1
|
Köhler I, Rennau LM, Rehm A, Große J, Gonda S, Räk A, Riedel C, Wahle P. Chemogenetic activation of Gq signaling modulates dendritic development of cortical neurons in a time- and layer-specific manner. Front Cell Neurosci 2025; 19:1524470. [PMID: 40177584 PMCID: PMC11962018 DOI: 10.3389/fncel.2025.1524470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) are established tools for modulating neuronal activity. Calcium-mobilizing DREADD hM3Dq has been widely used to enhance neuronal activity. hM3Dq activates the Gq protein signaling cascade and mimics the action of native Gq protein-coupled receptors such as muscarinic m1 and m3 receptors leading to calcium release from intracellular storages. Depolarization evoked by increased intracellular calcium levels is an important factor for neuronal maturation. Here, we used repetitive activation of biolistically overexpressed hM3Dq to increase the activity of individual neurons differentiating in organotypic slice cultures of rat visual cortex. HM3Dq was activated by 3 μM clozapine-N-oxide (CNO) dissolved in H2O. Transfectants expressing hM3Dq mock-stimulated with H2O served as batch-internal controls. Pyramidal cells and multipolar interneurons were analyzed after treatment from DIV 5-10, DIV 10-20, and DIV 15-20 to investigate if Gq signaling is involved in dendritic maturation. Results show that hM3Dq activation accelerated the maturation of apical dendrites of L2/3 pyramidal cells in the early, but no longer in the later time windows. In contrast, dendritic dimensions of L5/6 pyramidal cells and interneurons were not altered at DIV 10. These findings suggest a growth-promoting role of activated Gq signaling selectively for early postnatal L2/3 pyramidal cells. Unexpectedly, hM3Dq activation from DIV 10-20 reduced the dendritic complexity of L5/6 pyramidal cells and multipolar interneurons. Together, results suggest a role of Gq signaling for neuronal differentiation and support evidence that it may also limit dendritic growth.
Collapse
|
2
|
Abstract
Over the past decade, basic sleep research investigating the circuitry controlling sleep and wakefulness has been boosted by pharmacosynthetic approaches, including chemogenetic techniques using designed receptors exclusively activated by designer drugs (DREADD). DREADD offers a series of tools that selectively control neuronal activity as a way to probe causal relationship between neuronal sub-populations and the regulation of the sleep-wake cycle. Following the path opened by optogenetics, DREADD tools applied to discrete neuronal sub-populations in numerous brain areas quickly made their contribution to the discovery and the expansion of our understanding of critical brain structures involved in a wide variety of behaviors and in the control of vigilance state architecture.
Collapse
|
3
|
Smedley EB, DiLeo A, Smith KS. Circuit directionality for motivation: Lateral accumbens-pallidum, but not pallidum-accumbens, connections regulate motivational attraction to reward cues. Neurobiol Learn Mem 2019; 162:23-35. [PMID: 31096040 DOI: 10.1016/j.nlm.2019.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/23/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
Abstract
Sign-tracking behavior, in which animals interact with a cue that predicts reward, provides an example of how incentive salience can be attributed to cues and elicit motivation. The nucleus accumbens (NAc) and ventral pallidum (VP) are two regions involved in cue-driven motivation. The VP, and NAc subregions including the medial shell and core, are critical for sign-tracking. Further, connections between the medial shell and VP are known to participate in sign-tracking and other motivated behaviors. The NAc lateral shell (NAcLSh) is a distinct and understudied subdivision of the NAc, and its contribution to the process by which reward cues acquire value remains unclear. The NAcLSh has been implicated in reward-directed behavior, and has reciprocal connections with the VP, suggesting that NAcLSh and VP interactions could be important mechanisms for incentive salience. Here, we use DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) and an intersectional viral delivery strategy to produce a biased inhibition of NAcLSh neurons projecting to the VP, and vice versa. We find that disruption of connections from NAcLSh to VP reduces sign-tracking behavior while not affecting consumption of food rewards. In contrast, VP to NAcLSh disruption affected neither sign-tracking nor reward consumption, but did produce a greater shift in animals' behavior more towards the reward source when it was available. These findings indicate that the NAcLSh → VP pathway plays an important role in guiding animals towards reward cues, while VP → NAcLSh back-projections may not and may instead bias motivated behavior towards rewards.
