1
|
Korchanová Z, Milovanov A, Švec M, Doležel J, Bartoš J, Valárik M. Progress and innovations of gene cloning in wheat and its close relatives. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:106. [PMID: 40295316 PMCID: PMC12037653 DOI: 10.1007/s00122-025-04897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
KEY MESSAGE Wheat and its close relatives have large and complex genomes, making gene cloning difficult. Nevertheless, developments in genomics over the past decade have made it more feasible. The large and complex genomes of cereals, especially bread wheat, have always been a challenge for gene mapping and cloning. Nevertheless, recent advances in genomics have led to significant progress in this field. Currently, high-quality reference sequences are available for major wheat species and their relatives. New high-throughput genotyping platforms and next-generation sequencing technologies combined with genome complexity reduction techniques and mutagenesis have opened new avenues for gene cloning. In this review, we provide a comprehensive overview of the genes cloned in wheat so far and discuss the strategies used for cloning these genes. We highlight the advantages and drawbacks of individual approaches and show how particular genomic progress contributed to wheat gene cloning. A wide range of new resources and approaches have led to a significant increase in the number of successful cloning projects over the past decade, demonstrating that it is now feasible to perform rapid gene cloning of agronomically important genes, even in a genome as large and complex as that of wheat.
Collapse
Affiliation(s)
- Zuzana Korchanová
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, 77900, Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 77900, Olomouc, Czech Republic
| | - Alexander Milovanov
- Department of Botany, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 84104, Slovakia
| | - Miroslav Švec
- Department of Botany, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 84104, Slovakia
| | - Jaroslav Doležel
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, 77900, Olomouc, Czech Republic
| | - Jan Bartoš
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, 77900, Olomouc, Czech Republic
| | - Miroslav Valárik
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, 77900, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Si Y, Zhang H, Ma S, Zheng S, Niu J, Tian S, Cui X, Zhu K, Yan X, Lu Q, Zhang Z, Du T, Lu P, Chen Y, Wu Q, Xie J, Guo G, Gu M, Wu H, Li Y, Yuan C, Li Z, Liu Z, Dong L, Ling HQ, Li M. Genomic structural variation in an alpha/beta hydrolase triggers hybrid necrosis in wheat. Nat Commun 2025; 16:2655. [PMID: 40102399 PMCID: PMC11920055 DOI: 10.1038/s41467-025-57750-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
Hybrid necrosis, a century-old mystery in wheat, is caused by complementary genes Ne1 and Ne2. Ne2, encoding a nucleotide-binding leucine-rich repeat (NLR) immune receptor, has been cloned, yet Ne1 remains elusive. Here, we report that Ne1, which encodes an alpha/beta hydrolase (ABH) protein generated by structural variation, triggers hybrid necrosis with Ne2 by activating autoimmune responses. We further verify that not only allelic variation but also copy number variation (CNV) of Ne1 are pivotal for hybrid necrosis diversity in wheat. Ne1 likely originates from wild emmer wheat, potentially through duplication and ectopic recombination events. Unlike Ne2, which is frequently selected for rust resistance in wheat breeding, the lower prevalence of Ne1 in modern wheat cultivars is attributed to its association with hybrid necrosis. Altogether, these findings illuminate the co-evolution of the NLR/ABH gene pair in plant development and innate immunity, offering potential benefits for wheat breeding.
Collapse
Affiliation(s)
- Yaoqi Si
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huaizhi Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shengwei Ma
- Yazhouwan National Laboratory, Sanya, Hainan Province, China
| | - Shusong Zheng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianqing Niu
- Yazhouwan National Laboratory, Sanya, Hainan Province, China
- Hainan Seed Industry Laboratory, Sanya, Hainan Province, China
| | - Shuiquan Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xuejia Cui
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Keyu Zhu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaocui Yan
- Hebei Agricultural University, Baoding, Hebei Province, China
| | - Qiao Lu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhimeng Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tingting Du
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ping Lu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | - Qiuhong Wu
- Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Jingzhong Xie
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghao Guo
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mengjun Gu
- Biomedical Research Center for Structural Analysis, Shandong University, Jinan, Shandong, China
| | - Huilan Wu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yiwen Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | - Zaifeng Li
- Hebei Agricultural University, Baoding, Hebei Province, China
| | - Zhiyong Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- Hainan Seed Industry Laboratory, Sanya, Hainan Province, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Lingli Dong
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Hong-Qing Ling
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- Yazhouwan National Laboratory, Sanya, Hainan Province, China.
