deposited by BRCA1/BARD1 (i.e. degradative vs. non-degradative; mono-Ub vs. poly-Ub chains) on substrate proteins mediate aspects of its function in DNA double-stranded break repair, cell-cycle regulation, and transcriptional regulation. While cancer-predisposing mutations in both subunits lead to the inactivation of BRCA1/BARD1 ligase activity, controversy remains as to whether its Ub ligase activity directly inhibits tumorigenesis. Investigation of BRCA1/BARD1 substrates using rigorous, well-validated mutants and experimental systems will ultimately clarify the role of its ligase activity in cancer and possibly establish prognostic and diagnostic metrics for patients with mutations. In this review, we discuss the Ub ligase function of BRCA1/BARD1, highlighting experimental approaches, mechanistic considerations, and reagents that are useful in the study of substrate ubiquitylation. We also discuss the current understanding of two well-established BRCA1/BARD1 substrates (nucleosomal H2A and estrogen receptor α) and several recently discovered substrates (p50, NF2, Oct1, and LARP7). Lessons from the current body of work should provide a road map to researchers examining novel substrates and biological functions attributed to BRCA1/BARD1 Ub ligase activity.
Collapse
|
30
|
Krais JJ, Wang Y, Patel P, Basu J, Bernhardy AJ, Johnson N. RNF168-mediated localization of BARD1 recruits the BRCA1-PALB2 complex to DNA damage. Nat Commun 2021; 12:5016. [PMID: 34408138 PMCID: PMC8373961 DOI: 10.1038/s41467-021-25346-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
DNA damage prompts a diverse range of alterations to the chromatin landscape. The RNF168 E3 ubiquitin ligase catalyzes the mono-ubiquitination of histone H2A at lysine (K)13/15 (mUb-H2A), forming a binding module for DNA repair proteins. BRCA1 promotes homologous recombination (HR), in part, through its interaction with PALB2, and the formation of a larger BRCA1-PALB2-BRCA2-RAD51 (BRCA1-P) complex. The mechanism by which BRCA1-P is recruited to chromatin surrounding DNA breaks is unclear. In this study, we reveal that an RNF168-governed signaling pathway is responsible for localizing the BRCA1-P complex to DNA damage. Using mice harboring a Brca1CC (coiled coil) mutation that blocks the Brca1-Palb2 interaction, we uncovered an epistatic relationship between Rnf168− and Brca1CC alleles, which disrupted development, and reduced the efficiency of Palb2-Rad51 localization. Mechanistically, we show that RNF168-generated mUb-H2A recruits BARD1 through a BRCT domain ubiquitin-dependent recruitment motif (BUDR). Subsequently, BARD1-BRCA1 accumulate PALB2-RAD51 at DNA breaks via the CC domain-mediated BRCA1-PALB2 interaction. Together, these findings establish a series of molecular interactions that connect the DNA damage signaling and HR repair machinery. The BRCA1-PALB2-BRCA2-RAD51 (BRCA1-P) complex is well known to play a fundamental role in DNA repair, but how the complex recruitment is regulated is still a matter of interest. Here the authors reveal mechanistic insights into RNF168 activity being responsible for PALB2 recruitment, through BARD1-BRCA1 during homologous recombination repair.
Collapse
Affiliation(s)
- John J Krais
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yifan Wang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Pooja Patel
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jayati Basu
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Andrea J Bernhardy
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Muhseena N K, Mathukkada S, Das SP, Laha S. The repair gene BACH1 - a potential oncogene. Oncol Rev 2021; 15:519. [PMID: 34322202 PMCID: PMC8273628 DOI: 10.4081/oncol.2021.519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACH1 encodes for a protein that belongs to RecQ DEAH helicase family and interacts with the BRCT repeats of BRCA1. The N-terminus of BACH1 functions in DNA metabolism as DNA-dependent ATPase and helicase. The C-terminus consists of BRCT domain, which interacts with BRCA1 and this interaction is one of the major regulator of BACH1 function. BACH1 plays important roles both in phosphorylated as well as dephosphorylated state and functions in coordination with multiple signaling molecules. The active helicase property of BACH1 is maintained by its dephosphorylated state. Imbalance between these two states enhances the development and progression of the diseased condition. Currently BACH1 is known as a tumor suppressor gene based on the presence of its clinically relevant mutations in different cancers. Through this review we have justified it to be named as an oncogene. In this review, we have explained the mechanism of how BACH1 in collaboration with BRCA1 or independently regulates various pathways like cell cycle progression, DNA replication during both normal and stressed situation, recombination and repair of damaged DNA, chromatin remodeling and epigenetic modifications. Mutation and overexpression of BACH1 are significantly found in different cancer types. This review enlists the molecular players which interact with BACH1 to regulate DNA metabolic functions, thereby revealing its potential for cancer therapeutics. We have identified the most mutated functional domain of BACH1, the hot spot for tumorigenesis, justifying it as a target molecule in different cancer types for therapeutics. BACH1 has high potentials of transforming a normal cell into a tumor cell if compromised under certain circumstances. Thus, through this review, we justify BACH1 as an oncogene along with the existing role of being a tumor suppressant.