Collapse
Affiliation(s)
- Elizabeth B Smedley
- Dartmouth College, Department of Psychological and Brain Sciences, United States.
| | - Alyssa DiLeo
- Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, United States
| | - Kyle S Smith
- Dartmouth College, Department of Psychological and Brain Sciences, United States
| |
Collapse
|
4
|
Jendryka M, Palchaudhuri M, Ursu D, van der Veen B, Liss B, Kätzel D, Nissen W, Pekcec A. Pharmacokinetic and pharmacodynamic actions of clozapine-N-oxide, clozapine, and compound 21 in DREADD-based chemogenetics in mice. Sci Rep 2019; 9:4522. [PMID: 30872749 PMCID: PMC6418145 DOI: 10.1038/s41598-019-41088-2] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/18/2019] [Indexed: 11/17/2022] Open
Abstract
Muscarinic Designer Receptors Exclusively Activated by Designer Drugs (DREADD) gated by clozapine-N-oxide (CNO) allow selective G-protein cascade activation in genetically specified cell-types in vivo. Here we compare the pharmacokinetics, off-target effects and efficacy of CNO, clozapine (CLZ) and compound 21 (Cmpd-21) at the inhibitory DREADD human Gi-coupled M4 muscarinic receptor (hM4Di). The half maximal effective concentration (EC50) of CLZ was substantially lower (0.42 nM) than CNO (8.1 nM); Cmpd-21 was intermediate (2.95 nM). CNO was back-converted to CLZ in mice, and CLZ accumulated in brain tissue. However, CNO itself also entered the brain, and free cerebrospinal fluid (CSF) levels were within the range to activate hM4Di directly, while free (CSF) CLZ levels remained below the detection limit. Furthermore, directly injected CLZ was strongly converted to its pharmacologically active metabolite, norclozapine. Cmpd-21 showed a superior brain penetration and long-lasting presence. Although we identified a wide range of CNO and Cmpd-21 off-targets, there was hardly any nonspecific behavioural effects among the parameters assessed by the 5-choice-serial-reaction-time task. Our results suggest that CNO (3–5 mg/kg) and Cmpd-21 (0.4–1 mg/kg) are suitable DREADD agonists, effective at latest 15 min after intraperitoneal application, but both require between-subject controls for unspecific effects.
Collapse
Affiliation(s)
- Martin Jendryka
- Boehringer Ingelheim Pharma GmbH & Co. KG, Div. Research Germany, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany.,Institute of Applied Physiology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Monika Palchaudhuri
- Boehringer Ingelheim Pharma GmbH & Co. KG, Div. Research Germany, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Daniel Ursu
- Boehringer Ingelheim Pharma GmbH & Co. KG, Div. Research Germany, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Bastiaan van der Veen
- Institute of Applied Physiology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dennis Kätzel
- Institute of Applied Physiology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Wiebke Nissen
- Boehringer Ingelheim Pharma GmbH & Co. KG, Div. Research Germany, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Anton Pekcec
- Boehringer Ingelheim Pharma GmbH & Co. KG, Div. Research Germany, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany.