- Hainan Seed Industry Laboratory, Sanya, Hainan Province, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Miaomiao Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Yao Y, Guo W, Gou J, Hu Z, Liu J, Ma J, Zong Y, Xin M, Chen W, Li Q, Wang Z, Zhang R, Uauy C, Baloch FS, Ni Z, Sun Q. Wheat2035: Integrating pan-omics and advanced biotechnology for future wheat design. MOLECULAR PLANT 2025; 18:272-297. [PMID: 39780492 DOI: 10.1016/j.molp.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Wheat (Triticum aestivum) production is vital for global food security, providing energy and protein to millions of people worldwide. Recent advancements in wheat research have led to significant increases in production, fueled by technological and scientific innovation. Here, we summarize the major advancements in wheat research, particularly the integration of biotechnologies and a deeper understanding of wheat biology. The shift from multi-omics to pan-omics approaches in wheat research has greatly enhanced our understanding of the complex genome, genomic variations, and regulatory networks to decode complex traits. We also outline key scientific questions, potential research directions, and technological strategies for improving wheat over the next decade. Since global wheat production is expected to increase by 60% in 2050, continued innovation and collaboration are crucial. Integrating biotechnologies and a deeper understanding of wheat biology will be essential for addressing future challenges in wheat production, ensuring sustainable practices and improved productivity.
Collapse
Affiliation(s)
- Yingyin Yao
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinying Gou
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jun Ma
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zihao Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Ruijie Zhang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Yenişehir, Mersin 33343, Turkey; Department of Plant Resources and Environment, Jeju National University, Jeju City, Republic of Korea
| | - Zhongfu Ni
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Qixin Sun
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Liu A, Nemacheck JA, Li H, Anderson KM, DeWitt N, Harris MO, Xu SS, Subramanyam S. Triticum monococcum subsp. monococcum and aegilopoides: new sources of resistance to the dipteran pest, Hessian fly (Diptera: Cecidomyiidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2678-2683. [PMID: 39397332 DOI: 10.1093/jee/toae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
The Hessian fly, Mayetiola destructor (Say) belonging to the order Diptera (family: Cecidomyiidae), is a destructive pest of host wheat (Triticum aestivum L.) causing significant economic losses. Although planting resistant wheat cultivars harboring an effective Hessian fly resistance gene (H) is the most economical and environmentally friendly pest management strategy, it imposes selection pressure on the insect populations and can lead to the evolution of Hessian fly virulence. This results in the eventual failure of the deployed H gene. New sources and novel types of resistance are urgently needed to expand the repertoire of H genes and enable strategies that are more effective and durable over the long-term. New sources of Hessian fly resistance have been identified from tetraploid (T. turgidum L., AABB) and hexaploid (T. aestivum, AABBDD) wheat species, as well as from wheat's D-genome donor (Aegilops tauschii Coss., DD). In contrast, diploid einkorn wheat (T. monococcum L., AA) has not been extensively explored for Hessian fly resistance. In this study, we phenotyped 506 T. monococcum accessions belonging to 2 subspecies, T. monococcum L. subsp. monococcum (205 accessions) and T. monococcum subsp. aegilopoides (Link) Thell. (301 accessions), for resistance against 2 predominant Hessian fly biotypes, L and GP (Great Plains). Three and 6 accessions belonging to subsp. monococcum and aegilopoides, respectively, showed > 70% resistance. These accessions provide additional resources for improving wheat cultivars as mitigating strategies for Hessian fly management.
Collapse
Affiliation(s)
- Aifeng Liu
- Department of Plant Science, North Dakota State University, Fargo, ND, USA
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Jill A Nemacheck
- Crop Production and Pest Control Research Unit, USDA-ARS, West Lafayette, IN, USA
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Hongwei Li
- Department of Plant Science, North Dakota State University, Fargo, ND, USA
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Kirk M Anderson
- Department of Entomology, North Dakota State University, Fargo, ND, USA
| | - Noah DeWitt
- School of Plant, Environmental & Soil Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND, USA
| | - Steven S Xu
- Crop Improvement and Genetics Research Unit, USDA-ARS, Western Regional Research Center, Albany, CA, USA
| | - Subhashree Subramanyam
- Crop Production and Pest Control Research Unit, USDA-ARS, West Lafayette, IN, USA
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
5
|
Geethanjali S, Kadirvel P, Periyannan S. Wheat improvement through advances in single nucleotide polymorphism (SNP) detection and genotyping with a special emphasis on rust resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:224. [PMID: 39283360 PMCID: PMC11405505 DOI: 10.1007/s00122-024-04730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/24/2024] [Indexed: 09/22/2024]
Abstract
KEY MESSAGE Single nucleotide polymorphism (SNP) markers in wheat and their prospects in breeding with special reference to rust resistance. Single nucleotide polymorphism (SNP)-based markers are increasingly gaining momentum for screening and utilizing vital agronomic traits in wheat. To date, more than 260 million SNPs have been detected in modern cultivars and landraces of wheat. This rapid SNP discovery was made possible through the release of near-complete reference and pan-genome assemblies of wheat and its wild relatives, coupled with whole genome sequencing (WGS) of thousands of wheat accessions. Further, genotyping customized SNP sites were facilitated by a series of arrays (9 to 820Ks), a cost effective substitute WGS. Lately, germplasm-specific SNP arrays have been introduced to characterize novel traits and detect closely linked SNPs for marker-assisted breeding. Subsequently, the kompetitive allele-specific PCR (KASP) assay was introduced for rapid and large-scale screening of specific SNP markers. Moreover, with the advances and reduction in sequencing costs, ample opportunities arise for generating SNPs artificially through mutations and in combination with next-generation sequencing and comparative genomic analyses. In this review, we provide historical developments and prospects of SNP markers in wheat breeding with special reference to rust resistance where over 50 genetic loci have been characterized through SNP markers. Rust resistance is one of the most essential traits for wheat breeding as new strains of the Puccinia fungus, responsible for rust diseases, evolve frequently and globally.