Collapse
Affiliation(s)
- Katheeja Muhseena N
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sooraj Mathukkada
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Suparna Laha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
32
|
San Martin Alonso M, Noordermeer S. Untangling the crosstalk between BRCA1 and R-loops during DNA repair. Nucleic Acids Res 2021; 49:4848-4863. [PMID: 33755171 PMCID: PMC8136775 DOI: 10.1093/nar/gkab178] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/13/2023] Open
Abstract
R-loops are RNA:DNA hybrids assembled during biological processes but are also linked to genetic instability when formed out of their natural context. Emerging evidence suggests that the repair of DNA double-strand breaks requires the formation of a transient R-loop, which eventually must be removed to guarantee a correct repair process. The multifaceted BRCA1 protein has been shown to be recruited at this specific break-induced R-loop, and it facilitates mechanisms in order to regulate R-loop removal. In this review, we discuss the different potential roles of BRCA1 in R-loop homeostasis during DNA repair and how these processes ensure faithful DSB repair.
Collapse
Affiliation(s)
- Marta San Martin Alonso
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
33
|
Mouse Models for Deciphering the Impact of Homologous Recombination on Tumorigenesis. Cancers (Basel) 2021; 13:cancers13092083. [PMID: 33923105 PMCID: PMC8123484 DOI: 10.3390/cancers13092083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Homologous recombination (HR) is a fundamental evolutionarily conserved process that plays prime role(s) in genome stability maintenance through DNA repair and through the protection and resumption of arrested replication forks. Many HR genes are deregulated in cancer cells. Notably, the breast cancer genes BRCA1 and BRCA2, two important HR players, are the most frequently mutated genes in familial breast and ovarian cancer. Transgenic mice constitute powerful tools to unravel the intricate mechanisms controlling tumorigenesis in vivo. However, the genes central to HR are essential in mammals, and their knockout leads to early embryonic lethality in mice. Elaborated strategies have been developed to overcome this difficulty, enabling one to analyze the consequences of HR disruption in vivo. In this review, we first briefly present the molecular mechanisms of HR in mammalian cells to introduce each factor in the HR process. Then, we present the different mouse models of HR invalidation and the consequences of HR inactivation on tumorigenesis. Finally, we discuss the use of mouse models for the development of targeted cancer therapies as well as perspectives on the future potential for understanding the mechanisms of HR inactivation-driven tumorigenesis in vivo.
Collapse
|
34
|
Witus SR, Burrell AL, Farrell DP, Kang J, Wang M, Hansen JM, Pravat A, Tuttle LM, Stewart MD, Brzovic PS, Chatterjee C, Zhao W, DiMaio F, Kollman JM, Klevit RE. BRCA1/BARD1 site-specific ubiquitylation of nucleosomal H2A is directed by BARD1. Nat Struct Mol Biol 2021; 28:268-277. [PMID: 33589814 PMCID: PMC8007219 DOI: 10.1038/s41594-020-00556-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/23/2020] [Indexed: 01/31/2023]
Abstract
Mutations in the E3 ubiquitin ligase RING domains of BRCA1/BARD1 predispose carriers to breast and ovarian cancers. We present the structure of the BRCA1/BARD1 RING heterodimer with the E2 enzyme UbcH5c bound to its cellular target, the nucleosome, along with biochemical data that explain how the complex selectively ubiquitylates lysines 125, 127 and 129 in the flexible C-terminal tail of H2A in a fully human system. The structure reveals that a novel BARD1-histone interface couples to a repositioning of UbcH5c compared to the structurally similar PRC1 E3 ligase Ring1b/Bmi1 that ubiquitylates H2A Lys119 in nucleosomes. This interface is sensitive to both H3 Lys79 methylation status and mutations found in individuals with cancer. Furthermore, NMR reveals an unexpected mode of E3-mediated substrate regulation through modulation of dynamics in the C-terminal tail of H2A. Our findings provide insight into how E3 ligases preferentially target nearby lysine residues in nucleosomes by a steric occlusion and distancing mechanism.
