1
|
Patel B, Grobler M, Herrera A, Logari E, Ortiz V, Bhalla N. The conserved ATPase PCH-2 controls the number and distribution of crossovers by antagonizing their formation in Caenorhabditis elegans. eLife 2025; 13:RP102409. [PMID: 39964851 PMCID: PMC11835387 DOI: 10.7554/elife.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2's conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.
Collapse
Affiliation(s)
- Bhumil Patel
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Maryke Grobler
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Alberto Herrera
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Elias Logari
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Valery Ortiz
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| |
Collapse
|
2
|
Hamrick A, Cope HD, Forbis D, Rog O. Kinetic analysis of strand invasion during C. elegans meiosis reveals similar rates of sister- and homolog-directed repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632442. [PMID: 39829846 PMCID: PMC11741252 DOI: 10.1101/2025.01.10.632442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Meiotic chromosome segregation requires reciprocal exchanges between the parental chromosomes (homologs). Exchanges are formed via tightly-regulated repair of double-strand DNA breaks (DSBs). However, since repair intermediates are mostly quantified in fixed images, our understanding of the mechanisms that control the progression of repair remains limited. Here, we study meiotic repair kinetics in Caenorhabditis elegans by extinguishing new DSBs and following the disappearance of a crucial intermediate - strand invasion mediated by the conserved RecA-family recombinase RAD-51. We find that RAD-51 foci have a half-life of 42-132 minutes for both endogenous and exogenous DSBs. Surprisingly, we find that repair templated by the sister chromatid is not slower than repair templated by the homolog. This suggests that differential kinetics are unlikely to underlie 'homolog bias': the preferential use of the homolog as a repair template. We also use our kinetic information to revisit the total number of DSBs per nucleus - the 'substrate' for the formation of exchanges - and find an average of 40 DSBs in wild-type meiosis and >50 DSBs when homolog pairing is perturbed. Our work opens the door for analysis of the interplay between meiotic repair kinetics and the fidelity of genome inheritance.
Collapse
Affiliation(s)
| | | | - Divya Forbis
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
3
|
Dutta A, Dutreux F, Garin M, Caradec C, Friedrich A, Brach G, Thiele P, Gaudin M, Llorente B, Schacherer J. Multiple independent losses of crossover interference during yeast evolutionary history. PLoS Genet 2024; 20:e1011426. [PMID: 39325820 PMCID: PMC11460703 DOI: 10.1371/journal.pgen.1011426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/08/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Meiotic recombination is essential for the accurate chromosome segregation and the generation of genetic diversity through crossover and gene conversion events. Although this process has been studied extensively in a few selected model species, understanding how its properties vary across species remains limited. For instance, the ancestral ZMM pathway that generates interference-dependent crossovers has undergone multiple losses throughout evolution, suggesting variations in the regulation of crossover formation. In this context, we first characterized the meiotic recombination landscape and properties of the Kluyveromyces lactis budding yeast. We then conducted a comprehensive analysis of 29,151 recombination events (19, 212 COs and 9, 939 NCOs) spanning 577 meioses in the five budding yeast species Saccharomyces cerevisiae, Saccharomyces paradoxus, Lachancea kluyveri, Lachancea waltii and K. lactis. Eventually, we found that the Saccharomyces yeasts displayed higher recombination rates compared to the non-Saccharomyces yeasts. In addition, bona fide crossover interference and associated crossover homeostasis were detected in the Saccharomyces species only, adding L. kluyveri and K. lactis to the list of budding yeast species that lost crossover interference. Finally, recombination hotspots, although highly conserved within the Saccharomyces yeasts are not conserved beyond the Saccharomyces genus. Overall, these results highlight great variability in the recombination landscape and properties through budding yeasts evolution.
Collapse
Affiliation(s)
- Abhishek Dutta
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Marion Garin
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Claudia Caradec
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Gauthier Brach
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Pia Thiele
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Maxime Gaudin
- CNRS UMR7258, INSERM U1068, Aix Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Bertrand Llorente
- CNRS UMR7258, INSERM U1068, Aix Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
4
|
Toraason E, Salagean A, Almanzar DE, Brown JE, Richter CM, Kurhanewicz NA, Rog O, Libuda DE. BRCA1/BRC-1 and SMC-5/6 regulate DNA repair pathway engagement during Caenorhabditis elegans meiosis. eLife 2024; 13:e80687. [PMID: 39115289 PMCID: PMC11368404 DOI: 10.7554/elife.80687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The preservation of genome integrity during sperm and egg development is vital for reproductive success. During meiosis, the tumor suppressor BRCA1/BRC-1 and structural maintenance of chromosomes 5/6 (SMC-5/6) complex genetically interact to promote high fidelity DNA double strand break (DSB) repair, but the specific DSB repair outcomes these proteins regulate remain unknown. Using genetic and cytological methods to monitor resolution of DSBs with different repair partners in Caenorhabditis elegans, we demonstrate that both BRC-1 and SMC-5 repress intersister crossover recombination events. Sequencing analysis of conversion tracts from homolog-independent DSB repair events further indicates that BRC-1 regulates intersister/intrachromatid noncrossover conversion tract length. Moreover, we find that BRC-1 specifically inhibits error prone repair of DSBs induced at mid-pachytene. Finally, we reveal functional interactions of BRC-1 and SMC-5/6 in regulating repair pathway engagement: BRC-1 is required for localization of recombinase proteins to DSBs in smc-5 mutants and enhances DSB repair defects in smc-5 mutants by repressing theta-mediated end joining (TMEJ). These results are consistent with a model in which some functions of BRC-1 act upstream of SMC-5/6 to promote recombination and inhibit error-prone DSB repair, while SMC-5/6 acts downstream of BRC-1 to regulate the formation or resolution of recombination intermediates. Taken together, our study illuminates the coordinated interplay of BRC-1 and SMC-5/6 to regulate DSB repair outcomes in the germline.
Collapse
Affiliation(s)
- Erik Toraason
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Alina Salagean
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - David E Almanzar
- School of Biological Sciences and Center for Cell and Genome Sciences, University of UtahSalt Lake CityUnited States
| | - Jordan E Brown
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Colette M Richter
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Nicole A Kurhanewicz
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of UtahSalt Lake CityUnited States
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| |
Collapse
|
5
|
Abbouche L, Bythell-Douglas R, Deans AJ. FANCM branchpoint translocase: Master of traverse, reverse and adverse DNA repair. DNA Repair (Amst) 2024; 140:103701. [PMID: 38878565 DOI: 10.1016/j.dnarep.2024.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024]
Abstract
FANCM is a multifunctional DNA repair enzyme that acts as a sensor and coordinator of replication stress responses, especially interstrand crosslink (ICL) repair mediated by the Fanconi anaemia (FA) pathway. Its specialised ability to bind and remodel branched DNA structures enables diverse genome maintenance activities. Through ATP-powered "branchpoint translocation", FANCM can promote fork reversal, facilitate replication traverse of ICLs, resolve deleterious R-loop structures, and restrain recombination. These remodelling functions also support a role as sensor of perturbed replication, eliciting checkpoint signalling and recruitment of downstream repair factors like the Fanconi anaemia FANCI:FANCD2 complex. Accordingly, FANCM deficiency causes chromosome fragility and cancer susceptibility. Other recent advances link FANCM to roles in gene editing efficiency and meiotic recombination, along with emerging synthetic lethal relationships, and targeting opportunities in ALT-positive cancers. Here we review key properties of FANCM's biochemical activities, with a particular focus on branchpoint translocation as a distinguishing characteristic.
Collapse
Affiliation(s)
- Lara Abbouche
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
6
|
Jones G, Kleckner N, Zickler D. Meiosis through three centuries. Chromosoma 2024; 133:93-115. [PMID: 38730132 PMCID: PMC11180163 DOI: 10.1007/s00412-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Meiosis is the specialized cellular program that underlies gamete formation for sexual reproduction. It is therefore not only interesting but also a fundamentally important subject for investigation. An especially attractive feature of this program is that many of the processes of special interest involve organized chromosomes, thus providing the possibility to see chromosomes "in action". Analysis of meiosis has also proven to be useful in discovering and understanding processes that are universal to all chromosomal programs. Here we provide an overview of the different historical moments when the gap between observation and understanding of mechanisms and/or roles for the new discovered molecules was bridged. This review reflects also the synergy of thinking and discussion among our three laboratories during the past several decades.
Collapse
Affiliation(s)
- Gareth Jones
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de La Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91198, Gif-Sur-Yvette, France
| |
Collapse
|
7
|
Zou M, Shabala S, Zhao C, Zhou M. Molecular mechanisms and regulation of recombination frequency and distribution in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:86. [PMID: 38512498 PMCID: PMC10957645 DOI: 10.1007/s00122-024-04590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
KEY MESSAGE Recent developments in understanding the distribution and distinctive features of recombination hotspots are reviewed and approaches are proposed to increase recombination frequency in coldspot regions. Recombination events during meiosis provide the foundation and premise for creating new varieties of crops. The frequency of recombination in different genomic regions differs across eukaryote species, with recombination generally occurring more frequently at the ends of chromosomes. In most crop species, recombination is rare in centromeric regions. If a desired gene variant is linked in repulsion with an undesired variant of a second gene in a region with a low recombination rate, obtaining a recombinant plant combining two favorable alleles will be challenging. Traditional crop breeding involves combining desirable genes from parental plants into offspring. Therefore, understanding the mechanisms of recombination and factors affecting the occurrence of meiotic recombination is important for crop breeding. Here, we review chromosome recombination types, recombination mechanisms, genes and proteins involved in the meiotic recombination process, recombination hotspots and their regulation systems and discuss how to increase recombination frequency in recombination coldspot regions.