Collapse
Affiliation(s)
- Subramaniam Geethanjali
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
| | - Palchamy Kadirvel
- Crop Improvement Section, Indian Council of Agricultural Research-Indian Institute of Oilseeds Research, Hyderabad, Telangana, 500030, India
| | - Sambasivam Periyannan
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
- School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
| |
Collapse
|
6
|
Li H, Li K, Li H, Yang C, Perera G, Wang G, Lyu S, Hua L, Rehman SU, Zhang Y, Ayliffe M, Yu H, Chen S. Mapping and Candidate Gene Analysis of an All-Stage Stem Rust Resistance Gene in Durum Wheat Landrace PI 94701. PLANTS (BASEL, SWITZERLAND) 2024; 13:2197. [PMID: 39204633 PMCID: PMC11359134 DOI: 10.3390/plants13162197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Puccinia graminis f. sp. tritici (Pgt), the causal agent of wheat stem rust, poses a significant threat to global wheat production. Genetic resistance offers a cost-effective and sustainable solution. The durum wheat landrace PI 94701 was previously hypothesized to carry two stem rust resistance (Sr) genes, but their chromosomal locations were unknown. In this study, we mapped and characterized an all-stage Sr gene in PI 94701, temporarily designated as SrPI94701. In seedling tests, SrPI94701 was effective against all six Pgt races tested. Using a large segregating population, we mapped SrPI94701 on chromosome arm 5BL within a 0.17-cM region flanked by markers pku69124 and pku69228, corresponding to 1.04 and 2.15 Mb genomic regions in the Svevo and Chinese Spring reference genomes. Within the candidate region, eight genes exhibited differential expression between the Pgt-inoculated resistant and susceptible plants. Among them, two nucleotide-binding leucine-rich repeat (NLR) genes, TraesCS5B03G1334700 and TraesCS5B03G1335100, showed high polymorphism between the parental lines and were upregulated in Pgt-inoculated resistant plants. However, the flanking and completely linked markers developed in this study could not accurately predict the presence of SrPI94701 in a survey of 104 wheat accessions. SrPI94701 is a promising resource for enhancing stem rust resistance in wheat breeding programs.
Collapse
Affiliation(s)
- Hongyu Li
- National Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China;
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Kairong Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
- College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Hongna Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Chen Yang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Geetha Perera
- CSIRO Agriculture and Food, GPO Box 1700, Clunies Ross Street, Canberra, ACT 2601, Australia
| | - Guiping Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Shikai Lyu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Lei Hua
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Shams ur Rehman
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Yazhou Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Michael Ayliffe
- CSIRO Agriculture and Food, GPO Box 1700, Clunies Ross Street, Canberra, ACT 2601, Australia
| | - Haitao Yu
- Wheat Research Institute, Weifang Academy of Agricultural Sciences, Weifang 261071, China
| | - Shisheng Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| |
Collapse
|
7
|
Tong J, Zhao C, Liu D, Jambuthenne DT, Sun M, Dinglasan E, Periyannan SK, Hickey LT, Hayes BJ. Genome-wide atlas of rust resistance loci in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:179. [PMID: 38980436 PMCID: PMC11233289 DOI: 10.1007/s00122-024-04689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024]
Abstract
Rust diseases, including leaf rust, stripe/yellow rust, and stem rust, significantly impact wheat (Triticum aestivum L.) yields, causing substantial economic losses every year. Breeding and deployment of cultivars with genetic resistance is the most effective and sustainable approach to control these diseases. The genetic toolkit for wheat breeders to select for rust resistance has rapidly expanded with a multitude of genetic loci identified using the latest advances in genomics, mapping and cloning strategies. The goal of this review was to establish a wheat genome atlas that provides a comprehensive summary of reported loci associated with rust resistance. Our atlas provides a summary of mapped quantitative trait loci (QTL) and characterised genes for the three rusts from 170 publications over the past two decades. A total of 920 QTL or resistance genes were positioned across the 21 chromosomes of wheat based on the latest wheat reference genome (IWGSC RefSeq v2.1). Interestingly, 26 genomic regions contained multiple rust loci suggesting they could have pleiotropic effects on two or more rust diseases. We discuss a range of strategies to exploit this wealth of genetic information to efficiently utilise sources of resistance, including genomic information to stack desirable and multiple QTL to develop wheat cultivars with enhanced resistance to rust disease.