Collapse
Affiliation(s)
- Samuel R Witus
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Daniel P Farrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jianming Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Meiling Wang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jesse M Hansen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Alex Pravat
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Lisa M Tuttle
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Mikaela D Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Biology, Texas Christian University, Fort Worth, TX, USA
| | - Peter S Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
35
|
Medvedev KE, Kinch LN, Dustin Schaeffer R, Pei J, Grishin NV. A Fifth of the Protein World: Rossmann-like Proteins as an Evolutionarily Successful Structural unit. J Mol Biol 2021; 433:166788. [PMID: 33387532 PMCID: PMC7870570 DOI: 10.1016/j.jmb.2020.166788] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
The Rossmann-like fold is the most prevalent and diversified doubly-wound superfold of ancient evolutionary origin. Rossmann-like domains are present in a variety of metabolic enzymes and are capable of binding diverse ligands. Discerning evolutionary relationships among these domains is challenging because of their diverse functions and ancient origin. We defined a minimal Rossmann-like structural motif (RLM), identified RLM-containing domains among known 3D structures (20%) and classified them according to their homologous relationships. New classifications were incorporated into our Evolutionary Classification of protein Domains (ECOD) database. We defined 156 homology groups (H-groups), which were further clustered into 123 possible homology groups (X-groups). Our analysis revealed that RLM-containing proteins constitute approximately 15% of the human proteome. We found that disease-causing mutations are more frequent within RLM domains than within non-RLM domains of these proteins, highlighting the importance of RLM-containing proteins for human health.
Collapse
Affiliation(s)
- Kirill E Medvedev
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - R Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
36
|
Panigrahi R, Glover JNM. Structural insights into DNA double-strand break signaling. Biochem J 2021; 478:135-156. [PMID: 33439989 DOI: 10.1042/bcj20200066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
Genomic integrity is most threatened by double-strand breaks, which, if left unrepaired, lead to carcinogenesis or cell death. The cell generates a network of protein-protein signaling interactions that emanate from the DNA damage which are now recognized as a rich basis for anti-cancer therapy development. Deciphering the structures of signaling proteins has been an uphill task owing to their large size and complex domain organization. Recent advances in mammalian protein expression/purification and cryo-EM-based structure determination have led to significant progress in our understanding of these large multidomain proteins. This review is an overview of the structural principles that underlie some of the key signaling proteins that function at the double-strand break site. We also discuss some plausible ideas that could be considered for future structural approaches to visualize and build a more complete understanding of protein dynamics at the break site.
Collapse
Affiliation(s)
- Rashmi Panigrahi
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
37
|
Han Y, Yu X, Li S, Tian Y, Liu C. New Perspectives for Resistance to PARP Inhibitors in Triple-Negative Breast Cancer. Front Oncol 2020; 10:578095. [PMID: 33324554 PMCID: PMC7724080 DOI: 10.3389/fonc.2020.578095] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are a therapeutic milestone exerting a synthetic lethal effect in the treatment of cancer involving BRCA1/2 mutation. Theoretically, PARP inhibitors (PARPi) eliminate tumor cells by disrupting DNA damage repair through either PARylation or the homologous recombination (HR) pathway. However, resistance to PARPi greatly hinders therapeutic effectiveness in triple-negative breast cancer (TNBC). Owing to the high heterogeneity and few genetic targets in TNBC, there has been limited therapeutic progress in the past decades. In view of this, there is a need to circumvent resistance to PARPi and develop potential treatment strategies for TNBC. We present, herein, a review of the scientific progress and explore the mechanisms underlying PARPi resistance in TNBC. The complicated mechanisms of PARPi resistance, including drug exporter formation, loss of poly (ADP-ribose) glycohydrolase (PARG), HR reactivation, and restoration of replication fork stability, are discussed in detail in this review. Additionally, we also discuss new combination therapies with PARPi that can improve the clinical response in TNBC. The new perspectives for PARPi bring novel challenges and opportunities to overcome PARPi resistance in breast cancer.
Collapse
Affiliation(s)
- Ye Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuqiang Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Biomedical Informatics, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
38
|
Krais JJ, Johnson N. BRCA1 Mutations in Cancer: Coordinating Deficiencies in Homologous Recombination with Tumorigenesis. Cancer Res 2020; 80:4601-4609. [PMID: 32747362 PMCID: PMC7641968 DOI: 10.1158/0008-5472.can-20-1830] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 01/08/2023]
Abstract
Cancers that arise from BRCA1 germline mutations are deficient for homologous recombination (HR) DNA repair and are sensitive to DNA-damaging agents such as platinum and PARP inhibitors. In vertebrate organisms, knockout of critical HR genes including BRCA1 and BRCA2 is lethal because HR is required for genome replication. Thus, cancers must develop strategies to cope with loss of HR activity. Furthermore, as established tumors respond to chemotherapy selection pressure, additional genetic adaptations transition cancers to an HR-proficient state. In this review, we discuss biological mechanisms that influence the ability of BRCA1-mutant cancers to perform HR. Furthermore, we consider how the HR status fluctuates throughout the cancer life course, from tumor initiation to the development of therapy refractory disease.
