1
|
Zhou XY, Jiang YJ, Guo XM, Han DH, Liu Y, Qiao Q. Application of circulating tumor DNA liquid biopsy in nasopharyngeal carcinoma: A case report and review of literature. World J Clin Cases 2025; 13:105066. [DOI: 10.12998/wjcc.v13.i21.105066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/05/2025] [Accepted: 03/26/2025] [Indexed: 04/27/2025] Open
Abstract
BACKGROUND Circulating tumor DNA (ctDNA)-based liquid biopsy has been found to be effective for the detection of minimal residual disease and the evaluation of prognostic risk in various solid tumors, with good sensitivity and specificity for identifying patients at high risk of recurrence. However, use of its results as a biomarker for guiding the treatment and predicting the prognosis of nasopharyngeal carcinoma (NPC) has not been reported.
CASE SUMMARY In this case study of a patient with stage IVb NPC, we utilized ctDNA as an independent biomarker to guide treatment. Chemotherapy was administered in the early stages of the disease, and local intensity-modulated radiation therapy was added when the patient tested positive for ctDNA, while radiation therapy was stopped and the patient was observed when the ctDNA test was negative. During the follow-up period, ctDNA signals became positive before tumor progression and became negative again at the end of treatment. We also explored the potential of ctDNA in combination with Epstein–Barr virus (EBV) DNA status to predict the prognosis of NPC patients, as well as the criteria for selecting genetic mutations and the testing cycle for ctDNA analysis.
CONCLUSION The results of ctDNA-based liquid biopsy can serve as an independent biomarker, either independently or in conjunction with EBV DNA status, to guide the treatment and predict the prognosis of NPC.
Collapse
Affiliation(s)
- Xin-Yao Zhou
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yuan-Jun Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Xiao-Ming Guo
- Department of Artificial Intelligence and Algorithm R and D, Neusoft IntelliRay Technology, Shenyang 110000, Liaoning Province, China
| | - Dong-Hui Han
- Department of Artificial Intelligence and Algorithm R and D, Neusoft IntelliRay Technology, Shenyang 110000, Liaoning Province, China
| | - Yao Liu
- Department of Artificial Intelligence and Algorithm R and D, Neusoft IntelliRay Technology, Shenyang 110000, Liaoning Province, China
| | - Qiao Qiao
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
2
|
Waninger JJ, Demirci FY, Demirci H. Genetic analysis of metastatic versus nonmetastatic conjunctival melanoma using a cutaneous melanoma gene expression panel. CANADIAN JOURNAL OF OPHTHALMOLOGY 2025; 60:170-176. [PMID: 39366666 DOI: 10.1016/j.jcjo.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVE Conjunctival melanoma (CJM) is a rare subtype of mucosal melanomas. Despite an increasing understanding of CJM genetics, predicting patient prognosis remains challenging. Here we sought to see if a 31-gene expression profile (31-GEP) test (i.e., DecisionDx-Melanoma) originally developed and validated for cutaneous melanoma (CM) could be useful in the prognostication of patients with CJM. DESIGN/PARTICIPANTS We performed a single-center retrospective review and gene expression profiling of 10 patients with CJM. METHODS Deidentified archived samples of each primary tumor were sent to Castle Biosciences, where 31-GEP testing was performed. Patients were followed until death or a minimum of 5 years postexcision and monitored for tumor recurrence or metastatic spread. Mean fold change in individual gene expression was compared between nonmetastatic and metastatic groups via independent t-tests. RESULTS Fifty percent of patients developed metastatic disease and had reduced overall survival (3.6 vs 9.3 months; p = 0.018). In 4 of 10 patients, two nonmetastatic and two metastatic, tumor samples passed Castle Biosciences quality control allowing for class designation. All metastatic patients and one nonmetastatic patient were designated as class 2B. The final nonmetastatic patient was designated as class 1B. In individual gene analysis, BAP1 expression was significantly reduced in the metastatic group (p = 0.03). CONCLUSIONS In assessing if a CM gene expression panel could aid in the risk stratification of patients with CJM, we found that the uveal melanoma-relevant gene, BAP1, may be important. Additional studies with larger sample sizes are needed to determine the relevance of this and other differentially expressed genes in CJM prognostication.
Collapse
Affiliation(s)
- Jessica J Waninger
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States
| | - F Yesim Demirci
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hakan Demirci
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
3
|
Roy S, Ghosh MK. Ubiquitin proteasome system (UPS): a crucial determinant of the epigenetic landscape in cancer. Epigenomics 2025:1-20. [PMID: 40337853 DOI: 10.1080/17501911.2025.2501524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
The ubiquitin proteasome system (UPS), comprising of ubiquitinases, deubiquitinases and 26S proteasome plays a significant role in directly or indirectly regulating epigenetic players. DNA-templated processes like replication, repair and transcription require chromatin decondensation to allow access to specific DNA sequence. A thorough survey of literary articles in PubMed database revealed that the UPS functions as a key regulator, determining the precise state of open and closed chromatin by influencing histones and histone modifiers through proteolytic or non-proteolytic means. However, a comprehensive understanding of how specific UPS components affect particular epigenetic pathways in response to environmental cues remains underexplored. This axis holds substantial potential for deciphering mechanisms of tumorigenesis. Although our current knowledge is limited, it can still guide the development of novel therapeutic strategies that can potentially bridge the gap between cancer chemotherapeutics in bench and bedside.
Collapse
Affiliation(s)
- Srija Roy
- Academy of Scientific and Innovative Research, Ghaziabad, India
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| |
Collapse
|
4
|
Kato T, Tanaka I, Huang H, Okado S, Imamura Y, Nomata Y, Takenaka H, Watanabe H, Kawasumi Y, Nakanishi K, Kadomatsu Y, Ueno H, Nakamura S, Mizuno T, Chen-Yoshikawa TF. Molecular Mechanisms of Tumor Progression and Novel Therapeutic and Diagnostic Strategies in Mesothelioma. Int J Mol Sci 2025; 26:4299. [PMID: 40362535 PMCID: PMC12072309 DOI: 10.3390/ijms26094299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Mesothelioma is characterized by the inactivation of tumor suppressor genes, with frequent mutations in neurofibromin 2 (NF2), BRCA1-associated protein 1 (BAP1), and cyclin-dependent kinase inhibitor 2A (CDKN2A). These mutations lead to disruptions in the Hippo signaling pathway and histone methylation, thereby promoting tumor growth. NF2 mutations result in Merlin deficiency, leading to uncontrolled cell proliferation, whereas BAP1 mutations impair chromatin remodeling and hinder DNA damage repair. Emerging molecular targets in mesothelioma include mesothelin (MSLN), oxytocin receptor (OXTR), protein arginine methyltransferase (PRMT5), and carbohydrate sulfotransferase 4 (CHST4). MSLN-based therapies, such as antibody-drug conjugates and immunotoxins, have shown efficacy in clinical trials. OXTR, upregulated in mesothelioma, is correlated with poor prognosis and represents a novel therapeutic target. PRMT5 inhibition is being explored in tumors with MTAP deletions, commonly co-occurring with CDKN2A loss. CHST4 expression is associated with improved prognosis, potentially influencing tumor immunity. Immune checkpoint inhibitors targeting PD-1/PD-L1 have shown promise in some cases; however, resistance mechanisms remain a challenge. Advances in multi-omics approaches have improved our understanding of mesothelioma pathogenesis. Future research will aim to identify novel therapeutic targets and personalized treatment strategies, particularly in the context of epigenetic therapy and combination immunotherapy.
Collapse
Affiliation(s)
- Taketo Kato
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Ichidai Tanaka
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan;
| | - Heng Huang
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Shoji Okado
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Yoshito Imamura
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Yuji Nomata
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Hirofumi Takenaka
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Hiroki Watanabe
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Yuta Kawasumi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Keita Nakanishi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Yuka Kadomatsu
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Harushi Ueno
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Shota Nakamura
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Tetsuya Mizuno
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Toyofumi Fengshi Chen-Yoshikawa
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| |
Collapse
|
5
|
Sepulveda H, Li X, Arteaga-Vazquez LJ, López-Moyado IF, Brunelli M, Hernández-Espinosa L, Yue X, Angel JC, Brown C, Dong Z, Jansz N, Puddu F, Modat A, Scotcher J, Creed P, Kennedy PH, Manriquez-Rodriguez C, Myers SA, Crawford R, Faulkner GJ, Rao A. OGT prevents DNA demethylation and suppresses the expression of transposable elements in heterochromatin by restraining TET activity genome-wide. Nat Struct Mol Biol 2025:10.1038/s41594-025-01505-9. [PMID: 40155743 DOI: 10.1038/s41594-025-01505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/31/2025] [Indexed: 04/01/2025]
Abstract
O-GlcNAc transferase (OGT) interacts robustly with all three mammalian TET methylcytosine dioxygenases. Here we show that deletion of the Ogt gene in mouse embryonic stem (mES) cells results in a widespread increase in the TET product 5-hydroxymethylcytosine in both euchromatic and heterochromatic compartments, with a concomitant reduction in the TET substrate 5-methylcytosine at the same genomic regions. mES cells treated with an OGT inhibitor also displayed increased 5-hydroxymethylcytosine, and attenuating the TET1-OGT interaction in mES cells resulted in a genome-wide decrease of 5-methylcytosine, indicating that OGT restrains TET activity and limits inappropriate DNA demethylation in a manner that requires the TET-OGT interaction and the catalytic activity of OGT. DNA hypomethylation in OGT-deficient cells was accompanied by derepression of transposable elements predominantly located in heterochromatin. We suggest that OGT protects the genome against TET-mediated DNA demethylation and loss of heterochromatin integrity, preventing the aberrant increase in transposable element expression noted in cancer, autoimmune-inflammatory diseases, cellular senescence and aging.
Collapse
Affiliation(s)
- Hugo Sepulveda
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Laboratory of Transcription and Epigenetics, Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Xiang Li
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Leo J Arteaga-Vazquez
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Isaac F López-Moyado
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Melina Brunelli
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Lot Hernández-Espinosa
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Xiaojing Yue
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - J Carlos Angel
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Caitlin Brown
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Zhen Dong
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Natasha Jansz
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fabio Puddu
- biomodal, Chesterford Research Park, Cambridge, UK
| | | | | | - Páidí Creed
- biomodal, Chesterford Research Park, Cambridge, UK
| | - Patrick H Kennedy
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Cindy Manriquez-Rodriguez
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Samuel A Myers
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | | | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia.
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Xie X, Tsui YM, Zhang VX, Yu TCY, Husain A, Chiu YT, Tian L, Lee E, Lee JMF, Ma HT, Ho DWH, Sze KMF, Ng IOL. Nuclear localization of BRCA1-associated protein 1 is important in suppressing hepatocellular carcinoma metastasis via CTCF and NRF1/OGT axis. Cell Death Dis 2025; 16:123. [PMID: 39984455 PMCID: PMC11845619 DOI: 10.1038/s41419-025-07451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Germline mutations of the deubiquitinase BRCA1-associated protein 1 (BAP1) lead to the "BAP1 cancer syndrome" characterized by development of cancers. However, the role of BAP1 in hepatocellular carcinoma (HCC) is unclear. We found that BAP1 was upregulated at mRNA level in human HCCs and significantly correlated with a more aggressive tumour behaviour. Intriguingly, we observed cytoplasmic but no or minimal nuclear BAP1 in human HCC samples by immunohistochemistry. We observed that, while BAP1 protein was found mainly in the cytoplasm and less in the nuclei of HCC cell lines, BAP1 expression was predominantly nuclear in HepG2 cells, by cell fractionation and immunofluorescence analyses. Functionally, in the orthotopic liver injection mouse model, silencing the BAP1 predominant nuclear expression of HepG2 cells promoted intrahepatic tumor metastasis, with more frequent tumor microsatellite formation and venous invasion. With transcriptomic profiling, we identified RHOJ amongst the downregulated targets in HepG2 cells upon BAP1 knockdown. Subsequent overexpression of RHOJ suppressed cell migration in HCC cells, suggesting that BAP1 might upregulate RHOJ resulting in reduced cell migratory ability of HCC cells. Furthermore, we identified two transcription factors, CTCF and NRF1, which activated BAP1 transcription by binding to BAP1 promoter region. On the other hand, we uncovered that O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) physically bound to BAP1 in the nucleus, resulting in diminished stability of the nuclear BAP1. Intriguingly, OGT transcription was upregulated and was also under the control of CTCF and NRF1 in human HCC, acting as a negative regulator of BAP1. To summarize, this study uncovered the underlying mechanisms of the regulation of BAP1 and that loss of the nuclear localization of BAP1 protein contributed to enhanced cell migration in vitro and more aggressive tumor behavior in human HCCs.