Collapse
Affiliation(s)
- Jingyang Tong
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Cong Zhao
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dan Liu
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dilani T Jambuthenne
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mengjing Sun
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Eric Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Sambasivam K Periyannan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Agriculture and Environmental Science and Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
8
|
Zhang M, Liu X, Wu L, Zhou K, Yang J, Miao Y, Hao M, Ning S, Yuan Z, Jiang B, Chen X, Chen X, Zhang L, Huang L, Liu D. Mapping of a Recessive Gene for All-Stage Resistance to Stripe Rust in a Wheat Line Derived from Cultivated Einkorn ( Triticum monococcum). PLANT DISEASE 2024; 108:1682-1687. [PMID: 38190359 DOI: 10.1094/pdis-11-23-2363-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive fungal diseases of wheat. Cultivated einkorn (Triticum monococcum L. ssp. monococcum, 2n = 2x = 14, AmAm), one of the founder crops of agriculture, harbors unexploited genetic sources for wheat improvement. An advanced wheat line, Z15-1949, with 42 chromosomes, selected from the hybrids of Pst-susceptible common wheat cultivar Crocus and resistant T. monococcum accession 10-1, exhibits high resistance to a mixture of the prevalent Chinese Pst races. Genetic analysis on F1, F2, and F2:3 generations of the cross between Z15-1949 and Pst-susceptible common wheat SY95-71 indicated that the resistance of Z15-1949 was conferred by a recessive gene, tentatively designated as YrZ15-1949. This gene was mapped to the short arm of chromosome 7D using the Wheat 55K single nucleotide polymorphism array, flanked by markers KASP-1949-2 and KASP-1949-10 within a 3.3-cM genetic interval corresponding to a 1.12-Mb physical region in the Chinese Spring reference genome V2.0. The gene differs from previously reported Yr genes on 7D based on their physical positions and is probably a novel gene. YrZ15-1949 would be a valuable resource for developing Pst-resistant wheat cultivars, and the linked markers could be used for marker-assisted selection.
Collapse
Affiliation(s)
- Minghu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin 644000, China
| | - Xin Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ke Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaru Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongpiao Miao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Shen Y, Mao L, Zhou Y, Sun Y, Lv J, Deng M, Liu Z, Yang B. Transcriptome Analysis Reveals Key Genes Involved in Trichome Formation in Pepper (Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1090. [PMID: 38674502 PMCID: PMC11054266 DOI: 10.3390/plants13081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Trichomes are specialized organs located in the plant epidermis that play important defense roles against biotic and abiotic stresses. However, the mechanisms regulating the development of pepper epidermal trichomes and the related regulatory genes at the molecular level are not clear. Therefore, we performed transcriptome analyses of A114 (less trichome) and A115 (more trichome) to dig deeper into the genes involved in the regulatory mechanisms of epidermal trichome development in peppers. In this study, the epidermal trichome density of A115 was found to be higher by phenotypic observation and was highest in the leaves at the flowering stage. A total of 39,261 genes were quantified by RNA-Seq, including 11,939 genes not annotated in the previous genome analysis and 18,833 differentially expressed genes. Based on KEGG functional enrichment, it was found that DEGs were mainly concentrated in three pathways: plant-pathogen interaction, MAPK signaling pathway-plant, and plant hormone signal transduction. We further screened the DEGs associated with the development of epidermal trichomes in peppers, and the expression of the plant signaling genes GID1B-like (Capana03g003488) and PR-6 (Capana09g001847), the transcription factors MYB108 (Capana05g002225) and ABR1-like (Capana04g001261), and the plant resistance genes PGIP-like (Capana09g002077) and At5g49770 (Capana08g001721) in the DEGs were higher at A115 compared to A114, and were highly expressed in leaves at the flowering stage. In addition, based on the WGCNA results and the establishment of co-expression networks showed that the above genes were highly positively correlated with each other. The transcriptomic data and analysis of this study provide a basis for the study of the regulatory mechanisms of pepper epidermal trichomes.