Collapse
Affiliation(s)
- Meilin Zou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Perth, 6009, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia.
| |
Collapse
|
8
|
Cahoon CK, Richter CM, Dayton AE, Libuda DE. Sexual dimorphic regulation of recombination by the synaptonemal complex in C. elegans. eLife 2023; 12:e84538. [PMID: 37796106 PMCID: PMC10611432 DOI: 10.7554/elife.84538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/02/2023] [Indexed: 10/06/2023] Open
Abstract
In sexually reproducing organisms, germ cells faithfully transmit the genome to the next generation by forming haploid gametes, such as eggs and sperm. Although most meiotic proteins are conserved between eggs and sperm, many aspects of meiosis are sexually dimorphic, including the regulation of recombination. The synaptonemal complex (SC), a large ladder-like structure that forms between homologous chromosomes, is essential for regulating meiotic chromosome organization and promoting recombination. To assess whether sex-specific differences in the SC underpin sexually dimorphic aspects of meiosis, we examined Caenorhabditis elegans SC central region proteins (known as SYP proteins) in oogenesis and spermatogenesis and uncovered sex-specific roles for the SYPs in regulating meiotic recombination. We find that SC composition, specifically SYP-2, SYP-3, SYP-5, and SYP-6, is regulated by sex-specific mechanisms throughout meiotic prophase I. During pachytene, both oocytes and spermatocytes differentially regulate the stability of SYP-2 and SYP-3 within an assembled SC. Further, we uncover that the relative amount of SYP-2 and SYP-3 within the SC is independently regulated in both a sex-specific and a recombination-dependent manner. Specifically, we find that SYP-2 regulates the early steps of recombination in both sexes, while SYP-3 controls the timing and positioning of crossover recombination events across the genomic landscape in only oocytes. Finally, we find that SYP-2 and SYP-3 dosage can influence the composition of the other SYPs in the SC via sex-specific mechanisms during pachytene. Taken together, we demonstrate dosage-dependent regulation of individual SC components with sex-specific functions in recombination. These sexual dimorphic features of the SC provide insights into how spermatogenesis and oogenesis adapted similar chromosome structures to differentially regulate and execute recombination.
Collapse
Affiliation(s)
- Cori K Cahoon
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Colette M Richter
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Amelia E Dayton
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| |
Collapse
|
9
|
Odiba AS, Liao G, Ezechukwu CS, Zhang L, Hong Y, Fang W, Jin C, Gartner A, Wang B. Caenorhabditis elegans NSE3 homolog (MAGE-1) is involved in genome stability and acts in inter-sister recombination during meiosis. Genetics 2023; 225:iyad149. [PMID: 37579186 PMCID: PMC10691751 DOI: 10.1093/genetics/iyad149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
Melanoma antigen (MAGE) genes encode for a family of proteins that share a common MAGE homology domain. These genes are conserved in eukaryotes and have been linked to a variety of cellular and developmental processes including ubiquitination and oncogenesis in cancer. Current knowledge on the MAGE family of proteins mainly comes from the analysis of yeast and human cell lines, and their functions have not been reported at an organismal level in animals. Caenorhabditis elegans only encodes 1 known MAGE gene member, mage-1 (NSE3 in yeast), forming part of the SMC-5/6 complex. Here, we characterize the role of mage-1/nse-3 in mitosis and meiosis in C. elegans. mage-1/nse-3 has a role in inter-sister recombination repair during meiotic recombination and for preserving chromosomal integrity upon treatment with a variety of DNA-damaging agents. MAGE-1 directly interacts with NSE-1 and NSE-4. In contrast to smc-5, smc-6, and nse-4 mutants which cause the loss of NSE-1 nuclear localization and strong cytoplasmic accumulation, mage-1/nse-3 mutants have a reduced level of NSE-1::GFP, remnant NSE-1::GFP being partially nuclear but largely cytoplasmic. Our data suggest that MAGE-1 is essential for NSE-1 stability and the proper functioning of the SMC-5/6 complex.
Collapse
Affiliation(s)
- Arome Solomon Odiba
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guiyan Liao
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Chiemekam Samuel Ezechukwu
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Lanlan Zhang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ye Hong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Wenxia Fang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Cheng Jin
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Anton Gartner
- IBS Center for Genomic Integrity, Department for Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Bin Wang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
10
|
Yamaya K, Wang B, Memar N, Odiba A, Woglar A, Gartner A, Villeneuve A. Disparate roles for C. elegans DNA translocase paralogs RAD-54.L and RAD-54.B in meiotic prophase germ cells. Nucleic Acids Res 2023; 51:9183-9202. [PMID: 37548405 PMCID: PMC10516670 DOI: 10.1093/nar/gkad638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/06/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023] Open
Abstract
RAD54 family DNA translocases partner with RAD51 recombinases to ensure stable genome inheritance, exhibiting biochemical activities both in promoting recombinase removal and in stabilizing recombinase association with DNA. Understanding how such disparate activities of RAD54 paralogs align with their biological roles is an ongoing challenge. Here we investigate the in vivo functions of Caenorhabditis elegans RAD54 paralogs RAD-54.L and RAD-54.B during meiotic prophase, revealing distinct contributions to the dynamics of RAD-51 association with DNA and to the progression of meiotic double-strand break repair (DSBR). While RAD-54.L is essential for RAD-51 removal from meiotic DSBR sites to enable recombination progression, RAD-54.B is largely dispensable for meiotic DSBR. However, RAD-54.B is required to prevent hyperaccumulation of RAD-51 on unbroken DNA during the meiotic sub-stage when DSBs and early recombination intermediates form. Moreover, DSB-independent hyperaccumulation of RAD-51 foci in the absence of RAD-54.B is RAD-54.L-dependent, revealing a hidden activity of RAD-54.L in promoting promiscuous RAD-51 association that is antagonized by RAD-54.B. We propose a model wherein a division of labor among RAD-54 paralogs allows germ cells to ramp up their capacity for efficient homologous recombination that is crucial to successful meiosis while counteracting potentially deleterious effects of unproductive RAD-51 association with unbroken DNA.
Collapse
Affiliation(s)
- Kei Yamaya
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bin Wang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, 530007 Nanning, China
| | - Nadin Memar
- IBS Center for Genomic Integrity and Department for Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Arome Solomon Odiba
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, 530007 Nanning, China
| | - Alexander Woglar
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Swiss Institute for Experimental Cancer Research (ISREC) and School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Anton Gartner
- IBS Center for Genomic Integrity and Department for Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Anne M Villeneuve
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
11
|
Auxier B, Debets AJM, Stanford FA, Rhodes J, Becker FM, Reyes Marquez F, Nijland R, Dyer PS, Fisher MC, van den Heuvel J, Snelders E. The human fungal pathogen Aspergillus fumigatus can produce the highest known number of meiotic crossovers. PLoS Biol 2023; 21:e3002278. [PMID: 37708139 PMCID: PMC10501685 DOI: 10.1371/journal.pbio.3002278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Sexual reproduction involving meiosis is essential in most eukaryotes. This produces offspring with novel genotypes, both by segregation of parental chromosomes as well as crossovers between homologous chromosomes. A sexual cycle for the opportunistic human pathogenic fungus Aspergillus fumigatus is known, but the genetic consequences of meiosis have remained unknown. Among other Aspergilli, it is known that A. flavus has a moderately high recombination rate with an average of 4.2 crossovers per chromosome pair, whereas A. nidulans has in contrast a higher rate with 9.3 crossovers per chromosome pair. Here, we show in a cross between A. fumigatus strains that they produce an average of 29.9 crossovers per chromosome pair and large variation in total map length across additional strain crosses. This rate of crossovers per chromosome is more than twice that seen for any known organism, which we discuss in relation to other genetic model systems. We validate this high rate of crossovers through mapping of resistance to the laboratory antifungal acriflavine by using standing variation in an undescribed ABC efflux transporter. We then demonstrate that this rate of crossovers is sufficient to produce one of the common multidrug resistant haplotypes found in the cyp51A gene (TR34/L98H) in crosses among parents harboring either of 2 nearby genetic variants, possibly explaining the early spread of such haplotypes. Our results suggest that genomic studies in this species should reassess common assumptions about linkage between genetic regions. The finding of an unparalleled crossover rate in A. fumigatus provides opportunities to understand why these rates are not generally higher in other eukaryotes.
Collapse
Affiliation(s)
- Ben Auxier
- Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands
| | | | | | - Johanna Rhodes
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Frank M. Becker
- Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands
| | | | - Reindert Nijland
- Marine Animal Ecology, Wageningen University, Wageningen, the Netherlands
| | - Paul S. Dyer
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Matthew C. Fisher
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | | | - Eveline Snelders
- Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands
| |
Collapse
|
12
|
Abstract
KEY MESSAGE Chromatin state, and dynamic loading of pro-crossover protein HEI10 at recombination intermediates shape meiotic chromosome patterning in plants. Meiosis is the basis of sexual reproduction, and its basic progression is conserved across eukaryote kingdoms. A key feature of meiosis is the formation of crossovers which result in the reciprocal exchange of segments of maternal and paternal chromosomes. This exchange generates chromosomes with new combinations of alleles, increasing the efficiency of both natural and artificial selection. Crossovers also form a physical link between homologous chromosomes at metaphase I which is critical for accurate chromosome segregation and fertility. The patterning of crossovers along the length of chromosomes is a highly regulated process, and our current understanding of its regulation forms the focus of this review. At the global scale, crossover patterning in plants is largely governed by the classically observed phenomena of crossover interference, crossover homeostasis and the obligatory crossover which regulate the total number of crossovers and their relative spacing. The molecular actors behind these phenomena have long remained obscure, but recent studies in plants implicate HEI10 and ZYP1 as key players in their coordination. In addition to these broad forces, a wealth of recent studies has highlighted how genomic and epigenomic features shape crossover formation at both chromosomal and local scales, revealing that crossovers are primarily located in open chromatin associated with gene promoters and terminators with low nucleosome occupancy.