Collapse
Affiliation(s)
- Xiaoyu Xie
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Vanilla Xin Zhang
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Tiffany Ching-Yun Yu
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Abdullah Husain
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yung-Tuen Chiu
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Lu Tian
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Eva Lee
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Joyce Man-Fong Lee
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hoi-Tang Ma
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Karen Man-Fong Sze
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
7
|
Zhang T, Beytullahoglu O, Tulaiha R, Luvisotto A, Szczepanski A, Tsuboyama N, Zhao Z, Wang L. An epigenetic pathway regulates MHC-II expression and function in B cell lymphoma models. J Clin Invest 2025; 135:e179703. [PMID: 39817454 PMCID: PMC11735100 DOI: 10.1172/jci179703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/15/2024] [Indexed: 01/18/2025] Open
Abstract
Mutations or homozygous deletions of MHC class II (MHC-II) genes are commonly found in B cell lymphomas that develop in immune-privileged sites and have been associated with patient survival. However, the mechanisms regulating MHC-II expression, particularly through genetic and epigenetic factors, are not yet fully understood. In this study, we identified a key signaling pathway involving the histone H2AK119 deubiquitinase BRCA1 associated protein 1 (BAP1), the interferon regulatory factor interferon regulatory factor 1 (IRF1), and the MHC-II transactivator class II transactivator (CIITA), which directly activates MHC-II gene expression. Disruption of the BAP1/IRF1/CIITA axis leads to a functional attenuation of MHC-II expression and MHC-II-dependent immune cell infiltration, leading to accelerated tumor growth in immunocompetent mice. Additionally, we demonstrated that pharmacological inhibition of polycomb repressive complex 1 (PRC1) - which deposits histone H2K119Ub and opposes BAP1 activity - can restore MHC-II gene expression in BAP1-deficient B cell lymphoma cells. These findings suggest that BAP1 may function as a tumor suppressor by regulating the tumor microenvironment and immune response. Our study also establishes the rationale for therapeutic strategies to restore tumor-specific MHC-II expression and enhance immunotherapy outcomes at epigenetic levels in B cell lymphoma treatment.
Collapse
Affiliation(s)
- Te Zhang
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Oguzhan Beytullahoglu
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rima Tulaiha
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Amanda Luvisotto
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aileen Szczepanski
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Natsumi Tsuboyama
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Zibo Zhao
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
8
|
Dong Z, Sepulveda H, Arteaga-Vazquez LJ, Blouin C, Fernandez J, Binder M, Chou WC, Tien HF, Patnaik MM, Faulkner GJ, Myers SA, Rao A. A mutant ASXL1-BAP1-EHMT complex contributes to heterochromatin dysfunction in clonal hematopoiesis and chronic monomyelocytic leukemia. Proc Natl Acad Sci U S A 2025; 122:e2413302121. [PMID: 39752521 PMCID: PMC11725933 DOI: 10.1073/pnas.2413302121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/06/2024] [Indexed: 01/15/2025] Open
Abstract
ASXL transcriptional regulator 1 (ASXL1) is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside DNA methyltransferase 3 alpha (DNMT3A) and Tet methylcytosine dioxygenase 2 (TET2). CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin. In contrast, the mechanisms that connect mutant ASXL1 and CH are not yet fully understood. CH/CMML-associated ASXL1 mutations encode C-terminally truncated proteins that enhance the deubiquitinase activity of the ASXL-BAP1 "PR-DUB" deubiquitinase complex, which removes monoubiquitin from H2AK119Ub. Here, we show that ASXL1 mutant proteins interact with the euchromatic histone lysine methyltransferases 1 and 2 (EHMT1-EHMT2) complex, which generates H3K9me1 and me2, the latter a repressive modification in constitutive heterochromatin. Compared to cells from age-matched wild-type mice, we found that expanded myeloid cells from old (≥18-mo-old) Asxl1tm/+ mice, a heterozygous knock-in mouse model of CH, display genome-wide decreases of H3K9me2, H3K9me3, and H2AK119Ub as well as an associated increase in expression of transposable elements (TEs) and satellite repeats. Increased TE expression was also observed in monocytes from ASXL1-mutant CMML patients compared to monocytes from healthy controls. Our data suggest that mutant ASXL1 proteins compromise the integrity of both constitutive and facultative heterochromatin in an age-dependent manner by reducing the levels of H3K9me2/3 and H2AK119Ub. This increase in TE expression correlated with increased expression of nearby genes, including many interferon-inducible (inflammation-associated) genes (ISGs).
Collapse
Affiliation(s)
- Zhen Dong
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA92037
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Department of Pharmacology, University of California, San Diego, CA92161
- Division of Cancer Biology, Moores Cancer Center, San Diego, CA92037
| | - Hugo Sepulveda
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA92037
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Department of Pharmacology, University of California, San Diego, CA92161
- Division of Cancer Biology, Moores Cancer Center, San Diego, CA92037
- Laboratory of Transcription and Epigenetics, Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago7591358, Chile
| | - Leo J. Arteaga-Vazquez
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA92037
| | - Chad Blouin
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA92037
| | - Jenna Fernandez
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN55905
| | - Moritz Binder
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN55905
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei10002, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei10002, Taiwan
| | - Mrinal M. Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN55905
| | - Geoffrey J. Faulkner
- Mater Research Institute - University of Queensland, Woolloongabba, QLD4102, Australia
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD4072, Australia
| | - Samuel A. Myers
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA92037
- Department of Pharmacology, University of California, San Diego, CA92161
| | - Anjana Rao
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA92037
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Department of Pharmacology, University of California, San Diego, CA92161
- Division of Cancer Biology, Moores Cancer Center, San Diego, CA92037
| |
Collapse
|
9
|
Dong Z, Sepulveda H, Arteaga-Vazquez LJ, Blouin C, Fernandez J, Binder M, Chou WC, Tien HF, Patnaik M, Faulkner GJ, Myers SA, Rao A. A mutant ASXL1-EHMT complex contributes to heterochromatin dysfunction in clonal hematopoiesis and chronic monomyelocytic leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.30.578015. [PMID: 39803572 PMCID: PMC11722362 DOI: 10.1101/2024.01.30.578015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
ASXL1 is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside DNMT3A and TET2 . CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML), and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing de-repression of silenced elements in heterochromatin. In contrast, the mechanisms that connect mutant ASXL1 and CH are not yet fully understood. CH/CMML-associated ASXL1 mutations encode C-terminally truncated proteins that enhance the deubiquitinase activity of the ASXL-BAP1 "PR-DUB" deubiquitinase complex, which removes mono-ubiquitin from H2AK119Ub. Here we show that ASXL1 mutant proteins interact with the EHMT1-EHMT2 methyltransferase complex, which generates H3K9me1 and me2, the latter a repressive modification in constitutive heterochromatin. Compared to cells from age-matched wildtype mice, we found that expanded myeloid cells from old (≥18-month-old) Asxl1tm/+ mice, a heterozygous knock-in mouse model of CH, display genome-wide decreases of H3K9me2, H3K9me3 and H2AK119Ub as well as an associated increase in expression of transposable elements (TEs) and satellite repeats. Increased TE expression was also observed in monocytes from ASXL1 -mutant CMML patients compared to monocytes from healthy controls. Our data suggest that mutant ASXL1 proteins compromise the integrity of both constitutive and facultative heterochromatin in an age-dependent manner, by reducing the levels of H3K9me2/3 and H2AK119Ub. This increase in TE expression correlated with increased expression of nearby genes, including many interferon-inducible (inflammation-associated) genes (ISGs). Significance Statement Age-related clonal hematopoiesis (CH) is a premalignant condition associated with inflammatory cardiovascular disease. ASXL1 mutations are very frequent in CH. We show that ASXL1 interacts with EHMT1 and EHMT2, H3K9 methyltransferases that deposit H3K9me1 and me2. Using a mouse model of mutant ASXL1 to recapitulate CH, we found that old ASXL1-mutant mice showed marked expansion of myeloid cells in bone marrow, with decreased H3K9me2/3 and increased expression of transposable elements (TEs) in heterochromatin. In humans, ASXL1-mutant CH progresses to chronic monomyelocytic leukemia (CMML); CMML patient samples showed striking upregulation of many TE families, suggesting that ASXL1 mutations compromise heterochromatin integrity, hence causing derepression of TEs. Targeting heterochromatin-associated proteins and TEs might counter the progression of CH, CMML and other myeloid malignancies.
Collapse
|
10
|
Lopes M, Lund PJ, Garcia BA. Optimized and Robust Workflow for Quantifying the Canonical Histone Ubiquitination Marks H2AK119ub and H2BK120ub by LC-MS/MS. J Proteome Res 2024; 23:5405-5420. [PMID: 39556659 PMCID: PMC11932154 DOI: 10.1021/acs.jproteome.4c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The eukaryotic genome is packaged around histone proteins, which are subject to a myriad of post-translational modifications. By controlling DNA accessibility and the recruitment of protein complexes that mediate chromatin-related processes, these modifications constitute a key mechanism of epigenetic regulation. Since mass spectrometry can easily distinguish between these different modifications, it has become an essential technique in deciphering the histone code. Although robust LC-MS/MS methods are available to analyze modifications on the histone N-terminal tails, routine methods for characterizing ubiquitin marks on histone C-terminal regions, especially H2AK119ub, are less robust. Here, we report the development of a simple workflow for the detection and improved quantification of the canonical histone ubiquitination marks H2AK119ub and H2BK120ub. The method entails a fully tryptic digestion of acid-extracted histones, followed by derivatization with heavy or light propionic anhydride. A pooled sample is then spiked into oppositely labeled single samples as a reference channel for relative quantification, and data is acquired using PRM-based nano-LC-MS/MS. We validated our approach with synthetic peptides as well as treatments known to modulate the levels of H2AK119ub and H2BK120ub. This new method complements existing histone workflows, largely focused on the lysine-rich N-terminal regions, by extending modification analysis to other sequence contexts.