Collapse
Affiliation(s)
- John J Krais
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
39
|
Tobalina L, Armenia J, Irving E, O'Connor MJ, Forment JV. A meta-analysis of reversion mutations in BRCA genes identifies signatures of DNA end-joining repair mechanisms driving therapy resistance. Ann Oncol 2020; 32:103-112. [PMID: 33091561 DOI: 10.1016/j.annonc.2020.10.470] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Germline mutations in the BRCA1 or BRCA2 (BRCA) genes predispose to hereditary breast and ovarian cancer and, mostly in the case of BRCA2, are also prevalent in cases of pancreatic and prostate malignancies. Tumours from these patients tend to lose both copies of the wild-type BRCA gene, which makes them exquisitely sensitive to platinum drugs and poly(ADP-ribose) polymerase inhibitors (PARPi), treatments of choice in these disease settings. Reversion secondary mutations with the capacity of restoring BRCA protein expression have been documented in the literature as bona fide mechanisms of resistance to these treatments. PATIENTS AND METHODS We analysed published sequencing data of BRCA genes (from tumour or circulating tumour DNA) in 327 patients with tumours harbouring mutations in BRCA1 or BRCA2 (234 patients with ovarian cancer, 27 with breast cancer, 13 with pancreatic cancer, 11 with prostate cancer and 42 with a cancer of unknown origin) that progressed on platinum or PARPi treatment. RESULTS We describe 269 cases of reversion mutations in 86 patients in this cohort (26.0%). Detailed analyses of the reversion events highlight that most amino acid sequences encoded by exon 11 in BRCA1 and BRCA2 are dispensable to generate resistance to platinum or PARPi, whereas other regions are more refractory to sizeable amino acid losses. They also underline the key role of mutagenic end-joining DNA repair pathways in generating reversions, especially in those affecting BRCA2, as indicated by the significant accumulation of DNA sequence microhomologies surrounding deletions leading to reversion events. CONCLUSIONS Our analyses suggest that pharmacological inhibition of DNA end-joining repair pathways could improve durability of drug treatments by preventing the acquisition of reversion mutations in BRCA genes. They also highlight potential new therapeutic opportunities when reversions result in expression of hypomorphic versions of BRCA proteins, especially with agents targeting the response to DNA replication stress.
Collapse
Affiliation(s)
- L Tobalina
- Bioinformatics and Data Science, Oncology R&D, AstraZeneca, Cambridge, UK
| | - J Armenia
- Bioinformatics and Data Science, Oncology R&D, AstraZeneca, Cambridge, UK
| | - E Irving
- DDR Biology, Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - M J O'Connor
- DDR Biology, Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - J V Forment
- DDR Biology, Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
40
|
Her J, Bunting SF. BRCA1 and PALB2 in a Messy Breakup. Cancer Res 2020; 80:4044-4045. [PMID: 33008804 DOI: 10.1158/0008-5472.can-20-2731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022]
Abstract
Mutations in the BRCA1 gene cause an extremely high lifetime risk of breast and ovarian cancer, but the exact mechanism by which the BRCA1 protein acts to prevent cancer onset remains unclear. In this edition of Cancer Research, Park and colleagues describe a new mouse model featuring a single amino acid substitution in the coiled-coil motif of BRCA1. This change prevents BRCA1 from interacting with PALB2 (partner and localizer of BRCA2), causing rapid cancer onset and a loss of blood cells similar to Fanconi anemia.See related article by Park et al., p. 4172.