Collapse
Affiliation(s)
- Andrew Lloyd
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, SY23 3DA, Ceredigion, UK.
| |
Collapse
|
13
|
Huang Y, Roig I. Genetic control of meiosis surveillance mechanisms in mammals. Front Cell Dev Biol 2023; 11:1127440. [PMID: 36910159 PMCID: PMC9996228 DOI: 10.3389/fcell.2023.1127440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Meiosis is a specialized cell division that generates haploid gametes and is critical for successful sexual reproduction. During the extended meiotic prophase I, homologous chromosomes progressively pair, synapse and desynapse. These chromosomal dynamics are tightly integrated with meiotic recombination (MR), during which programmed DNA double-strand breaks (DSBs) are formed and subsequently repaired. Consequently, parental chromosome arms reciprocally exchange, ultimately ensuring accurate homolog segregation and genetic diversity in the offspring. Surveillance mechanisms carefully monitor the MR and homologous chromosome synapsis during meiotic prophase I to avoid producing aberrant chromosomes and defective gametes. Errors in these critical processes would lead to aneuploidy and/or genetic instability. Studies of mutation in mouse models, coupled with advances in genomic technologies, lead us to more clearly understand how meiosis is controlled and how meiotic errors are linked to mammalian infertility. Here, we review the genetic regulations of these major meiotic events in mice and highlight our current understanding of their surveillance mechanisms. Furthermore, we summarize meiotic prophase genes, the mutations that activate the surveillance system leading to meiotic prophase arrest in mouse models, and their corresponding genetic variants identified in human infertile patients. Finally, we discuss their value for the diagnosis of causes of meiosis-based infertility in humans.
Collapse
Affiliation(s)
- Yan Huang
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
14
|
Continuous double-strand break induction and their differential processing sustain chiasma formation during Caenorhabditis elegans meiosis. Cell Rep 2022; 40:111403. [PMID: 36170820 DOI: 10.1016/j.celrep.2022.111403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/01/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Faithful chromosome segregation into gametes depends on Spo11-induced DNA double-strand breaks (DSBs). These yield single-stranded 3' tails upon resection to promote crossovers (COs). While early Mre11-dependent end resection is the predominant pathway in most organisms, Exo1 or Dna2/BLM can also contribute to the efficient processing of meiotic DSBs. Although its enzymatic activity has been thoroughly dissected, the temporal dynamics underlying Spo11 activity have remained mostly elusive. We show that, in Caenorhabditis elegans, SPO-11-mediated DSB induction takes place throughout early meiotic prophase I until mid-late pachynema. We find that late DSBs are essential for CO formation and are preferentially processed by EXO-1 and DNA-2 in a redundant fashion. Further, EXO-1-DNA-2-mediated resection ensures completion of conservative DSB repair and discourages activation of KU-dependent end joining. Taken together, our data unveil important temporal aspects of DSB induction and identify previously unknown functional implications for EXO-1-DNA-2-mediated resection activity in C. elegans.
Collapse
|
15
|
Sen S, Dodamani A, Nambiar M. Emerging mechanisms and roles of meiotic crossover repression at centromeres. Curr Top Dev Biol 2022; 151:155-190. [PMID: 36681469 DOI: 10.1016/bs.ctdb.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Crossover events during recombination in meiosis are essential for generating genetic diversity as well as crucial to allow accurate chromosomal segregation between homologous chromosomes. Spatial control for the distribution of crossover events along the chromosomes is largely a tightly regulated process and involves many facets such as interference, repression as well as assurance, to make sure that not too many or too few crossovers are generated. Repression of crossover events at the centromeres is a highly conserved process across all species tested. Failure to inhibit such recombination events can result in chromosomal mis-segregation during meiosis resulting in aneuploid gametes that are responsible for infertility or developmental disorders such as Down's syndrome and other trisomies in humans. In the past few decades, studies to understand the molecular mechanisms behind this repression have shown the involvement of a multitude of factors ranging from the centromere-specific proteins such as the kinetochore to the flanking pericentric heterochromatin as well as DNA double-strand break repair pathways. In this chapter, we review the different mechanisms of pericentric repression mechanisms known till date as well as highlight the importance of understanding this regulation in the context of chromosomal segregation defects. We also discuss the clinical implications of dysregulation of this process, especially in human reproductive health and genetic diseases.
Collapse
Affiliation(s)
- Sucharita Sen
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Ananya Dodamani
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Mridula Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Pune, India.
| |
Collapse
|
16
|
Kim H, Choi K. Fast and Precise: How to Measure Meiotic Crossovers in Arabidopsis. Mol Cells 2022; 45:273-283. [PMID: 35444069 PMCID: PMC9095510 DOI: 10.14348/molcells.2022.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 11/27/2022] Open
Abstract
During meiosis, homologous chromosomes (homologs) pair and undergo genetic recombination via assembly and disassembly of the synaptonemal complex. Meiotic recombination is initiated by excess formation of DNA double-strand breaks (DSBs), among which a subset are repaired by reciprocal genetic exchange, called crossovers (COs). COs generate genetic variations across generations, profoundly affecting genetic diversity and breeding. At least one CO between homologs is essential for the first meiotic chromosome segregation, but generally only one and fewer than three inter-homolog COs occur in plants. CO frequency and distribution are biased along chromosomes, suppressed in centromeres, and controlled by pro-CO, anti-CO, and epigenetic factors. Accurate and high-throughput detection of COs is important for our understanding of CO formation and chromosome behavior. Here, we review advanced approaches that enable precise measurement of the location, frequency, and genomic landscapes of COs in plants, with a focus on Arabidopsis thaliana.
Collapse
Affiliation(s)
- Heejin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
17
|
Silva N, Castellano-Pozo M, Matsuzaki K, Barroso C, Roman-Trufero M, Craig H, Brooks DR, Isaac RE, Boulton SJ, Martinez-Perez E. Proline-specific aminopeptidase P prevents replication-associated genome instability. PLoS Genet 2022; 18:e1010025. [PMID: 35081133 PMCID: PMC8820600 DOI: 10.1371/journal.pgen.1010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/07/2022] [Accepted: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
Genotoxic stress during DNA replication constitutes a serious threat to genome integrity and causes human diseases. Defects at different steps of DNA metabolism are known to induce replication stress, but the contribution of other aspects of cellular metabolism is less understood. We show that aminopeptidase P (APP1), a metalloprotease involved in the catabolism of peptides containing proline residues near their N-terminus, prevents replication-associated genome instability. Functional analysis of C. elegans mutants lacking APP-1 demonstrates that germ cells display replication defects including reduced proliferation, cell cycle arrest, and accumulation of mitotic DSBs. Despite these defects, app-1 mutants are competent in repairing DSBs induced by gamma irradiation, as well as SPO-11-dependent DSBs that initiate meiotic recombination. Moreover, in the absence of SPO-11, spontaneous DSBs arising in app-1 mutants are repaired as inter-homologue crossover events during meiosis, confirming that APP-1 is not required for homologous recombination. Thus, APP-1 prevents replication stress without having an apparent role in DSB repair. Depletion of APP1 (XPNPEP1) also causes DSB accumulation in mitotically-proliferating human cells, suggesting that APP1’s role in genome stability is evolutionarily conserved. Our findings uncover an unexpected role for APP1 in genome stability, suggesting functional connections between aminopeptidase-mediated protein catabolism and DNA replication. The accurate duplication of DNA that occurs before cells divide is an essential aspect of the cell cycle that is also crucial for the correct development of multicellular organisms. Mutations that compromise the normal function of the DNA replication machinery can lead to the accumulation of replication-related DNA damage, a known cause of human disease and a common feature of cancer and precancerous cells. Therefore, identifying factors that prevent replication-related DNA damage is highly relevant for human health. In this manuscript, we identify aminopeptidase P, an enzyme involved in the breakdown of proteins containing the amino acid Proline at their N-terminus, as a novel factor that prevents replication-related DNA damage. Analysis of C. elegans nematodes lacking aminopeptidase P reveals that this protein is required for normal fertility and development, and that in its absence proliferating germ cells display DNA replication defects, including cell cycle arrest and accumulation of extensive DNA damage. We also show that removal of aminopeptidase P induces DNA damage in proliferating human cells, suggesting that its role in preventing replication defects is evolutionarily conserved. These findings uncover functional connections between aminopeptidase-mediated protein degradation and DNA replication.
Collapse
Affiliation(s)
- Nicola Silva
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | | | - Consuelo Barroso
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom
| | - Monica Roman-Trufero
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom
| | - Hannah Craig
- School of Biology, University of Leeds, Leeds, United Kingdom
| | - Darren R. Brooks
- School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| | - R. Elwyn Isaac
- School of Biology, University of Leeds, Leeds, United Kingdom
| | | | - Enrique Martinez-Perez
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Qu W, Liu C, Xu YT, Xu YM, Luo MC. The formation and repair of DNA double-strand breaks in mammalian meiosis. Asian J Androl 2021; 23:572-579. [PMID: 34708719 PMCID: PMC8577251 DOI: 10.4103/aja202191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Programmed DNA double-strand breaks (DSBs) are necessary for meiosis in mammals. A sufficient number of DSBs ensure the normal pairing/synapsis of homologous chromosomes. Abnormal DSB repair undermines meiosis, leading to sterility in mammals. The DSBs that initiate recombination are repaired as crossovers and noncrossovers, and crossovers are required for correct chromosome separation. Thus, the placement, timing, and frequency of crossover formation must be tightly controlled. Importantly, mutations in many genes related to the formation and repair of DSB result in infertility in humans. These mutations cause nonobstructive azoospermia in men, premature ovarian insufficiency and ovarian dysgenesis in women. Here, we have illustrated the formation and repair of DSB in mammals, summarized major factors influencing the formation of DSB and the theories of crossover regulation.