Collapse
Affiliation(s)
- Mariana Lopes
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Peder J. Lund
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Benjamin A. Garcia
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Dept. of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
11
|
Aljabali AAA, Tambuwala MM, El-Tanani M, Hassan SS, Lundstrom K, Mishra V, Mishra Y, Hromić-Jahjefendić A, Redwan EM, Uversky VN. A comprehensive review of PRAME and BAP1 in melanoma: Genomic instability and immunotherapy targets. Cell Signal 2024; 124:111434. [PMID: 39326690 DOI: 10.1016/j.cellsig.2024.111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In a thorough review of the literature, the complex roles of PRAME (preferentially expressed Antigen of Melanoma) and BAP1 (BRCA1-associated protein 1) have been investigated in uveal melanoma (UM) and cutaneous melanoma. High PRAME expression in UM is associated with poor outcomes and correlated with extraocular extension and chromosome 8q alterations. BAP1 mutations in the UM indicate genomic instability and a poor prognosis. Combining PRAME and BAP1 immunohistochemical staining facilitates effective risk stratification. Mechanistically, both genes are associated with genomic instability, making them promising targets for cancer immunotherapy. Hypomethylation of PRAME, specifically in its promoter regions, is critical for UM progression and contributes to epigenetic reprogramming. Additionally, miR-211 regulation is crucial in melanoma and has therapeutic potential. The way PRAME changes signaling pathways provides clues about the cause of cancer due to genomic instability related to modifications in DNA repair. Inhibition of poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 in cells expressing PRAME could lead to potential therapeutic applications. Pathway enrichment analysis underscores the significance of PRAME and BAP1 in melanoma pathogenesis.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan.
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, PO Box 11172, United Arab Emirates.
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, PO Box 11172, United Arab Emirates.
| | - Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, 721140, West Bengal, India.
| | | | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
12
|
Ma Y, Zhu Y, Wang F, Zhao G, Huang L, Lu R, Wang D, Tian X, Ye Y. 3,3'-Diindolylmethane promotes bone formation - A assessment in MC3T3-E1 cells and zebrafish. Biochem Pharmacol 2024; 230:116618. [PMID: 39528071 DOI: 10.1016/j.bcp.2024.116618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/18/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Osteoporosis is a common degenerative bone disease in middle-aged and elderly people. The current drugs used to treat osteoporosis have many side effects and low patient compliance. Phytochemotherapy may be safer and more effective. 3,3'-diindolemethane (DIM) is the digestive product of indole-3-methanol in cruciferous vegetables in the stomach, which is a kind of anti-tumor and anti-oxidation phytochemical. However, the effects of DIM on osteoblasts and the mechanism by which DIM regulates bone formation are not fully understood. The aim of this study was to investigate the effects of DIM on the bone formation of mouse preosteoblasts MC3T3-E1 and zebrafish. DIM promotes proliferation and osteogenic differentiation of MC3T3-E1 cells in vitro, and also plays a bone promoting role by increasing the interaction between BRCA1-Associated Protein 1(BAP1) and Inositol 1,4,5-Trisphosphate Receptor(IP3R), up-regulating the expression of BAP1 and IP3R and downstream storage operation calcium entry (SOCE) related protein Recombinant Stromal Interaction Molecule 1(STIM1). The effect of DIM on osteoporosis was confirmed in zebrafish osteoporosis model, and its molecular mechanism may be related to BAP1/IP3R/SOCE signaling pathway. These findings highlight the potential therapeutic value of DIM in the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Ying Ma
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yin Zhu
- Department of Oncology, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Feng Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Guoyang Zhao
- Orthopedics Department, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lianlian Huang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China; Center for Experimental Research, Affiliated Kunshan Hospital to Jiangsu University, Suzhou, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xinyu Tian
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Jiangsu University, Nanjing, China
| | - Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
13
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
14
|
Citterio E, Ronchi AE. Deubiquitinases at the interplay between hematopoietic stem cell aging and myelodysplastic transformation. FEBS Lett 2024; 598:2807-2808. [PMID: 39108012 PMCID: PMC11586589 DOI: 10.1002/1873-3468.14991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 11/26/2024]
Abstract
Hematopoietic stem cells (HSC) maintain blood production throughout life. Nevertheless, HSC functionality deteriorates upon physiological aging leading to the increased prevalence of haematological diseases and hematopoietic malignancies in the elderly. Deubiquitinating enzymes (DUBs) by reverting protein ubiquitination ensure proper proteostasis, a key process in HSC maintenance and fitness.
Collapse
Affiliation(s)
- Elisabetta Citterio
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca20126MilanItaly
| | | |
Collapse
|
15
|
Yan S, Yuan K, Yao X, Chen Q, Li J, Sun J. 14-3-3ε augments OGT stability by binding with S20-phosphorylated OGT. J Biol Chem 2024; 300:107774. [PMID: 39276932 PMCID: PMC11490702 DOI: 10.1016/j.jbc.2024.107774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
The relationship between O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and mitosis is intertwined. Besides the numerous mitotic OGT substrates that have been identified, OGT itself is also a target of the mitotic machinery. Previously, our investigations have shown that Checkpoint kinase 1 (Chk1) phosphorylates OGT at Ser-20 to increase OGT levels during cytokinesis, suggesting that OGT levels oscillate as mitosis progresses. Herein we studied its underlying mechanism. We set out from an R17C mutation of OGT, which is a uterine carcinoma mutation in The Cancer Genome Atlas. We found that R17C abolishes the S20 phosphorylation of OGT, as it lies in the Chk1 phosphorylating consensus motif. Consistent with our previous report that pSer-20 is essential for OGT level increases during cytokinesis, we further demonstrate that the R17C mutation renders OGT less stable, decreases vimentin phosphorylation levels and results in cytokinesis defects. Based on bioinformatic predictions, pSer-20 renders OGT more likely to interact with 14-3-3 proteins, the phospho-binding signal adaptor/scaffold protein family. By screening the seven isoforms of 14-3-3 family, we show that 14-3-3ε specifically associates with Ser-20-phosphorylated OGT. Moreover, we studied the R17C and S20A mutations in xenograft models and demonstrated that they both inhibit uterine carcinoma compared to wild-type OGT, probably due to less cellular reproduction. Our work is a sequel of our previous report on pS20 of OGT and is in line with the notion that OGT is intricately regulated by the mitotic network.
Collapse
Affiliation(s)
- Sheng Yan
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Kemeng Yuan
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Xinyi Yao
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qiang Chen
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China.
| | - Jianwei Sun
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
16
|
Tamburri S, Rustichelli S, Amato S, Pasini D. Navigating the complexity of Polycomb repression: Enzymatic cores and regulatory modules. Mol Cell 2024; 84:3381-3405. [PMID: 39178860 DOI: 10.1016/j.molcel.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Polycomb proteins are a fundamental repressive system that plays crucial developmental roles by orchestrating cell-type-specific transcription programs that govern cell identity. Direct alterations of Polycomb activity are indeed implicated in human pathologies, including developmental disorders and cancer. General Polycomb repression is coordinated by three distinct activities that regulate the deposition of two histone post-translational modifications: tri-methylation of histone H3 lysine 27 (H3K27me3) and histone H2A at lysine 119 (H2AK119ub1). These activities exist in large and heterogeneous multiprotein ensembles consisting of common enzymatic cores regulated by heterogeneous non-catalytic modules composed of a large number of accessory proteins with diverse biochemical properties. Here, we have analyzed the current molecular knowledge, focusing on the functional interaction between the core enzymatic activities and their regulation mediated by distinct accessory modules. This provides a comprehensive analysis of the molecular details that control the establishment and maintenance of Polycomb repression, examining their underlying coordination and highlighting missing information and emerging new features of Polycomb-mediated transcriptional control.
Collapse
Affiliation(s)
- Simone Tamburri
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| | - Samantha Rustichelli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simona Amato
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
17
|
Huber T, Horioka-Duplix M, Chen Y, Saca VR, Ceraudo E, Chen Y, Sakmar TP. The role of signaling pathways mediated by the GPCRs CysLTR1/2 in melanocyte proliferation and senescence. Sci Signal 2024; 17:eadp3967. [PMID: 39288219 PMCID: PMC11920964 DOI: 10.1126/scisignal.adp3967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
In contrast with sun exposure-induced melanoma, rarer melanocytic tumors and neoplasms with low mutational burden present opportunities to study isolated signaling mechanisms. These include uveal melanoma and blue nevi, which are often driven by mutations within the G protein-coupled signaling cascade downstream of cysteinyl leukotriene receptor 2. Here, we review how the same mutations within this pathway drive the growth of melanocytes in one tissue but can inhibit the growth of those in another, exemplifying the role of the tissue environment in the delicate balance between uncontrolled cell growth and senescence.
Collapse
Affiliation(s)
- Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Mizuho Horioka-Duplix
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Yuanhuang Chen
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Victoria R Saca
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
18
|
Wang J, Wang M, Wu S, Zhu Y, Fan K, Chen Y, Xiao Z, Chen J, Tu K, Huang D, Zhang Y, Xu Q. Tumor suppressor BAP1 suppresses disulfidptosis through the regulation of SLC7A11 and NADPH levels. Oncogenesis 2024; 13:31. [PMID: 39266549 PMCID: PMC11393423 DOI: 10.1038/s41389-024-00535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
BAP1, BRCA1-Associated Protein 1, serves as a novel tumor suppressor through the deubiquitination of monoubiquitination of H2A and subsequent gene transcriptional regulation. Regulated cell death like apoptosis or ferroptosis is considered an essential mechanism mediating tumor suppression. Previous reports, including ours, have demonstrated that BAP1 could promote apoptosis and ferroptosis to inhibit tumor development. Whether BAP1 regulated additional types of cell death remains unclear. Disulfidptosis is a recently identified novel cell death mode characterized by aberrant accumulation of intracellular disulfide (e.g., cystine) and depletion of NADPH. In this study, we first demonstrated that BAP1 could significantly protect disulfidptosis induced by glucose starvation, which is validated by various cell death inhibitors and the accumulation of disulfide bonds in the cytoskeleton proteins. BAP1 is known to inhibit SLC7A11 expression. We found that the protective effect of BAP1 against disulfidptosis was counteracted when overexpressing SLC7A11 or adding additional cystine. Conversely, BAP1-mediated suppression of disulfidptosis was largely abrogated when SLC7A11-mediated cystine uptake was inhibited by the knockout of SLC7A11 or erastin treatment. Besides, high BAP1 expression showed lower NADP+/NADPH levels, which might confer resistance to disulfidptosis. Consistent with these observations, the expression level of BAP1 was also positively correlated with NADPH-related genes in KIRC patients, though the underlying mechanism mediating NADPH regulation remains further investigation. In summary, our results revealed the role of BAP1 in the regulation disulfidptosis and provided new insights into the understanding of disulfidptosis in tumor development.
Collapse
Affiliation(s)
- Jin Wang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Minglin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Shaobo Wu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yanan Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Kexin Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yuhan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Zhengtao Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jing Chen
- Department of Obstetrics, Xi'an New Chang'an Maternity Hospital, Xi'an, Shaanxi, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Yilei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
20
|
Doria-Borrell P, Pérez-García V. Understanding the intersection between placental development and cancer: Lessons from the tumor suppressor BAP1. Commun Biol 2024; 7:1053. [PMID: 39191942 PMCID: PMC11349880 DOI: 10.1038/s42003-024-06689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
The placenta, a pivotal organ in mammalian reproduction, allows nutrient exchange and hormonal signaling between the mother and the developing fetus. Understanding its molecular intricacies is essential for deciphering normal embryonic development and pathological conditions such as tumorigenesis. Here, we explore the multifaceted role of the tumor suppressor BRCA1-associated protein 1 (BAP1) in cancer and placentation. Initially recognized for its tumor-suppressive properties, BAP1 has emerged as a key regulator at the intersection of tumorigenesis and placental development. BAP1 influences crucial cellular processes such as cell death, proliferation, metabolism, and response to hypoxic conditions. By integrating insights from tumor and developmental biology, we illuminate the complex molecular pathways orchestrated by BAP1. This perspective highlights BAP1's significant impact on both cancer and placental development, and suggests novel therapeutic strategies that could improve outcomes for pregnancy disorders and cancer.
