1
|
Ren X, Wang Y, Li X, Wang X, Liu Z, Yang J, Wang L, Zheng C. Attenuated heterogeneity of hippocampal neuron subsets in response to novelty induced by amyloid-β. Cogn Neurodyn 2025; 19:56. [PMID: 40161457 PMCID: PMC11947398 DOI: 10.1007/s11571-025-10237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/24/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Alzheimer's disease (AD) patients exhibited episodic memory impairments including location-object recognition in a spatial environment, which was also presented in animal models with amyloid-β (Aβ) accumulation. A potential cellular mechanism was the unstable representation of spatial information and lack of discrimination ability of novel stimulus in the hippocampal place cells. However, how the firing characteristics of different hippocampal subsets responding to diverse spatial information were interrupted by Aβ accumulation remains unclear. In this study, we observed impaired novel object-location recognition in Aβ-treated Long-Evans rats, with larger receptive fields of place cells in hippocampal CA1, compared with those in the saline-treated group. We identified two subsets of place cells coding object information (ObjCell) and global environment (EnvCell) during the task, with firing heterogeneity in response to introduced novel information. ObjCells displayed a dynamic representation responding to the introduction of novel information, while EnvCells exhibited a stable representation to support the recognition of the familiar environment. However, the dynamic firing patterns of these two subsets of cells were disrupted to present attenuated heterogeneity under Aβ accumulation. The impaired spatial representation novelty information could be due to the disturbed gamma modulation of neural activities. Taken together, these findings provide new evidence for novelty recognition impairments of AD rats with spatial representation dysfunctions of hippocampal subsets.
Collapse
Affiliation(s)
- Xiaoxin Ren
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yimeng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xin Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xueling Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhaodi Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Jiajia Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Ling Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Chenguang Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| |
Collapse
|
2
|
Weng L, Peerdeman KJ, van Laarhoven AIM, Evers AWM. Generalisation of Placebo and Nocebo Effects: Current Knowledge and Future Directions. Eur J Pain 2025; 29:e70018. [PMID: 40342187 PMCID: PMC12059979 DOI: 10.1002/ejp.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/03/2025] [Accepted: 03/23/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND AND OBJECTIVE Placebo and nocebo effects are beneficial or adverse treatment outcomes upon administration of inert treatment components. These effects have been frequently studied on pain. It remains unclear to what extent generalisation occurs in these effects on pain and other somatic sensations. This review outlines the current knowledge on stimulus generalisation (i.e., generalisation over various stimuli) and response generalisation (i.e., generalisation over various responses) of placebo and nocebo effects on prevalent somatic sensations (i.e., pain, itch, dyspnea, nausea and fatigue). DATABASES AND DATA TREATMENT The databases PubMed, Web of Science and PsycINFO were systematically searched for peer-reviewed articles reporting on experimental studies in humans of the induction and generalisation of placebo and nocebo effects on prevalent somatic sensations. RESULTS Of 2025 records identified, 23 studies were included. These studies indicated that placebo and nocebo effects can generalise over stimuli (at perceptual, categorical and treatment levels) and over responses within modalities. Most studies investigated pain; fewer studies investigated itch, dyspnea, nausea and fatigue. Generalisation effects tend to be larger when the generalisation stimuli and responses more closely resemble the initial stimulus or response. Generalisation was more likely if a combination of verbal suggestion and conditioning was employed to induce placebo or nocebo effects than if either suggestion or conditioning was employed alone. Response generalisation across modalities remains unclear. CONCLUSIONS Placebo and nocebo effects can generalise over stimuli and responses. More experimental and clinical research is warranted to address carryover effects of placebo and nocebo effects. SIGNIFICANCE The current review provides an overview of the literature on the generalisation of placebo and nocebo effects to diverse stimuli and responses. This can ultimately benefit healthcare providers to prevent carryover effects of treatment failure and harness carryover effects of treatment success.
Collapse
Affiliation(s)
- Lingling Weng
- School of PsychologyShenzhen UniversityShenzhenChina
- Health, Medical and Neuropsychology UnitInstitute of Psychology, Leiden UniversityLeidenthe Netherlands
- Leiden Institute for Brain and Cognition (LIBC)Leiden UniversityLeidenthe Netherlands
| | - Kaya J. Peerdeman
- Health, Medical and Neuropsychology UnitInstitute of Psychology, Leiden UniversityLeidenthe Netherlands
- Leiden Institute for Brain and Cognition (LIBC)Leiden UniversityLeidenthe Netherlands
| | - Antoinette I. M. van Laarhoven
- Health, Medical and Neuropsychology UnitInstitute of Psychology, Leiden UniversityLeidenthe Netherlands
- Leiden Institute for Brain and Cognition (LIBC)Leiden UniversityLeidenthe Netherlands
| | - Andrea W. M. Evers
- Health, Medical and Neuropsychology UnitInstitute of Psychology, Leiden UniversityLeidenthe Netherlands
- Leiden Institute for Brain and Cognition (LIBC)Leiden UniversityLeidenthe Netherlands
- Department of PsychiatryLeiden University Medical CenterLeidenthe Netherlands
- Medical Delta, Leiden University, Technical University Delft, Rotterdam UniversityRotterdamthe Netherlands
| |
Collapse
|
3
|
Hassell JE, Arellano Perez AD, Vasudevan K, Ressler RL, Garcia GM, Parr M, Vierkant VM, Bayer H, Maren S. Hippocampal ensembles regulate circuit-induced relapse of extinguished fear. Mol Psychiatry 2025:10.1038/s41380-025-03064-3. [PMID: 40413310 DOI: 10.1038/s41380-025-03064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 05/02/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Extinction learning is central to behavioral therapies for post-traumatic stress disorder (PTSD), but relapse poses a major challenge to this approach. Recent work has revealed a critical role for the thalamic nucleus reuniens (RE) in the suppression of extinguished fear memories. Silencing the RE yields a relapse of extinguished fear (i.e., "circuit-induced relapse"). Considerable work suggests that RE may contribute to extinction by inhibiting the retrieval of hippocampal (HPC)-dependent fear memories. To test this hypothesis, we first examined whether undermining the formation of contextual fear memories in the HPC would prevent circuit-induced relapse. Intra-hippocampal infusions of the NMDA receptor antagonist, APV, prior to auditory fear conditioning eliminated contextual fear memory and prevented the subsequent relapse of extinguished fear to the auditory conditioned stimulus (CS). In a second experiment, we used an activity-dependent labeling system (AAV-cFos-tTA; AAV-TRE-hM3Dq-mCherry) to express excitatory DREADDs in HPC neurons during fear conditioning. Chemogenetic reactivation of these ensembles after extinction was sufficient to drive relapse of fear to the extinguished CS. Lastly, in a third experiment, we expressed excitatory DREADDs in HPC ensembles captured during extinction learning and found that chemogenetic reactivation of this ensemble was sufficient to inhibit circuit-induced relapse. These results reveal that HPC-dependent ensembles play a critical role in regulating the expression and relapse of extinguished fear.
Collapse
Affiliation(s)
- James E Hassell
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Angel D Arellano Perez
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Krithika Vasudevan
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Reed L Ressler
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Gabriela M Garcia
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Madison Parr
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Valerie M Vierkant
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Hugo Bayer
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, 61820, USA.
| |
Collapse
|
4
|
Li H, Zhan X, Zhao X, Zhou J, Chen K, Chen Y, Liu H, Jiang Z. Exploring the differences in resting state functional magnetic resonance imaging brain activity in patients with chronic low back pain based on ALE meta-analysis. THE JOURNAL OF PAIN 2025; 32:105442. [PMID: 40403861 DOI: 10.1016/j.jpain.2025.105442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/03/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025]
Abstract
Chronic low back pain (cLBP) is a prevalent condition, yet neuroimaging findings across studies remain inconsistent. This inconsistency may stem from overreliance on a priori regions of interest (ROI) hypotheses in prior studies, which neglected the spatial distribution of true functional abnormalities in cLBP. To address methodological heterogeneity, this study conducted an activation likelihood estimation (ALE) meta-analysis, guided by high-quality neuroimaging meta-analysis guidelines, to identify reliable neural features across 17 eligible cLBP studies, providing more robust conclusions than individual neuroimaging studies. Significantly, the cLBP group exhibited enhanced activity in the bilateral medial frontal gyrus (MFG), right precentral gyrus, and right cingulate gyrus. Based on the data-driven and objective ROI, we further analyzed the functional interactions or connectivity between brain regions by including a cohort of 30 patients with chronic non-specific low back pain (CNLBP) and 30 age- and sex-matched healthy controls. The results revealed decrease functional connectivity in the cortico-limbic circuit in the CNLBP group, particularly between the left MFG and the right hippocampus. Furthermore, effective connectivity from the right to left MFG was significantly reduced in the CNLBP group. Multivariate regression analysis established significant associations between cortico-limbic circuit connectivity alterations and pain catastrophizing. These findings highlight the cortico-limbic circuit as a key biomarker for cLBP, suggesting its targeted modulation could inform novel therapeutic strategies. This study provides novel neurobiological insights into cLBP pathophysiology, while underscoring the necessity for replication in larger cohorts to validate clinically valuable. PERSPECTIVE: This study utilized ALE meta-analysis to investigate abnormal activation regions in cLBP patients, and further analysis revealed functional interactions or connectivity between brain regions. The results highlighted the cortico-limbic circuit as a key biomarker of cLBP, suggesting that modulating this circuit may provide insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Huibiao Li
- Department of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xiaonan Zhan
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; The First Clinical Medical College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xin Zhao
- Department of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jianhao Zhou
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; The First Clinical Medical College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Ke Chen
- Department of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Youmei Chen
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; The First Clinical Medical College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Hong Liu
- Department of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zheng Jiang
- Department of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
5
|
Lin X, Ghafuri A, Chen X, Kazmi M, Nitz DA, Xu X. Projection-specific circuits of retrosplenial cortex with differential contributions to spatial cognition. Mol Psychiatry 2025; 30:2068-2084. [PMID: 39511453 PMCID: PMC12014379 DOI: 10.1038/s41380-024-02819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/20/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Retrosplenial cortex (RSC) is a brain region involved in neuropsychiatric and neurodegenerative disorders. It has reciprocal connections with a diverse set of cortical and subcortical brain regions, but the afferent structure and behavioral function of circuits defined by its projection-specific sub-populations have yet to be determined. The corticocortical connections between RSC and secondary motor cortex (M2), as well as corticothalamic connections between RSC and anterodorsal thalamus (AD) have been hypothesized to function as semi-independent, but parallel pathways that impact spatial information processing in distinct ways. We used retrograde and anterograde viral tracers and monosynaptic retrograde rabies virus to quantitatively characterize and compare the afferent and efferent distributions of retrosplenial neuron sub-populations projecting to M2 and AD. AD-projecting and M2-projecting RSC neurons overlap in their collateral projections to other brain regions, but not in their projections to M2 and AD, respectively. Compared with AD-projecting RSC neurons, M2-projecting RSC neurons received much greater afferent input from the dorsal subiculum, AD, lateral dorsal and lateral posterior thalamus, and somatosensory cortex. AD-projecting RSC neurons received greater input from the anterior cingulate cortex and medial septum. We performed chemogenetic inhibition of M2- and AD-projecting RSC neurons and examined its impact on object-location memory, object-recognition, open-field exploration, and place-action association. Our findings indicate that inhibition of M2-projecting RSC neurons impairs object location memory as well as place-action association, while the RSC to AD pathway impacts only object-location memory. The findings indicate that RSC is composed of semi-independent circuits distinguishable by their afferent/efferent distributions and differing in the cognitive functions to which they contribute.