Collapse
Affiliation(s)
- Joonyoung Her
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Samuel F Bunting
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|
41
|
Sadeghi F, Asgari M, Matloubi M, Ranjbar M, Karkhaneh Yousefi N, Azari T, Zaki-Dizaji M. Molecular contribution of BRCA1 and BRCA2 to genome instability in breast cancer patients: review of radiosensitivity assays. Biol Proced Online 2020; 22:23. [PMID: 33013205 PMCID: PMC7528506 DOI: 10.1186/s12575-020-00133-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND DNA repair pathways, cell cycle arrest checkpoints, and cell death induction are present in cells to process DNA damage and prevent genomic instability caused by various extrinsic and intrinsic ionizing factors. Mutations in the genes involved in these pathways enhances the ionizing radiation sensitivity, reduces the individual's capacity to repair DNA damages, and subsequently increases susceptibility to tumorigenesis. BODY BRCA1 and BRCA2 are two highly penetrant genes involved in the inherited breast cancer and contribute to different DNA damage pathways and cell cycle and apoptosis cascades. Mutations in these genes have been associated with hypersensitivity and genetic instability as well as manifesting severe radiotherapy complications in breast cancer patients. The genomic instability and DNA repair capacity of breast cancer patients with BRCA1/2 mutations have been analyzed in different studies using a variety of assays, including micronucleus assay, comet assay, chromosomal assay, colony-forming assay, γ -H2AX and 53BP1 biomarkers, and fluorescence in situ hybridization. The majority of studies confirmed the enhanced spontaneous & radiation-induced radiosensitivity of breast cancer patients compared to healthy controls. Using G2 micronucleus assay and G2 chromosomal assay, most studies have reported the lymphocyte of healthy carriers with BRCA1 mutation are hypersensitive to invitro ionizing radiation compared to non-carriers without a history of breast cancer. However, it seems this approach is not likely to be useful to distinguish the BRCA carriers from non-carrier with familial history of breast cancer. CONCLUSION In overall, breast cancer patients are more radiosensitive compared to healthy control; however, inconsistent results exist about the ability of current radiosensitive techniques in screening BRCA1/2 carriers or those susceptible to radiotherapy complications. Therefore, developing further radiosensitivity assay is still warranted to evaluate the DNA repair capacity of individuals with BRCA1/2 mutations and serve as a predictive factor for increased risk of cancer mainly in the relatives of breast cancer patients. Moreover, it can provide more evidence about who is susceptible to manifest severe complication after radiotherapy.
Collapse
Affiliation(s)
- Fatemeh Sadeghi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Digestive Diseases Research Institute, Digestive Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Asgari
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, Tehran, Iran
| | - Mojdeh Matloubi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Ranjbar
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Karkhaneh Yousefi
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Azari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Park D, Bergin SM, Jones D, Ru P, Koivisto CS, Jeon YJ, Sizemore GM, Kladney RD, Hadjis A, Shakya R, Ludwig T. Ablation of the Brca1-Palb2 Interaction Phenocopies Fanconi Anemia in Mice. Cancer Res 2020; 80:4172-4184. [PMID: 32732220 DOI: 10.1158/0008-5472.can-20-0486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/01/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022]
Abstract
Heterozygous mutations in the BRCA1 gene predispose women to breast and ovarian cancer, while biallelic BRCA1 mutations are a cause of Fanconi anemia (FA), a rare genetic disorder characterized by developmental abnormalities, early-onset bone marrow failure, increased risk of cancers, and hypersensitivity to DNA-crosslinking agents. BRCA1 is critical for homologous recombination of DNA double-strand breaks (DSB). Through its coiled-coil domain, BRCA1 interacts with an essential partner, PALB2, recruiting BRCA2 and RAD51 to sites of DNA damage. Missense mutations within the coiled-coil domain of BRCA1 (e.g., L1407P) that affect the interaction with PALB2 have been reported in familial breast cancer. We hypothesized that if PALB2 regulates or mediates BRCA1 tumor suppressor function, ablation of the BRCA1-PALB2 interaction may also elicit genomic instability and tumor susceptibility. We generated mice defective for the Brca1-Palb2 interaction (Brca1 L1363P in mice) and established MEF cells from these mice. Brca1 L1363P/L1363P MEF exhibited hypersensitivity to DNA-damaging agents and failed to recruit Rad51 to DSB. Brca1 L1363P/L1363P mice were viable but exhibited various FA symptoms including growth retardation, hyperpigmentation, skeletal abnormalities, and male/female infertility. Furthermore, all Brca1 L1363P/L1363P mice exhibited macrocytosis and died due to bone marrow failure or lymphoblastic lymphoma/leukemia with activating Notch1 mutations. These phenotypes closely recapitulate clinical features observed in patients with FA. Collectively, this model effectively demonstrates the significance of the BRCA1-PALB2 interaction in genome integrity and provides an FA model to investigate hematopoietic stem cells for mechanisms underlying progressive failure of hematopoiesis and associated development of leukemia/lymphoma, and other FA phenotypes. SIGNIFICANCE: A new Brca1 mouse model for Fanconi anemia (FA) complementation group S provides a system in which to study phenotypes observed in human FA patients including bone marrow failure.See related commentary by Her and Bunting, p. 4044.