Collapse
Affiliation(s)
- Yiyu Shen
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Lianzhen Mao
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Yao Zhou
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Ying Sun
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Junheng Lv
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (M.D.)
| | - Minghua Deng
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (M.D.)
| | - Zhoubin Liu
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Bozhi Yang
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| |
Collapse
|
10
|
Li M, Zhang H, Xiao H, Zhu K, Shi W, Zhang D, Wang Y, Yang L, Wu Q, Xie J, Chen Y, Qiu D, Guo G, Lu P, Li B, Dong L, Li W, Cui X, Li L, Tian X, Yuan C, Li Y, Yu D, Nevo E, Fahima T, Li H, Dong L, Zhao Y, Liu Z. A membrane associated tandem kinase from wild emmer wheat confers broad-spectrum resistance to powdery mildew. Nat Commun 2024; 15:3124. [PMID: 38600164 PMCID: PMC11006675 DOI: 10.1038/s41467-024-47497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Crop wild relatives offer natural variations of disease resistance for crop improvement. Here, we report the isolation of broad-spectrum powdery mildew resistance gene Pm36, originated from wild emmer wheat, that encodes a tandem kinase with a transmembrane domain (WTK7-TM) through the combination of map-based cloning, PacBio SMRT long-read genome sequencing, mutagenesis, and transformation. Mutagenesis assay reveals that the two kinase domains and the transmembrane domain of WTK7-TM are critical for the powdery mildew resistance function. Consistently, in vitro phosphorylation assay shows that two kinase domains are indispensable for the kinase activity of WTK7-TM. Haplotype analysis uncovers that Pm36 is an orphan gene only present in a few wild emmer wheat, indicating its single ancient origin and potential contribution to the current wheat gene pool. Overall, our findings not only provide a powdery mildew resistance gene with great potential in wheat breeding but also sheds light into the mechanism underlying broad-spectrum resistance.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Huaizhi Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huixin Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Keyu Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenqi Shi
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Dong Zhang
- Beijing PlantTech Biotechnology Co., Ltd., Beijing, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijun Yang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qiuhong Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jingzhong Xie
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Qiu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Guanghao Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Ping Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Beibei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenling Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejia Cui
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lingchuan Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiubin Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | | | - Yiwen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dazhao Yu
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Hongjie Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Yusheng Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Hainan Seed Industry Laboratory, Sanya City, Hainan Province, China.
| |
Collapse
|
11
|
Yu Z, Yunusbaev U, Fritz A, Tilley M, Akhunova A, Trick H, Akhunov E. CRISPR-based editing of the ω- and γ-gliadin gene clusters reduces wheat immunoreactivity without affecting grain protein quality. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:892-903. [PMID: 37975410 PMCID: PMC10955484 DOI: 10.1111/pbi.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Wheat immunotoxicity is associated with abnormal reaction to gluten-derived peptides. Attempts to reduce immunotoxicity using breeding and biotechnology often affect dough quality. Here, the multiplexed CRISPR-Cas9 editing of cultivar Fielder was used to modify gluten-encoding genes, specifically focusing on ω- and γ-gliadin gene copies, which were identified to be abundant in immunoreactive peptides based on the analysis of wheat genomes assembled using the long-read sequencing technologies. The whole-genome sequencing of an edited line showed mutation or deletion of nearly all ω-gliadin and half of the γ-gliadin gene copies and confirmed the lack of editing in the α/β-gliadin genes. The estimated 75% and 64% reduction in ω- and γ-gliadin content, respectively, had no negative impact on the end-use quality characteristics of grain protein and dough. A 47-fold immunoreactivity reduction compared to a non-edited line was demonstrated using antibodies against immunotoxic peptides. Our results indicate that the targeted CRISPR-based modification of the ω- and γ-gliadin gene copies determined to be abundant in immunoreactive peptides by analysing high-quality genome assemblies is an effective mean for reducing immunotoxicity of wheat cultivars while minimizing the impact of editing on protein quality.
Collapse
Affiliation(s)
- Zitong Yu
- Wheat Genetic Resources CenterKansas State UniversityManhattanKSUSA
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Ural Yunusbaev
- Wheat Genetic Resources CenterKansas State UniversityManhattanKSUSA
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Allan Fritz
- Department of AgronomyKansas State UniversityManhattanKSUSA
| | - Michael Tilley
- USDA‐ARSGrain Quality and Structure Research UnitManhattanKSUSA
| | - Alina Akhunova
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
- Integrated Genomic FacilityKansas State UniversityManhattanKSUSA
| | - Harold Trick
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Eduard Akhunov
- Wheat Genetic Resources CenterKansas State UniversityManhattanKSUSA
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| |
Collapse
|
12
|
Edae EA, Kosgey Z, Bajgain P, Ndung'u KC, Gemechu A, Bhavani S, Anderson JA, Rouse MN. The genetics of Ug99 stem rust resistance in spring wheat variety 'Linkert'. FRONTIERS IN PLANT SCIENCE 2024; 15:1343148. [PMID: 38516672 PMCID: PMC10954791 DOI: 10.3389/fpls.2024.1343148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024]
Abstract
Wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt) threatens wheat production worldwide. The objective of this study was to characterize wheat stem rust resistance in 'Linkert', a variety with adult plant resistance effective to emerging wheat stem rust pathogen strain Ug99. Two doubled haploid (DH) populations and one recombinant inbred line (RIL) population were developed with 'Linkert' as a stem rust resistant parent. Hard red spring wheat variety 'Forefront' and genetic stock 'LMPG' were used as stem rust susceptible parents of the DH populations. Breeding line 'MN07098-6' was used as a susceptible parent of the RIL population. Both DH and RIL populations with their parents were evaluated both at the seedling stage and in the field against Pgt races. Genotyping data of the DH populations were generated using the wheat iSelect 90k SNP assay. The RIL population was genotyped by genotyping-by-sequencing. We found QTL consistently associated with wheat stem rust resistance on chromosome 2BS for the Linkert/Forefront DH population and the Linkert/MN07098-6 RIL population both in Ethiopia and Kenya. Additional reliable QTL were detected on chromosomes 5BL (125.91 cM) and 4AL (Sr7a) for the Linkert/LMPG population in Ethiopia and Kenya. Different QTL identified in the populations reflect the importance of examining the genetics of resistance in populations derived from adapted germplasm (Forefront and MN07098-6) in addition to a genetic stock (LMPG). The associated markers in this study could be used to track and select for the identified QTL in wheat breeding programs.