Collapse
Affiliation(s)
- Xiaoxiao Lin
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Ali Ghafuri
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Xiaojun Chen
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Musab Kazmi
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Douglas A Nitz
- Department of Cognitive Science, University of California, La Jolla, San Diego, CA, 92093, USA.
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Xiangmin Xu
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
6
|
Rivera JF, Huang H, Weng W, Sohn H, Girasole AE, Li S, Albanese MA, Qin M, Tao C, Klug ME, Rao S, Paletzki R, Herring BE, Kanoski SE, Zhang LI, Gerfen CR, Sabatini BL, Arnold DB. ATLAS: a rationally designed anterograde transsynaptic tracer. Nat Methods 2025; 22:1101-1111. [PMID: 40312509 PMCID: PMC12074993 DOI: 10.1038/s41592-025-02670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/11/2025] [Indexed: 05/03/2025]
Abstract
Genetically modified rabies virus can map neural circuits retrogradely from genetically determined cells. However, similar tools for anterograde tracing are not available. Here, we describe a method for anterograde transsynaptic tracing from genetically determined neurons based on a rationally designed protein, ATLAS. Expression of ATLAS in neurons causes presynaptic release of a payload composed of an antibody-like protein, AMPA.FingR, which binds to the N terminus of GluA1, and a recombinase. In the synaptic cleft, AMPA.FingR binds to GluA1, causing the payload to be endocytosed into postsynaptic cells and delivered to the nucleus, where it triggers expression of a recombinase-dependent reporter. In mice, ATLAS mediates monosynaptic transneuronal tracing from random or genetically determined cells that is strictly anterograde, synaptic and nontoxic. Moreover, ATLAS-mediated tracing shows activity dependence, suggesting that it can label active circuits underlying specific behaviors. Finally, ATLAS is composed of modular components that can be independently replaced or modified.
Collapse
Affiliation(s)
- Jacqueline F Rivera
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Haoyang Huang
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Weiguang Weng
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Heesung Sohn
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Allison E Girasole
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Shun Li
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Madeline A Albanese
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Melissa Qin
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Can Tao
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Molly E Klug
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Sadhna Rao
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Ronald Paletzki
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD, USA
| | - Bruce E Herring
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Scott E Kanoski
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Li I Zhang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Charles R Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD, USA
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Don B Arnold
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA.
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Bao ST, Rao F, Yin C, Niu Y, Cao JL, Xiao C, Zhou C. Excitatory projections from the nucleus reuniens to the medial prefrontal cortex modulate pain and depression-like behaviors in mice. PLoS Biol 2025; 23:e3003170. [PMID: 40392890 PMCID: PMC12091829 DOI: 10.1371/journal.pbio.3003170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/17/2025] [Indexed: 05/22/2025] Open
Abstract
The medial prefrontal cortex (mPFC) is implicated in emotional processing, cognition, and pain sensation, moreover, its circuitry undergoes neuroplastic changes in chronic pain. Although the nucleus reuniens (RE) of the thalamus provides significant glutamatergic inputs to the mPFC, it remains unclear whether this projection contributes to plasticity changes in the mPFC and pain-related behaviors in chronic pain. Using fiber photometry, we demonstrated that RE neurons responded to pain stimulation and emotional changes. Optogenetic activation of RE neurons and their projections to the mPFC (RE-mPFC projection) elicits hyperalgesia and depression-like behaviors in naïve mice. In a neuropathic pain mouse model, RE neurons were hyperactive, and the RE-mPFC projection was enhanced with a marked preference for the part innervating GABAergic circuits in the mPFC to that controlling mPFC neurons projecting to the ventrolateral periaqueductal gray (vlPAG). Expectedly, optogenetic inhibition of RE neurons and the RE-mPFC projection ameliorated pain-like and depression-like behaviors in neuropathic pain mice. Additionally, chemogenetic inhibition of RE-mPFC neurons conferred analgesia in neuropathic pain mice exposed to both acute and chronic morphine. Our findings highlight the significant role of the RE-mPFC pathway in neuropathic pain comorbid with depression, suggesting its potential as a target for treatment of neuropathic pain.
Collapse
Affiliation(s)
- Shu-Ting Bao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Fang Rao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cui Yin
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Department of Anesthesia, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Cheng Xiao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Chunyi Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Wu Y, Fan L, Chen W, Su X, An S, Yao N, Zhu Q, Huang ZG, Li Y. Brain dynamics alterations induced by partial sleep deprivation: An energy landscape study. Neuroimage 2025; 310:121108. [PMID: 40031962 DOI: 10.1016/j.neuroimage.2025.121108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025] Open
Abstract
Partial sleep deprivation (PSD) alters neural activity of intrinsic brain networks involved in cognitive functions. However, the age-related time-varying properties of large-scale brain functional networks after PSD remain unknown. Our study applied energy landscape analysis to resting-state functional magnetic resonance imaging data to characterize the dominant brain activity patterns in 36 healthy young (19 females, 23.53 ± 2.36 years) and 33 healthy older (18 females, 68.81 ± 2.41 years) adults after full sleep (FS) and PSD. Dynamic properties of these patterns, including appearance probability, duration and transitions, were then calculated. Finally, a 105 steps numerical simulation was performed on each energy landscape. We found that the energy landscapes of the younger and older groups had similar hierarchical structures, including two major states and two minor states. The two major states showed complementary spontaneous activation patterns. But the PSD has altered the temporal evolution of these major brain states in younger participants, manifested by significantly higher appearance frequency of the major states and the direct transitions between major states than FS. These changes were not significant in older participants. Additionally, the weaker functional segregation between two modules assigned by two complementary major states was found during PSD than FS in young group. We further demonstrated that such abnormal brain network functional coordination was associated with the atypical brain dynamics and behaviors. These findings suggested a low-dimensional and restricted dynamic landscape of brain activity in young adults after PSD and provided new insight into understand the neural effects of PSD.
Collapse
Affiliation(s)
- Yutong Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, 710049, China; Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Liming Fan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, 710049, China; First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Wei Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, 710049, China; Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xing Su
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, 710049, China; Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Simeng An
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, 710049, China; Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Nan Yao
- Department of Applied Physics, Shaanxi University Key Laboratory of Photonic Power Devices and Discharge Regulation, Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi'an University of Technology, Xi'an, 710054, China
| | - Qian Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, 710049, China; Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zi-Gang Huang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, 710049, China; Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Youjun Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, 710049, China; Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| |
Collapse
|
9
|
Sazhina T, Tsurugizawa T, Mochizuki Y, Saito A, Joji-Nishino A, Ouchi K, Yagishita S, Emoto K, Uematsu A. Time- and sex-dependent effects of juvenile social isolation on mouse brain morphology. Neuroimage 2025; 310:121117. [PMID: 40049304 DOI: 10.1016/j.neuroimage.2025.121117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
During early life stages, social isolation disrupts the proper brain growth and brain circuit formation, which is associated with the risk of mental disorders and cognitive deficits in adulthood. Nevertheless, the impact of juvenile social isolation on brain development, particularly regarding variations across age and sex, remains poorly understood. Here, we investigate the effects of social isolation stress (SIS) during early (3-5 weeks old) or late (5-7 weeks old) juvenile period on brain morphology in adult male and female mice using ultra high-field MRI (11.7 T). We found that both early and late SIS in female mice led to volumetric increases in multiple brain regions, such as the medial prefrontal cortex (mPFC) and hippocampus. Correlation tractography revealed that the fiber tracts in the right corpus callosum and right amygdala were positively correlated with SIS in female mice. In male mice, early SIS resulted in small volumetric increases in the isocortex, whereas late SIS led to reductions in the isocortex and hypothalamus. Furthermore, early SIS caused a negative correlation, while late SIS exhibited a positive correlation, with fiber tracts in the corpus callosum and amygdala in male mice. Using a Random Forest classifier, we achieved effective discrimination between socially isolated and control conditions in the brain volume of female mice, with the limbic areas playing a key role in the model's accuracy. Finally, we discovered that SIS led to context fear generalization in a sex-dependent manner. Our findings highlight the importance of considering both the time- and sex-dependent effects of juvenile SIS on brain development and emotional processing, providing new insights into its long-term consequences.
Collapse
Affiliation(s)
- Tatiana Sazhina
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki, Japan
| | - Yuki Mochizuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan; Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Aika Saito
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Asuka Joji-Nishino
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kazuya Ouchi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki, Japan
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan.
| | - Akira Uematsu
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
10
|
Subramanian R, Bauman A, Carpenter O, Cho C, Coste G, Dam A, Drake K, Ehnstrom S, Fitzgerald N, Jenkins A, Koolpe H, Liu R, Paserman T, Petersen D, Chavez DS, Rozental S, Thompson H, Tsukuda T, Zweig S, Gall M, Zupan B, Bergstrom H. An infralimbic cortex engram encoded during learning attenuates fear generalization. J Neurosci 2025; 45:e2120242025. [PMID: 40147934 PMCID: PMC12060607 DOI: 10.1523/jneurosci.2120-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Generalization allows previous experience to adaptively guide behavior when conditions change. The infralimbic (IL) subregion of the ventromedial prefrontal cortex plays a known role in generalization processes, although mechanisms remain unclear. A basic physical unit of memory storage and expression in the brain is a sparse, distributed group of neurons known as an engram. Here, we set out to determine whether an engram established during learning contributes to generalized responses in IL. Generalization was tested in male and female mice by presenting a novel, ambiguous, tone generalization stimulus following Pavlovian defensive (fear) conditioning. The first experiment was designed to test a global role for IL in generalization using chemogenetic manipulations. Results show IL regulates defensive behavior in response to ambiguous stimuli. IL silencing led to a switch in defensive state, from vigilant scanning to generalized freezing, while IL stimulation reduced freezing in favor of scanning. Leveraging activity-dependent "tagging" technology (ArcCreERT2 x eYFP system), an engram, preferentially located in IL Layer 2/3, was associated with the generalization stimulus. Remarkably, in the identical discrete location, fewer reactivated neurons were associated with the generalization stimulus at the remote timepoint (30 days) following learning. When an IL engram established during learning was selectively chemogenetically silenced, freezing increased. Conversely, IL engram stimulation reduced freezing, suggesting attenuated fear generalization. Overall, these data identify a crucial role for IL in suppressing generalized conditioned responses. Further, an IL engram formed during learning functions to later attenuate a conditioned response in the presence of ambiguous threat stimuli.Significance statement Generalization refers to the ability for organisms to use previous experience to guide behavior when environmental conditions change. Despite the immense importance of generalization in adaptive behavior, the precise brain mechanisms remain unknown. Here we identified a small population of neurons, known as an engram, in a discrete region of the frontal cortex that was associated with the expression of generalization related to a threatening situation. When these cells were turned off, generalization increased. When they were turned on, generalization decreased. Considering that over-generalization of threatening stimuli is a known fundamental dimension of both anxiety and post-traumatic stress disorders, these findings have implications not only for our understanding of intrinsic generalization processes but also highly prevalent clinical disorders.