Collapse
Affiliation(s)
- Wei Qu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Cong Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Ya-Ting Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Min Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Meng-Cheng Luo
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
19
|
Toraason E, Glover M, Horacek A, Libuda DE. Detection of homolog-independent meiotic DNA repair events in C. elegans with the intersister/intrachromatid repair assay. STAR Protoc 2021; 2:100801. [PMID: 34527958 PMCID: PMC8433254 DOI: 10.1016/j.xpro.2021.100801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Accurate repair of DNA double-strand breaks (DSBs) in developing germ cells is critical to promote proper chromosome segregation and to maintain genome integrity. To directly detect homolog-independent (intersister/intrachromatid) meiotic DSB repair, we exploited the genetics and germline physiology of C. elegans to (1) induce a single DSB in nuclei across discrete stages of meiotic prophase I; (2) detect repair of that DSB as a homolog-independent crossover or noncrossover; and (3) sequence the resultant product to assess mechanisms of recombination. For complete details on the use and execution of this protocol, please refer to Toraason et al. (2021).
Collapse
Affiliation(s)
- Erik Toraason
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| | - Marissa Glover
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Sinsheimer Labs, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Anna Horacek
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
- Section on Gene Expression, Eunice Kennedy Shriver National Institute of Child Health and Human Development, P.O. Box 3006, Rockville, MD 20847, USA
| | - Diana E. Libuda
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| |
Collapse
|
20
|
Cahoon CK, Libuda DE. Conditional immobilization for live imaging Caenorhabditis elegans using auxin-dependent protein depletion. G3-GENES GENOMES GENETICS 2021; 11:6362942. [PMID: 34534266 PMCID: PMC8527506 DOI: 10.1093/g3journal/jkab310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/19/2021] [Indexed: 11/12/2022]
Abstract
The visualization of biological processes using fluorescent proteins and dyes in living organisms has enabled numerous scientific discoveries. The nematode Caenorhabditis elegans is a widely used model organism for live imaging studies since the transparent nature of the worm enables imaging of nearly all tissues within a whole, intact animal. While current techniques are optimized to enable the immobilization of hermaphrodite worms for live imaging, many of these approaches fail to successfully restrain the smaller male worms. To enable live imaging of worms of both sexes, we developed a new genetic, conditional immobilization tool that uses the auxin-inducible degron (AID) system to immobilize both adult and larval hermaphrodite and male worms for live imaging. Based on chromosome location, mutant phenotype, and predicted germline consequence, we identified and AID-tagged three candidate genes (unc-18, unc-104, and unc-52). Strains with these AID-tagged genes were placed on auxin and tested for mobility and germline defects. Among the candidate genes, auxin-mediated depletion of UNC-18 caused significant immobilization of both hermaphrodite and male worms that was also partially reversible upon removal from auxin. Notably, we found that male worms require a higher concentration of auxin for a similar amount of immobilization as hermaphrodites, thereby suggesting a potential sex-specific difference in auxin absorption and/or processing. In both males and hermaphrodites, depletion of UNC-18 did not largely alter fertility, germline progression, nor meiotic recombination. Finally, we demonstrate that this new genetic tool can successfully immobilize both sexes enabling live imaging studies of sexually dimorphic features in C. elegans.
Collapse
Affiliation(s)
- Cori K Cahoon
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | - Diana E Libuda
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| |
Collapse
|
21
|
Pazhayam NM, Turcotte CA, Sekelsky J. Meiotic Crossover Patterning. Front Cell Dev Biol 2021; 9:681123. [PMID: 34368131 PMCID: PMC8344875 DOI: 10.3389/fcell.2021.681123] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/28/2021] [Indexed: 12/02/2022] Open
Abstract
Proper number and placement of meiotic crossovers is vital to chromosome segregation, with failures in normal crossover distribution often resulting in aneuploidy and infertility. Meiotic crossovers are formed via homologous repair of programmed double-strand breaks (DSBs). Although DSBs occur throughout the genome, crossover placement is intricately patterned, as observed first in early genetic studies by Muller and Sturtevant. Three types of patterning events have been identified. Interference, first described by Sturtevant in 1915, is a phenomenon in which crossovers on the same chromosome do not occur near one another. Assurance, initially identified by Owen in 1949, describes the phenomenon in which a minimum of one crossover is formed per chromosome pair. Suppression, first observed by Beadle in 1932, dictates that crossovers do not occur in regions surrounding the centromere and telomeres. The mechanisms behind crossover patterning remain largely unknown, and key players appear to act at all scales, from the DNA level to inter-chromosome interactions. There is also considerable overlap between the known players that drive each patterning phenomenon. In this review we discuss the history of studies of crossover patterning, developments in methods used in the field, and our current understanding of the interplay between patterning phenomena.
Collapse
Affiliation(s)
- Nila M. Pazhayam
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Carolyn A. Turcotte
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
22
|
Abstract
The formation of crossovers between homologous chromosomes is key to sexual reproduction. In most species, crossovers are spaced further apart than would be expected if they formed independently, a phenomenon termed crossover interference. Despite more than a century of study, the molecular mechanisms implementing crossover interference remain a subject of active debate. Recent findings of how signaling proteins control the formation of crossovers and about the interchromosomal interface in which crossovers form offer new insights into this process. In this Review, we present a cell biological and biophysical perspective on crossover interference, summarizing the evidence that links interference to the spatial, dynamic, mechanical and molecular properties of meiotic chromosomes. We synthesize this physical understanding in the context of prevailing mechanistic models that aim to explain how crossover interference is implemented.
Collapse
Affiliation(s)
- Lexy von Diezmann
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA.,School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ofer Rog
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA.,School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
23
|
Almanzar DE, Gordon SG, Rog O. Meiotic sister chromatid exchanges are rare in C. elegans. Curr Biol 2021; 31:1499-1507.e3. [PMID: 33740426 PMCID: PMC8051885 DOI: 10.1016/j.cub.2020.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/08/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
Abstract
Sexual reproduction shuffles the parental genomes to generate new genetic combinations. To achieve that, the genome is subjected to numerous double-strand breaks, the repair of which involves two crucial decisions: repair pathway and repair template.1 Use of crossover pathways with the homologous chromosome as template exchanges genetic information and directs chromosome segregation. Crossover repair, however, can compromise the integrity of the repair template and is therefore tightly regulated. The extent to which crossover pathways are used during sister-directed repair is unclear because the identical sister chromatids are difficult to distinguish. Nonetheless, indirect assays have led to the suggestion that inter-sister crossovers, or sister chromatid exchanges (SCEs), are quite common.2-11 Here we devised a technique to directly score physiological SCEs in the C. elegans germline using selective sister chromatid labeling with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU). Surprisingly, we find SCEs to be rare in meiosis, accounting for <2% of repair events. SCEs remain rare even when the homologous chromosome is unavailable, indicating that almost all sister-directed repair is channeled into noncrossover pathways. We identify two mechanisms that limit SCEs. First, SCEs are elevated in the absence of the RecQ helicase BLMHIM-6. Second, the synaptonemal complex-a conserved interface that promotes crossover repair12,13-promotes SCEs when localized between the sisters. Our data suggest that crossover pathways in C. elegans are only used to generate the single necessary link between the homologous chromosomes. Noncrossover pathways repair almost all other breaks, regardless of the repair template.
Collapse
Affiliation(s)
- David E Almanzar
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | - Spencer G Gordon
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | - Ofer Rog
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA.
| |
Collapse
|
24
|
Toraason E, Adler VL, Kurhanewicz NA, DiNardo A, Saunders AM, Cahoon CK, Libuda DE. Automated and customizable quantitative image analysis of whole Caenorhabditis elegans germlines. Genetics 2021; 217:iyab010. [PMID: 33772283 PMCID: PMC8045727 DOI: 10.1093/genetics/iyab010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/11/2021] [Indexed: 01/14/2023] Open
Abstract
Arranged in a spatial-temporal gradient for germ cell development, the adult germline of Caenorhabditis elegans is an excellent system for understanding the generation, differentiation, function, and maintenance of germ cells. Imaging whole C. elegans germlines along the distal-proximal axis enables powerful cytological analyses of germ cell nuclei as they progress from the pre-meiotic tip through all the stages of meiotic prophase I. To enable high-content image analysis of whole C. elegans gonads, we developed a custom algorithm and pipelines to function with image processing software that enables: (1) quantification of cytological features at single nucleus resolution from immunofluorescence images; and (2) assessment of these individual nuclei based on their position within the germline. We show the capability of our quantitative image analysis approach by analyzing multiple cytological features of meiotic nuclei in whole C. elegans germlines. First, we quantify double-strand DNA breaks (DSBs) per nucleus by analyzing DNA-associated foci of the recombinase RAD-51 at single-nucleus resolution in the context of whole germline progression. Second, we quantify the DSBs that are licensed for crossover repair by analyzing foci of MSH-5 and COSA-1 when they associate with the synaptonemal complex during meiotic prophase progression. Finally, we quantify P-granule composition across the whole germline by analyzing the colocalization of PGL-1 and ZNFX-1 foci. Our image analysis pipeline is an adaptable and useful method for researchers spanning multiple fields using the C. elegans germline as a model system.