Collapse
Affiliation(s)
- Dongju Park
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Stephen M Bergin
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, Ohio
| | - Dan Jones
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, Ohio.,The James Polaris Molecular Laboratory, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Division of Molecular Pathology, Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Peng Ru
- The James Polaris Molecular Laboratory, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Christopher S Koivisto
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, Ohio
| | - Young-Jun Jeon
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Gina M Sizemore
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, Ohio.,Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| | - Raleigh D Kladney
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, Ohio
| | - Ashley Hadjis
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Reena Shakya
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, Ohio
| | - Thomas Ludwig
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| |
Collapse
|
43
|
Nacson J, Di Marcantonio D, Wang Y, Bernhardy AJ, Clausen E, Hua X, Cai KQ, Martinez E, Feng W, Callén E, Wu W, Gupta GP, Testa JR, Nussenzweig A, Sykes SM, Johnson N. BRCA1 Mutational Complementation Induces Synthetic Viability. Mol Cell 2020; 78:951-959.e6. [PMID: 32359443 PMCID: PMC7418109 DOI: 10.1016/j.molcel.2020.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 11/17/2022]
Abstract
BRCA1 promotes the DNA end resection and RAD51 loading steps of homologous recombination (HR). Whether these functions can be uncoupled, and whether mutant proteins retaining partial activity can complement one another, is unclear and could affect the severity of BRCA1-associated Fanconi anemia (FA). Here we generated a Brca1CC mouse with a coiled-coil (CC) domain deletion. Brca1CC/CC mice are born at low frequencies, and post-natal mice have FA-like abnormalities, including bone marrow failure. Intercrossing with Brca1Δ11, which is homozygous lethal, generated Brca1CC/Δ11 mice at Mendelian frequencies that were indistinguishable from Brca1+/+ mice. Brca1CC and Brca1Δ11 proteins were individually responsible for counteracting 53BP1-RIF1-Shieldin activity and promoting RAD51 loading, respectively. Thus, Brca1CC and Brca1Δ11 alleles represent separation-of-function mutations that combine to provide a level of HR sufficient for normal development and hematopoiesis. Because BRCA1 activities can be genetically separated, compound heterozygosity for functional complementary mutations may protect individuals from FA.
Collapse
Affiliation(s)
- Joseph Nacson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daniela Di Marcantonio
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Yifan Wang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Andrea J Bernhardy
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Emma Clausen
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Xiang Hua
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Esteban Martinez
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Wanjuan Feng
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elsa Callén
- Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Wei Wu
- Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Gaorav P Gupta
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph R Testa
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Stephen M Sykes
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
44
|
Tarsounas M, Sung P. The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication. Nat Rev Mol Cell Biol 2020; 21:284-299. [PMID: 32094664 PMCID: PMC7204409 DOI: 10.1038/s41580-020-0218-z] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 11/09/2022]
Abstract
The tumour suppressor breast cancer type 1 susceptibility protein (BRCA1) promotes DNA double-strand break (DSB) repair by homologous recombination and protects DNA replication forks from attrition. BRCA1 partners with BRCA1-associated RING domain protein 1 (BARD1) and other tumour suppressor proteins to mediate the initial nucleolytic resection of DNA lesions and the recruitment and regulation of the recombinase RAD51. The discovery of the opposing functions of BRCA1 and the p53-binding protein 1 (53BP1)-associated complex in DNA resection sheds light on how BRCA1 influences the choice of homologous recombination over non-homologous end joining and potentially other mutagenic pathways of DSB repair. Understanding the functional crosstalk between BRCA1-BARD1 and its cofactors and antagonists will illuminate the molecular basis of cancers that arise from a deficiency or misregulation of chromosome damage repair and replication fork maintenance. Such knowledge will also be valuable for understanding acquired tumour resistance to poly(ADP-ribose) polymerase (PARP) inhibitors and other therapeutics and for the development of new treatments. In this Review, we discuss recent advances in elucidating the mechanisms by which BRCA1-BARD1 functions in DNA repair, replication fork maintenance and tumour suppression, and its therapeutic relevance.
Collapse
Affiliation(s)
- Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
45
|
Singh AK, Yu X. Tissue-Specific Carcinogens as Soil to Seed BRCA1/2-Mutant Hereditary Cancers. Trends Cancer 2020; 6:559-568. [PMID: 32336659 DOI: 10.1016/j.trecan.2020.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Despite their ubiquitous expression, the inheritance of monoallelic germline mutations in breast cancer susceptibility gene type 1 or 2 (BRCA1/2) poses tissue-specific variations in cancer risks and primarily associate with familial breast and ovarian cancers. The molecular basis of this tissue-specific tumor incidence remains unknown and intriguing to cancer researchers. A plethora of recent reports support the idea that several nongenetic factors present in the tissue microenvironment could induce tumors in the mutant BRCA1/2 background. This Opinion article summarizes the recent advances on tissue-specific carcinogens and their complex crosstalk with the compromised DNA repair machinery of BRCA1/2-mutant cells. Finally, we present our perspective on the therapeutic and chemopreventive interpretations of these developments.