Collapse
Affiliation(s)
- Rajani Subramanian
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Avery Bauman
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Olivia Carpenter
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Chris Cho
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Gabrielle Coste
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Ahona Dam
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Kasey Drake
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Sara Ehnstrom
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Naomi Fitzgerald
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Abigail Jenkins
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Hannah Koolpe
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Runqi Liu
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Tamar Paserman
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - David Petersen
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Diego Scala Chavez
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Stefano Rozental
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Hannah Thompson
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Tyler Tsukuda
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Sasha Zweig
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Megan Gall
- Biology, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12603
| | - Bojana Zupan
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Hadley Bergstrom
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| |
Collapse
|
11
|
López-Moraga A, Luyten L, Beckers T. Generalization and extinction of platform-mediated avoidance in male and female rats. Sci Rep 2025; 15:9730. [PMID: 40118949 PMCID: PMC11928644 DOI: 10.1038/s41598-025-94265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/12/2025] [Indexed: 03/24/2025] Open
Abstract
Understanding anxiety-related disorders can be advanced by studying the fear learning mechanisms implicated in the transition from adaptive to maladaptive fear. Individuals with anxiety disorders often show impaired fear extinction, pervasive avoidance, and overgeneralization of fear. While these characteristics are usually studied in isolation, their interactions are less understood. We modified the platform-mediated avoidance task to chart avoidance, generalization, and extinction in male and female rats. Male rats acquired avoidance, showed a gradient of generalization, and reduced avoidance and fear under extinction. Female rats also learned avoidance, showed gradual generalization, and extinction of defensive behaviors. Sex differences emerged in extinction learning but were subtler than expected. We present an open-source automated system for processing DeepLabCut and SimBA output to score avoidance and freezing behavior. This task effectively probes avoidance, generalization, and extinction of fear in rats, and our automated scoring approach offers a effective method to quantify defensive behaviors.
Collapse
Affiliation(s)
- Alba López-Moraga
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Laura Luyten
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Tom Beckers
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Fiorentini G, Massé E, Ficarella SC, Torromino G. Peripheral transcutaneous electrical stimulation to improve cognition: a review of the main effects in healthy humans and in mildly cognitively impaired patient populations. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111290. [PMID: 39938732 DOI: 10.1016/j.pnpbp.2025.111290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Peripheral nerve stimulation (PNS) is an ancient technique, up to now mainly used for pain management. The least invasive approach for PNS is transcutaneous electrical stimulation (TENS), which is performed by delivering mild electric currents through the skin and, depending on the stimulation pattern, activates the somatosensory Aβ-, Aδ- and C-fibers. In addition to its use for pain relief, accumulating data indicates that TENS can have broad-spectrum cognitive effects through the activation of neuromodulatory brain pathways. This review aims to summarize the current evidence on the cognitive effects of TENS, from healthy participants and mildly cognitively affected patients. Most studies on this topic have investigated the effects of TENS on memory, while fewer studies have explored attention, executive functions, and verbal fluency. Overall, promising evidence suggests that TENS may exert positive effects on specific cognitive functions. Further research is needed to build consensus on the most effective stimulation protocols, for both neurorehabilitation and enhancement, and to better understand the neurobiological mechanisms underlying the cognitive effects of TENS.
Collapse
Affiliation(s)
- Giulia Fiorentini
- Department of Humanistic Studies, University of Naples Federico II, Naples, Italy
| | - Eva Massé
- Information Processing and Systems, Office National d'Etudes et de Recherches Aérospatiales, Salon de Provence, France; Institut de Neurosciences de la Timone, CNRS & Aix-Marseille Université, Marseille, France
| | - Stefania C Ficarella
- Information Processing and Systems, Office National d'Etudes et de Recherches Aérospatiales, Salon de Provence, France
| | - Giulia Torromino
- Department of Humanistic Studies, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
13
|
Tuna T, Totty MS, Badarnee M, Mourão FAG, Peters S, Milad MR, Maren S. Associative coding of conditioned fear in the thalamic nucleus reuniens in rodents and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643915. [PMID: 40166211 PMCID: PMC11957024 DOI: 10.1101/2025.03.18.643915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The nucleus reuniens (RE) is a midline thalamic structure interconnecting the medial prefrontal cortex (mPFC) and the hippocampus (HPC). Recent work in both rodents and humans implicates the RE in the adaptive regulation of emotional memories, including the suppression of learned fear. However, the neural correlates of aversive learning in the RE of rodents and humans remains unclear. To address this, we recorded RE activity in humans (BOLD fMRI) and rats (fiber photometry) during Pavlovian fear conditioning and extinction. In both rats and humans, we found that conditioned stimulus (CS)-evoked activity in RE reflects the associative value of the CS. In rats, we additionally found that spontaneous neural activity in RE tracks defensive freezing and shows anticipatory increases in calcium activity that precede the termination of freezing behavior. Single-unit recordings in rats confirmed that individual RE neurons index both the associative value of the CS and defensive behavior transitions. Moreover, distinct neuronal ensembles in the RE encode fear versus extinction memories. These findings suggest a conserved role of the RE across species in modulating defensive states and emotional memory processes, providing a foundation for future translational research on fear-related disorders.
Collapse
Affiliation(s)
- Tuğçe Tuna
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX
- Institute for Neuroscience, Texas A&M University, College Station, TX
| | - Michael S. Totty
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Muhammad Badarnee
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, TX
| | | | - Shaun Peters
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX
| | - Mohammed R. Milad
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, TX
| | - Stephen Maren
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL
| |
Collapse
|
14
|
Basha D, Azarmehri A, Proulx E, Chauvette S, Ghorbani M, Timofeev I. The reuniens nucleus of the thalamus facilitates hippocampo-cortical dialogue during sleep. eLife 2025; 12:RP90826. [PMID: 40047245 PMCID: PMC11884783 DOI: 10.7554/elife.90826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Memory consolidation during sleep depends on the interregional coupling of slow waves, spindles, and sharp wave-ripples (SWRs), across the cortex, thalamus, and hippocampus. The reuniens nucleus of the thalamus, linking the medial prefrontal cortex (mPFC) and the hippocampus, may facilitate interregional coupling during sleep. To test this hypothesis, we used intracellular, extracellular unit and local field potential recordings in anesthetized and head restrained non-anesthetized cats as well as computational modelling. Electrical stimulation of the reuniens evoked both antidromic and orthodromic intracellular mPFC responses, consistent with bidirectional functional connectivity between mPFC, reuniens and hippocampus in anesthetized state. The major finding obtained from behaving animals is that at least during NREM sleep hippocampo-reuniens-mPFC form a functional loop. SWRs facilitate the triggering of thalamic spindles, which later reach neocortex. In return, transition to mPFC UP states increase the probability of hippocampal SWRs and later modulate spindle amplitude. During REM sleep hippocampal theta activity provides periodic locking of reuniens neuronal firing and strong crosscorrelation at LFP level, but the values of reuniens-mPFC crosscorrelation was relatively low and theta power at mPFC was low. The neural mass model of this network demonstrates that the strength of bidirectional hippocampo-thalamic connections determines the coupling of oscillations, suggesting a mechanistic link between synaptic weights and the propensity for interregional synchrony. Our results demonstrate the presence of functional connectivity in hippocampo-thalamo-cortical network, but the efficacy of this connectivity is modulated by behavioral state.
Collapse
Affiliation(s)
- Diellor Basha
- Département de psychiatrie et de neurosciences, Université LavalQuebecCanada
- CERVO Centre de recherche, Université LavalQuébecCanada
| | - Amirmohammad Azarmehri
- Department of Psychiatry and Neuroscience, Department of Electrical Engineering, Ferdowsi University of MashhadMashhadIran
| | - Elian Proulx
- Département de psychiatrie et de neurosciences, Université LavalQuebecCanada
| | | | - Maryam Ghorbani
- Department of Psychiatry and Neuroscience, Department of Electrical Engineering, Ferdowsi University of MashhadMashhadIran
| | - Igor Timofeev
- Département de psychiatrie et de neurosciences, Université LavalQuebecCanada
- CERVO Centre de recherche, Université LavalQuébecCanada
| |
Collapse
|
15
|
Goh RCW, Mu MD, Yung WH, Ke Y. The midline thalamic nucleus reuniens promotes compulsive-like grooming in rodents. Transl Psychiatry 2025; 15:67. [PMID: 39994171 PMCID: PMC11850824 DOI: 10.1038/s41398-025-03283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Obsessive-compulsive disorder (OCD), a disabling and notoriously treatment-resistant neuropsychiatric disorder, affects 2-3% of the general population and is characterized by recurring, intrusive thoughts (obsessions) and repetitive, ritualistic behaviors (compulsions). Although long associated with dysfunction within the cortico-striato-thalamic-cortical circuits, the thalamic role in OCD pathogenesis remains highly understudied in the literature. Here, we identified a rat thalamic nucleus - the reuniens (NRe) - that mediates persistent, compulsive self-grooming behavior. Optogenetic activation of this nucleus triggers immediate, excessive grooming with strong irresistibility, increases anxiety, and induces negative affective valence. A thalamic-hypothalamic pathway linking NRe to the dorsal premammillary nucleus (PMd) was discovered to mediate excessive self-grooming behavior and render it a defensive coping response to stress, mirroring the compulsions faced by OCD patients. Given the close resemblance between this self-grooming behavior and the clinical manifestations of OCD, the results from this study highlight the role of NRe in mediating OCD-like compulsive behaviors. This can be attributed to NRe's position at the nexus of an extensive frontal-striatal-thalamic network regulating cognition, emotion, and stress-related behaviors, suggesting NRe as a potential novel target for intervention.
Collapse
Affiliation(s)
- Romeo Chen Wei Goh
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ming-Dao Mu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Wing-Ho Yung
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| |
Collapse
|
16
|
Rivera Núñez MV, McMakin DL, Mattfeld AT. Nucleus reuniens: Modulating emotional overgeneralization in peri-adolescents with anxiety. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025; 25:173-187. [PMID: 39390288 DOI: 10.3758/s13415-024-01226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Anxiety affects 4.4-million children in the USA with an onset between childhood and adolescence, a period marked by neural changes that impact emotions and memory. Negative overgeneralization - or responding similarly to innocuous events that share features with past aversive experiences - is common in anxiety but remains mechanistically underspecified. The nucleus reuniens (RE) has been considered a crucial candidate in the modulation of memory specificity. Our study investigated its activation and functional connectivity with the medial prefrontal cortex (mPFC) and hippocampus (HPC) as neurobiological mechanisms of negative overgeneralization in anxious youth. METHODS As part of a secondary data analysis, we examined data from 34 participants between 9 and 14 years of age (mean age ± SD, 11.4 ± 2.0 years; 16 females) with varying degrees of anxiety severity. During the Study session participants rated images as negative, neutral, and positive. After 12 h, participants returned for a Test session, where they performed a memory recognition test with repeated (targets) and similar (lures) images. Labeling negative relative to neutral lures as "old" (false alarms) was our operational definition of negative overgeneralization. RESULTS Negative relative to neutral false alarmed stimuli displayed elevated RE activation (at Study and Test) and increased functional connectivity with the Cornu Ammonis (CA) 1 (at Test). Elevated anxiety severity was associated with reductions in the RE-mPFC functional coupling for neutral relative to negative stimuli. Exploratory analyses revealed similar patterns in activation and functional connectivity with positive stimuli. CONCLUSIONS Our findings demonstrate the importance of the RE in negative overgeneralization and anxiety.