Collapse
Affiliation(s)
- Erik Toraason
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Victoria L Adler
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Nicole A Kurhanewicz
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Acadia DiNardo
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Adam M Saunders
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Cori K Cahoon
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Diana E Libuda
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
25
|
Toraason E, Horacek A, Clark C, Glover ML, Adler VL, Premkumar T, Salagean A, Cole F, Libuda DE. Meiotic DNA break repair can utilize homolog-independent chromatid templates in C. elegans. Curr Biol 2021; 31:1508-1514.e5. [PMID: 33740427 DOI: 10.1016/j.cub.2021.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
During meiosis, the maintenance of genome integrity is critical for generating viable haploid gametes.1 In meiotic prophase I, double-strand DNA breaks (DSBs) are induced and a subset of these DSBs are repaired as interhomolog crossovers to ensure proper chromosome segregation. DSBs not resolved as crossovers with the homolog must be repaired by other pathways to ensure genome integrity.2 To determine if alternative repair templates can be engaged for meiotic DSB repair during oogenesis, we developed an assay to detect sister and/or intra-chromatid repair events at a defined DSB site during Caenorhabditis elegans meiosis. Using this assay, we directly demonstrate that the sister chromatid or the same DNA molecule can be engaged as a meiotic repair template for both crossover and noncrossover recombination, with noncrossover events being the predominant recombination outcome. We additionally find that the sister or intra-chromatid substrate is available as a recombination partner for DSBs induced throughout meiotic prophase I, including late prophase when the homolog is unavailable. Analysis of noncrossover conversion tract sequences reveals that DSBs are processed similarly throughout prophase I. We further present data indicating that the XPF-1 nuclease functions in late prophase to promote sister or intra-chromatid repair at steps of recombination following joint molecule processing. Despite its function in sister or intra-chromatid repair, we find that xpf-1 mutants do not exhibit severe defects in progeny viability following exposure to ionizing radiation. Overall, we propose that C. elegans XPF-1 may assist as an intersister or intrachromatid resolvase only in late prophase I.
Collapse
Affiliation(s)
- Erik Toraason
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| | - Anna Horacek
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| | - Cordell Clark
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| | - Marissa L Glover
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| | - Victoria L Adler
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| | - Tolkappiyan Premkumar
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX 78957, USA
| | - Alina Salagean
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| | - Francesca Cole
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX 78957, USA
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA.
| |
Collapse
|
26
|
Santonicola P, Germoglio M, d'Abbusco DS, Adamo A. Functional characterization of Caenorhabditis elegans cbs-2 gene during meiosis. Sci Rep 2020; 10:20913. [PMID: 33262405 PMCID: PMC7708620 DOI: 10.1038/s41598-020-78006-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/18/2020] [Indexed: 11/19/2022] Open
Abstract
Cystathionine β-synthase (CBS) is a eukaryotic enzyme that maintains the cellular homocysteine homeostasis and catalyzes the conversion of homocysteine to L-cystathionine and Hydrogen sulfide, via the trans-sulfuration pathway. In Caenorhabditis elegans, two cbs genes are present: cbs-1 functions similarly as to human CBS, and cbs-2, whose roles are instead unknown. In the present study we performed a phenotypic characterization of the cbs-2 mutant. The null cbs-2 mutant is viable, fertile and shows the wild-type complement of six bivalents in most oocyte nuclei, which is indicative of a correct formation of crossover recombination. In absence of synaptonemal complex formation (syp-2 mutant), loss of cbs-2 leads to chromosome fragmentation, suggesting that cbs-2 is essential during inter-sister repair. Interestingly, although proficient in the activation of the DNA damage checkpoint after exposure to genotoxic stress, the cbs-2 mutant is defective in DNA damage-induced apoptosis in meiotic germ cells. These results suggest possible functions for CBS-2 in meiosis, distinct from a role in the trans-sulfuration pathway. We propose that the C. elegans CBS-2 protein is required for both inter-sister repair and execution of DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Pamela Santonicola
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Marcello Germoglio
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Domenico Scotto d'Abbusco
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Adele Adamo
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.
| |
Collapse
|
27
|
Janisiw E, Raices M, Balmir F, Paulin LF, Baudrimont A, von Haeseler A, Yanowitz JL, Jantsch V, Silva N. Poly(ADP-ribose) glycohydrolase coordinates meiotic DNA double-strand break induction and repair independent of its catalytic activity. Nat Commun 2020; 11:4869. [PMID: 32978394 PMCID: PMC7519143 DOI: 10.1038/s41467-020-18693-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Poly(ADP-ribosyl)ation is a reversible post-translational modification synthetized by ADP-ribose transferases and removed by poly(ADP-ribose) glycohydrolase (PARG), which plays important roles in DNA damage repair. While well-studied in somatic tissues, much less is known about poly(ADP-ribosyl)ation in the germline, where DNA double-strand breaks are introduced by a regulated program and repaired by crossover recombination to establish a tether between homologous chromosomes. The interaction between the parental chromosomes is facilitated by meiotic specific adaptation of the chromosome axes and cohesins, and reinforced by the synaptonemal complex. Here, we uncover an unexpected role for PARG in coordinating the induction of meiotic DNA breaks and their homologous recombination-mediated repair in Caenorhabditis elegans. PARG-1/PARG interacts with both axial and central elements of the synaptonemal complex, REC-8/Rec8 and the MRN/X complex. PARG-1 shapes the recombination landscape and reinforces the tightly regulated control of crossover numbers without requiring its catalytic activity. We unravel roles in regulating meiosis, beyond its enzymatic activity in poly(ADP-ribose) catabolism. Poly(ADP-ribose) glycohydrolase (PARG) is involved in different cellular processes including DNA repair. Here the authors reveal a role for PARG in regulating meiotic DNA double strand break induction and repair in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Eva Janisiw
- Department of Chromosome Biology, Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria.,Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Marilina Raices
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fabiola Balmir
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,AHN Center for Reproductive Medicine, AHN McCandless, Pittsburgh, PA, USA
| | - Luis F Paulin
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, Medical University of Vienna, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Antoine Baudrimont
- Department of Chromosome Biology, Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, Medical University of Vienna, Vienna BioCenter, University of Vienna, Vienna, Austria.,Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Judith L Yanowitz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Nicola Silva
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
28
|
PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions. PLoS Genet 2020; 16:e1008904. [PMID: 32730253 PMCID: PMC7433886 DOI: 10.1371/journal.pgen.1008904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/18/2020] [Accepted: 06/01/2020] [Indexed: 11/19/2022] Open
Abstract
The conserved ATPase, PCH-2/TRIP13, is required during both the spindle checkpoint and meiotic prophase. However, its specific role in regulating meiotic homolog pairing, synapsis and recombination has been enigmatic. Here, we report that this enzyme is required to proofread meiotic homolog interactions. We generated a mutant version of PCH-2 in C. elegans that binds ATP but cannot hydrolyze it: pch-2E253Q. In vitro, this mutant can bind a known substrate but is unable to remodel it. This mutation results in some non-homologous synapsis and impaired crossover assurance. Surprisingly, worms with a null mutation in PCH-2's adapter protein, CMT-1, the ortholog of p31comet, localize PCH-2 to meiotic chromosomes, exhibit non-homologous synapsis and lose crossover assurance. The similarity in phenotypes between cmt-1 and pch-2E253Q mutants suggest that PCH-2 can bind its meiotic substrates in the absence of CMT-1, in contrast to its role during the spindle checkpoint, but requires its adapter to hydrolyze ATP and remodel them.
Collapse
|
29
|
Altendorfer E, Láscarez-Lagunas LI, Nadarajan S, Mathieson I, Colaiácovo MP. Crossover Position Drives Chromosome Remodeling for Accurate Meiotic Chromosome Segregation. Curr Biol 2020; 30:1329-1338.e7. [PMID: 32142707 PMCID: PMC7162695 DOI: 10.1016/j.cub.2020.01.079] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/16/2019] [Accepted: 01/28/2020] [Indexed: 10/24/2022]
Abstract
Interhomolog crossovers (COs) are a prerequisite for achieving accurate chromosome segregation during meiosis [1, 2]. COs are not randomly positioned, occurring at distinct genomic intervals during meiosis in all species examined [3-10]. The role of CO position as a major determinant of accurate chromosome segregation has not been previously directly analyzed in a metazoan. Here, we use spo-11 mutants, which lack endogenous DNA double-strand breaks (DSBs), to induce a single DSB by Mos1 transposon excision at defined chromosomal locations in the C. elegans germline and show that the position of the resulting CO directly affects the formation of distinct chromosome subdomains during meiotic chromosome remodeling. CO formation in the typically CO-deprived center region of autosomes leads to premature loss of sister chromatid cohesion and chromosome missegregation, whereas COs at an off-centered position, as in wild type, can result in normal remodeling and accurate segregation. Ionizing radiation (IR)-induced DSBs lead to the same outcomes, and modeling of IR dose-response reveals that the CO-unfavorable center region encompasses up to 6% of the total chromosome length. DSBs proximal to telomeres rarely form COs, likely because of formation of unstable recombination intermediates that cannot be sustained as chiasmata until late prophase. Our work supports a model in which regulation of CO position early in meiotic prophase is required for proper designation of chromosome subdomains and normal chromosome remodeling in late meiotic prophase I, resulting in accurate chromosome segregation and providing a mechanism to prevent aneuploid gamete formation.
Collapse
Affiliation(s)
- Elisabeth Altendorfer
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Laura I Láscarez-Lagunas
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Saravanapriah Nadarajan
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Iain Mathieson
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Monica P Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Hughes SE, Hawley RS. Meiosis: Location, Location, Location, How Crossovers Ensure Segregation. Curr Biol 2020; 30:R311-R313. [PMID: 32259504 DOI: 10.1016/j.cub.2020.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The proper behavior of homologous chromosomes at the first meiotic division is usually ensured by crossing over. A new study shows that crossover position influences the successful completion of the chromatin remodeling processes that facilitate homologous segregation.