Collapse
Affiliation(s)
| | - Vicente Pérez-García
- Centro de Investigación Príncipe Felipe, Valencia, Spain.
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
21
|
Liu X, Cui L, Tao Y, Xia S, Hou J, Cao X, Xu S. The deubiquitinase BAP1 and E3 ligase UBE3C sequentially target IRF3 to activate and resolve the antiviral innate immune response. Cell Rep 2024; 43:114608. [PMID: 39120972 DOI: 10.1016/j.celrep.2024.114608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/11/2024] [Accepted: 07/24/2024] [Indexed: 08/11/2024] Open
Abstract
Ubiquitination is essential for the proteasomal turnover of IRF3, the central factor mediating the antiviral innate immune response. However, the spatiotemporal regulation of IRF3 ubiquitination for the precise activation and timely resolution of innate immunity remains unclear. Here, we identified BRCA1-associated protein-1 (BAP1) and ubiquitin-protein ligase E3C (UBE3C) as the key deubiquitinase and ubiquitinase for temporal control of IRF3 stability during viral infection. In the early stage, BAP1 dominates and removes K48-linked ubiquitination of IRF3 in the nucleus, preventing its proteasomal degradation and facilitating efficient interferon (IFN)-β production. In the late stage, E3 ligase UBE3C, induced by IFN-β, specifically mediates IRF3 ubiquitination and promotes its proteasomal degradation. Overall, the sequential interactions with BAP1 and UBE3C govern IRF3 stability during innate response, ensuring effective viral clearance and inflammation resolution. Our findings provide insights into the temporal control of innate signaling and suggest potential interventions in viral infection.
Collapse
Affiliation(s)
- Xiang Liu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China; Department of Respiratory Disease, Affiliated Xihu Hospital, Hangzhou Medical College, Hangzhou 310013, China
| | - Likun Cui
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Yijie Tao
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Simo Xia
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Xuetao Cao
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China; Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; Institute of Immunology, College of Life Science, Nankai University, Tianjin 30071, China.
| | - Sheng Xu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China.
| |
Collapse
|
22
|
Miranda J, Dave P, Kemel Y, Sheikh R, Zong G, Calderon LP, Will M, Liu YL, Walsh M, Stadler ZK, Offit K, Latham A, Mandelker D, Chen YB, Andrieu PC, Carlo MI. Benign splenic lesions in BAP1-tumor predisposition syndrome: a case series. Eur J Hum Genet 2024; 32:1027-1031. [PMID: 38824259 PMCID: PMC11291683 DOI: 10.1038/s41431-024-01623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/13/2024] [Accepted: 04/25/2024] [Indexed: 06/03/2024] Open
Abstract
BAP1-Tumor Predisposition Syndrome (TPDS) is caused by germline variants in BAP1 and predisposes to solid tumors. After observation of a radiologically malignant-appearing splenic mass with benign pathology in a patient with BAP1-TPDS, we sought to retrospectively characterize splenic lesions in individuals with BAP1-TPDS seen at a comprehensive cancer center. A dedicated radiology review for splenic abnormalities was performed. We identified 37 individuals with BAP1-TPDS, 81% with a history of cancer. Of 33 individuals with abdominal imaging, 10 (30%) had splenic lesions, and none were shown to be malignant on follow-up. Splenectomy in an individual with suspected splenic angiosarcoma showed a benign vascular neoplasm with loss of nuclear staining for BAP1 in a subset of cells. Benign splenic lesions appear to be common and potentially BAP1-driven in individuals with BAP1-TPDS; confirmation of these findings could lead to more conservative management and avoidance of splenectomy.
Collapse
Affiliation(s)
- Joao Miranda
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Priya Dave
- Department of Urology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yelena Kemel
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rania Sheikh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Grace Zong
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lina Posada Calderon
- Department of Urology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Marie Will
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying L Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alicia Latham
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diana Mandelker
- Department of Pathology & Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying-Bei Chen
- Department of Pathology & Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Maria Isabel Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
23
|
Shastry S, Samal D, Pethe P. Histone H2A deubiquitinase BAP1 is essential for endothelial cell differentiation from human pluripotent stem cells. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00935-x. [PMID: 38976206 DOI: 10.1007/s11626-024-00935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/25/2024] [Indexed: 07/09/2024]
Abstract
Polycomb group proteins (PcGs) add repressive post translational histone modifications such as H2AK119ub1, and histone H2A deubiquitinases remove it. Mice lacking histone H2A deubiquitinases such as Usp16 and Bap1 die in embryonic stage, while mice lacking Usp3, Mysm1, Usp12, and Usp21 have been shown to be deficient in hematopoietic lineage differentiation, cell cycle regulation, and DNA repair. Thus, it is likely that histone deubiquitinases may also be required for human endothelial cell differentiation; however, there are no reports about the role of histone H2A deubiquitinase BAP1 in human endothelial cell development. We differentiated human pluripotent stem cells into the endothelial lineage which expressed stable inducible shRNA against BAP1. Our results show that BAP1 is required for human endothelial cell differentiation.
Collapse
Affiliation(s)
- Shruti Shastry
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
- Worcester Polytechnic Institute (WPI), Boston, USA
| | - Dharitree Samal
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India.
| |
Collapse
|
24
|
Lopes M, Lund PJ, Garcia BA. An optimized and robust workflow for quantifying the canonical histone ubiquitination marks H2AK119ub and H2BK120ub by LC-MS/MS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.596744. [PMID: 38915586 PMCID: PMC11195131 DOI: 10.1101/2024.06.11.596744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The eukaryotic genome is packaged around histone proteins, which are subject to a myriad of post-translational modifications. By controlling DNA accessibility and the recruitment of protein complexes that mediate chromatin-related processes, these modifications constitute a key mechanism of epigenetic regulation. Since mass spectrometry can easily distinguish between these different modifications, it has become an essential technique in deciphering the histone code. Although robust LC-MS/MS methods are available to analyze modifications on the histone N-terminal tails, routine methods for characterizing ubiquitin marks on histone C-terminal regions, especially H2AK119ub, are less robust. Here we report the development of a simple workflow for the detection and improved quantification of the canonical histone ubiquitination marks H2AK119ub and H2BK120ub. The method entails a fully tryptic digestion of acid-extracted histones followed by derivatization with heavy or light propionic anhydride. A pooled sample is then spiked into oppositely labeled single samples as a reference channel for relative quantification, and data is acquired using PRM-based nanoLC-MS/MS. We validated our approach with synthetic peptides as well as treatments known to modulate the levels of H2AK119ub and H2BK120ub. This new method complements existing histone workflows, largely focused on the lysine-rich N-terminal regions, by extending modification analysis to other sequence contexts.
Collapse
Affiliation(s)
- Mariana Lopes
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Peder J. Lund
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Benjamin A. Garcia
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Dept. of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
25
|
Karunakaran KB, Ganapathiraju MK. Malignant peritoneal mesothelioma interactome with 417 novel protein-protein interactions. BJC REPORTS 2024; 2:42. [PMID: 39516360 PMCID: PMC11524009 DOI: 10.1038/s44276-024-00062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Malignant peritoneal mesothelioma (MPeM) is an aggressive cancer affecting the abdominal peritoneal lining and intra-abdominal organs, with a median survival of ~2.5 years. METHODS We constructed the protein interactome of 59 MPeM-associated genes with previously known protein-protein interactions (PPIs) as well as novel PPIs predicted using our previously developed HiPPIP computational model and analysed it for transcriptomic and functional associations and for repurposable drugs. RESULTS The MPeM interactome had over 400 computationally predicted PPIs and 4700 known PPIs. Transcriptomic evidence validated 75.6% of the genes in the interactome and 65% of the novel interactors. Some genes had tissue-specific expression in extramedullary hematopoietic sites and the expression of some genes could be correlated with unfavourable prognoses in various cancers. 39 out of 152 drugs that target the proteins in the interactome were identified as potentially repurposable for MPeM, with 29 having evidence from prior clinical trials, animal models or cell lines for effectiveness against peritoneal and pleural mesothelioma and primary peritoneal cancer. Functional modules related to chromosomal segregation, transcriptional dysregulation, IL-6 production and hematopoiesis were identified from the interactome. The MPeM interactome overlapped significantly with the malignant pleural mesothelioma interactome, revealing shared molecular pathways. CONCLUSIONS Our findings demonstrate the utility of the interactome in uncovering biological associations and in generating clinically translatable results.
Collapse
Affiliation(s)
- Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bengaluru, 560012, India.
| | - Madhavi K Ganapathiraju
- Department of Biomedical Informatics, School of Medicine, and Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, 5607 Baum Blvd, 5th Floor, Pittsburgh, PA, 15206, USA.
- Carnegie Mellon University in Qatar, Doha, Qatar.
| |
Collapse
|
26
|
Ryan CW, Peirent ER, Regan SL, Guxholli A, Bielas SL. H2A monoubiquitination: insights from human genetics and animal models. Hum Genet 2024; 143:511-527. [PMID: 37086328 DOI: 10.1007/s00439-023-02557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Metazoan development arises from spatiotemporal control of gene expression, which depends on epigenetic regulators like the polycomb group proteins (PcG) that govern the chromatin landscape. PcG proteins facilitate the addition and removal of histone 2A monoubiquitination at lysine 119 (H2AK119ub1), which regulates gene expression, cell fate decisions, cell cycle progression, and DNA damage repair. Regulation of these processes by PcG proteins is necessary for proper development, as pathogenic variants in these genes are increasingly recognized to underly developmental disorders. Overlapping features of developmental syndromes associated with pathogenic variants in specific PcG genes suggest disruption of central developmental mechanisms; however, unique clinical features observed in each syndrome suggest additional non-redundant functions for each PcG gene. In this review, we describe the clinical manifestations of pathogenic PcG gene variants, review what is known about the molecular functions of these gene products during development, and interpret the clinical data to summarize the current evidence toward an understanding of the genetic and molecular mechanism.
Collapse
Affiliation(s)
- Charles W Ryan
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Medical Science Training Program, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Emily R Peirent
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Samantha L Regan
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Alba Guxholli
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48199-5618, USA
| | - Stephanie L Bielas
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48199-5618, USA.
| |
Collapse
|
27
|
Yilmaz ME, Rashidfarokhi M, Pollard K, Durmus N, Keserci S, Sterman DH, Arslan AA, Shao Y, Reibman J. Mesothelioma Cases in the World Trade Center Survivors. ANNALS OF CASE REPORTS 2024; 9:10.29011/2574-7754.101709. [PMID: 39568634 PMCID: PMC11578103 DOI: 10.29011/2574-7754.101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Objectives The destruction of the World Trade Center (WTC) towers in New York City on September 11, 2001 (9/11), released approximately 1 million tons of pulverized particulate matter throughout southern Manhattan and areas in Brooklyn, exposing community members and responders to high levels of potentially toxic environmental particles. Asbestos exposure was a health concern because of its use in certain sections of the WTC towers. Malignant mesothelioma, originating from the lining cells (mesothelium) of the peritoneal and pleural cavities, is one complication associated with asbestos exposure. Methods The WTC Environmental Health Center (WTC EHC) is a treatment and surveillance program for community members (Survivors) exposed to WTC dust and fumes. Results In this report, we describe four cases of mesothelioma in the WTC EHC as of July 1st, 2023. Two of our patients have been diagnosed with peritoneal mesothelioma and two patients have been diagnosed with pleural mesothelioma. Conclusion Given the known delay in the development of mesotheliomas after asbestos exposure, we provide information on these early mesothelioma cases to enhance the understanding of the adverse health effects of WTC exposures on the local community.