Collapse
Affiliation(s)
- Erena A. Edae
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Zennah Kosgey
- Kenya Agricultural and Livestock Research Organization (KALRO), Food Crops Research Centre, Njoro, Kenya
| | - Prabin Bajgain
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, United States
| | - Kimani C. Ndung'u
- Kenya Agricultural and Livestock Research Organization (KALRO), Food Crops Research Centre, Njoro, Kenya
| | - Ashenafi Gemechu
- Ethiopian Institute of Agriculture, Debre Zeit Agricultural Research Center, Bishoftu, Ethiopia
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - James A. Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, United States
| | - Matthew N. Rouse
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, Saint Paul, MN, United States
| |
Collapse
|
13
|
Wilson S, Dagvadorj B, Tam R, Murphy L, Schulz-Kroenert S, Heng N, Crean E, Greenwood J, Rathjen JP, Schwessinger B. Multiplexed effector screening for recognition by endogenous resistance genes using positive defense reporters in wheat protoplasts. THE NEW PHYTOLOGIST 2024; 241:2621-2636. [PMID: 38282212 DOI: 10.1111/nph.19555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 01/30/2024]
Abstract
Plant resistance (R) and pathogen avirulence (Avr) gene interactions play a vital role in pathogen resistance. Efficient molecular screening tools for crops lack far behind their model organism counterparts, yet they are essential to rapidly identify agriculturally important molecular interactions that trigger host resistance. Here, we have developed a novel wheat protoplast assay that enables efficient screening of Avr/R interactions at scale. Our assay allows access to the extensive gene pool of phenotypically described R genes because it does not require the overexpression of cloned R genes. It is suitable for multiplexed Avr screening, with interactions tested in pools of up to 50 Avr candidates. We identified Avr/R-induced defense genes to create a promoter-luciferase reporter. Then, we combined this with a dual-color ratiometric reporter system that normalizes read-outs accounting for experimental variability and Avr/R-induced cell death. Moreover, we introduced a self-replicative plasmid reducing the amount of plasmid used in the assay. Our assay increases the throughput of Avr candidate screening, accelerating the study of cellular defense signaling and resistance gene identification in wheat. We anticipate that our assay will significantly accelerate Avr identification for many wheat pathogens, leading to improved genome-guided pathogen surveillance and breeding of disease-resistant crops.
Collapse
Affiliation(s)
- Salome Wilson
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Bayantes Dagvadorj
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Rita Tam
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Lydia Murphy
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Sven Schulz-Kroenert
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Nigel Heng
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Emma Crean
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Julian Greenwood
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - John P Rathjen
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Benjamin Schwessinger
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
14
|
Pidon H, Ruge-Wehling B, Will T, Habekuß A, Wendler N, Oldach K, Maasberg-Prelle A, Korzun V, Stein N. High-resolution mapping of Ryd4 Hb, a major resistance gene to Barley yellow dwarf virus from Hordeum bulbosum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:60. [PMID: 38409375 PMCID: PMC10896957 DOI: 10.1007/s00122-024-04542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
KEY MESSAGE We mapped Ryd4Hb in a 66.5 kbp interval in barley and dissociated it from a sublethality factor. These results will enable a targeted selection of the resistance in barley breeding. Virus diseases are causing high yield losses in crops worldwide. The Barley yellow dwarf virus (BYDV) complex is responsible for one of the most widespread and economically important viral diseases of cereals. While no gene conferring complete resistance (immunity) has been uncovered in the primary gene pool of barley, sources of resistance were searched and identified in the wild relative Hordeum bulbosum, representing the secondary gene pool of barley. One such locus, Ryd4Hb, has been previously introgressed into barley, and was allocated to chromosome 3H, but is tightly linked to a sublethality factor that prevents the incorporation and utilization of Ryd4Hb in barley varieties. To solve this problem, we fine-mapped Ryd4Hb and separated it from this negative factor. We narrowed the Ryd4Hb locus to a corresponding 66.5 kbp physical interval in the barley 'Morex' reference genome. The region comprises a gene from the nucleotide-binding and leucine-rich repeat immune receptor family, typical of dominant virus resistance genes. The closest homolog to this Ryd4Hb candidate gene is the wheat Sr35 stem rust resistance gene. In addition to the fine mapping, we reduced the interval bearing the sublethality factor to 600 kbp in barley. Aphid feeding experiments demonstrated that Ryd4Hb provides a resistance to BYDV rather than to its vector. The presented results, including the high-throughput molecular markers, will permit a more targeted selection of the resistance in breeding, enabling the use of Ryd4Hb in barley varieties.