Collapse
Affiliation(s)
| | - Dana L McMakin
- Center for Children and Families, Florida International University, Miami, FL, 33199, USA
| | - Aaron T Mattfeld
- Center for Children and Families, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
17
|
Zhou Y, Huang S, Zhang T, Deng D, Huang L, Chen X. Deciphering consciousness: The role of corticothalamocortical interactions in general anesthesia. Pharmacol Res 2025; 212:107593. [PMID: 39788339 DOI: 10.1016/j.phrs.2025.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/09/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
General anesthesia is administered to millions of individuals each year, however, the precise mechanism by which it induces unconsciousness remains unclear. While some theories suggest that anesthesia shares similarities with natural sleep, targeting sleep-promoting areas and inhibiting arousal nuclei, recent research indicates a more complex process. Emerging evidence highlights the critical role of corticothalamocortical circuits, which are involved in higher cognitive functions, in controlling arousal states and modulating transitions between different conscious states during anesthesia. The administration of general anesthetics disrupts connectivity within these circuits, resulting in a reversible state of unconsciousness. This review elucidates how anesthetics impair corticothalamocortical interactions, thereby affecting the flow of information across various cortical layers and disrupting higher-order cognitive functions while preserving basic sensory processing. Additionally, the role of the prefrontal cortex in regulating arousal through both top-down and bottom-up pathways was examined. These findings highlight the intricate interplay between the cortical and subcortical networks in maintaining and restoring consciousness under anesthesia, offering potential therapeutic targets for enhancing anesthesia management.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Li Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
18
|
Biltz RG, Yin W, Goodman EJ, Wangler LM, Davis AC, Oliver BT, Godbout JP, Sheridan JF. Repeated social defeat in male mice induced unique RNA profiles in projection neurons from the amygdala to the hippocampus. Brain Behav Immun Health 2025; 43:100908. [PMID: 39720627 PMCID: PMC11667635 DOI: 10.1016/j.bbih.2024.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Chronic stress increases the incidence of psychiatric disorders including anxiety, depression, and posttraumatic stress disorder. Repeated Social Defeat (RSD) in mice recapitulates several key physiological, immune, and behavioral changes evident after chronic stress in humans. For instance, neurons in the prefrontal cortex, amygdala, and hippocampus are involved in the interpretation of and response to fear and threatful stimuli after RSD. Therefore, the purpose of this study was to determine how stress influenced the RNA profile of hippocampal neurons and neurons that project into the hippocampus from threat appraisal centers. Here, RSD increased anxiety-like behavior in the elevated plus maze and reduced hippocampal-dependent novel object location memory in male mice. Next, pan-neuronal (Baf53 b-Cre) RiboTag mice were generated to capture ribosomal bound mRNA (i.e., active translation) activated by RSD in the hippocampus. RNAseq revealed that there were 1694 differentially expressed genes (DEGs) in hippocampal neurons after RSD. These DEGs were associated with an increase in oxidative stress, synaptic long-term potentiation, and neuroinflammatory signaling. To further examine region-specific neural circuitry associated with fear and anxiety, a retrograde-adeno-associated-virus (AAV2rg) expressing Cre-recombinase was injected into the hippocampus of male RiboTag mice. This induced expression of a hemagglutinin epitope in neurons that project into the hippocampus. These AAV2rg-RiboTag mice were subjected to RSD and ribosomal-bound mRNA was collected from the amygdala for RNA-sequencing. RSD induced 677 DEGs from amygdala projections. Amygdala neurons that project into the hippocampus had RNA profiles associated with increased synaptogenesis, interleukin-1 signaling, nitric oxide, and reactive oxygen species production. Using a similar approach, there were 1132 DEGs in neurons that project from the prefrontal cortex. These prefrontal cortex neurons had RNA profiles associated with increased synaptogenesis, integrin signaling, and dopamine feedback signaling after RSD. Collectively, there were unique RNA profiles of stress-influenced projection neurons and these profiles were associated with hippocampal-dependent behavioral and cognitive deficits.
Collapse
Affiliation(s)
- Rebecca G. Biltz
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
| | - Wenyuan Yin
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
| | - Ethan J. Goodman
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
| | - Lynde M. Wangler
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
| | - Amara C. Davis
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
| | - Braedan T. Oliver
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, USA
| | - Jonathan P. Godbout
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
- Chronic Brain Injury Program, The Ohio State University, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, USA
| | - John F. Sheridan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
- Division of Biosciences, The Ohio State University College of Dentistry, USA
- Chronic Brain Injury Program, The Ohio State University, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, USA
| |
Collapse
|
19
|
Ziółkowska M, Sotoudeh N, Cały A, Puchalska M, Pagano R, Śliwińska MA, Salamian A, Radwanska K. Projections from thalamic nucleus reuniens to hippocampal CA1 area participate in context fear extinction by affecting extinction-induced molecular remodeling of excitatory synapses. eLife 2025; 13:RP101736. [PMID: 39846718 PMCID: PMC11756855 DOI: 10.7554/elife.101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
The ability to extinguish contextual fear in a changing environment is crucial for animal survival. Recent data support the role of the thalamic nucleus reuniens (RE) and its projections to the dorsal hippocampal CA1 area (RE→dCA1) in this process. However, it remains poorly understood how RE impacts dCA1 neurons during contextual fear extinction (CFE). Here, we reveal that the RE→dCA1 pathway contributes to the extinction of contextual fear by affecting CFE-induced molecular remodeling of excitatory synapses. Anatomical tracing and chemogenetic manipulation in mice demonstrate that RE neurons form synapses and regulate synaptic transmission in the stratum oriens (SO) and lacunosum-moleculare (SLM) of the dCA1 area, but not in the stratum radiatum (SR). We also observe CFE-specific structural changes of excitatory synapses and expression of the synaptic scaffold protein, PSD-95, in both strata innervated by RE, but not in SR. Interestingly, only the changes in SLM are specific for the dendrites innervated by RE. To further support the role of the RE→dCA1 projection in CFE, we demonstrate that brief chemogenetic inhibition of the RE→dCA1 pathway during a CFE session persistently impairs the formation of CFE memory and CFE-induced changes of PSD-95 levels in SLM. Thus, our data indicate that RE participates in CFE by regulating CFE-induced molecular remodeling of dCA1 synapses.
Collapse
Affiliation(s)
- Magdalena Ziółkowska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Narges Sotoudeh
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Anna Cały
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Monika Puchalska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Roberto Pagano
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Malgorzata Alicja Śliwińska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Ahmad Salamian
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| |
Collapse
|
20
|
Vincent CJ, Aguilar-Alvarez R, Vanderhoof SO, Mott DD, Jasnow AM. An amygdala-cortical circuit for encoding generalized fear memories. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633190. [PMID: 39868237 PMCID: PMC11761744 DOI: 10.1101/2025.01.15.633190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Generalized learning is a fundamental process observed across species, contexts, and sensory modalities that enables animals to use past experiences to adapt to changing conditions. Evidence suggests that the prefrontal cortex (PFC) extracts general features of an experience that can be used across multiple situations. The anterior cingulate cortex (ACC), a region of the PFC, is implicated in generalized fear responses to novel contexts. However, the ACC's role in encoding contextual information is poorly understood, especially under increased threat intensity that promotes generalization. Here, we show that synaptic plasticity within the ACC and signaling from amygdala inputs during fear learning are necessary for generalized fear responses to novel encountered contexts. The ACC did not encode specific fear to the training context, suggesting this region extracts general features of a threatening experience rather than specific contextual information. Together with our previous work, our results demonstrate that generalized learning about threatening contexts is encoded, in part, within an ascending amygdala-cortical circuit, whereas descending ACC projections to the amygdala drive generalized fear responses during exposure to novel contexts. Our results further demonstrate that schematic learning can occur in the PFC after single-trial learning, a process typically attributed to learning over many repeated learning episodes.
Collapse
|
21
|
Markam PS, Bourguignon C, Zhu L, Ward B, Darvas M, Sabatini PV, Kokoeva MV, Giros B, Storch KF. Mesolimbic dopamine neurons drive infradian rhythms in sleep-wake and heightened activity state. SCIENCE ADVANCES 2025; 11:eado9965. [PMID: 39742489 DOI: 10.1126/sciadv.ado9965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
Infradian mood and sleep-wake rhythms with periods of 48 hours and beyond have been observed in patients with bipolar disorder (BD), which even persist in the absence of exogenous timing cues, indicating an endogenous origin. Here, we show that mice exposed to methamphetamine in drinking water develop infradian locomotor rhythms with periods of 48 hours and beyond which extend to sleep length and manic state-associated behaviors in support of a model for cycling in BD. The cycling capacity is abrogated upon genetic disruption of dopamine (DA) production in DA neurons of the ventral tegmental area (VTA) or ablation of nucleus accumbens projecting DA neurons. Furthermore, chemogenetic activation of VTADA neurons including those that project to the nucleus accumbens led to locomotor period lengthening in circadian clock-deficient mice, which was counteracted by antipsychotic treatment. Together, our findings argue that BD cycling relies on infradian rhythm generation that depends on mesolimbic DA neurons.
Collapse
Affiliation(s)
- Pratap S Markam
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Clément Bourguignon
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Lei Zhu
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Bridget Ward
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Martin Darvas
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Paul V Sabatini
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC H3A 2B4, Canada
| | - Maia V Kokoeva
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC H3A 2B4, Canada
| | - Bruno Giros
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QC H4H 1R3, Canada
- Université de Paris Cité, INCC UMR 8002, CNRS, F-75006 Paris, France
| | - Kai-Florian Storch
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QC H4H 1R3, Canada
| |
Collapse
|
22
|
Domingos LB, Silva Júnior AFD, Diniz CRAF, Rosa J, Terzian ALB, Resstel LBM. P2X7 receptors modulate acquisition of cue fear extinction and contextual background memory generalization in male mice. Neuropharmacology 2024; 261:110177. [PMID: 39366651 DOI: 10.1016/j.neuropharm.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The purinergic P2X7 receptors (P2X7R) are activated by adenosine triphosphate (ATP) in several brain regions, particularly those involved with emotional control and the regulation of fear-related memories. Here, we investigate the role of P2X7R in fear learning memory, specifically in the acquisition and consolidation phases of the cued fear conditioning paradigm. C57Bl/6 wildtype (WT) male mice that received a single i.p. injection of the selective P2X7R antagonist A438079 prior the conditioning session showed generalization of cued fear memory and impaired fear extinction recall in the test session, while those treated prior the extinction session exhibited a similar behavior profile accompanied by resistance in the extinction learning. However, no effects were observed when this drug was administered immediately after the conditioning, extinction, or before the test session. Our results with P2X7R knockout (P2X7 KO) mice showed a behavioral profile that mirrored the collective effects observed across all pharmacological treatment conditions. This suggests that the P2X7R KO model effectively replicates the behavioral changes induced by the pharmacological interventions, demonstrating that we have successfully isolated the role of P2X7R in the fear and extinction phases of memory. These findings highlight the role of P2X7R in the acquisition and recall of extinction memory and supports P2X7R as a promising candidate for controlling abnormal fear processing, with potential applications for stress exposure-related disorders such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Luana Barreto Domingos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | | | - Cassiano Ricardo Alves Faria Diniz
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Center for Neuroscience, University of California, Davis, CA, USA
| | | | - Ana Luisa B Terzian
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
23
|
Cassel JC, Panzer E, Guimaraes-Olmo I, Cosquer B, de Vasconcelos AP, Stephan A. The ventral midline thalamus and long-term memory: What consolidation, what retrieval, what plasticity in rodents? Neurosci Biobehav Rev 2024; 167:105932. [PMID: 39454977 DOI: 10.1016/j.neubiorev.2024.105932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The ventral midline thalamus, including the reuniens and rhomboid (ReRh) nuclei, connects bidirectionally with the medial prefrontal cortex (mPFC) and hippocampus (Hip), both essential for memory processes. This review compiles and discusses studies on a role for the ReRh nuclei in the system consolidation of memories, also considering their potentially limited participation in memory retrieval or early phases of consolidation. It also examines scientific literature on short- and long-term plasticity in ReRh-mPFC and ReRh-Hip connections, emphasizing plasticity's importance in understanding these nuclei's role in memory. The idea that the two nuclei are at the crossroads of information exchange between the mPFC and the Hip is not new, but the relationship between this status and the plasticity of their connections remains elusive. Since this perspective is relatively recent, our concluding section suggests conceptual and practical avenues for future research, aiming perhaps to bring more order to the apparently multi-functional implication of the ventral midline thalamus in cognition.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France.