| |
Collapse
|
5
|
van der Peet PL, Gunawan C, Abdul-Ridha A, Ma S, Scott DJ, Gundlach AL, Bathgate RAD, White JM, Williams SJ. Gram scale preparation of clozapine N-oxide (CNO), a synthetic small molecule actuator for muscarinic acetylcholine DREADDs. MethodsX 2018; 5:257-267. [PMID: 30038895 PMCID: PMC6053635 DOI: 10.1016/j.mex.2018.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/14/2018] [Indexed: 11/30/2022] Open
Abstract
Chemogenetics uses engineered proteins that are controlled by small molecule actuators, allowing in vivo functional studies of proteins with temporal and dose control, and include Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). One major class of DREADDs are mutated muscarinic receptors that are unresponsive to acetylcholine, and are activated by administration of clozapine N-oxide (CNO). However, CNO is available in only small amounts and large scale studies involving animals and multiple cohorts are prohibitively expensive for many investigators. The precursor, clozapine, is also expensive when purchased from specialist suppliers. Here we report: A simple extraction method of clozapine from commercial tablets; A simple preparation of CNO from clozapine, and for the first time its single-crystal X-ray structure; and That the CNO prepared by this method specifically activates the DREADD receptor hM3Dq in vivo.
This method provides large quantities of CNO suitable for large-scale DREADD applications that is identical to commercial material.
Collapse
Affiliation(s)
- Phillip L van der Peet
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Christian Gunawan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Alaa Abdul-Ridha
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria 3010 Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria 3010 Australia
| | - Jonathan M White
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
6
|
Varin C, Luppi PH, Fort P. Melanin-concentrating hormone-expressing neurons adjust slow-wave sleep dynamics to catalyze paradoxical (REM) sleep. Sleep 2018; 41:4956246. [DOI: 10.1093/sleep/zsy068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/19/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Christophe Varin
- Centre de Recherche en Neurosciences de Lyon (CRNL), SLEEP Team, CNRS, INSERM, Lyon, France
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Pierre-Hervé Luppi
- Centre de Recherche en Neurosciences de Lyon (CRNL), SLEEP Team, CNRS, INSERM, Lyon, France
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Patrice Fort
- Centre de Recherche en Neurosciences de Lyon (CRNL), SLEEP Team, CNRS, INSERM, Lyon, France
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
7
|
Howell CJ, Sceniak MP, Lang M, Krakowiecki W, Abouelsoud FE, Lad SU, Yu H, Katz DM. Activation of the Medial Prefrontal Cortex Reverses Cognitive and Respiratory Symptoms in a Mouse Model of Rett Syndrome. eNeuro 2017; 4:ENEURO.0277-17.2017. [PMID: 29333487 PMCID: PMC5762598 DOI: 10.1523/eneuro.0277-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 12/30/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2; Amir et al., 1999), a transcriptional regulatory protein (Klose et al., 2005). Mouse models of RTT (Mecp2 mutants) exhibit excitatory hypoconnectivity in the medial prefrontal cortex (mPFC; Sceniak et al., 2015), a region critical for functions that are abnormal in RTT patients, ranging from learning and memory to regulation of visceral homeostasis (Riga et al., 2014). The present study was designed to test the hypothesis that increasing the activity of mPFC pyramidal neurons in heterozygous female Mecp2 mutants (Hets) would ameliorate RTT-like symptoms, including deficits in respiratory control and long-term retrieval of auditory conditioned fear. Selective activation of mPFC pyramidal neurons in adult animals was achieved by bilateral infection with an AAV8 vector expressing excitatory hm3D(Gq) DREADD (Designer Receptors Exclusively Activated by Designer Drugs) (Armbruster et al., 2007) under the control of the CamKIIa promoter. DREADD activation in Mecp2 Hets completely restored long-term retrieval of auditory conditioned fear, eliminated respiratory apneas, and reduced respiratory frequency variability to wild-type (Wt) levels. Reversal of respiratory symptoms following mPFC activation was associated with normalization of Fos protein levels, a marker of neuronal activity, in a subset of brainstem respiratory neurons. Thus, despite reduced levels of MeCP2 and severe neurological deficits, mPFC circuits in Het mice are sufficiently intact to generate normal behavioral output when pyramidal cell activity is increased. These findings highlight the contribution of mPFC hypofunction to the pathophysiology of RTT and raise the possibility that selective activation of cortical regions such as the mPFC could provide therapeutic benefit to RTT patients.