Collapse
Affiliation(s)
- Stacie E Hughes
- Stowers Institute for Medical Research, 1000 E. 50(th) St., Kansas City, MO 64110, USA
| | - R Scott Hawley
- Stowers Institute for Medical Research, 1000 E. 50(th) St., Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| |
Collapse
|
31
|
Yamada T, Yamada S, Ding DQ, Fujita Y, Takaya E, Hiraoka Y, Murakami H, Ohta K. Maintenance of meiotic crossover against reduced double-strand break formation in fission yeast lacking histone H2A.Z. Gene 2020; 743:144615. [PMID: 32222534 DOI: 10.1016/j.gene.2020.144615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 11/26/2022]
Abstract
Meiotic crossover (CO) recombination initiates from programmed DNA double-strand breaks (DSBs) around hotspots, and results in reciprocal exchange of chromosome segments between homologous chromosomes (homologs). COs are crucial for most sexually-reproducing organisms because they promote accurate chromosome segregation and create genetic diversity. Therefore, faithful accomplishment of CO formation is ensured in many ways, but the bases of the regulation are not fully understood. Our previous study using fission yeast has revealed that mutants lacking the conserved histone H2A.Z are defective in DSB formation but maintain CO frequency at three loci tested. Here, we tested five additional sites to show that mutants lacking H2A.Z exhibit normal and increased CO frequency at two and three loci, respectively. Examining one of the CO-increased intervals in the mutant revealed that the CO upregulation is mediated at least partly at a recombination intermediate level. In addition, our genetic as well as genome-wide analyses implied a possibility that, even without H2A.Z, COs are maintained by weak and non-hotspot DSBs, which are processed preferentially as CO. These observations provide clues to further our understanding on CO control.
Collapse
Affiliation(s)
- Takatomi Yamada
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | - Shintaro Yamada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Da-Qiao Ding
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Yurika Fujita
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Emi Takaya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Hiroshi Murakami
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
32
|
Abstract
Meiotic recombination comprises crossovers and noncrossovers. Recombination, crossover in particular, shuffles mutations and impacts both the level of genetic polymorphism and the speed of adaptation. In many species, the recombination rate varies across the genome with hot and cold spots. The hotspot paradox hypothesis asserts that recombination hotspots are evolutionarily unstable due to self-destruction. However, the genomic landscape of double-strand breaks (DSBs), which initiate recombination, is evolutionarily conserved among divergent yeast species, casting doubt on the hotspot paradox hypothesis. Nonetheless, because only a subset of DSBs are associated with crossovers, the evolutionary conservation of the crossover landscape could differ from that of DSBs. Here, we investigate this possibility by generating a high-resolution recombination map of the budding yeast Saccharomyces paradoxus through whole-genome sequencing of 50 meiotic tetrads and by comparing this recombination map with that of S. cerevisiae. We observe a 40% lower recombination rate in S. paradoxus than in S. cerevisiae. Compared with the DSB landscape, the crossover landscape is even more conserved. Further analyses indicate that the elevated conservation of the crossover landscape is explained by a near-subtelomeric crossover preference in both yeasts, which we find to be attributable at least in part to crossover interference. We conclude that the yeast crossover landscape is highly conserved and that the evolutionary conservation of this landscape can differ from that of the DSB landscape.
Collapse
Affiliation(s)
- Haoxuan Liu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI.,Ranomics Inc., Toronto, ON, Canada
| | - Calum J Maclean
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI.,Ranomics Inc., Toronto, ON, Canada
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
33
|
Modelling Sex-Specific Crossover Patterning in Arabidopsis. Genetics 2019; 211:847-859. [PMID: 30670541 DOI: 10.1534/genetics.118.301838] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/11/2019] [Indexed: 11/18/2022] Open
Abstract
"Interference" is a major force governing the patterning of meiotic crossovers. A leading model describing how interference influences crossover patterning is the beam-film model, a mechanical model based on the accumulation and redistribution of crossover-promoting "stress" along the chromosome axis. We use the beam-film model in conjunction with a large Arabidopsis reciprocal backcross data set to gain "mechanistic" insights into the differences between male and female meiosis, and crossover patterning. Beam-film modeling suggests that the underlying mechanics of crossover patterning and interference are identical in the two sexes, with the large difference in recombination rates and distributions able to be entirely explained by the shorter chromosome axes in females. The modeling supports previous indications that fewer crossovers occur via the class II pathway in female meiosis and that this could be explained by reduced DNA double-strand breaks in female meiosis, paralleling the observed reduction in synaptonemal complex length between the two sexes. We also demonstrate that changes in the strength of suppression of neighboring class I crossovers can have opposite effects on "effective" interference depending on the distance between two genetic intervals.
Collapse
|
34
|
Dluzewska J, Szymanska M, Ziolkowski PA. Where to Cross Over? Defining Crossover Sites in Plants. Front Genet 2018; 9:609. [PMID: 30619450 PMCID: PMC6299014 DOI: 10.3389/fgene.2018.00609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
It is believed that recombination in meiosis serves to reshuffle genetic material from both parents to increase genetic variation in the progeny. At the same time, the number of crossovers is usually kept at a very low level. As a consequence, many organisms need to make the best possible use from the one or two crossovers that occur per chromosome in meiosis. From this perspective, the decision of where to allocate rare crossover events becomes an important issue, especially in self-pollinating plant species, which experience limited variation due to inbreeding. However, the freedom in crossover allocation is significantly limited by other, genetic and non-genetic factors, including chromatin structure. Here we summarize recent progress in our understanding of those processes with a special emphasis on plant genomes. First, we focus on factors which influence the distribution of recombination initiation sites and discuss their effects at both, the single hotspot level and at the chromosome scale. We also briefly explain the aspects of hotspot evolution and their regulation. Next, we analyze how recombination initiation sites translate into the development of crossovers and their location. Moreover, we provide an overview of the sequence polymorphism impact on crossover formation and chromosomal distribution.
Collapse
Affiliation(s)
- Julia Dluzewska
- Department of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Maja Szymanska
- Department of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Piotr A Ziolkowski
- Department of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
35
|
Bohr T, Nelson CR, Giacopazzi S, Lamelza P, Bhalla N. Shugoshin Is Essential for Meiotic Prophase Checkpoints in C. elegans. Curr Biol 2018; 28:3199-3211.e3. [PMID: 30293721 PMCID: PMC6200582 DOI: 10.1016/j.cub.2018.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/16/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
The conserved factor Shugoshin is dispensable in C. elegans for the two-step loss of sister chromatid cohesion that directs the proper segregation of meiotic chromosomes. We show that the C. elegans ortholog of Shugoshin, SGO-1, is required for checkpoint activity in meiotic prophase. This role in checkpoint function is similar to that of conserved proteins that structure meiotic chromosome axes. Indeed, null sgo-1 mutants exhibit additional phenotypes similar to that of a partial loss-of-function allele of the axis component, HTP-3: premature synaptonemal complex disassembly, the activation of alternate DNA repair pathways, and an inability to recruit a conserved effector of the DNA damage pathway, HUS-1. SGO-1 localizes to pre-meiotic nuclei when HTP-3 is present but not yet loaded onto chromosome axes and genetically interacts with a central component of the cohesin complex, SMC-3, suggesting that it contributes to meiotic chromosome metabolism early in meiosis by regulating cohesin. We propose that SGO-1 acts during pre-meiotic replication to ensure fully functional meiotic chromosome architecture, rendering these chromosomes competent for checkpoint activity and normal progression of meiotic recombination. Given that most research on Shugoshin has focused on its regulation of sister chromatid cohesion during chromosome segregation, this novel role may be conserved but previously uncharacterized in other organisms. Further, our findings expand the repertoire of Shugoshin's functions beyond coordinating regulatory activities at the centromere.
Collapse
Affiliation(s)
- Tisha Bohr
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Christian R Nelson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Stefani Giacopazzi
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Piero Lamelza
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
36
|
Usui H, Nakabayashi K, Kaku H, Maehara K, Hata K, Shozu M. Elucidation of the developmental mechanism of ovarian mature cystic teratomas using B allele-frequency plots of single nucleotide polymorphism array data. Genes Chromosomes Cancer 2018; 57:409-419. [PMID: 29700881 DOI: 10.1002/gcc.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/21/2018] [Accepted: 04/22/2018] [Indexed: 12/15/2022] Open
Abstract
Ovarian mature cystic teratomas (MCTs) originate from post-meiotic germ cells. Conventional methods such as karyotyping or short tandem repeat-polymorphism analysis may be used to better classify MCTs, although such data would be insufficient. The aim of this study was to elucidate the origin of ovarian MCTs using B allele-frequency (BAF) plots of single nucleotide polymorphism array data. MCTs can be classified in terms of the zygosity of the centromeres and distal chromosome regions. We evaluated the zygosity of all chromosomes from 38 MCT specimens using BAF plot data. BAF plots were used to determine the homozygous and heterozygous regions over the whole genome. Theoretically, MCTs originated from the fusion of two ova (previously referred to as type V MCTs) should have a mixed pattern of centromeric zygosity, that is, a combination of heterozygous and homozygous regions in the centromeric regions. However, no MCTs in this study met this criterion. We identified 13 type I MCTs, 14 type II MCTs, and 11 type III MCTs. In addition, BAF plots facilitated the construction of recombination maps at the whole-genome level for type I and II MCTs. No crossover, especially in the short arms, contributed to the failure of meiosis I, resulting in type I MCTs. Crossover in all arms might assure the normal progress of meiosis in human oocytes. In conclusion, our findings indicate that BAF plots can elucidate the developmental mechanism of MCTs, and further serve as useful analytical tools for analyzing human oocyte meiosis, and related aberrations.