| | - Elodie Panzer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Isabella Guimaraes-Olmo
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Brigitte Cosquer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Aline Stephan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| |
Collapse
|
24
|
Webster AN, Becker JJ, Li C, Schwalbe DC, Kerspern D, Karolczak EO, Bundon CB, Onoharigho RA, Crook M, Jalil M, Godschall EN, Dame EG, Dawer A, Belmont-Rausch DM, Pers TH, Lutas A, Habib N, Güler AD, Krashes MJ, Campbell JN. Molecular connectomics reveals a glucagon-like peptide 1-sensitive neural circuit for satiety. Nat Metab 2024; 6:2354-2373. [PMID: 39627618 DOI: 10.1038/s42255-024-01168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 10/17/2024] [Indexed: 12/11/2024]
Abstract
Liraglutide and other glucagon-like peptide 1 receptor agonists (GLP-1RAs) are effective weight loss drugs, but how they suppress appetite remains unclear. One potential mechanism is by activating neurons that inhibit the hunger-promoting Agouti-related peptide (AgRP) neurons of the arcuate hypothalamus (Arc). To identify these afferents, we developed a method combining rabies-based connectomics with single-nucleus transcriptomics. Here, we identify at least 21 afferent subtypes of AgRP neurons in the mouse mediobasal and paraventricular hypothalamus, which are predicted by our method. Among these are thyrotropin-releasing hormone (TRH)+ Arc (TRHArc) neurons, inhibitory neurons that express the Glp1r gene and are activated by the GLP-1RA liraglutide. Activating TRHArc neurons inhibits AgRP neurons and feeding, probably in an AgRP neuron-dependent manner. Silencing TRHArc neurons causes overeating and weight gain and attenuates liraglutide's effect on body weight. Our results demonstrate a widely applicable method for molecular connectomics, comprehensively identify local inputs to AgRP neurons and reveal a circuit through which GLP-1RAs suppress appetite.
Collapse
Affiliation(s)
- Addison N Webster
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Jordan J Becker
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Chia Li
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Dana C Schwalbe
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Damien Kerspern
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Eva O Karolczak
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | | | | | - Maisie Crook
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Maira Jalil
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | - Emily G Dame
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Adam Dawer
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | | | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Andrew Lutas
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Naomi Habib
- Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ali D Güler
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Michael J Krashes
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| | - John N Campbell
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA.
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
25
|
Pessoa L. The Spiraling Cognitive-Emotional Brain: Combinatorial, Reciprocal, and Reentrant Macro-organization. J Cogn Neurosci 2024; 36:2697-2711. [PMID: 38530327 PMCID: PMC12005377 DOI: 10.1162/jocn_a_02146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This article proposes a framework for understanding the macro-scale organization of anatomical pathways in the mammalian brain. The architecture supports flexible behavioral decisions across a spectrum of spatiotemporal scales. The proposal emphasizes the combinatorial, reciprocal, and reentrant connectivity-called CRR neuroarchitecture-between cortical, BG, thalamic, amygdala, hypothalamic, and brainstem circuits. Thalamic nuclei, especially midline/intralaminar nuclei, are proposed to act as hubs routing the flow of signals between noncortical areas and pFC. The hypothalamus also participates in multiregion circuits via its connections with cortex and thalamus. At slower timescales, long-range behaviors integrate signals across levels of the neuroaxis. At fast timescales, parallel engagement of pathways allows urgent behaviors while retaining flexibility. Overall, the proposed architecture enables context-dependent, adaptive behaviors spanning proximate to distant spatiotemporal scales. The framework promotes an integrative perspective and a distributed, heterarchical view of brain function.
Collapse
|
26
|
Krishnan S, Dong C, Ratigan H, Morales-Rodriguez D, Cherian C, Sheffield M. A contextual fear conditioning paradigm in head-fixed mice exploring virtual reality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625482. [PMID: 39651122 PMCID: PMC11623582 DOI: 10.1101/2024.11.26.625482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Contextual fear conditioning is a classical laboratory task that tests associative memory formation and recall. Techniques such as multi-photon microscopy and holographic stimulation offer tremendous opportunities to understand the neural underpinnings of these memories. However, these techniques generally require animals to be head-fixed. There are few paradigms that test contextual fear conditioning in head-fixed mice, and none where the behavioral outcome following fear conditioning is freezing, the most common measure of fear in freely moving animals. To address this gap, we developed a contextual fear conditioning paradigm in head-fixed mice using virtual reality (VR) environments. We designed an apparatus to deliver tail shocks (unconditioned stimulus, US) while mice navigated a VR environment (conditioned stimulus, CS). The acquisition of contextual fear was tested when the mice were reintroduced to the shock-paired VR environment the following day. We tested three different variations of this paradigm and, in all of them, observed an increased conditioned fear response characterized by increased freezing behavior. This was especially prominent during the first trial in the shock-paired VR environment, compared to a neutral environment where the mice received no shocks. Our results demonstrate that head-fixed mice can be fear conditioned in VR, discriminate between a feared and neutral VR context, and display freezing as a conditioned response, similar to freely behaving animals. Furthermore, using a two-photon microscope, we imaged from large populations of hippocampal CA1 neurons before, during, and following contextual fear conditioning. Our findings reconfirmed those from the literature on freely moving animals, showing that CA1 place cells undergo remapping and show narrower place fields following fear conditioning. Our approach offers new opportunities to study the neural mechanisms underlying the formation, recall, and extinction of contextual fear memories. As the head-fixed preparation is compatible with multi-photon microscopy and holographic stimulation, it enables long-term tracking and manipulation of cells throughout distinct memory stages and provides subcellular resolution for investigating axonal, dendritic, and synaptic dynamics in real-time.
Collapse
|
27
|
Pennington ZT, LaBanca AR, Sompolpong P, Abdel-Raheim SD, Ko B, Christenson Wick Z, Feng Y, Dong Z, Francisco TR, Bacon ME, Chen L, Fulton SL, Maze I, Shuman T, Cai DJ. Dissociable contributions of the amygdala and ventral hippocampus to stress-induced changes in defensive behavior. Cell Rep 2024; 43:114871. [PMID: 39427320 PMCID: PMC11849735 DOI: 10.1016/j.celrep.2024.114871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/01/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
Stress can have profound consequences on mental health. While much is known about the neural circuits supporting associative memories of stressful events, our understanding of the circuits underlying the non-associative impacts of stress, such as heightened stress sensitivity and anxiety-related behavior, is limited. Here, we demonstrate that the ventral hippocampus (vHC) and basolateral amygdala (BLA) support distinct non-associative behavioral changes following stress. Inhibiting stress-induced protein synthesis in the BLA blocked subsequent increases in stress sensitivity but not anxiety-related behaviors. Conversely, inhibiting stress-induced protein synthesis in the vHC blocked subsequent increases in anxiety-related behavior but not stress sensitivity. Inhibiting neuronal activity in the BLA and vHC during the assessment of stress sensitivity or anxiety-related behavior recapitulated these structures' dissociable contributions to defensive behavior. Lastly, blocking the associative memory of a stressor had no impact on stress-induced changes in anxiety-related behavior. These findings highlight that multiple memory systems support the long-lasting effects of stress.
Collapse
Affiliation(s)
- Zachary T Pennington
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Alexa R LaBanca
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patlapa Sompolpong
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shereen D Abdel-Raheim
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bumjin Ko
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zoe Christenson Wick
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yu Feng
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhe Dong
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Taylor R Francisco
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Madeline E Bacon
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lingxuan Chen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sasha L Fulton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tristan Shuman
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Denise J Cai
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
28
|
Tandoc MC, Dong CV, Schapiro AC. Object Feature Memory Is Distorted by Category Structure. Open Mind (Camb) 2024; 8:1348-1368. [PMID: 39654820 PMCID: PMC11627532 DOI: 10.1162/opmi_a_00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/28/2024] [Indexed: 12/12/2024] Open
Abstract
Memory systems constantly confront the challenge of capturing both the shared features that connect experiences together and the unique features that distinguish them. Across two experiments, we leveraged a color memory distortion paradigm to investigate how we handle this representational tension when learning new information. Over a thirty-minute period, participants learned shared and unique features of categories of novel objects, where each feature was assigned a particular color. While participants did not differ in how accurately they remembered these features overall, when inaccurate, participants misremembered the color of shared (relative to unique) features as more similar to the category's average color, suggesting more integration of shared features in memory. This same rapid representational warping manifested in a neural network model trained on the same categories. The work reveals how memories for different features are rapidly and differentially warped as a function of their roles in a category.
Collapse
Affiliation(s)
- Marlie C. Tandoc
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Cody V. Dong
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Anna C. Schapiro
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
Lingg RT, Johnson SB, Hinz DC, Skog TD, Lizarazu M, Romig-Martin SA, LaLumiere RT, Narayanan NS, Radley JJ. Prefrontal projections to the bed nuclei of the stria terminalis modulate the specificity of aversive memories. RESEARCH SQUARE 2024:rs.3.rs-4241372. [PMID: 39569181 PMCID: PMC11577250 DOI: 10.21203/rs.3.rs-4241372/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Generalizing aversive memories helps organisms avoid danger, whereas discriminating between dissimilar situations promotes opportunistic behaviors. We identified a novel pathway that controls the contextual specificity of memory consolidation of inhibitory avoidance learning. Optogenetic inhibition of the rostral medial prefrontal cortex (mPFC)-to-anteroventral bed nuclei of the stria terminalis (avBST) pathway after a single footshock exacerbated stress hormonal output, and 2 d later promoted generalization to a novel context. Rostral mPFC-avBST influences were directly mnemonic rather than associated with stress hormone increases, as adrenalectomy did not prevent such influences on generalization. We next observed that fear discrimination between novel and aversive contexts engaged activity along the rostral mPFC and avBST pathway. Finally, post-footshock optogenetic pathway excitation enhanced 2-d discrimination. These findings highlight a prefrontal pathway in which activity immediately after aversive experiences promotes mnemonic discrimination between threatening and non-threatening contexts and may be importance for understanding trauma generalization in psychiatric illnesses.
Collapse
Affiliation(s)
- Ryan T. Lingg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Shane B. Johnson
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, USA
| | - Dalton C. Hinz
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Timothy D. Skog
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, USA
| | - Manuela Lizarazu
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Sara A. Romig-Martin
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Ryan T. LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Nandakumar S. Narayanan
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, USA
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Jason J. Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
30
|
Chen Z, Deng X, Shi C, Jing H, Tian Y, Zhong J, Chen G, Xu Y, Luo Y, Zhu Y. GLP-1R-positive neurons in the lateral septum mediate the anorectic and weight-lowering effects of liraglutide in mice. J Clin Invest 2024; 134:e178239. [PMID: 39225090 PMCID: PMC11364389 DOI: 10.1172/jci178239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Liraglutide, a glucagon-like peptide-1 (GLP-1) analog, is approved for obesity treatment, but the specific neuronal sites that contribute to its therapeutic effects remain elusive. Here, we show that GLP-1 receptor-positive (GLP-1R-positive) neurons in the lateral septum (LSGLP-1R) play a critical role in mediating the anorectic and weight-loss effects of liraglutide. LSGLP-1R neurons were robustly activated by liraglutide, and chemogenetic activation of these neurons dramatically suppressed feeding. Targeted knockdown of GLP-1 receptors within the LS, but not in the hypothalamus, substantially attenuated liraglutide's ability to inhibit feeding and lower body weight. The activity of LSGLP-1R neurons rapidly decreased during naturalistic feeding episodes, while synaptic inactivation of LSGLP-1R neurons diminished the anorexic effects triggered by liraglutide. Together, these findings offer critical insights into the functional role of LSGLP-1R neurons in the physiological regulation of energy homeostasis and delineate their instrumental role in mediating the pharmacological efficacy of liraglutide.