Collapse
Affiliation(s)
- C James Howell
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Michael P Sceniak
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Min Lang
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Wenceslas Krakowiecki
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Fatimah E Abouelsoud
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Saloni U Lad
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Heping Yu
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - David M Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
8
|
Gi-DREADD Expression in Peripheral Nerves Produces Ligand-Dependent Analgesia, as well as Ligand-Independent Functional Changes in Sensory Neurons. J Neurosci 2017; 36:10769-10781. [PMID: 27798132 DOI: 10.1523/jneurosci.3480-15.2016] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 08/23/2016] [Indexed: 12/22/2022] Open
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) are an advanced experimental tool that could potentially provide a novel approach to pain management. In particular, expression of an inhibitory (Gi-coupled) DREADD in nociceptors might enable ligand-dependent analgesia. To test this possibility, TRPV1-cre mice were used to restrict expression of Gi-DREADDs to predominantly C-fibers. Whereas baseline heat thresholds in both male and female mice expressing Gi-DREADD were normal, 1 mg/kg clozapine-N-oxide (CNO) produced a significant 3 h increase in heat threshold that returned to baseline by 5 h after injection. Consistent with these behavioral results, CNO decreased action potential firing in isolated sensory neurons from Gi-DREADD mice. Unexpectedly, however, the expression of Gi-DREADD in sensory neurons caused significant changes in voltage-gated Ca2+ and Na+ currents in the absence of CNO, as well as an increase in Na+ channel (NaV1.7) expression. Furthermore, CNO-independent excitatory and inhibitory second-messenger signaling was also altered in these mice, which was associated with a decrease in the analgesic effect of endogenous inhibitory G-protein-coupled receptor activation. These results highlight the potential of this exciting technology, but also its limitations, and that it is essential to identify the underlying mechanisms for any observed behavioral phenotypes. SIGNIFICANCE STATEMENT DREADD technology is a powerful tool enabling manipulation of activity and/or transmitter release from targeted cell populations. The purpose of this study was to determine whether inhibitory DREADDs in nociceptive afferents could be used to produce analgesia, and if so, how. DREADD activation produced a ligand-dependent analgesia to heat in vivo and a decrease in neuronal firing at the single-cell level. However, we observed that expression of Gi-DREADD also causes ligand-independent changes in ion channel activity and second-messenger signaling. These findings highlight both the potential and the limitations of this exciting technology as well as the necessity to identify the mechanisms underlying any observed phenotype.
Collapse
|
9
|
Spangler SM, Bruchas MR. Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits. Curr Opin Pharmacol 2017; 32:56-70. [PMID: 27875804 PMCID: PMC5395328 DOI: 10.1016/j.coph.2016.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/29/2016] [Accepted: 11/02/2016] [Indexed: 12/19/2022]
Abstract
Optogenetics has revolutionized neuroscience by providing means to control cell signaling with spatiotemporal control in discrete cell types. In this review, we summarize four major classes of optical tools to manipulate neuromodulatory GPCR signaling: opsins (including engineered chimeric receptors); photoactivatable proteins; photopharmacology through caging-photoswitchable molecules; fluorescent protein based reporters and biosensors. Additionally, we highlight technologies to utilize these tools in vitro and in vivo, including Cre dependent viral vector expression and two-photon microscopy. These emerging techniques targeting specific members of the GPCR signaling pathway offer an expansive base for investigating GPCR signaling in behavior and disease states, in addition to paving a path to potential therapeutic developments.