Collapse
Affiliation(s)
- Muhammed E Yilmaz
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Mahsan Rashidfarokhi
- Division of Pulmonary and Critical Care Medicine, Elmhurst Hospital Center, Icahn School of Medicine, Elmhurst, NY, USA
| | - Kenna Pollard
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Nedim Durmus
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sefa Keserci
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniel H Sterman
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Alan A Arslan
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Joan Reibman
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
28
|
Schneider S, Anderson JB, Bradley RP, Beigel K, Wright CM, Maguire BA, Yan G, Taylor DM, Harbour JW, Heuckeroth RO. BAP1 is required prenatally for differentiation and maintenance of postnatal murine enteric nervous system. J Clin Invest 2024; 134:e177771. [PMID: 38690732 PMCID: PMC11060734 DOI: 10.1172/jci177771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/05/2024] [Indexed: 05/03/2024] Open
Abstract
Epigenetic regulatory mechanisms are underappreciated, yet are critical for enteric nervous system (ENS) development and maintenance. We discovered that fetal loss of the epigenetic regulator Bap1 in the ENS lineage caused severe postnatal bowel dysfunction and early death in Tyrosinase-Cre Bap1fl/fl mice. Bap1-depleted ENS appeared normal in neonates; however, by P15, Bap1-deficient enteric neurons were largely absent from the small and large intestine of Tyrosinase-Cre Bap1fl/fl mice. Bowel motility became markedly abnormal with disproportionate loss of cholinergic neurons. Single-cell RNA sequencing at P5 showed that fetal Bap1 loss in Tyrosinase-Cre Bap1fl/fl mice markedly altered the composition and relative proportions of enteric neuron subtypes. In contrast, postnatal deletion of Bap1 did not cause enteric neuron loss or impaired bowel motility. These findings suggest that BAP1 is critical for postnatal enteric neuron differentiation and for early enteric neuron survival, a finding that may be relevant to the recently described human BAP1-associated neurodevelopmental disorder.
Collapse
Affiliation(s)
- Sabine Schneider
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica B. Anderson
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca P. Bradley
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Katherine Beigel
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Christina M. Wright
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beth A. Maguire
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Guang Yan
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Deanne M. Taylor
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J. William Harbour
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert O. Heuckeroth
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Liang Y, Wang H, Seija N, Lin YH, Tung LT, Di Noia JM, Langlais D, Nijnik A. B-cell intrinsic regulation of antibody mediated immunity by histone H2A deubiquitinase BAP1. Front Immunol 2024; 15:1353138. [PMID: 38529289 PMCID: PMC10961346 DOI: 10.3389/fimmu.2024.1353138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction BAP1 is a deubiquitinase (DUB) of the Ubiquitin C-terminal Hydrolase (UCH) family that regulates gene expression and other cellular processes, through its direct catalytic activity on the repressive epigenetic mark histone H2AK119ub, as well as on several other substrates. BAP1 is also a highly important tumor suppressor, expressed and functional across many cell types and tissues. In recent work, we demonstrated a cell intrinsic role of BAP1 in the B cell lineage development in murine bone marrow, however the role of BAP1 in the regulation of B cell mediated humoral immune response has not been previously explored. Methods and results In the current study, we demonstrate that a B-cell intrinsic loss of BAP1 in activated B cells in the Bap1 fl/fl Cγ1-cre murine model results in a severe defect in antibody production, with altered dynamics of germinal centre B cell, memory B cell, and plasma cell numbers. At the cellular and molecular level, BAP1 was dispensable for B cell immunoglobulin class switching but resulted in an impaired proliferation of activated B cells, with genome-wide dysregulation in histone H2AK119ub levels and gene expression. Conclusion and discussion In summary, our study establishes the B-cell intrinsic role of BAP1 in antibody mediated immune response and indicates its central role in the regulation of the genome-wide landscapes of histone H2AK119ub and downstream transcriptional programs of B cell activation and humoral immunity.
Collapse
Affiliation(s)
- Yue Liang
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Noé Seija
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Molecular Biology Programs, Université de Montréal, Montreal, QC, Canada
| | - Yun Hsiao Lin
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Lin Tze Tung
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Javier M. Di Noia
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Molecular Biology Programs, Université de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| |
Collapse
|
30
|
Prakasam G, Mishra A, Christie A, Miyata J, Carrillo D, Tcheuyap VT, Ye H, Do QN, Wang Y, Reig Torras O, Butti R, Zhong H, Gagan J, Jones KB, Carroll TJ, Modrusan Z, Durinck S, Requena-Komuro MC, Williams NS, Pedrosa I, Wang T, Rakheja D, Kapur P, Brugarolas J. Comparative genomics incorporating translocation renal cell carcinoma mouse model reveals molecular mechanisms of tumorigenesis. J Clin Invest 2024; 134:e170559. [PMID: 38386415 PMCID: PMC10977987 DOI: 10.1172/jci170559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Translocation renal cell carcinoma (tRCC) most commonly involves an ASPSCR1-TFE3 fusion, but molecular mechanisms remain elusive and animal models are lacking. Here, we show that human ASPSCR1-TFE3 driven by Pax8-Cre (a credentialed clear cell RCC driver) disrupted nephrogenesis and glomerular development, causing neonatal death, while the clear cell RCC failed driver, Sglt2-Cre, induced aggressive tRCC (as well as alveolar soft part sarcoma) with complete penetrance and short latency. However, in both contexts, ASPSCR1-TFE3 led to characteristic morphological cellular changes, loss of epithelial markers, and an epithelial-mesenchymal transition. Electron microscopy of tRCC tumors showed lysosome expansion, and functional studies revealed simultaneous activation of autophagy and mTORC1 pathways. Comparative genomic analyses encompassing an institutional human tRCC cohort (including a hitherto unreported SFPQ-TFEB fusion) and a variety of tumorgraft models (ASPSCR1-TFE3, PRCC-TFE3, SFPQ-TFE3, RBM10-TFE3, and MALAT1-TFEB) disclosed significant convergence in canonical pathways (cell cycle, lysosome, and mTORC1) and less established pathways such as Myc, E2F, and inflammation (IL-6/JAK/STAT3, interferon-γ, TLR signaling, systemic lupus, etc.). Therapeutic trials (adjusted for human drug exposures) showed antitumor activity of cabozantinib. Overall, this study provides insight into MiT/TFE-driven tumorigenesis, including the cell of origin, and characterizes diverse mouse models available for research.
Collapse
Affiliation(s)
- Gopinath Prakasam
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Akhilesh Mishra
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Peter O’ Donnell Jr. School of Public Health
| | - Jeffrey Miyata
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Deyssy Carrillo
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Vanina T. Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Hui Ye
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | | | - Yunguan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Oscar Reig Torras
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Department of Medical Oncology and Translational Genomics and Targeted Therapies in Solid Tumors, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clinic de Barcelona, Barcelona, Spain
| | - Ramesh Butti
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Hua Zhong
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeffrey Gagan
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kevin B. Jones
- Department of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Thomas J. Carroll
- Department of Molecular Biology and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing and
| | - Steffen Durinck
- Department of Oncology Bioinformatics, Genentech Inc., South San Francisco, California, USA
| | - Mai-Carmen Requena-Komuro
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | | | - Ivan Pedrosa
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Department of Radiology, and
- Advanced Imaging Research Center, and
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tao Wang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Peter O’ Donnell Jr. School of Public Health
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dinesh Rakheja
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| |
Collapse
|
31
|
Zheng LL, Wang LT, Pang YW, Sun LP, Shi L. Recent advances in the development of deubiquitinases inhibitors as antitumor agents. Eur J Med Chem 2024; 266:116161. [PMID: 38262120 DOI: 10.1016/j.ejmech.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Ubiquitination is a type of post-translational modification that covalently links ubiquitin to a target protein, which plays a critical role in modulating protein activity, stability, and localization. In contrast, this process is reversed by deubiquitinases (DUBs), which remove ubiquitin from ubiquitinated substrates. Dysregulation of DUBs is associated with several human diseases, such as cancer, inflammation, neurodegenerative disorders, and autoimmune diseases. Thus, DUBs have become promising targets for drug development. Although the physiological and pathological effects of DUBs are increasingly well understood, the clinical drug discovery of selective DUB inhibitors has been challenging. Herein, we summarize the structures and functions of main classes of DUBs and discuss the recent progress in developing selective small-molecule DUB inhibitors as antitumor agents.
Collapse
Affiliation(s)
- Li-Li Zheng
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Ting Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ye-Wei Pang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Lei Shi
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
32
|
Liu X, Cai YD, Chiu JC. Regulation of protein O-GlcNAcylation by circadian, metabolic, and cellular signals. J Biol Chem 2024; 300:105616. [PMID: 38159854 PMCID: PMC10810748 DOI: 10.1016/j.jbc.2023.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a dynamic post-translational modification that regulates thousands of proteins and almost all cellular processes. Aberrant O-GlcNAcylation has been associated with numerous diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and type 2 diabetes. O-GlcNAcylation is highly nutrient-sensitive since it is dependent on UDP-GlcNAc, the end product of the hexosamine biosynthetic pathway (HBP). We previously observed daily rhythmicity of protein O-GlcNAcylation in a Drosophila model that is sensitive to the timing of food consumption. We showed that the circadian clock is pivotal in regulating daily O-GlcNAcylation rhythms given its control of the feeding-fasting cycle and hence nutrient availability. Interestingly, we reported that the circadian clock also modulates daily O-GlcNAcylation rhythm by regulating molecular mechanisms beyond the regulation of food consumption time. A large body of work now indicates that O-GlcNAcylation is likely a generalized cellular status effector as it responds to various cellular signals and conditions, such as ER stress, apoptosis, and infection. In this review, we summarize the metabolic regulation of protein O-GlcNAcylation through nutrient availability, HBP enzymes, and O-GlcNAc processing enzymes. We discuss the emerging roles of circadian clocks in regulating daily O-GlcNAcylation rhythm. Finally, we provide an overview of other cellular signals or conditions that impact O-GlcNAcylation. Many of these cellular pathways are themselves regulated by the clock and/or metabolism. Our review highlights the importance of maintaining optimal O-GlcNAc rhythm by restricting eating activity to the active period under physiological conditions and provides insights into potential therapeutic targets of O-GlcNAc homeostasis under pathological conditions.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA.
| |
Collapse
|
33
|
Sepulveda H, Li X, Yue X, Carlos Angel J, Arteaga-Vazquez LJ, Brown C, Brunelli M, Jansz N, Puddu F, Scotcher J, Creed P, Kennedy P, Manriquez C, Myers SA, Crawford R, Faulkner GJ, Rao A. OGT prevents DNA demethylation and suppresses the expression of transposable elements in heterochromatin by restraining TET activity genome-wide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578097. [PMID: 38352366 PMCID: PMC10862820 DOI: 10.1101/2024.01.31.578097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The O- GlcNAc transferase OGT interacts robustly with all three mammalian TET methylcytosine dioxygenases. We show here that deletion of the Ogt gene in mouse embryonic stem cells (mESC) results in a widespread increase in the TET product 5-hydroxymethylcytosine (5hmC) in both euchromatic and heterochromatic compartments, with concomitant reduction of the TET substrate 5-methylcytosine (5mC) at the same genomic regions. mESC engineered to abolish the TET1-OGT interaction likewise displayed a genome-wide decrease of 5mC. DNA hypomethylation in OGT-deficient cells was accompanied by de-repression of transposable elements (TEs) predominantly located in heterochromatin, and this increase in TE expression was sometimes accompanied by increased cis -expression of genes and exons located 3' of the expressed TE. Thus, the TET-OGT interaction prevents DNA demethylation and TE expression in heterochromatin by restraining TET activity genome-wide. We suggest that OGT protects the genome against DNA hypomethylation and impaired heterochromatin integrity, preventing the aberrant increase in TE expression observed in cancer, autoimmune-inflammatory diseases, cellular senescence and ageing.