Collapse
Affiliation(s)
- Zijun Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaofei Deng
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cuijie Shi
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Haiyang Jing
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Tian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jiafeng Zhong
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gaowei Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunlong Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Yixiao Luo
- Hunan Province People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
31
|
Awh MP, Latimer KW, Zhou N, Leveroni ZM, Poon AG, Stephens ZM, Yu JY. Persistent Impact of Prior Experience on Spatial Learning. eNeuro 2024; 11:ENEURO.0266-24.2024. [PMID: 39284675 PMCID: PMC11419697 DOI: 10.1523/eneuro.0266-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
Learning to solve a new problem involves identifying the operating rules, which can be accelerated if known rules generalize in the new context. We ask how prior experience affects learning a new rule that is distinct from known rules. We examined how rats learned a new spatial navigation task after having previously learned tasks with different navigation rules. The new task differed from the previous tasks in spatial layout and navigation rule. We found that experience history did not impact overall performance. However, by examining navigation choice sequences in the new task, we found experience-dependent differences in exploration patterns during early stages of learning, as well as differences in the types of errors made during stable performance. The differences were consistent with the animals adopting experience-dependent memory strategies to discover and implement the new rule. Our results indicate prior experience shapes the strategies for solving novel problems, and the impact of prior experience remains persistent.
Collapse
Affiliation(s)
- Michelle P Awh
- Neuroscience Institute, University of Chicago, Chicago, Illinois 60637
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
- Data Science Institute, University of Chicago, Chicago, Illinois 60637
| | - Kenneth W Latimer
- Neuroscience Institute, University of Chicago, Chicago, Illinois 60637
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637
| | - Nan Zhou
- Department of Psychology, University of Chicago, Chicago, Illinois 60637
- Institute for Mind and Biology, University of Chicago, Chicago, Illinois 60637
| | - Zachary M Leveroni
- Department of Psychology, University of Chicago, Chicago, Illinois 60637
- Institute for Mind and Biology, University of Chicago, Chicago, Illinois 60637
| | - Anna G Poon
- Data Science Institute, University of Chicago, Chicago, Illinois 60637
| | - Zoe M Stephens
- University of Chicago Laboratory Schools, Chicago, Illinois 60637
| | - Jai Y Yu
- Neuroscience Institute, University of Chicago, Chicago, Illinois 60637
- Department of Psychology, University of Chicago, Chicago, Illinois 60637
- Institute for Mind and Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
32
|
Chen G, Lai S, Jiang S, Li F, Sun K, Wu X, Zhou K, Liu Y, Deng X, Chen Z, Xu F, Xu Y, Wang K, Cao G, Xu F, Bi GQ, Zhu Y. Cellular and circuit architecture of the lateral septum for reward processing. Neuron 2024; 112:2783-2798.e9. [PMID: 38959892 DOI: 10.1016/j.neuron.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/29/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
The lateral septum (LS) is composed of heterogeneous cell types that are important for various motivated behaviors. However, the transcriptional profiles, spatial arrangement, function, and connectivity of these cell types have not been systematically studied. Using single-nucleus RNA sequencing, we delineated diverse genetically defined cell types in the LS that play distinct roles in reward processing. Notably, we found that estrogen receptor 1 (Esr1)-expressing neurons in the ventral LS (LSEsr1) are key drivers of reward seeking via projections to the ventral tegmental area, and these neurons play an essential role in methamphetamine (METH) reward and METH-seeking behavior. Extended exposure to METH increases the excitability of LSEsr1 neurons by upregulating hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, thereby contributing to METH-induced locomotor sensitization. These insights not only elucidate the intricate molecular, circuit, and functional architecture of the septal region in reward processing but also reveal a neural pathway critical for METH reward and behavioral sensitization.
Collapse
Affiliation(s)
- Gaowei Chen
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shishi Lai
- Yunnan University School of Medicine, Yunnan University, Kunming 650091, China; Southwest United Graduate School, Kunming 650092, China
| | - Shaolei Jiang
- University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fengling Li
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kaige Sun
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shandong Normal University, Jinan 250014, China
| | - Xiaocong Wu
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Kuikui Zhou
- University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Yutong Liu
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaofei Deng
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zijun Chen
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fang Xu
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Xu
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming 650091, China
| | - Kunhua Wang
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming 650091, China
| | - Gang Cao
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fuqiang Xu
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guo-Qiang Bi
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
33
|
Tuñon-Ortiz A, Tränkner D, Brockway SN, Raines O, Mahnke A, Grega M, Zelikowsky M, Williams ME. Inhibitory neurons marked by a connectivity molecule regulate memory precision. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602304. [PMID: 39005261 PMCID: PMC11245094 DOI: 10.1101/2024.07.05.602304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The CA3 region is central to hippocampal function during learning and memory and has a unique connectivity. CA3 pyramidal neurons are the targets of huge, excitatory mossy fiber synapses from DG axons and have a high degree of excitatory recurrent connectivity. Thus, inhibition likely plays an outsized importance in constraining excitation and shaping CA3 ensembles during learning and memory. Here, we investigate the function of a never-before studied set of dendrite-targeting, GABAergic neurons defined by expression of the synaptic adhesion molecule, Kirrel3. We discovered that activating Kirrel3-expressing GABAergic neurons specifically impairs memory discrimination and inhibits CA3 pyramidal neurons in novel contexts. Kirrel3 is required for DG-to-GABA synapse formation and variants in Kirrel3 are strong risk factors for neurodevelopmental disorders. Thus, our work suggests that Kirrel3-GABA neurons are a critical source of feed-forward inhibition from DG to CA3 during the encoding and retrieval of contextual memories, a function which may be specifically disrupted in some brain disorders.
Collapse
Affiliation(s)
- Arnulfo Tuñon-Ortiz
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Dimitri Tränkner
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Sarah N Brockway
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Olivia Raines
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Abbey Mahnke
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Matthew Grega
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Moriel Zelikowsky
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Megan E Williams
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
34
|
Huang G, Zhou S, Zhu R, Wang Y, Chai Y. Effect of internal and external chaotic stimuli on synchronization of piezoelectric auditory neurons in coupled time-delay systems. Cogn Neurodyn 2024; 18:2111-2126. [PMID: 39104671 PMCID: PMC11297885 DOI: 10.1007/s11571-023-10042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 08/07/2024] Open
Abstract
Hearing impairment is considered to be related to the damage of hair cells or synaptic terminals, which will cause varying degrees of hearing loss. Numerous studies have shown that cochlear implants can balance this damage. The human ear receives external acoustic signals mostly under complex conditions, and its biophysical mechanisms have important significance for reference in the design of cochlear implants. However, the relevant biophysical mechanisms have not yet been fully determined. Using the characteristics of special acoustoelectric conversion in piezoelectric ceramics, this paper integrates them into the traditional FitzHugh-Nagumo neuron circuit and proposes a comprehensive model with coupled auditory neurons. The model comprehensively considers the effects of synaptic coupling between neurons, information transmission delay, external noise stimulation, and internal chaotic current stimulation on the synchronization of membrane potential signals of two auditory neurons. The experimental results show that coupling strength, delay size, noise intensity, and chaotic current intensity all have a certain regulatory effect on synchronization stability. In particular, when auditory neurons are in a chaotic state, their impact on synchronization stability is sensitive. Numerical results provide a reference for exploring the biophysical mechanisms of auditory neurons. At the same time, we are committed to providing assistance in using sensors to monitor signals and repair hearing impairments.
Collapse
Affiliation(s)
- Guodong Huang
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306 China
| | - Shu Zhou
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306 China
| | - Rui Zhu
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306 China
| | - Yunhai Wang
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306 China
| | - Yuan Chai
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306 China
| |
Collapse
|
35
|
Panzer E, Guimares-Olmo I, Pereira de Vasconcelos A, Stéphan A, Cassel JC. In relentless pursuit of the white whale: A role for the ventral midline thalamus in behavioral flexibility and adaption? Neurosci Biobehav Rev 2024; 163:105762. [PMID: 38857666 DOI: 10.1016/j.neubiorev.2024.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The reuniens (Re) nucleus is located in the ventral midline thalamus. It has fostered increasing interest, not only for its participation in a variety of cognitive functions (e.g., spatial working memory, systemic consolidation, reconsolidation, extinction of fear or generalization), but also for its neuroanatomical positioning as a bidirectional relay between the prefrontal cortex (PFC) and the hippocampus (HIP). In this review we compile and discuss recent studies having tackled a possible implication of the Re nucleus in behavioral flexibility, a major PFC-dependent executive function controlling goal-directed behaviors. Experiments considered explored a possible role for the Re nucleus in perseveration, reversal learning, fear extinction, and set-shifting. They point to a contribution of this nucleus to behavioral flexibility, mainly by its connections with the PFC, but possibly also by those with the hippocampus, and even with the amygdala, at least for fear-related behavior. As such, the Re nucleus could be a crucial crossroad supporting a PFC-orchestrated ability to cope with new, potentially unpredictable environmental contingencies, and thus behavioral flexibility and adaption.
Collapse
Affiliation(s)
- Elodie Panzer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Isabella Guimares-Olmo
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Aline Stéphan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France.
| |
Collapse
|
36
|
Posner MI. Orienting of attention and spatial cognition. Cogn Process 2024; 25:55-59. [PMID: 39123061 DOI: 10.1007/s10339-024-01216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Humans orient to their sensory world through foveation of target location or through covert shifts of attention. Orienting provides primacy to the selected location and in humans improves the precision of discrimination. Covert orienting appears to arise separately from the mechanisms involved in saccadic eye movements. Covert orienting can serve to prioritize processing the target even increasing its subjective intensity and its acuity. However, this network does not appear to be involved in the operations related to binding and segmentation. Cells exist in the early visual cortex that are activated by both color and form features without attention, however, color and form appear to remain independent even when oriented to the target that is required to be reported. An understanding of the pathways that connect attention networks to memory networks may allow us to understand more complex aspects of spatial cognition and enhance orienting and thus improve spatial cognition.
Collapse
|
37
|
Liu Z, Sun W, Ng YH, Dong H, Quake SR, Südhof TC. The cortical amygdala consolidates a socially transmitted long-term memory. Nature 2024; 632:366-374. [PMID: 38961294 PMCID: PMC11306109 DOI: 10.1038/s41586-024-07632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Social communication guides decision-making, which is essential for survival. Social transmission of food preference (STFP) is an ecologically relevant memory paradigm in which an animal learns a desirable food odour from another animal in a social context, creating a long-term memory1,2. How food-preference memory is acquired, consolidated and stored is unclear. Here we show that the posteromedial nucleus of the cortical amygdala (COApm) serves as a computational centre in long-term STFP memory consolidation by integrating social and sensory olfactory inputs. Blocking synaptic signalling by the COApm-based circuit selectively abolished STFP memory consolidation without impairing memory acquisition, storage or recall. COApm-mediated STFP memory consolidation depends on synaptic inputs from the accessory olfactory bulb and on synaptic outputs to the anterior olfactory nucleus. STFP memory consolidation requires protein synthesis, suggesting a gene-expression mechanism. Deep single-cell and spatially resolved transcriptomics revealed robust but distinct gene-expression signatures induced by STFP memory formation in the COApm that are consistent with synapse restructuring. Our data thus define a neural circuit for the consolidation of a socially communicated long-term memory, thereby mechanistically distinguishing protein-synthesis-dependent memory consolidation from memory acquisition, storage or retrieval.
Collapse
Affiliation(s)
- Zhihui Liu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Wenfei Sun
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yi Han Ng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hua Dong
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Initiative, Redwood City, CA, USA.