Collapse
Affiliation(s)
- Skylar M Spangler
- Department of Anesthesiology, Basic Research Division, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Basic Research Division, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Whissell PD, Tohyama S, Martin LJ. The Use of DREADDs to Deconstruct Behavior. Front Genet 2016; 7:70. [PMID: 27242888 PMCID: PMC4868840 DOI: 10.3389/fgene.2016.00070] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/12/2016] [Indexed: 02/03/2023] Open
Abstract
A central goal in understanding brain function is to link specific cell populations to behavioral outputs. In recent years, the selective targeting of specific neural circuits has been made possible with the development of new experimental approaches, including chemogenetics. This technique allows for the control of molecularly defined subsets of cells through engineered G protein-coupled receptors (GPCRs), which have the ability to activate or silence neuronal firing. Through chemogenetics, neural circuits are being linked to behavioral outputs at an unprecedented rate. Further, the coupling of chemogenetics with imaging techniques to monitor neural activity in freely moving animals now makes it possible to deconstruct the complex whole-brain networks that are fundamental to behavioral states. In this review, we highlight a specific chemogenetic application known as DREADDs (designer receptors exclusively activated by designer drugs). DREADDs are used ubiquitously to modulate GPCR activity in vivo and have been widely applied in the basic sciences, particularly in the field of behavioral neuroscience. Here, we focus on the impact and utility of DREADD technology in dissecting the neural circuitry of various behaviors including memory, cognition, reward, feeding, anxiety and pain. By using DREADDs to monitor the electrophysiological, biochemical, and behavioral outputs of specific neuronal types, researchers can better understand the links between brain activity and behavior. Additionally, DREADDs are useful in studying the pathogenesis of disease and may ultimately have therapeutic potential.
Collapse
Affiliation(s)
- Paul D Whissell
- Department of Psychology, University of Toronto Toronto, ON, Canada
| | - Sarasa Tohyama
- Department of Psychology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga Mississauga, ON, Canada
| |
Collapse
|
11
|
Hainer C, Mosienko V, Koutsikou S, Crook JJ, Gloss B, Kasparov S, Lumb BM, Alenina N. Beyond Gene Inactivation: Evolution of Tools for Analysis of Serotonergic Circuitry. ACS Chem Neurosci 2015; 6:1116-29. [PMID: 26132472 DOI: 10.1021/acschemneuro.5b00045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the brain, serotonin (5-hydroxytryptamine, 5-HT) controls a multitude of physiological and behavioral functions. Serotonergic neurons in the raphe nuclei give rise to a complex and extensive network of axonal projections throughout the whole brain. A major challenge in the analysis of these circuits is to understand how the serotonergic networks are linked to the numerous functions of this neurotransmitter. In the past, many studies employed approaches to inactivate different genes involved in serotonergic neuron formation, 5-HT transmission, or 5-HT metabolism. Although these approaches have contributed significantly to our understanding of serotonergic circuits, they usually result in life-long gene inactivation. As a consequence, compensatory changes in serotonergic and other neurotransmitter systems may occur and complicate the interpretation of the observed phenotypes. To dissect the complexity of the serotonergic system with greater precision, approaches to reversibly manipulate subpopulations of serotonergic neurons are required. In this review, we summarize findings on genetic animal models that enable control of 5-HT neuronal activity or mapping of the serotonergic system. This includes a comparative analysis of several mouse and rat lines expressing Cre or Flp recombinases under Tph2, Sert, or Pet1 promoters with a focus on specificity and recombination efficiency. We further introduce applications for Cre-mediated cell-type specific gene expression to optimize spatial and temporal precision for the manipulation of serotonergic neurons. Finally, we discuss other temporally regulated systems, such as optogenetics and designer receptors exclusively activated by designer drugs (DREADD) approaches to control 5-HT neuron activity.