Collapse
Affiliation(s)
- Hirokazu Usui
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Hiroshi Kaku
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Kayoko Maehara
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Makio Shozu
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| |
Collapse
|
37
|
Nguyen H, Labella S, Silva N, Jantsch V, Zetka M. C. elegans ZHP-4 is required at multiple distinct steps in the formation of crossovers and their transition to segregation competent chiasmata. PLoS Genet 2018; 14:e1007776. [PMID: 30379819 PMCID: PMC6239344 DOI: 10.1371/journal.pgen.1007776] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/16/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022] Open
Abstract
Correct segregation of meiotic chromosomes depends on DNA crossovers (COs) between homologs that culminate into visible physical linkages called chiasmata. COs emerge from a larger population of joint molecules (JM), the remainder of which are repaired as noncrossovers (NCOs) to restore genomic integrity. We present evidence that the RNF212-like C. elegans protein ZHP-4 cooperates with its paralog ZHP-3 to enforce crossover formation at distinct steps during meiotic prophase: in the formation of early JMs and in transition of late CO intermediates into chiasmata. ZHP-3/4 localize to the synaptonemal complex (SC) co-dependently followed by their restriction to sites of designated COs. RING domain mutants revealed a critical function for ZHP-4 in localization of both proteins to the SC and for CO formation. While recombination initiates in zhp-4 mutants, they fail to appropriately acquire pro-crossover factors at abundant early JMs, indicating a function for ZHP-4 in an early step of the CO/NCO decision. At late pachytene stages, hypomorphic mutants exhibit significant levels of crossing over that are accompanied by defects in localization of pro-crossover RMH-1, MSH-5 and COSA-1 to designated crossover sites, and by the appearance of bivalents defective in chromosome remodelling required for segregation. These results reveal a ZHP-4 function at designated CO sites where it is required to stabilize pro-crossover factors at the late crossover intermediate, which in turn are required for the transition to a chiasma that is required for bivalent remodelling. Our study reveals an essential requirement for ZHP-4 in negotiating both the formation of COs and their ability to transition to structures capable of directing accurate chromosome segregation. We propose that ZHP-4 acts in concert with ZHP-3 to propel interhomolog JMs along the crossover pathway by stabilizing pro-CO factors that associate with early and late intermediates, thereby protecting designated crossovers as they transition into the chiasmata required for disjunction.
Collapse
Affiliation(s)
- Hanh Nguyen
- Department of Biology, McGill University, Montreal, Quebec Canada
| | - Sara Labella
- Department of Biology, McGill University, Montreal, Quebec Canada
| | - Nicola Silva
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Monique Zetka
- Department of Biology, McGill University, Montreal, Quebec Canada
| |
Collapse
|
38
|
Germoglio M, Adamo A. A Role in Apoptosis Regulation for the rad-51 Gene of Caenorhabditis elegans. Genetics 2018; 209:1017-1028. [PMID: 29884745 PMCID: PMC6063241 DOI: 10.1534/genetics.118.301152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/05/2018] [Indexed: 02/07/2023] Open
Abstract
The evolutionarily conserved RAD-51 protein is essential for homologous recombination in the germ line as well as homologous repair of DNA double-strand breaks in all eukaryotic cells. In the nematode Caenorhabditis elegans, the rad-51 gene is transcribed into messenger RNAs potentially coding three alternative protein isoforms. Null rad-51 alleles display embryonic lethality, severe defects in chromosome structure, and high levels of germ line apoptosis. To dissect its functions, we genetically modified the C. elegans rad-51 gene by clustered regularly interspaced short palindromic repeats/Cas9 genome-editing technology, obtaining a separation-of-function (sfi-) mutant allele that only disrupts the long-transcript isoform. This mutant shows no defects in an otherwise wild-type meiosis and is able to activate physiological germ cell death, which occurs at the late pachytene stage. However, although the mutant is competent in DNA damage checkpoint activation after exposure to ionizing radiation, it is defective for induction of DNA damage-induced apoptosis in meiotic germ cells. These results suggest that RAD-51 plays a novel role in germ line apoptosis independent of RAD-51-mediated strand invasion for homologous recombination.
Collapse
Affiliation(s)
- Marcello Germoglio
- Institute of Biosciences and BioResources, National Research Council, 80131 Naples, Italy
- University of Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Adele Adamo
- Institute of Biosciences and BioResources, National Research Council, 80131 Naples, Italy
| |
Collapse
|
39
|
Hong Y, Velkova M, Silva N, Jagut M, Scheidt V, Labib K, Jantsch V, Gartner A. The conserved LEM-3/Ankle1 nuclease is involved in the combinatorial regulation of meiotic recombination repair and chromosome segregation in Caenorhabditis elegans. PLoS Genet 2018; 14:e1007453. [PMID: 29879106 PMCID: PMC6007928 DOI: 10.1371/journal.pgen.1007453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 06/19/2018] [Accepted: 05/29/2018] [Indexed: 11/23/2022] Open
Abstract
Homologous recombination is essential for crossover (CO) formation and accurate chromosome segregation during meiosis. It is of considerable importance to work out how recombination intermediates are processed, leading to CO and non-crossover (NCO) outcome. Genetic analysis in budding yeast and Caenorhabditis elegans indicates that the processing of meiotic recombination intermediates involves a combination of nucleases and DNA repair enzymes. We previously reported that in C. elegans meiotic joint molecule resolution is mediated by two redundant pathways, conferred by the SLX-1 and MUS-81 nucleases, and by the HIM-6 Bloom helicase in conjunction with the XPF-1 endonuclease, respectively. Both pathways require the scaffold protein SLX-4. However, in the absence of all these enzymes, residual processing of meiotic recombination intermediates still occurs and CO formation is reduced but not abolished. Here we show that the LEM-3 nuclease, mutation of which by itself does not have an overt meiotic phenotype, genetically interacts with slx-1 and mus-81 mutants, the respective double mutants displaying 100% embryonic lethality. The combined loss of LEM-3 and MUS-81 leads to altered processing of recombination intermediates, a delayed disassembly of foci associated with CO designated sites, and the formation of univalents linked by SPO-11 dependent chromatin bridges (dissociated bivalents). However, LEM-3 foci do not colocalize with ZHP-3, a marker that congresses into CO designated sites. In addition, neither CO frequency nor distribution is altered in lem-3 single mutants or in combination with mus-81 or slx-4 mutations. Finally, we found persistent chromatin bridges during meiotic divisions in lem-3; slx-4 double mutants. Supported by the localization of LEM-3 between dividing meiotic nuclei, this data suggest that LEM-3 is able to process erroneous recombination intermediates that persist into the second meiotic division.
Collapse
Affiliation(s)
- Ye Hong
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Maria Velkova
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Austria
| | - Nicola Silva
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Austria
| | - Marlène Jagut
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Austria
| | - Viktor Scheidt
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Austria
| | - Anton Gartner
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
40
|
Woglar A, Villeneuve AM. Dynamic Architecture of DNA Repair Complexes and the Synaptonemal Complex at Sites of Meiotic Recombination. Cell 2018; 173:1678-1691.e16. [PMID: 29754818 DOI: 10.1016/j.cell.2018.03.066] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/05/2018] [Accepted: 03/26/2018] [Indexed: 01/20/2023]
Abstract
Meiotic double-strand breaks (DSBs) are generated and repaired in a highly regulated manner to ensure formation of crossovers (COs) while also enabling efficient non-CO repair to restore genome integrity. We use structured-illumination microscopy to investigate the dynamic architecture of DSB repair complexes at meiotic recombination sites in relationship to the synaptonemal complex (SC). DSBs resected at both ends are converted into inter-homolog repair intermediates harboring two populations of BLM helicase and RPA, flanking a single population of MutSγ. These intermediates accumulate until late pachytene, when repair proteins disappear from non-CO sites and CO-designated sites become enveloped by SC-central region proteins, acquire a second MutSγ population, and lose RPA. These and other data suggest that the SC may protect CO intermediates from being dismantled inappropriately and promote CO maturation by generating a transient CO-specific repair compartment, thereby enabling differential timing and outcome of repair at CO and non-CO sites.
Collapse
Affiliation(s)
- Alexander Woglar
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Anne M Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
41
|
Bogdanov YF. Noncanonical meiosis in the nematode Caenorhabditis elegans as a model for studying the molecular bases of the homologous chromosome synapsis, crossing over, and segregation. RUSS J GENET+ 2017. [DOI: 10.1134/s102279541712002x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Saito TT, Colaiácovo MP. Regulation of Crossover Frequency and Distribution during Meiotic Recombination. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:223-234. [PMID: 29222342 DOI: 10.1101/sqb.2017.82.034132] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Crossover recombination is essential for generating genetic diversity and promoting accurate chromosome segregation during meiosis. The process of crossover recombination is tightly regulated and is initiated by the formation of programmed meiotic DNA double-strand breaks (DSBs). The number of DSBs is around 10-fold higher than the number of crossovers in most species, because only a limited number of DSBs are repaired as crossovers during meiosis. Moreover, crossovers are not randomly distributed. Most crossovers are located on chromosomal arm regions and both centromeres and telomeres are usually devoid of crossovers. Either loss or mislocalization of crossovers frequently results in chromosome nondisjunction and subsequent aneuploidy, leading to infertility, miscarriages, and birth defects such as Down syndrome. Here, we will review aspects of crossover regulation observed in most species and then focus on crossover regulation in the nematode Caenorhabditis elegans in which both the frequency and distribution of crossovers are tightly controlled. In this system, only a single crossover is formed, usually at an off-centered position, between each pair of homologous chromosomes. We have identified C. elegans mutants with deregulated crossover distribution, and we are analyzing crossover control by using an inducible single DSB system with which a single crossover can be produced at specific genomic positions. These combined studies are revealing novel insights into how crossover position is linked to accurate chromosome segregation.