Collapse
|
34
|
Congedo MT, West EC, Evangelista J, Mattingly AA, Calabrese G, Sassorossi C, Nocera A, Chiappetta M, Flamini S, Abenavoli L, Margaritora S, Boccuto L, Lococo F. The genetic susceptibility in the development of malignant pleural mesothelioma: somatic and germline variants, clinicopathological features and implication in practical medical/surgical care: a narrative review. J Thorac Dis 2024; 16:671-687. [PMID: 38410609 PMCID: PMC10894363 DOI: 10.21037/jtd-23-611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/18/2023] [Indexed: 02/28/2024]
Abstract
Background and Objective Malignant pleural mesothelioma (MPM) is a very aggressive primary tumor of the pleura whose main risk factor is exposure to asbestos. However, only a minority of exposed people develops MPM and the incidence of MPM cases without an apparent association with asbestos exposure has been increasing in recent years, suggesting that genetic predisposing factors may play a crucial role. In addition, several studies reported familial cases of MPM, suggesting that heredity may be an important and underestimated feature in MPM development. Several candidate genes have been associated with a predisposition to MPM and most of them play a role in DNA repair mechanisms: overall, approximately 20% of MPM cases may be related to genetic predisposition. A particular category of patients with high susceptibility to MPM is represented by carriers of pathogenic variants in the BAP1 gene. Germline variants in BAP1 predispose to the development of MPM following an autosomal dominant pattern of inheritance in the familial cases. MPMs in these patients are significantly less aggressive, and patients require a multidisciplinary approach that involves genetic counseling, medical genetics, pathology, surgical, medical, and radiation oncology expertise. In the present narrative review, we presented a comprehensive overview of genetic susceptibility in the development of MPM. Methods The narrative review is based on a selective literature carried out in PubMed in 2023. Inclusion criteria were original articles in English language, and clinical trials (randomized, prospective, or retrospective). Key Content and Findings We summarized the somatic and germline variants and the differences in terms of clinicopathological features and prognosis between gene-related MPM (GR-MPM) and asbestos-related MPM (AR-MPM). We also discussed the indications for screening, genetic testing, and surveillance of patients with BAP1 germline variants. Conclusions In this narrative review, we have emphasized that the BAP1 gene's harmful germline variations are inherited in an autosomal dominant manner in familial cases. MPMs in individuals with these variations are less severe, and their medical care necessitates a collaborative effort. Additionally, we have outlined the current therapeutic prospects for MPM, including the possibility of gene-specific therapy, which is currently promising but still requires clinical validation.
Collapse
Affiliation(s)
| | - Elizabeth Casey West
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, SC, USA
| | - Jessica Evangelista
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
- Catholic University of Sacred Heart, Rome, Italy
| | - Aubrey Anne Mattingly
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, SC, USA
| | - Giuseppe Calabrese
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| | - Carolina Sassorossi
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| | - Adriana Nocera
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| | - Marco Chiappetta
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| | - Sara Flamini
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, “Magna Græcia” University, Catanzaro, Italy
| | - Stefano Margaritora
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
- Catholic University of Sacred Heart, Rome, Italy
| | - Luigi Boccuto
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, SC, USA
| | - Filippo Lococo
- Thoracic Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| |
Collapse
|
35
|
Jin X, Tang J, Qiu X, Nie X, Ou S, Wu G, Zhang R, Zhu J. Ferroptosis: Emerging mechanisms, biological function, and therapeutic potential in cancer and inflammation. Cell Death Discov 2024; 10:45. [PMID: 38267442 PMCID: PMC10808233 DOI: 10.1038/s41420-024-01825-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Ferroptosis represents a distinct form of programmed cell death triggered by excessive iron accumulation and lipid peroxidation-induced damage. This mode of cell death differentiates from classical programmed cell death in terms of morphology and biochemistry. Ferroptosis stands out for its exceptional biological characteristics and has garnered extensive research and conversations as a form of programmed cell death. Its dysfunctional activation is closely linked to the onset of diseases, particularly inflammation and cancer, making ferroptosis a promising avenue for combating these conditions. As such, exploring ferroptosis may offer innovative approaches to treating cancer and inflammatory diseases. Our review provides insights into the relevant regulatory mechanisms of ferroptosis, examining the impact of ferroptosis-related factors from both physiological and pathological perspectives. Describing the crosstalk between ferroptosis and tumor- and inflammation-associated signaling pathways and the potential of ferroptosis inducers in overcoming drug-resistant cancers are discussed, aiming to inform further novel therapeutic directions for ferroptosis in relation to inflammatory and cancer diseases.
Collapse
Affiliation(s)
- Xin Jin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiuren Tang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiangyu Qiu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoya Nie
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shengming Ou
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Geyan Wu
- Biomedicine Research Centre, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Jinrong Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
36
|
Dupas T, Lauzier B, McGraw S. O-GlcNAcylation: the sweet side of epigenetics. Epigenetics Chromatin 2023; 16:49. [PMID: 38093337 PMCID: PMC10720106 DOI: 10.1186/s13072-023-00523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Histones display a wide variety of post-translational modifications, including acetylation, methylation, and phosphorylation. These epigenetic modifications can influence chromatin structure and function without altering the DNA sequence. Histones can also undergo post-translational O-GlcNAcylation, a rather understudied modification that plays critical roles in almost all biological processes and is added and removed by O-linked N-acetylglucosamine transferase and O-GlcNAcase, respectively. This review provides a current overview of our knowledge of how O-GlcNAcylation impacts the histone code both directly and by regulating other chromatin modifying enzymes. This highlights the pivotal emerging role of O-GlcNAcylation as an essential epigenetic marker.
Collapse
Affiliation(s)
- Thomas Dupas
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada.
- Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada.
| | - Benjamin Lauzier
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada
- Nantes Université, CNRS, INSERM, L'institut du Thorax, 44000, Nantes, France
| | - Serge McGraw
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada.
- Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
37
|
Rohatgi N, Zou W, Li Y, Cho K, Collins PL, Tycksen E, Pandey G, DeSelm CJ, Patti GJ, Dey A, Teitelbaum SL. BAP1 promotes osteoclast function by metabolic reprogramming. Nat Commun 2023; 14:5923. [PMID: 37740028 PMCID: PMC10516877 DOI: 10.1038/s41467-023-41629-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
Treatment of osteoporosis commonly diminishes osteoclast number which suppresses bone formation thus compromising fracture prevention. Bone formation is not suppressed, however, when bone degradation is reduced by retarding osteoclast functional resorptive capacity, rather than differentiation. We find deletion of deubiquitinase, BRCA1-associated protein 1 (Bap1), in myeloid cells (Bap1∆LysM), arrests osteoclast function but not formation. Bap1∆LysM osteoclasts fail to organize their cytoskeleton which is essential for bone degradation consequently increasing bone mass in both male and female mice. The deubiquitinase activity of BAP1 modifies osteoclast function by metabolic reprogramming. Bap1 deficient osteoclast upregulate the cystine transporter, Slc7a11, by enhanced H2Aub occupancy of its promoter. SLC7A11 controls cellular reactive oxygen species levels and redirects the mitochondrial metabolites away from the tricarboxylic acid cycle, both being necessary for osteoclast function. Thus, in osteoclasts BAP1 appears to regulate the epigenetic-metabolic axis and is a potential target to reduce bone degradation while maintaining osteogenesis in osteoporotic patients.
Collapse
Affiliation(s)
- Nidhi Rohatgi
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Wei Zou
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yongjia Li
- Department of Pharmacology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu Province, 212013, PR China
| | - Kevin Cho
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Patrick L Collins
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, 43210, USA
| | - Eric Tycksen
- Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Gaurav Pandey
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Carl J DeSelm
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Anwesha Dey
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Steven L Teitelbaum
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
38
|
Zhang T, Xu D, Trefts E, Lv M, Inuzuka H, Song G, Liu M, Lu J, Liu J, Chu C, Wang M, Wang H, Meng H, Liu H, Zhuang Y, Xie X, Dang F, Guan D, Men Y, Jiang S, Jiang C, Dai X, Liu J, Wang Z, Yan P, Wang J, Tu Z, Babuta M, Erickson E, Hillis AL, Dibble CC, Asara JM, Szabo G, Sicinski P, Miao J, Lee YR, Pan L, Shaw RJ, Yuan J, Wei W. Metabolic orchestration of cell death by AMPK-mediated phosphorylation of RIPK1. Science 2023; 380:1372-1380. [PMID: 37384704 PMCID: PMC10617018 DOI: 10.1126/science.abn1725] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/04/2023] [Indexed: 07/01/2023]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) activity is stimulated to promote metabolic adaptation upon energy stress. However, sustained metabolic stress may cause cell death. The mechanisms by which AMPK dictates cell death are not fully understood. We report that metabolic stress promoted receptor-interacting protein kinase 1 (RIPK1) activation mediated by TRAIL receptors, whereas AMPK inhibited RIPK1 by phosphorylation at Ser415 to suppress energy stress-induced cell death. Inhibiting pS415-RIPK1 by Ampk deficiency or RIPK1 S415A mutation promoted RIPK1 activation. Furthermore, genetic inactivation of RIPK1 protected against ischemic injury in myeloid Ampkα1-deficient mice. Our studies reveal that AMPK phosphorylation of RIPK1 represents a crucial metabolic checkpoint, which dictates cell fate response to metabolic stress, and highlight a previously unappreciated role for the AMPK-RIPK1 axis in integrating metabolism, cell death, and inflammation.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203 Shanghai, China
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Elijah Trefts
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mingming Lv
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Guobin Song
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Min Liu
- Transfusion Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jianlin Lu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jianping Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Chen Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Huibing Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Huyan Meng
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hui Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yuan Zhuang
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xingxing Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yuqin Men
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shuwen Jiang
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, 510632 Guangzhou, China
| | - Cong Jiang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhen Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Peiqiang Yan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhenbo Tu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mrigya Babuta
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Emily Erickson
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alissandra L Hillis
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christian C Dibble
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - John M Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Gyongy Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Ru Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Reuben J Shaw
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203 Shanghai, China
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
39
|
Griffin ME, Thompson JW, Xiao Y, Sweredoski MJ, Aksenfeld RB, Jensen EH, Koldobskaya Y, Schacht AL, Kim TD, Choudhry P, Lomenick B, Garbis SD, Moradian A, Hsieh-Wilson LC. Functional glycoproteomics by integrated network assembly and partitioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.541482. [PMID: 37398272 PMCID: PMC10312638 DOI: 10.1101/2023.06.13.541482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The post-translational modification (PTM) of proteins by O-linked β-N-acetyl-D-glucosamine (O-GlcNAcylation) is widespread across the proteome during the lifespan of all multicellular organisms. However, nearly all functional studies have focused on individual protein modifications, overlooking the multitude of simultaneous O-GlcNAcylation events that work together to coordinate cellular activities. Here, we describe Networking of Interactors and SubstratEs (NISE), a novel, systems-level approach to rapidly and comprehensively monitor O-GlcNAcylation across the proteome. Our method integrates affinity purification-mass spectrometry (AP-MS) and site-specific chemoproteomic technologies with network generation and unsupervised partitioning to connect potential upstream regulators with downstream targets of O-GlcNAcylation. The resulting network provides a data-rich framework that reveals both conserved activities of O-GlcNAcylation such as epigenetic regulation as well as tissue-specific functions like synaptic morphology. Beyond O-GlcNAc, this holistic and unbiased systems-level approach provides a broadly applicable framework to study PTMs and discover their diverse roles in specific cell types and biological states.