Collapse
Affiliation(s)
- Hélène Pidon
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| | - Brigitte Ruge-Wehling
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Sanitz, Germany
| | - Torsten Will
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Antje Habekuß
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | | | | | | | | | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Göttingen, Germany.
| |
Collapse
|
15
|
Sharma PK, Ahmed HI, Heuberger M, Koo DH, Quiroz-Chavez J, Adhikari L, Raupp J, Cauet S, Rodde N, Cravero C, Callot C, Yadav IS, Kathiresan N, Athiyannan N, Ramirez-Gonzalez RH, Uauy C, Wicker T, Abrouk M, Gu YQ, Poland J, Krattinger SG, Lazo GR, Tiwari VK. An online database for einkorn wheat to aid in gene discovery and functional genomics studies. Database (Oxford) 2023; 2023:baad079. [PMID: 37971714 PMCID: PMC10653128 DOI: 10.1093/database/baad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/02/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
Diploid A-genome wheat (einkorn wheat) presents a nutrition-rich option as an ancient grain crop and a resource for the improvement of bread wheat against abiotic and biotic stresses. Realizing the importance of this wheat species, reference-level assemblies of two einkorn wheat accessions were generated (wild and domesticated). This work reports an einkorn genome database that provides an interface to the cereals research community to perform comparative genomics, applied genetics and breeding research. It features queries for annotated genes, the use of a recent genome browser release, and the ability to search for sequence alignments using a modern BLAST interface. Other features include a comparison of reference einkorn assemblies with other wheat cultivars through genomic synteny visualization and an alignment visualization tool for BLAST results. Altogether, this resource will help wheat research and breeding. Database URL https://wheat.pw.usda.gov/GG3/pangenome.
Collapse
Affiliation(s)
- Parva Kumar Sharma
- Department of Plant Science and Landscape Architecture, University of Maryland, Fieldhouse Dr. College Park, MD 20742, USA
| | - Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, KAUST, 4700 KAUST, Thuwal, Kingdom of Saudi Arabia 23955-6900, Saudi Arabia
| | - Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, 107, Zurich, Zollikerstrasse CH-8008, Switzerland
| | - Dal-Hoe Koo
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, 4024 Throckmorton, 1712 Claflin Road, Manhattan, KS 66506, USA
| | - Jesus Quiroz-Chavez
- John Innes Centre John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Laxman Adhikari
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, KAUST, 4700 KAUST, Thuwal, Kingdom of Saudi Arabia 23955-6900, Saudi Arabia
| | - John Raupp
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, 4024 Throckmorton, 1712 Claflin Road, Manhattan, KS 66506, USA
| | - Stéphane Cauet
- INRAE, CNRGV French Plant Genomic Resource Center, 24 Chemin de Borde Rouge, Castanet Tolosan F-31320, France
| | - Nathalie Rodde
- INRAE, CNRGV French Plant Genomic Resource Center, 24 Chemin de Borde Rouge, Castanet Tolosan F-31320, France
| | - Charlotte Cravero
- INRAE, CNRGV French Plant Genomic Resource Center, 24 Chemin de Borde Rouge, Castanet Tolosan F-31320, France
| | - Caroline Callot
- INRAE, CNRGV French Plant Genomic Resource Center, 24 Chemin de Borde Rouge, Castanet Tolosan F-31320, France
| | - Inderjit Singh Yadav
- Department of Plant Science and Landscape Architecture, University of Maryland, Fieldhouse Dr. College Park, MD 20742, USA
| | - Nagarajan Kathiresan
- Supercomputing Core Lab, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, KAUST, 4700 KAUST, Thuwal, Kingdom of Saudi Arabia 23955-6900, Saudi Arabia
| | | | - Cristobal Uauy
- John Innes Centre John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, 107, Zurich, Zollikerstrasse CH-8008, Switzerland
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, KAUST, 4700 KAUST, Thuwal, Kingdom of Saudi Arabia 23955-6900, Saudi Arabia
| | - Yong Q Gu
- United States Department of Agriculture—Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA 94710, USA
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, KAUST, 4700 KAUST, Thuwal, Kingdom of Saudi Arabia 23955-6900, Saudi Arabia
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, KAUST, 4700 KAUST, Thuwal, Kingdom of Saudi Arabia 23955-6900, Saudi Arabia
| | - Gerard R Lazo
- United States Department of Agriculture—Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA 94710, USA
| | - Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, Fieldhouse Dr. College Park, MD 20742, USA