Collapse
Affiliation(s)
- Takamune T Saito
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
43
|
Mlynarczyk-Evans S, Villeneuve AM. Time-Course Analysis of Early Meiotic Prophase Events Informs Mechanisms of Homolog Pairing and Synapsis in Caenorhabditis elegans. Genetics 2017; 207:103-114. [PMID: 28710064 PMCID: PMC5586365 DOI: 10.1534/genetics.117.204172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/13/2017] [Indexed: 11/18/2022] Open
Abstract
Segregation of homologous chromosomes during meiosis depends on their ability to reorganize within the nucleus, discriminate among potential partners, and stabilize pairwise associations through assembly of the synaptonemal complex (SC). Here we report a high-resolution time-course analysis of these key early events during Caenorhabditis elegans meiosis. Labeled nucleotides are incorporated specifically into the X chromosomes during the last 2 hr of S phase, a property we exploit to identify a highly synchronous cohort of nuclei. By tracking X-labeled nuclei through early meiotic prophase, we define the sequence and duration of chromosome movement, nuclear reorganization, pairing at pairing centers (PCs), and SC assembly. Appearance of ZYG-12 foci (marking attachment of PCs to the nuclear envelope) and onset of active mobilization occur within an hour after S-phase completion. Movement occurs for nearly 2 hr before stable pairing is observed at PCs, and autosome movement continues for ∼4 hr thereafter. Chromosomes are tightly clustered during a 2-3 hr postpairing window, during which the bulk of SC assembly occurs; however, initiation of SC assembly can precede evident chromosome clustering. SC assembly on autosomes begins immediately after PC pairing is detected and is completed within ∼3.5 hr. For the X chromosomes, PC pairing is contemporaneous with autosomal pairing, but autosomes complete synapsis earlier (on average) than X chromosomes, implying that X chromosomes have a delay in onset and/or a slower rate of SC assembly. Additional evidence suggests that transient association among chromosomes sharing the same PC protein may contribute to partner discrimination.
Collapse
Affiliation(s)
- Susanna Mlynarczyk-Evans
- Department of Developmental Biology, Stanford University School of Medicine, California 94305
- Department of Genetics, Stanford University School of Medicine, California 94305
| | - Anne M Villeneuve
- Department of Developmental Biology, Stanford University School of Medicine, California 94305
- Department of Genetics, Stanford University School of Medicine, California 94305
| |
Collapse
|
44
|
Targeted recombination between homologous chromosomes for precise breeding in tomato. Nat Commun 2017; 8:15605. [PMID: 28548094 PMCID: PMC5458649 DOI: 10.1038/ncomms15605] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/05/2017] [Indexed: 01/10/2023] Open
Abstract
Homologous recombination (HR) between parental chromosomes occurs stochastically. Here, we report on targeted recombination between homologous chromosomes upon somatic induction of DNA double-strand breaks (DSBs) via CRISPR-Cas9. We demonstrate this via a visual and molecular assay whereby DSB induction between two alleles carrying different mutations in the PHYTOENE SYNTHASE (PSY1) gene results in yellow fruits with wild type red sectors forming via HR-mediated DSB repair. We also show that in heterozygote plants containing one psy1 allele immune and one sensitive to CRISPR, repair of the broken allele using the unbroken allele sequence template is a common outcome. In another assay, we show evidence of a somatically induced DSB in a cross between a psy1 edible tomato mutant and wild type Solanum pimpinellifolium, targeting only the S. pimpinellifolium allele. This enables characterization of germinally transmitted targeted somatic HR events, demonstrating that somatically induced DSBs can be exploited for precise breeding of crops. Targeted homologous recombination between parental chromosomes could facilitate precision breeding of crop plants. Here, Filler Hayut et al. show that CRISPR-Cas9 can be used to induce DNA double strand breaks in somatic tissue and achieve targeted recombination between homologs at an endogenous locus in tomato.
Collapse
|
45
|
Abstract
Sexual reproduction requires the production of haploid gametes (sperm and egg) with only one copy of each chromosome; fertilization then restores the diploid chromosome content in the next generation. This reduction in genetic content is accomplished during a specialized cell division called meiosis, in which two rounds of chromosome segregation follow a single round of DNA replication. In preparation for the first meiotic division, homologous chromosomes pair and synapse, creating a context that promotes formation of crossover recombination events. These crossovers, in conjunction with sister chromatid cohesion, serve to connect the two homologs and facilitate their segregation to opposite poles during the first meiotic division. During the second meiotic division, which is similar to mitosis, sister chromatids separate; the resultant products are haploid cells that become gametes. In Caenorhabditis elegans (and most other eukaryotes) homologous pairing and recombination are required for proper chromosome inheritance during meiosis; accordingly, the events of meiosis are tightly coordinated to ensure the proper execution of these events. In this chapter, we review the seminal events of meiosis: pairing of homologous chromosomes, the changes in chromosome structure that chromosomes undergo during meiosis, the events of meiotic recombination, the differentiation of homologous chromosome pairs into structures optimized for proper chromosome segregation at Meiosis I, and the ultimate segregation of chromosomes during the meiotic divisions. We also review the regulatory processes that ensure the coordinated execution of these meiotic events during prophase I.
Collapse
Affiliation(s)
- Kenneth J Hillers
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, United States
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter,1030 Vienna, Austria
| | | | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| |
Collapse
|
46
|
Pattabiraman D, Roelens B, Woglar A, Villeneuve AM. Meiotic recombination modulates the structure and dynamics of the synaptonemal complex during C. elegans meiosis. PLoS Genet 2017; 13:e1006670. [PMID: 28339470 PMCID: PMC5384771 DOI: 10.1371/journal.pgen.1006670] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/07/2017] [Accepted: 03/06/2017] [Indexed: 12/04/2022] Open
Abstract
During meiotic prophase, a structure called the synaptonemal complex (SC) assembles at the interface between aligned pairs of homologous chromosomes, and crossover recombination events occur between their DNA molecules. Here we investigate the inter-relationships between these two hallmark features of the meiotic program in the nematode C. elegans, revealing dynamic properties of the SC that are modulated by recombination. We demonstrate that the SC incorporates new subunits and switches from a more highly dynamic/labile state to a more stable state as germ cells progress through the pachytene stage of meiotic prophase. We further show that the more dynamic state of the SC is prolonged in mutants where meiotic recombination is impaired. Moreover, in meiotic mutants where recombination intermediates are present in limiting numbers, SC central region subunits become preferentially stabilized on the subset of chromosome pairs that harbor a site where pro-crossover factors COSA-1 and MutSγ are concentrated. Polo-like kinase PLK-2 becomes preferentially localized to the SCs of chromosome pairs harboring recombination sites prior to the enrichment of SC central region proteins on such chromosomes, and PLK-2 is required for this enrichment to occur. Further, late pachytene nuclei in a plk-2 mutant exhibit the more highly dynamic SC state. Together our data demonstrate that crossover recombination events elicit chromosome-autonomous stabilizing effects on the SC and implicate PLK-2 in this process. We discuss how this recombination-triggered modulation of SC state might contribute to regulatory mechanisms that operate during meiosis to ensure the formation of crossovers while at the same time limiting their numbers.
Collapse
Affiliation(s)
- Divya Pattabiraman
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Baptiste Roelens
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Alexander Woglar
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Anne M. Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
47
|
Abstract
The proper distribution of crossovers during meiosis I ensures accurate chromosome segregation at the first meiotic division. A new study reveals both the consequences of improper crossover patterning in Drosophila and the role of Blm helicase in controlling this patterning.
Collapse
|
48
|
Wang RJ, Gray MM, Parmenter MD, Broman KW, Payseur BA. Recombination rate variation in mice from an isolated island. Mol Ecol 2016; 26:457-470. [PMID: 27864900 DOI: 10.1111/mec.13932] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 01/14/2023]
Abstract
Recombination rate is a heritable trait that varies among individuals. Despite the major impact of recombination rate on patterns of genetic diversity and the efficacy of selection, natural variation in this phenotype remains poorly characterized. We present a comparison of genetic maps, sampling 1212 meioses, from a unique population of wild house mice (Mus musculus domesticus) that recently colonized remote Gough Island. Crosses to a mainland reference strain (WSB/EiJ) reveal pervasive variation in recombination rate among Gough Island mice, including subchromosomal intervals spanning up to 28% of the genome. In spite of this high level of polymorphism, the genomewide recombination rate does not significantly vary. In general, we find that recombination rate varies more when measured in smaller genomic intervals. Using the current standard genetic map of the laboratory mouse to polarize intervals with divergent recombination rates, we infer that the majority of evolutionary change occurred in one of the two tested lines of Gough Island mice. Our results confirm that natural populations harbour a high level of recombination rate polymorphism and highlight the disparities in recombination rate evolution across genomic scales.
Collapse
Affiliation(s)
- Richard J Wang
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, 2428 Genetics, Madison, WI, 53706, USA
| | - Melissa M Gray
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, 2428 Genetics, Madison, WI, 53706, USA
| | - Michelle D Parmenter
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, 2428 Genetics, Madison, WI, 53706, USA
| | - Karl W Broman
- Department of Biostatistics & Medical Informatics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, 2428 Genetics, Madison, WI, 53706, USA
| |
Collapse
|
49
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
50
|
A Surveillance System Ensures Crossover Formation in C. elegans. Curr Biol 2016; 26:2873-2884. [PMID: 27720619 DOI: 10.1016/j.cub.2016.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/27/2016] [Accepted: 09/06/2016] [Indexed: 11/23/2022]
Abstract
Crossover (CO) recombination creates a physical connection between homologs that promotes their proper segregation at meiosis I (MI). Failure to realize an obligate CO causes homologs to attach independently to the MI spindle and separate randomly, leading to nondisjunction. However, mechanisms that determine whether homolog pairs have received crossovers remain mysterious. Here we describe a surveillance system in C. elegans that monitors recombination intermediates and couples their formation to meiotic progression. Recombination intermediates are required to activate the system, which then delays further processing if crossover precursors are lacking on even one chromosome. The synaptonemal complex, a specialized, proteinaceous structure connecting homologous chromosomes, is stabilized in cis on chromosomes that receive a crossover and is destabilized on those lacking crossovers, a process that is dependent on the function of the polo-like kinase PLK-2. These results reveal a new layer of communication between crossover-committed intermediates and the synaptonemal complex that functions as a cis-acting, obligate, crossover-counting mechanism.
Collapse
|