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
38
|
Webster AN, Becker JJ, Li C, Schwalbe DC, Kerspern D, Karolczak EO, Bundon C, Onoharigho RA, Crook M, Jalil M, Godschall EN, Dame EG, Dawer A, Belmont-Rausch DM, Pers TH, Lutas A, Habib N, Guler AD, Krashes MJ, Campbell JN. Molecular Connectomics Reveals a Glucagon-Like Peptide 1 Sensitive Neural Circuit for Satiety. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.31.564990. [PMID: 37961449 PMCID: PMC10635031 DOI: 10.1101/2023.10.31.564990] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Liraglutide and other agonists of the glucagon-like peptide 1 receptor (GLP-1RAs) are effective weight loss drugs, but how they suppress appetite remains unclear. One potential mechanism is by activating neurons which inhibit hunger-promoting Agouti-related peptide (AgRP) neurons of the arcuate hypothalamus (Arc). To identify these afferents, we developed a method combining rabies-based connectomics with single-nuclei transcriptomics. Applying this method to AgRP neurons predicted at least 21 afferent subtypes in the mouse mediobasal and paraventricular hypothalamus. Among these are Trh+ Arc neurons, inhibitory neurons which express the Glp1r gene and are activated by the GLP-1RA liraglutide. Activating Trh+ Arc neurons inhibits AgRP neurons and feeding in an AgRP neuron-dependent manner. Silencing Trh+ Arc neurons causes over-eating and weight gain and attenuates liraglutide's effect on body weight. Our results demonstrate a widely applicable method for molecular connectomics, comprehensively identify local inputs to AgRP neurons, and reveal a circuit through which GLP-1RAs suppress appetite.
Collapse
|
39
|
Santos TB, de Oliveira Coelho CA, Kramer-Soares JC, Frankland PW, Oliveira MGM. Reactivation of encoding ensembles in the prelimbic cortex supports temporal associations. Neuropsychopharmacology 2024; 49:1296-1308. [PMID: 38454052 PMCID: PMC11224261 DOI: 10.1038/s41386-024-01825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/14/2024] [Accepted: 02/05/2024] [Indexed: 03/09/2024]
Abstract
Fear conditioning is encoded by strengthening synaptic connections between the neurons activated by a conditioned stimulus (CS) and those activated by an unconditioned stimulus (US), forming a memory engram, which is reactivated during memory retrieval. In temporal associations, activity within the prelimbic cortex (PL) plays a role in sustaining a short-term, transient memory of the CS, which is associated with the US after a temporal gap. However, it is unknown whether the PL has only a temporary role, transiently representing the CS, or is part of the neuronal ensembles that support the retrieval, i.e., whether PL neurons support both transient, short-term memories and stable, long-term memories. We investigated neuronal ensembles underlying temporal associations using fear conditioning with a 5-s interval between the CS and US (CFC-5s). Controls were trained in contextual fear conditioning (CFC), in which the CS-US overlaps. We used Robust Activity Marking (RAM) to selectively manipulate PL neurons activated by CFC-5s learning and Targeted Recombination in Active Populations (TRAP2) mice to label neurons activated by CFC-5s learning and reactivated by memory retrieval in the amygdala, medial prefrontal cortex, hippocampus, perirhinal cortices (PER) and subiculum. We also computed their co-reactivation to generate correlation-based networks. The optogenetic reactivation or silencing of PL encoding ensembles either promoted or impaired the retrieval of CFC-5s but not CFC. CFC-5s retrieval reactivated encoding ensembles in the PL, PER, and basolateral amygdala. The engram network of CFC-5s had higher amygdala and PER centralities and interconnectivity. The same PL neurons support learning and stable associative memories.
Collapse
Affiliation(s)
- Thays Brenner Santos
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-062, Brazil.
| | | | - Juliana Carlota Kramer-Soares
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-062, Brazil
- Universidade Cruzeiro do Sul - UNICSUL, São Paulo, 08060-070, Brazil
| | - Paul W Frankland
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5G 1X8, Canada
- Department of Psychology, University of Toronto, Toronto, ON, M5G 1X8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5G 1X8, Canada
- Child & Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
| | | |
Collapse
|
40
|
Cheung H, Yu TZ, Yi X, Wu YJ, Wang Q, Gu X, Xu M, Cai M, Wen W, Li XN, Liu YX, Sun Y, Zheng J, Xu TL, Luo Y, Zhang MZ, Li WG. An ultra-short-acting benzodiazepine in thalamic nucleus reuniens undermines fear extinction via intermediation of hippocamposeptal circuits. Commun Biol 2024; 7:728. [PMID: 38877285 PMCID: PMC11178775 DOI: 10.1038/s42003-024-06417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
Benzodiazepines, commonly used for anxiolytics, hinder conditioned fear extinction, and the underlying circuit mechanisms are unclear. Utilizing remimazolam, an ultra-short-acting benzodiazepine, here we reveal its impact on the thalamic nucleus reuniens (RE) and interconnected hippocamposeptal circuits during fear extinction. Systemic or RE-specific administration of remimazolam impedes fear extinction by reducing RE activation through A type GABA receptors. Remimazolam enhances long-range GABAergic inhibition from lateral septum (LS) to RE, underlying the compromised fear extinction. RE projects to ventral hippocampus (vHPC), which in turn sends projections characterized by feed-forward inhibition to the GABAergic neurons of the LS. This is coupled with long-range GABAergic projections from the LS to RE, collectively constituting an overall positive feedback circuit construct that promotes fear extinction. RE-specific remimazolam negates the facilitation of fear extinction by disrupting this circuit. Thus, remimazolam in RE disrupts fear extinction caused by hippocamposeptal intermediation, offering mechanistic insights for the dilemma of combining anxiolytics with extinction-based exposure therapy.
Collapse
Affiliation(s)
- Hoiyin Cheung
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tong-Zhou Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xin Yi
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yan-Jiao Wu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Wang
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xue Gu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Miao Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Meihua Cai
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wen Wen
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xin-Ni Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Ying-Xiao Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Ying Sun
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jijian Zheng
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tian-Le Xu
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ma-Zhong Zhang
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Wei-Guang Li
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
- Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
41
|
Pennington ZT, LaBanca AR, Sompolpong P, Abdel-Raheim SD, Ko B, Christenson Wick Z, Feng Y, Dong Z, Francisco TR, Bacon ME, Chen L, Fulton SL, Maze I, Shuman T, Cai DJ. Dissociable contributions of the amygdala and ventral hippocampus to stress-induced changes in defensive behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.27.530077. [PMID: 36945605 PMCID: PMC10028838 DOI: 10.1101/2023.02.27.530077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND Severe stress can produce multiple persistent changes in defensive behavior relevant to psychiatric illness. While much is known about the circuits supporting stress-induced associative fear, how stress-induced circuit plasticity supports non-associative changes in defensive behavior remains unclear. METHODS Mice were exposed to an acute severe stressor, and subsequently, both associative and non-associative defensive behavioral responses were assessed. A mixture of local protein synthesis inhibition, pan-neuronal chemogenetic inhibition, and projection-specific chemogenetic inhibition were utilized to isolate the roles of the basolateral amygdala (BLA) and ventral hippocampus (vHC) to the induction and expression of associative and non-associative defensive behavioral changes. RESULTS Stress-induced protein synthesis in the BLA was necessary for enhancements in stress sensitivity but not enhancements in anxiety-related behaviors, whereas protein synthesis in the vHC was necessary for enhancements in anxiety-related behavior but not enhancements in stress sensitivity. Like protein synthesis, neuronal activity of the BLA and vHC were found to differentially support the expression of these same defensive behaviors. Additionally, projection-specific inhibition of BLA-vHC connections failed to alter these behaviors, indicating that these defensive behaviors are regulated by distinct BLA and vHC circuits. Lastly, contributions of the BLA and vHC to stress sensitivity and anxiety-related behavior were independent of their contributions to associative fear. CONCLUSIONS Stress-induced plasticity in the BLA and vHC were found to support dissociable non-associative behavioral changes, with BLA supporting enhancements in stress sensitivity and vHC supporting increased anxiety-related behavior. These findings demonstrate that independent BLA and vHC circuits are critical for stress-induced defensive behaviors, and that differential targeting of BLA and vHC circuits may be needed in disease treatment.
Collapse
|
42
|
Panzer E, Boch L, Cosquer B, Grgurina I, Boutillier AL, de Vasconcelos AP, Stephan A, Cassel JC. Disconnecting prefrontal cortical neurons from the ventral midline thalamus: Loss of specificity due to progressive neural toxicity of an AAV-Cre in the rat thalamus. J Neurosci Methods 2024; 405:110080. [PMID: 38369027 DOI: 10.1016/j.jneumeth.2024.110080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND The thalamic reuniens (Re) and rhomboid (Rh) nuclei are bidirectionally connected with the medial prefrontal cortex (mPFC) and the hippocampus (Hip). Fiber-sparing N-methyl-D-aspartate lesions of the ReRh disrupt cognitive functions, including persistence of certain memories. Because such lesions irremediably damage neurons interconnecting the ReRh with the mPFC and the Hip, it is impossible to know if one or both pathways contribute to memory persistence. Addressing such an issue requires selective, pathway-restricted and direction-specific disconnections. NEW METHOD A recent method associates a retrograde adeno-associated virus (AAV) expressing Cre recombinase with an anterograde AAV expressing a Cre-dependent caspase, making such disconnection feasible by caspase-triggered apoptosis when both constructs meet intracellularly. We injected an AAVrg-Cre-GFP into the ReRh and an AAV5-taCasp into the mPFC. As expected, part of mPFC neurons died, but massive neurotoxicity of the AAVrg-Cre-GFP was found in ReRh, contrasting with normal density of DAPI staining. Other stainings demonstrated increasing density of reactive astrocytes and microglia in the neurodegeneration site. COMPARISON WITH EXISTING METHODS Reducing the viral titer (by a 4-fold dilution) and injection volume (to half) attenuated toxicity substantially, still with evidence for partial disconnection between mPFC and ReRh. CONCLUSIONS There is an imperative need to verify potential collateral damage inherent in this type of approach, which is likely to distort interpretation of experimental data. Therefore, controls allowing to distinguish collateral phenotypic effects from those linked to the desired disconnection is essential. It is also crucial to know for how long neurons expressing the Cre-GFP protein remain operational post-infection.
Collapse
Affiliation(s)
- Elodie Panzer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Laurine Boch
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Brigitte Cosquer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Iris Grgurina
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Aline Stephan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France.
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France.
| |
Collapse
|
43
|
Yadav N, Toader A, Rajasethupathy P. Beyond hippocampus: Thalamic and prefrontal contributions to an evolving memory. Neuron 2024; 112:1045-1059. [PMID: 38272026 DOI: 10.1016/j.neuron.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
The hippocampus has long been at the center of memory research, and rightfully so. However, with emerging technological capabilities, we can increasingly appreciate memory as a more dynamic and brain-wide process. In this perspective, our goal is to begin developing models to understand the gradual evolution, reorganization, and stabilization of memories across the brain after their initial formation in the hippocampus. By synthesizing studies across the rodent and human literature, we suggest that as memory representations initially form in hippocampus, parallel traces emerge in frontal cortex that cue memory recall, and as they mature, with sustained support initially from limbic then diencephalic then cortical circuits, they become progressively independent of hippocampus and dependent on a mature cortical representation. A key feature of this model is that, as time progresses, memory representations are passed on to distinct circuits with progressively longer time constants, providing the opportunity to filter, forget, update, or reorganize memories in the process of committing to long-term storage.