Collapse
Affiliation(s)
- Matthew E. Griffin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Co-first author
| | - John W. Thompson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Co-first author
| | - Yao Xiao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Co-first author
| | - Michael J. Sweredoski
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rita B. Aksenfeld
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elizabeth H. Jensen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yelena Koldobskaya
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrew L. Schacht
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Terry D. Kim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Priya Choudhry
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Spiros D. Garbis
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Annie Moradian
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Linda C. Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Lead contact
| |
Collapse
|
40
|
Duong P, Ramesh R, Schneider A, Won S, Cooper AJ, Svaren J. Modulation of Schwann cell homeostasis by the BAP1 deubiquitinase. Glia 2023; 71:1466-1480. [PMID: 36790040 PMCID: PMC10073320 DOI: 10.1002/glia.24351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
Schwann cell programming during myelination involves transcriptional networks that activate gene expression but also repress genes that are active in neural crest/embryonic differentiation of Schwann cells. We previously found that a Schwann cell-specific deletion of the EED subunit of the Polycomb Repressive Complex (PRC2) led to inappropriate activation of many such genes. Moreover, some of these genes become re-activated in the pro-regenerative response of Schwann cells to nerve injury, and we found premature activation of the nerve injury program in a Schwann cell-specific knockout of Eed. Polycomb-associated histone modifications include H3K27 trimethylation formed by PRC2 and H2AK119 monoubiquitination (H2AK119ub1), deposited by Polycomb repressive complex 1 (PRC1). We recently found dynamic regulation of H2AK119ub1 in Schwann cell genes after injury. Therefore, we hypothesized that H2AK119 deubiquitination modulates the dynamic polycomb repression of genes involved in Schwann cell maturation. To determine the role of H2AK119 deubiquitination, we generated a Schwann cell-specific knockout of the H2AK119 deubiquitinase Bap1 (BRCA1-associated protein). We found that loss of Bap1 causes tomacula formation, decreased axon diameters and eventual loss of myelinated axons. The gene expression changes are accompanied by redistribution of H2AK119ub1 and H3K27me3 modifications to extragenic sites throughout the genome. BAP1 interacts with OGT in the PR-DUB complex, and our data suggest that the PR-DUB complex plays a multifunctional role in repression of the injury program. Overall, our results indicate Bap1 is required to restrict the spread of polycomb-associated histone modifications in Schwann cells and to promote myelin homeostasis in peripheral nerve.
Collapse
Affiliation(s)
- Phu Duong
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Raghu Ramesh
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew Schneider
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Seongsik Won
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aaron J Cooper
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department Of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
41
|
Barnett SE, Kenyani J, Tripari M, Butt Z, Grosman R, Querques F, Shaw L, Silva LC, Goate Z, Marciniak SJ, Rassl DM, Jackson R, Lian LY, Szlosarek PW, Sacco JJ, Coulson JM. BAP1 Loss Is Associated with Higher ASS1 Expression in Epithelioid Mesothelioma: Implications for Therapeutic Stratification. Mol Cancer Res 2023; 21:411-427. [PMID: 36669126 PMCID: PMC10150242 DOI: 10.1158/1541-7786.mcr-22-0635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
The nuclear deubiquitylase BRCA1-associated protein 1 (BAP1) is frequently inactivated in malignant pleural mesothelioma (MPM) and germline BAP1 mutation predisposes to cancers including MPM. To explore the influence on cell physiology and drug sensitivity, we sequentially edited a predisposition mutation (w-) and a promoter trap (KO) into human mesothelial cells. BAP1w-/KO MeT5A cells express less BAP1 protein and phenocopy key aspects of BAP1 loss in MPM. Stable isotope labeling with amino acids in cell culture-mass spectrometry revealed evidence of metabolic adaptation, with concomitant alteration of cellular metabolites. In MeT5A, BAP1 deficiency reduces glycolytic enzyme levels but increases enzymes involved in the tricarboxylic acid cycle and anaplerotic pathways. Notably both argininosuccinate synthase 1 (ASS1), essential for cellular synthesis of arginine, and its substrate aspartate, are elevated in BAP1w-/KO MeT5A cells. Likewise, ASS1 expression is higher in BAP1-altered MPM cell lines, and inversely correlates with BAP1 in The Cancer Genome Atlas MESO dataset. Elevated ASS1 is also evident by IHC staining in epithelioid MPM lacking nuclear BAP1 expression, with improved survival among patients with BAP1-negative/ASS1-expressing tumors. Alterations in arginine metabolism may sensitize cells to metabolic drugs and we find that BAP1-negative/ASS1-expressing MPM cell lines are more sensitive to ASS1 inhibition, although not to inhibition of purine synthesis by mizoribine. Importantly, BAP1w-/KO MeT5A become desensitized to arginine deprivation by pegylated arginine deiminase (ADI-PEG20), phenocopying BAP1-negative/ASS1-expressing MPM cell lines. IMPLICATIONS Our data reveal an interrelationship between BAP1 and arginine metabolism, providing a potential means of identifying patients with epithelioid MPM likely to benefit from ADI-PEG20.
Collapse
Affiliation(s)
- Sarah E. Barnett
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Jenna Kenyani
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Martina Tripari
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Zohra Butt
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Rudi Grosman
- Biochemistry and Systems Biology, University of Liverpool, Liverpool, United Kingdom
| | - Francesca Querques
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Liam Shaw
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Luisa C. Silva
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Zoe Goate
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Stefan J. Marciniak
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Doris M. Rassl
- Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Richard Jackson
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, United Kingdom
| | - Lu-Yun Lian
- Biochemistry and Systems Biology, University of Liverpool, Liverpool, United Kingdom
| | - Peter W. Szlosarek
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Joseph J. Sacco
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, United Kingdom
| | - Judy M. Coulson
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
42
|
Yang FC, Agosto-Peña J. Epigenetic regulation by ASXL1 in myeloid malignancies. Int J Hematol 2023; 117:791-806. [PMID: 37062051 DOI: 10.1007/s12185-023-03586-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 04/17/2023]
Abstract
Myeloid malignancies are clonal hematopoietic disorders that are comprised of a spectrum of genetically heterogeneous disorders, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), chronic myelomonocytic leukemia (CMML), and acute myeloid leukemia (AML). Myeloid malignancies are characterized by excessive proliferation, abnormal self-renewal, and/or differentiation defects of hematopoietic stem cells (HSCs) and myeloid progenitor cells hematopoietic stem/progenitor cells (HSPCs). Myeloid malignancies can be caused by genetic and epigenetic alterations that provoke key cellular functions, such as self-renewal, proliferation, biased lineage commitment, and differentiation. Advances in next-generation sequencing led to the identification of multiple mutations in myeloid neoplasms, and many new gene mutations were identified as key factors in driving the pathogenesis of myeloid malignancies. The polycomb protein ASXL1 was identified to be frequently mutated in all forms of myeloid malignancies, with mutational frequencies of 20%, 43%, 10%, and 20% in MDS, CMML, MPN, and AML, respectively. Significantly, ASXL1 mutations are associated with a poor prognosis in all forms of myeloid malignancies. The fact that ASXL1 mutations are associated with poor prognosis in patients with CMML, MDS, and AML, points to the possibility that ASXL1 mutation is a key factor in the development of myeloid malignancies. This review summarizes the recent advances in understanding myeloid malignancies with a specific focus on ASXL1 mutations.
Collapse
Affiliation(s)
- Feng-Chun Yang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Joel Agosto-Peña
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
43
|
Kwon J, Lee D, Lee SA. BAP1 as a guardian of genome stability: implications in human cancer. Exp Mol Med 2023; 55:745-754. [PMID: 37009801 PMCID: PMC10167335 DOI: 10.1038/s12276-023-00979-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 04/04/2023] Open
Abstract
BAP1 is a ubiquitin C-terminal hydrolase domain-containing deubiquitinase with a wide array of biological activities. Studies in which advanced sequencing technologies were used have uncovered a link between BAP1 and human cancer. Somatic and germline mutations of the BAP1 gene have been identified in multiple human cancers, with a particularly high frequency in mesothelioma, uveal melanoma and clear cell renal cell carcinoma. BAP1 cancer syndrome highlights that all carriers of inherited BAP1-inactivating mutations develop at least one and often multiple cancers with high penetrance during their lifetime. These findings, together with substantial evidence indicating the involvement of BAP1 in many cancer-related biological activities, strongly suggest that BAP1 functions as a tumor suppressor. Nonetheless, the mechanisms that account for the tumor suppressor function of BAP1 have only begun to be elucidated. Recently, the roles of BAP1 in genome stability and apoptosis have drawn considerable attention, and they are compelling candidates for key mechanistic factors. In this review, we focus on genome stability and summarize the details of the cellular and molecular functions of BAP1 in DNA repair and replication, which are crucial for genome integrity, and discuss the implications for BAP1-associated cancer and relevant therapeutic strategies. We also highlight some unresolved issues and potential future research directions.
Collapse
Affiliation(s)
- Jongbum Kwon
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| | - Daye Lee
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Shin-Ai Lee
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Building 37, Room 1068, Bethesda, MD, 20892-4263, USA
| |
Collapse
|
44
|
Ge W, Yu C, Li J, Yu Z, Li X, Zhang Y, Liu CP, Li Y, Tian C, Zhang X, Li G, Zhu B, Xu RM. Basis of the H2AK119 specificity of the Polycomb repressive deubiquitinase. Nature 2023; 616:176-182. [PMID: 36991118 DOI: 10.1038/s41586-023-05841-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 02/14/2023] [Indexed: 03/31/2023]
Abstract
Repression of gene expression by protein complexes of the Polycomb group is a fundamental mechanism that governs embryonic development and cell-type specification1-3. The Polycomb repressive deubiquitinase (PR-DUB) complex removes the ubiquitin moiety from monoubiquitinated histone H2A K119 (H2AK119ub1) on the nucleosome4, counteracting the ubiquitin E3 ligase activity of Polycomb repressive complex 1 (PRC1)5 to facilitate the correct silencing of genes by Polycomb proteins and safeguard active genes from inadvertent silencing by PRC1 (refs. 6-9). The intricate biological function of PR-DUB requires accurate targeting of H2AK119ub1, but PR-DUB can deubiquitinate monoubiquitinated free histones and peptide substrates indiscriminately; the basis for its exquisite nucleosome-dependent substrate specificity therefore remains unclear. Here we report the cryo-electron microscopy structure of human PR-DUB, composed of BAP1 and ASXL1, in complex with the chromatosome. We find that ASXL1 directs the binding of the positively charged C-terminal extension of BAP1 to nucleosomal DNA and histones H3-H4 near the dyad, an addition to its role in forming the ubiquitin-binding cleft. Furthermore, a conserved loop segment of the catalytic domain of BAP1 is situated near the H2A-H2B acidic patch. This distinct nucleosome-binding mode displaces the C-terminal tail of H2A from the nucleosome surface, and endows PR-DUB with the specificity for H2AK119ub1.