Collapse
Affiliation(s)
- Cornelia Hainer
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin 13125, Germany
| | | | | | | | - Bernd Gloss
- National Institute of Environmental Health Science, Durham, North Carolina 27709, United States
| | | | | | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin 13125, Germany
- Institute
of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
12
|
Ootsuka Y, Tanaka M. Control of cutaneous blood flow by central nervous system. Temperature (Austin) 2015; 2:392-405. [PMID: 27227053 PMCID: PMC4843916 DOI: 10.1080/23328940.2015.1069437] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023] Open
Abstract
Hairless skin acts as a heat exchanger between body and environment, and thus greatly contributes to body temperature regulation by changing blood flow to the skin (cutaneous) vascular bed during physiological responses such as cold- or warm-defense and fever. Cutaneous blood flow is also affected by alerting state; we 'go pale with fright'. The rabbit ear pinna and the rat tail have hairless skin, and thus provide animal models for investigating central pathway regulating blood flow to cutaneous vascular beds. Cutaneous blood flow is controlled by the centrally regulated sympathetic nervous system. Sympathetic premotor neurons in the medullary raphé in the lower brain stem are labeled at early stage after injection of trans-synaptic viral tracer into skin wall of the rat tail. Inactivation of these neurons abolishes cutaneous vasomotor changes evoked as part of thermoregulatory, febrile or psychological responses, indicating that the medullary raphé is a common final pathway to cutaneous sympathetic outflow, receiving neural inputs from upstream nuclei such as the preoptic area, hypothalamic nuclei and the midbrain. Summarizing evidences from rats and rabbits studies in the last 2 decades, we will review our current understanding of the central pathways mediating cutaneous vasomotor control.
Collapse
Affiliation(s)
- Youichirou Ootsuka
- Centre for Neuroscience; Department of Human Physiology; School of Medicine; Flinders University; Bedford Park; South Australia, Australia
- Department of Physiology; Graduate School of Medical and Dental Sciences; Kagoshima University; Kagoshima, Japan
| | - Mutsumi Tanaka
- Health Effects Research Group; Energy and Environment Research Division; Japan Automobile Research Institute; Tsukuba, Ibaraki, Japan
| |
Collapse
|
13
|
Chen X, Choo H, Huang XP, Yang X, Stone O, Roth BL, Jin J. The first structure-activity relationship studies for designer receptors exclusively activated by designer drugs. ACS Chem Neurosci 2015; 6:476-84. [PMID: 25587888 PMCID: PMC4368042 DOI: 10.1021/cn500325v] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
![]()
Over
the past decade, two independent technologies have emerged
and been widely adopted by the neuroscience community for remotely
controlling neuronal activity: optogenetics which utilize engineered
channelrhodopsin and other opsins, and chemogenetics which utilize
engineered G protein-coupled receptors (Designer Receptors Exclusively
Activated by Designer Drugs (DREADDs)) and other orthologous ligand–receptor
pairs. Using directed molecular evolution, two types of DREADDs derived
from human muscarinic acetylcholine receptors have been developed:
hM3Dq which activates neuronal firing, and hM4Di which inhibits neuronal
firing. Importantly, these DREADDs were not activated by the native
ligand acetylcholine (ACh), but selectively activated by clozapine N-oxide (CNO), a pharmacologically inert ligand. CNO has
been used extensively in rodent models to activate DREADDs, and although
CNO is not subject to significant metabolic transformation in mice,
a small fraction of CNO is apparently metabolized to clozapine in
humans and guinea pigs, lessening the translational potential of DREADDs.
To effectively translate the DREADD technology, the next generation
of DREADD agonists are needed and a thorough understanding of structure–activity
relationships (SARs) of DREADDs is required for developing such ligands.
We therefore conducted the first SAR studies of hM3Dq. We explored
multiple regions of the scaffold represented by CNO, identified interesting
SAR trends, and discovered several compounds that are very potent
hM3Dq agonists but do not activate the native human M3 receptor (hM3).
We also discovered that the approved drug perlapine is a novel hM3Dq
agonist with >10 000-fold selectivity for hM3Dq over hM3.