Collapse
Affiliation(s)
- Anup Kumar Singh
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
46
|
Liu Y, Lu LY. BRCA1 and homologous recombination: implications from mouse embryonic development. Cell Biosci 2020; 10:49. [PMID: 32257107 PMCID: PMC7106644 DOI: 10.1186/s13578-020-00412-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/18/2020] [Indexed: 01/30/2023] Open
Abstract
As an important player in DNA damage response, BRCA1 maintains genomic stability and suppresses tumorigenesis by promoting DNA double-strand break (DSB) repair through homologous recombination (HR). Since the cloning of BRCA1 gene, many Brca1 mutant alleles have been generated in mice. Mice carrying homozygous Brca1 mutant alleles are embryonic lethal, suggesting that BRCA1's functions are important for embryonic development. Studies of embryonic development in Brca1 mutant mice not only reveal the physiological significance of BRCA1's known function in HR, but also lead to the discovery of BRCA1's new function in HR: regulation of DSB repair pathway choice.
Collapse
Affiliation(s)
- Yidan Liu
- 1Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-Yu Lu
- 1Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,2Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
47
|
Høberg-Vetti H, Ognedal E, Buisson A, Vamre TBA, Ariansen S, Hoover JM, Eide GE, Houge G, Fiskerstrand T, Haukanes BI, Bjorvatn C, Knappskog PM. The intronic BRCA1 c.5407-25T>A variant causing partly skipping of exon 23-a likely pathogenic variant with reduced penetrance? Eur J Hum Genet 2020; 28:1078-1086. [PMID: 32203205 PMCID: PMC7382492 DOI: 10.1038/s41431-020-0612-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
Rare sequence variants in the non-coding part of the BRCA genes are often reported as variants of uncertain significance (VUS), which leave patients and doctors in a challenging position. The aim of this study was to determine the pathogenicity of the BRCA1 c.5407-25T>A variant found in 20 families from Norway, France and United States with suspected hereditary breast and ovarian cancer. This was done by combining clinical and family information with allele frequency data, and assessment of the variant’s effect on mRNA splicing. Mean age at breast (n = 12) and ovarian (n = 11) cancer diagnosis in female carriers was 49.9 and 60.4 years, respectively. The mean Manchester score in the 20 families was 16.4. The allele frequency of BRCA1 c.5407-25T>A was 1/64,566 in non-Finnish Europeans (gnomAD database v2.1.1). We found the variant in 1/400 anonymous Norwegian blood donors and 0/784 in-house exomes. Sequencing of patient-derived cDNA from blood, normal breast and ovarian tissue showed that BRCA1 c.5407-25T>A leads to skipping of exon 23, resulting in frameshift and protein truncation: p.(Gly1803GlnfsTer11). Western blot analysis of transiently expressed BRCA1 proteins in HeLa cells showed a reduced amount of the truncated protein compared with wild type. Noteworthily, we found that a small amount of full-length transcript was also generated from the c.5407-25T>A allele, potentially explaining the intermediate cancer burden in families carrying this variant. In summary, our results show that BRCA1 c.5407-25T>A leads to partial skipping of exon 23, and could represent a likely pathogenic variant with reduced penetrance.