Collapse
Affiliation(s)
- Weiran Ge
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cong Yu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Yu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaorong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chao-Pei Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Changlin Tian
- Division of Life Sciences and Anhui Provisional Engineering Laboratory of Peptide Drugs, University of Science and Technology of China, Hefei, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
45
|
Wang H, Langlais D, Nijnik A. Histone H2A deubiquitinases in the transcriptional programs of development and hematopoiesis: a consolidated analysis. Int J Biochem Cell Biol 2023; 157:106384. [PMID: 36738766 DOI: 10.1016/j.biocel.2023.106384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Monoubiquitinated lysine 119 of histone H2A (H2AK119ub) is a highly abundant epigenetic mark, associated with gene repression and deposited on chromatin by the polycomb repressor complex 1 (PRC1), which is an essential regulator of diverse transcriptional programs in mammalian development and tissue homeostasis. While multiple deubiquitinases (DUBs) with catalytic activity for H2AK119ub (H2A-DUBs) have been identified, we lack systematic analyses of their roles and cross-talk in transcriptional regulation. Here, we address H2A-DUB functions in epigenetic regulation of mammalian development and tissue maintenance by conducting a meta-analysis of 248 genomics datasets from 32 independent studies, focusing on the mouse model and covering embryonic stem cells (ESCs), hematopoietic, and immune cell lineages. This covers all the publicly available datasets that map genomic H2A-DUB binding and H2AK119ub distributions (ChIP-Seq), and all datasets assessing dysregulation in gene expression in the relevant H2A-DUB knockout models (RNA-Seq). Many accessory datasets for PRC1-2 and DUB-interacting proteins are also analyzed and interpreted, as well as further data assessing chromatin accessibility (ATAC-Seq) and transcriptional activity (RNA-seq). We report co-localization in the binding of H2A-DUBs BAP1, USP16, and to a lesser extent others that is conserved across different cell-types, and also the enrichment of antagonistic PRC1-2 protein complexes at the same genomic locations. Such conserved sites enriched for the H2A-DUBs and PRC1-2 are proximal to transcriptionally active genes that engage in housekeeping cellular functions. Nevertheless, they exhibit H2AK119ub levels significantly above the genomic average that can undergo further increase with H2A-DUB knockout. This indicates a cooperation between H2A-DUBs and PRC1-2 in the modulation of housekeeping transcriptional programs, conserved across many cell types, likely operating through their antagonistic effects on H2AK119ub and the regulation of local H2AK119ub turnover. Our study further highlights existing knowledge gaps and discusses important directions for future work.
Collapse
Affiliation(s)
- HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada; McGill Genome Centre, Montreal, QC, Canada.
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada.
| |
Collapse
|
46
|
Martínez-Fernández C, Jha S, Aliagas E, Holmberg CI, Nadal E, Cerón J. BAP1 Malignant Pleural Mesothelioma Mutations in Caenorhabditis elegans Reveal Synthetic Lethality between ubh-4/ BAP1 and the Proteasome Subunit rpn-9/ PSMD13. Cells 2023; 12:929. [PMID: 36980270 PMCID: PMC10047281 DOI: 10.3390/cells12060929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
The deubiquitinase BAP1 (BRCA1-associated protein 1) is associated with BAP1 tumor predisposition syndrome (TPDS). BAP1 is a tumor suppressor gene whose alterations in cancer are commonly caused by gene mutations leading to protein loss of function. By CRISPR-Cas, we have generated mutations in ubh-4, the BAP1 ortholog in Caenorhabditis elegans, to model the functional impact of BAP1 mutations. We have found that a mimicked BAP1 cancer missense mutation (UBH-4 A87D; BAP1 A95D) resembles the phenotypes of ubh-4 deletion mutants. Despite ubh-4 being ubiquitously expressed, the gene is not essential for viability and its deletion causes only mild phenotypes without affecting 20S proteasome levels. Such viability facilitated an RNAi screen for ubh-4 genetic interactors that identified rpn-9, the ortholog of human PSMD13, a gene encoding subunit of the regulatory particle of the 26S proteasome. ubh-4[A87D], similarly to ubh-4 deletion, cause a synthetic genetic interaction with rpn-9 inactivation affecting body size, lifespan, and the development of germ cells. Finally, we show how ubh-4 inactivation sensitizes animals to the chemotherapeutic agent Bortezomib, which is a proteasome inhibitor. Thus, we have established a model to study BAP1 cancer-related mutations in C. elegans, and our data points toward vulnerabilities that should be studied to explore therapeutic opportunities within the complexity of BAP1 tumors.
Collapse
Affiliation(s)
- Carmen Martínez-Fernández
- Modeling Human Diseases in C. elegans Group, Genes, Diseases, and Therapies Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Sweta Jha
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Elisabet Aliagas
- Department of Medical Oncology, Institut Català d’Oncologia (ICO), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Carina I. Holmberg
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Ernest Nadal
- Department of Medical Oncology, Institut Català d’Oncologia (ICO), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Preclinical and Experimental Research in Thoracic Tumors (PReTT), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Julián Cerón
- Modeling Human Diseases in C. elegans Group, Genes, Diseases, and Therapies Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
47
|
Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 2023; 8:71. [PMID: 36797244 PMCID: PMC9935927 DOI: 10.1038/s41392-023-01342-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Hematologic malignancies are one of the most common cancers, and the incidence has been rising in recent decades. The clinical and molecular features of hematologic malignancies are highly heterogenous, and some hematologic malignancies are incurable, challenging the treatment, and prognosis of the patients. However, hematopoiesis and oncogenesis of hematologic malignancies are profoundly affected by epigenetic regulation. Studies have found that methylation-related mutations, abnormal methylation profiles of DNA, and abnormal histone deacetylase expression are recurrent in leukemia and lymphoma. Furthermore, the hypomethylating agents and histone deacetylase inhibitors are effective to treat acute myeloid leukemia and T-cell lymphomas, indicating that epigenetic regulation is indispensable to hematologic oncogenesis. Epigenetic regulation mainly includes DNA modifications, histone modifications, and noncoding RNA-mediated targeting, and regulates various DNA-based processes. This review presents the role of writers, readers, and erasers of DNA methylation and histone methylation, and acetylation in hematologic malignancies. In addition, this review provides the influence of microRNAs and long noncoding RNAs on hematologic malignancies. Furthermore, the implication of epigenetic regulation in targeted treatment is discussed. This review comprehensively presents the change and function of each epigenetic regulator in normal and oncogenic hematopoiesis and provides innovative epigenetic-targeted treatment in clinical practice.
Collapse
Affiliation(s)
- Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Meng Li
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
48
|
Kang M, Park SG, Lee SA, Kim S, Lee D, Shirbhate ME, Youn SY, Kim KM, Cha SS, Kwon J. Targeting BAP1 with small compound inhibitor for colon cancer treatment. Sci Rep 2023; 13:2264. [PMID: 36754982 PMCID: PMC9908887 DOI: 10.1038/s41598-023-29017-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
BRCA1-associated protein-1 (BAP1) is a ubiquitin C-terminal hydrolase domain-containing deubiquitinase. The gene encoding BAP1 is mutated in various human cancers, including mesothelioma, uveal melanoma and renal cell carcinoma. BAP1 plays roles in many cancer-related cellular functions, including cell proliferation, cell death, and nuclear processes crucial for genome stability, such as DNA repair and replication. While these findings suggest that BAP1 functions as a tumor suppressor, recent data also suggest that BAP1 might play tumor-promoting roles in certain cancers, such as breast cancer and hematopoietic malignancies. Here, we show that BAP1 is upregulated in colon cancer cells and tissues and that BAP1 depletion reduces colon cancer cell proliferation and tumor growth. BAP1 contributes to colon cancer cell proliferation by accelerating DNA replication and suppressing replication stress and concomitant apoptosis. A recently identified BAP1 inhibitor, TG2-179-1, which seems to covalently bind to the active site of BAP1, exhibits potent cytotoxic activity against colon cancer cells, with half-maximal inhibitory concentrations of less than 10 μM, and inhibits colon tumor growth. TG2-179-1 exerts cytotoxic activity by targeting BAP1, leading to defective replication and increased apoptosis. This work therefore shows that BAP1 acts oncogenically in colon cancer and is a potential therapeutic target for this cancer. Our work also suggests that TG2-179-1 can be developed as a potential therapeutic agent for colon cancer.
Collapse
Affiliation(s)
- Minhwa Kang
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Seul Gi Park
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Shin-Ai Lee
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.,Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Building 37, Room 1068, MD, 20892-4263, Bethesda, USA
| | - Soyi Kim
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Daye Lee
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Mukesh Eknath Shirbhate
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - So-Yeon Youn
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Kwan Mook Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Jongbum Kwon
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| |
Collapse
|
49
|
Walton J, Lawson K, Prinos P, Finelli A, Arrowsmith C, Ailles L. PBRM1, SETD2 and BAP1 - the trinity of 3p in clear cell renal cell carcinoma. Nat Rev Urol 2023; 20:96-115. [PMID: 36253570 DOI: 10.1038/s41585-022-00659-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
Biallelic inactivation of the tumour suppressor gene Von Hippel-Lindau (VHL) occurs in the vast majority of clear cell renal cell carcinoma (ccRCC) instances, disrupting cellular oxygen-sensing mechanisms to yield a state of persistent pseudo-hypoxia, defined as a continued hypoxic response despite the presence of adequate oxygen levels. However, loss of VHL alone is often insufficient to drive oncogenesis. Results from genomic studies have shown that co-deletions of VHL with one (or more) of three genes encoding proteins involved in chromatin modification and remodelling, polybromo-1 gene (PBRM1), BRCA1-associated protein 1 (BAP1) and SET domain-containing 2 (SETD2), are common and important co-drivers of tumorigenesis. These genes are all located near VHL on chromosome 3p and are often altered following cytogenetic rearrangements that lead to 3p loss and precede the establishment of ccRCC. These three proteins have multiple roles in the regulation of crucial cancer-related pathways, including protection of genomic stability, antagonism of polycomb group (PcG) complexes to maintain a permissive transcriptional landscape in physiological conditions, and regulation of genes that mediate responses to immune checkpoint inhibitor therapy. An improved understanding of these mechanisms will bring new insights regarding cellular drivers of ccRCC growth and therapy response and, ultimately, will support the development of novel translational therapeutics.
Collapse
Affiliation(s)
- Joseph Walton
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Keith Lawson
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Antonio Finelli
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Cheryl Arrowsmith
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Laurie Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
50
|
Albright BB, Wignall E, Bentley RC, Havrilesky LJ, Previs RA, Strickland KC. BAP1 Tumor Predisposition Syndrome Presenting as a Recurrent Ovarian Sex Cord-Stromal Tumor. Int J Gynecol Pathol 2023; 42:83-88. [PMID: 35348477 PMCID: PMC10089687 DOI: 10.1097/pgp.0000000000000855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The BRCA1-associated protein 1 ( BAP1 ) gene encodes a tumor suppressor that functions as a ubiquitin hydrolase involved in DNA damage repair. BAP1 germline mutations are associated with increased risk of multiple solid malignancies, including mesothelioma, uveal melanoma, renal cell carcinoma, and high-grade rhabdoid meningiomas. Here, we describe the case of a 52-yr-old woman who experienced multiple abdominal recurrences of an ovarian sex cord-stromal tumor that was originally diagnosed at age 25 and who was found to have a germline mutation in BAP1 and a family history consistent with BAP1 tumor predisposition syndrome. Recurrence of the sex cord-stromal tumor demonstrated loss of BAP1 expression by immunohistochemistry. Although ovarian sex cord-stromal tumors have been described in mouse models of BAP1 tumor predisposition syndrome, this relationship has not been previously described in humans and warrants further investigation. The case presentation, tumor morphology, and immunohistochemical findings have overlapping characteristics with peritoneal mesotheliomas, and this case represents a potential pitfall for surgical pathologists.
Collapse
Affiliation(s)
- Benjamin B. Albright
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Elizabeth Wignall
- Clinical Cancer Genetics, Duke University Medical Center, Durham, NC, USA
| | - Rex C. Bentley
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Laura J. Havrilesky
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Rebecca A. Previs
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Kyle C. Strickland
- Clinical Cancer Genetics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|