Collapse
Affiliation(s)
- Xin Chen
- Departments
of Structural and Chemical Biology, Oncological Sciences, and Pharmacology
and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hyunah Choo
- National Institute
of Mental Health - Psychoactive Drug Screening Program, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Center
for Neuro-Medicine, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Xi-Ping Huang
- National Institute
of Mental Health - Psychoactive Drug Screening Program, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xiaobao Yang
- Departments
of Structural and Chemical Biology, Oncological Sciences, and Pharmacology
and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Orrin Stone
- National Institute
of Mental Health - Psychoactive Drug Screening Program, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bryan L. Roth
- National Institute
of Mental Health - Psychoactive Drug Screening Program, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jian Jin
- Departments
of Structural and Chemical Biology, Oncological Sciences, and Pharmacology
and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
14
|
Abstract
Elucidating the roles of neuronal cell types for physiology and behavior is essential for understanding brain functions. Perturbation of neuron electrical activity can be used to probe the causal relationship between neuronal cell types and behavior. New genetically encoded neuron perturbation tools have been developed for remotely controlling neuron function using small molecules that activate engineered receptors that can be targeted to cell types using genetic methods. Here we describe recent progress for approaches using genetically engineered receptors that selectively interact with small molecules. Called "chemogenetics," receptors with diverse cellular functions have been developed that facilitate the selective pharmacological control over a diverse range of cell-signaling processes, including electrical activity, for molecularly defined cell types. These tools have revealed remarkably specific behavioral physiological influences for molecularly defined cell types that are often intermingled with populations having different or even opposite functions.
Collapse
Affiliation(s)
- Scott M Sternson
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147;
| | | |
Collapse
|
15
|
Parnaudeau S, O'Neill PK, Bolkan SS, Ward RD, Abbas AI, Roth BL, Balsam PD, Gordon JA, Kellendonk C. Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron 2013; 77:1151-62. [PMID: 23522049 DOI: 10.1016/j.neuron.2013.01.038] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2013] [Indexed: 02/08/2023]
Abstract
Cognitive deficits are central to schizophrenia, but the underlying mechanisms still remain unclear. Imaging studies performed in patients point to decreased activity in the mediodorsal thalamus (MD) and reduced functional connectivity between the MD and prefrontal cortex (PFC) as candidate mechanisms. However, a causal link is still missing. We used a pharmacogenetic approach in mice to diminish MD neuron activity and examined the behavioral and physiological consequences. We found that a subtle decrease in MD activity is sufficient to trigger selective impairments in prefrontal-dependent cognitive tasks. In vivo recordings in behaving animals revealed that MD-PFC beta-range synchrony is enhanced during acquisition and performance of a working memory task. Decreasing MD activity interfered with this task-dependent modulation of MD-PFC synchrony, which correlated with impaired working memory. These findings suggest that altered MD activity is sufficient to disrupt prefrontal-dependent cognitive behaviors and could contribute to the cognitive symptoms observed in schizophrenia.
Collapse
Affiliation(s)
- Sebastien Parnaudeau
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Löffler S, Körber J, Nubbemeyer U, Fehsel K. Comment on "Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition". Science 2012; 337:646; author reply 646. [PMID: 22879486 DOI: 10.1126/science.1222519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ray et al. (Reports, 29 July 2011, p. 637) assume that clozapine-N4-oxide (CNO) represents a "biologically inert synthetic ligand" that selectively activates the M4 muscarinic receptor-based DREADD (designer receptor exclusively activated by a designer drug). In contrast, due to the redox cycling of CNO with clozapine and to their cell membrane permeability, CNO is biologically active and its conversion products are capable of undermining DREADD effects.
Collapse
Affiliation(s)
- Stefan Löffler
- Department of Psychiatry and Psychotherapy, Clinic Offenbach, Teaching Hospital of Goethe University, D-63069 Offenbach, Germany.
| | | | | | | |
Collapse
|