Collapse
Affiliation(s)
- Hildegunn Høberg-Vetti
- Western Norway Familial Cancer Center, Haukeland University Hospital, Bergen, Norway. .,Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway. .,Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Elisabet Ognedal
- Western Norway Familial Cancer Center, Haukeland University Hospital, Bergen, Norway.,Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | | | | | - Sarah Ariansen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Geir Egil Eide
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway.,Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Torunn Fiskerstrand
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bjørn Ivar Haukanes
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Cathrine Bjorvatn
- Western Norway Familial Cancer Center, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Research and Development, Haukeland University Hospital, Bergen, Norway
| | - Per Morten Knappskog
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
48
|
Billon P, Nambiar TS, Hayward SB, Zafra MP, Schatoff EM, Oshima K, Dunbar A, Breinig M, Park YC, Ryu HS, Tschaharganeh DF, Levine RL, Baer R, Ferrando A, Dow LE, Ciccia A. Detection of Marker-Free Precision Genome Editing and Genetic Variation through the Capture of Genomic Signatures. Cell Rep 2020; 30:3280-3295.e6. [PMID: 32160537 PMCID: PMC7108696 DOI: 10.1016/j.celrep.2020.02.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/13/2020] [Accepted: 02/14/2020] [Indexed: 10/29/2022] Open
Abstract
Genome editing technologies have transformed our ability to engineer desired genomic changes within living systems. However, detecting precise genomic modifications often requires sophisticated, expensive, and time-consuming experimental approaches. Here, we describe DTECT (Dinucleotide signaTurE CapTure), a rapid and versatile detection method that relies on the capture of targeted dinucleotide signatures resulting from the digestion of genomic DNA amplicons by the type IIS restriction enzyme AcuI. DTECT enables the accurate quantification of marker-free precision genome editing events introduced by CRISPR-dependent homology-directed repair, base editing, or prime editing in various biological systems, such as mammalian cell lines, organoids, and tissues. Furthermore, DTECT allows the identification of oncogenic mutations in cancer mouse models, patient-derived xenografts, and human cancer patient samples. The ease, speed, and cost efficiency by which DTECT identifies genomic signatures should facilitate the generation of marker-free cellular and animal models of human disease and expedite the detection of human pathogenic variants.
Collapse
Affiliation(s)
- Pierre Billon
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tarun S Nambiar
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Samuel B Hayward
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maria P Zafra
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emma M Schatoff
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Koichi Oshima
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrew Dunbar
- Human Oncology and Pathogenesis Program, Center for Hematological Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marco Breinig
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ) and Institute of Pathology University Hospital, 69120 Heidelberg, Germany
| | - Young C Park
- Human Oncology and Pathogenesis Program, Center for Hematological Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Han S Ryu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Darjus F Tschaharganeh
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ) and Institute of Pathology University Hospital, 69120 Heidelberg, Germany
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Center for Hematological Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard Baer
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Adolfo Ferrando
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
49
|
Monteiro AN, Bouwman P, Kousholt AN, Eccles DM, Millot GA, Masson JY, Schmidt MK, Sharan SK, Scully R, Wiesmüller L, Couch F, Vreeswijk MPG. Variants of uncertain clinical significance in hereditary breast and ovarian cancer genes: best practices in functional analysis for clinical annotation. J Med Genet 2020; 57:509-518. [PMID: 32152249 DOI: 10.1136/jmedgenet-2019-106368] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/28/2019] [Accepted: 12/01/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Alvaro N Monteiro
- Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Peter Bouwman
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Arne N Kousholt
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Diana M Eccles
- Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Gael A Millot
- Hub-DBC, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Jean-Yves Masson
- CHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research Center, Quebec City, Quebec, Canada
| | - Marjanka K Schmidt
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Shyam K Sharan
- National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Ralph Scully
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
50
|
Chen J, Li P, Song L, Bai L, Huen MSY, Liu Y, Lu LY. 53BP1 loss rescues embryonic lethality but not genomic instability of BRCA1 total knockout mice. Cell Death Differ 2020; 27:2552-2567. [PMID: 32139898 PMCID: PMC7429965 DOI: 10.1038/s41418-020-0521-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/29/2022] Open
Abstract
BRCA1 is critical for DNA double-strand break (DSB) repair by homologous recombination (HR). BRCA1 deficient mice are embryonic lethal. Previous studies have shown that 53BP1 knockout (KO) rescues embryonic lethality of BRCA1 hypomorphic mutant mice by restoring HR. Here, we show that 53BP1 KO can partially rescue embryonic lethality of BRCA1 total KO mice, but HR is not restored in BRCA1-53BP1 double knockout (DKO) mice. As a result, BRCA1-53BP1 DKO cells are extremely sensitive to PARP inhibitors (PARPi). In addition to HR deficiency, BRCA1-53BP1 DKO cells have elevated microhomology-mediated end joining (MMEJ) activity and G2/M cell cycle checkpoint defects, causing severe genomic instability in these cells. Interestingly, BRCA1-53BP1 DKO mice rapidly develop thymic lymphoma that is 100% penetrant, which is not observed in any BRCA1 mutant mice rescued by 53BP1 KO. Taken together, our study reveals that 53BP1 KO can partially rescue embryonic lethality caused by complete BRCA1 loss without rescuing HR-related defects. This finding suggests that loss of 53BP1 can support the development of cancers with silenced BRCA1 expression without causing PARPi resistance.
Collapse
Affiliation(s)
- Jiyuan Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Li
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Licun Song
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Long Bai
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Michael S Y Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yidan Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|