Collapse
Affiliation(s)
- Nakul Yadav
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Andrew Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
44
|
Naffaa MM. Significance of the anterior cingulate cortex in neurogenesis plasticity: Connections, functions, and disorders across postnatal and adult stages. Bioessays 2024; 46:e2300160. [PMID: 38135889 DOI: 10.1002/bies.202300160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
The anterior cingulate cortex (ACC) is a complex and continually evolving brain region that remains a primary focus of research due to its multifaceted functions. Various studies and analyses have significantly advanced our understanding of how the ACC participates in a wide spectrum of memory and cognitive processes. However, despite its strong connections to brain areas associated with hippocampal and olfactory neurogenesis, the functions of the ACC in regulating postnatal and adult neurogenesis in these regions are still insufficiently explored. Investigating the intricate involvement of the ACC in neurogenesis could enhance our comprehension of essential aspects of brain plasticity. This involvement stems from its complex circuitry with other relevant brain regions, thereby exerting both direct and indirect impacts on the neurogenesis process. This review sheds light on the promising significance of the ACC in orchestrating postnatal and adult neurogenesis in conditions related to memory, cognitive behavior, and associated disorders.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
45
|
Chen Z, Han Y, Ma Z, Wang X, Xu S, Tang Y, Vyssotski AL, Si B, Zhan Y. A prefrontal-thalamic circuit encodes social information for social recognition. Nat Commun 2024; 15:1036. [PMID: 38310109 PMCID: PMC10838311 DOI: 10.1038/s41467-024-45376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
Social recognition encompasses encoding social information and distinguishing unfamiliar from familiar individuals to form social relationships. Although the medial prefrontal cortex (mPFC) is known to play a role in social behavior, how identity information is processed and by which route it is communicated in the brain remains unclear. Here we report that a ventral midline thalamic area, nucleus reuniens (Re) that has reciprocal connections with the mPFC, is critical for social recognition in male mice. In vivo single-unit recordings and decoding analysis reveal that neural populations in both mPFC and Re represent different social stimuli, however, mPFC coding capacity is stronger. We demonstrate that chemogenetic inhibitions of Re impair the mPFC-Re neural synchronization and the mPFC social coding. Projection pathway-specific inhibitions by optogenetics reveal that the reciprocal connectivity between the mPFC and the Re is necessary for social recognition. These results reveal an mPFC-thalamic circuit for social information processing.
Collapse
Affiliation(s)
- Zihao Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yechao Han
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zheng Ma
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xinnian Wang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Surui Xu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yong Tang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zurich and Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Bailu Si
- School of Systems Science, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Yang Zhan
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
46
|
Plas SL, Tuna T, Bayer H, Juliano VAL, Sweck SO, Arellano Perez AD, Hassell JE, Maren S. Neural circuits for the adaptive regulation of fear and extinction memory. Front Behav Neurosci 2024; 18:1352797. [PMID: 38370858 PMCID: PMC10869525 DOI: 10.3389/fnbeh.2024.1352797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
The regulation of fear memories is critical for adaptive behaviors and dysregulation of these processes is implicated in trauma- and stress-related disorders. Treatments for these disorders include pharmacological interventions as well as exposure-based therapies, which rely upon extinction learning. Considerable attention has been directed toward elucidating the neural mechanisms underlying fear and extinction learning. In this review, we will discuss historic discoveries and emerging evidence on the neural mechanisms of the adaptive regulation of fear and extinction memories. We will focus on neural circuits regulating the acquisition and extinction of Pavlovian fear conditioning in rodent models, particularly the role of the medial prefrontal cortex and hippocampus in the contextual control of extinguished fear memories. We will also consider new work revealing an important role for the thalamic nucleus reuniens in the modulation of prefrontal-hippocampal interactions in extinction learning and memory. Finally, we will explore the effects of stress on this circuit and the clinical implications of these findings.
Collapse
Affiliation(s)
- Samantha L. Plas
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Tuğçe Tuna
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Hugo Bayer
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Vitor A. L. Juliano
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Samantha O. Sweck
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Angel D. Arellano Perez
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - James E. Hassell
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
47
|
Hsieh CCJ, Lo YC, Wang HH, Shen HY, Chen YY, Lee YC. Amelioration of the brain structural connectivity is accompanied with changes of gut microbiota in a tuberous sclerosis complex mouse model. Transl Psychiatry 2024; 14:68. [PMID: 38296969 PMCID: PMC10830571 DOI: 10.1038/s41398-024-02752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disease that causes benign tumors and dysfunctions in many organs, including the brain. Aside from the brain malformations, many individuals with TSC exhibit neuropsychiatric symptoms. Among these symptoms, autism spectrum disorder (ASD) is one of the most common co-morbidities, affecting up to 60% of the population. Past neuroimaging studies strongly suggested that the impairments in brain connectivity contribute to ASD, whether or not TSC-related. Specifically, the tract-based diffusion tensor imaging (DTI) analysis provides information on the fiber integrity and has been used to study the neuropathological changes in the white matter of TSC patients with ASD symptoms. In our previous study, curcumin, a diet-derived mTOR inhibitor has been shown to effectively mitigate learning and memory deficits and anxiety-like behavior in Tsc2+/- mice via inhibiting astroglial proliferation. Recently, gut microbiota, which is greatly influenced by the diet, has been considered to play an important role in regulating several components of the central nervous system, including glial functions. In this study, we showed that the abnormal social behavior in the Tsc2+/- mice can be ameliorated by the dietary curcumin treatment. Second, using tract-based DTI analysis, we found that the Tsc2+/- mice exhibited altered fractional anisotropy, axial and radial diffusivities of axonal bundles connecting the prefrontal cortex, nucleus accumbens, hypothalamus, and amygdala, indicating a decreased brain network. Third, the dietary curcumin treatment improved the DTI metrics, in accordance with changes in the gut microbiota composition. At the bacterial phylum level, we showed that the abundances of Actinobacteria, Verrucomicrobia, and Tenericutes were significantly correlated with the DTI metrics FA, AD, and RD, respectively. Finally, we revealed that the expression of myelin-associated proteins, myelin bassic protein (MBP) and proteolipid protein (PLP) was increased after the treatment. Overall, we showed a strong correlation between structural connectivity alterations and social behavioral deficits, as well as the diet-dependent changes in gut microbiota composition.
Collapse
Affiliation(s)
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Hui Wang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Ying Shen
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - You-Yin Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yi-Chao Lee
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
48
|
Rosas-Vidal LE, Naskar S, Mayo LM, Perini I, Altemus M, Engelbrektsson H, Jagasia P, Heilig M, Patel S. PREFRONTAL CORRELATES OF FEAR GENERALIZATION DURING ENDOCANNABINOID DEPLETION. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577847. [PMID: 38352388 PMCID: PMC10862899 DOI: 10.1101/2024.01.30.577847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Maladaptive fear generalization is one of the hallmarks of trauma-related disorders. The endocannabinoid 2-arachidonoylglycerol (2-AG) is crucial for modulating anxiety, fear, and stress adaptation but its role in balancing fear discrimination versus generalization is not known. To address this, we used a combination of plasma endocannabinoid measurement and neuroimaging from a childhood maltreatment exposed and non-exposed mixed population combined with human and rodent fear conditioning models. Here we show that 2-AG levels are inversely associated with fear generalization at the behavioral level in both mice and humans. In mice, 2-AG depletion increases the proportion of neurons, and the similarity between neuronal representations, of threat-predictive and neutral stimuli within prelimbic prefrontal cortex ensembles. In humans, increased dorsolateral prefrontal cortical-amygdala resting state connectivity is inversely correlated with fear generalization. These data provide convergent cross-species evidence that 2-AG is a key regulator of fear generalization and suggest 2-AG deficiency could represent a trauma-related disorder susceptibility endophenotype.
Collapse
Affiliation(s)
- Luis E Rosas-Vidal
- Northwestern University, Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, Chicago, IL
| | - Saptarnab Naskar
- Northwestern University, Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, Chicago, IL
| | - Leah M Mayo
- Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Linköping University, Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping, Sweden
| | - Irene Perini
- Linköping University, Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping, Sweden
| | - Megan Altemus
- Vanderbilt University Medical Center, Department of Psychiatry and Behavioral Sciences, Nashville, TN
| | - Hilda Engelbrektsson
- Linköping University, Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping, Sweden
| | - Puja Jagasia
- Vanderbilt University Medical Center, Department of Psychiatry and Behavioral Sciences, Nashville, TN
| | - Markus Heilig
- Linköping University, Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping, Sweden
| | - Sachin Patel
- Northwestern University, Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, Chicago, IL
| |
Collapse
|
49
|
Schaeuble D, Wallace T, Pace SA, Hentges ST, Myers B. Sex-specific prefrontal-hypothalamic control of behavior and stress responding. Psychoneuroendocrinology 2024; 159:106413. [PMID: 37890240 PMCID: PMC10842088 DOI: 10.1016/j.psyneuen.2023.106413] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Depression and cardiovascular disease are both augmented by daily life stress. Yet, the biological mechanisms that translate psychological stress into affective and physiological outcomes are unknown. Previously, we demonstrated that stimulation of the ventromedial prefrontal cortex (vmPFC) has sexually divergent outcomes on behavior and physiology. Importantly, the vmPFC does not innervate the brain regions that initiate autonomic or neuroendocrine stress responses; thus, we hypothesized that intermediate synapses integrate cortical information to regulate stress responding. The posterior hypothalamus (PH) directly innervates stress-effector regions and receives substantial innervation from the vmPFC. In the current studies, circuit-specific approaches examined whether vmPFC synapses in the PH coordinate stress responding. Here we tested the effects of optogenetic vmPFC-PH circuit stimulation in male and female rats on social and motivational behaviors as well as physiological stress responses. Additionally, an intersectional genetic approach was used to knock down synaptobrevin in PH-projecting vmPFC neurons. Our collective results indicate that male vmPFC-PH circuitry promotes positive motivational valence and is both sufficient and necessary to reduce sympathetic-mediated stress responses. In females, the vmPFC-PH circuit does not affect social or preference behaviors but is sufficient and necessary to elevate neuroendocrine stress responses. Altogether, these data suggest cortical regulation of stress reactivity and behavior is mediated, in part, by projections to the hypothalamus that function in a sex-specific manner.
Collapse
Affiliation(s)
- Derek Schaeuble
- Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Tyler Wallace
- Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Sebastian A Pace
- Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Shane T Hentges
- Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
50
|
Zhang Y, Roy DS. Memory Storage in Distributed Engram Cell Ensembles. ADVANCES IN NEUROBIOLOGY 2024; 38:29-43. [PMID: 39008009 DOI: 10.1007/978-3-031-62983-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
One of the most fascinating aspects of the brain is its ability to acquire new information from experience and retain it over time as memory. The search for physical correlates of memory, the memory engram, has been a longstanding priority in modern neurobiology. Advanced genetic approaches have led to the localization of engram cells in a few brain regions, including the hippocampus and cortex. Additionally, engram cells exhibit learning-induced, persistent modifications and have at least two states, active and silent. However, it has been hypothesized that engrams for a specific memory are distributed among multiple brain regions that are functionally connected, referred to as a unified engram complex. Recent tissue-clearing techniques have permitted high-throughput analyses of intact brain samples, which have been used to obtain a map of the engram complex for a contextual fear memory. Careful examination of these engram complex maps has revealed a potentially underappreciated contribution of subcortical regions, specifically thalamic nuclei, to memory function. These more holistic studies support the unified engram complex hypothesis for memory storage and have important implications for understanding dysfunctional engrams in the context of human disease.
Collapse
Affiliation(s)
- Ying Zhang
- Center for Life Sciences & IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Haidian District, Beijing, China
| | - Dheeraj S Roy
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|