| |
Collapse
|
16
|
Zhang J, Nirmala J, Chen S, Jost M, Steuernagel B, Karafiatova M, Hewitt T, Li H, Edae E, Sharma K, Hoxha S, Bhatt D, Antoniou-Kourounioti R, Dodds P, Wulff BBH, Dolezel J, Ayliffe M, Hiebert C, McIntosh R, Dubcovsky J, Zhang P, Rouse MN, Lagudah E. Single amino acid change alters specificity of the multi-allelic wheat stem rust resistance locus SR9. Nat Commun 2023; 14:7354. [PMID: 37963867 PMCID: PMC10645757 DOI: 10.1038/s41467-023-42747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
Most rust resistance genes thus far isolated from wheat have a very limited number of functional alleles. Here, we report the isolation of most of the alleles at wheat stem rust resistance gene locus SR9. The seven previously reported resistance alleles (Sr9a, Sr9b, Sr9d, Sr9e, Sr9f, Sr9g, and Sr9h) are characterised using a synergistic strategy. Loss-of-function mutants and/or transgenic complementation are used to confirm Sr9b, two haplotypes of Sr9e (Sr9e_h1 and Sr9e_h2), Sr9g, and Sr9h. Each allele encodes a highly related nucleotide-binding site leucine-rich repeat (NB-LRR) type immune receptor, containing an unusual long LRR domain, that confers resistance to a unique spectrum of isolates of the wheat stem rust pathogen. The only SR9 protein effective against stem rust pathogen race TTKSK (Ug99), SR9H, differs from SR9B by a single amino acid. SR9B and SR9G resistance proteins are also distinguished by only a single amino acid. The SR9 allelic series found in the B subgenome are orthologs of wheat stem rust resistance gene Sr21 located in the A subgenome with around 85% identity in protein sequences. Together, our results show that functional diversification of allelic variants at the SR9 locus involves single and multiple amino acid changes that recognize isolates of wheat stem rust.
Collapse
Affiliation(s)
- Jianping Zhang
- CSIRO Agriculture & Food, Canberra, ACT, 2601, Australia
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
- State Key Laboratory of Wheat and Maize Crop Science, National Wheat Innovation Centre, Centre for Crop Genome Engineering, and College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | | | - Shisheng Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, 261000, China
| | - Matthias Jost
- CSIRO Agriculture & Food, Canberra, ACT, 2601, Australia
| | | | - Mirka Karafiatova
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, 77900, Olomouc, Czech Republic
| | - Tim Hewitt
- CSIRO Agriculture & Food, Canberra, ACT, 2601, Australia
| | - Hongna Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, 261000, China
| | - Erena Edae
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Keshav Sharma
- US Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, 55108, USA
| | - Sami Hoxha
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Dhara Bhatt
- CSIRO Agriculture & Food, Canberra, ACT, 2601, Australia
| | - Rea Antoniou-Kourounioti
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Peter Dodds
- CSIRO Agriculture & Food, Canberra, ACT, 2601, Australia
| | - Brande B H Wulff
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Centre for Desert Agriculture, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Jaroslav Dolezel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, 77900, Olomouc, Czech Republic
| | | | - Colin Hiebert
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Robert McIntosh
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia.
| | - Matthew N Rouse
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
- US Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, 55108, USA.
| | - Evans Lagudah
- CSIRO Agriculture & Food, Canberra, ACT, 2601, Australia.
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia.
| |
Collapse
|
17
|
Mao H, Jiang C, Tang C, Nie X, Du L, Liu Y, Cheng P, Wu Y, Liu H, Kang Z, Wang X. Wheat adaptation to environmental stresses under climate change: Molecular basis and genetic improvement. MOLECULAR PLANT 2023; 16:1564-1589. [PMID: 37671604 DOI: 10.1016/j.molp.2023.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
Wheat (Triticum aestivum) is a staple food for about 40% of the world's population. As the global population has grown and living standards improved, high yield and improved nutritional quality have become the main targets for wheat breeding. However, wheat production has been compromised by global warming through the more frequent occurrence of extreme temperature events, which have increased water scarcity, aggravated soil salinization, caused plants to be more vulnerable to diseases, and directly reduced plant fertility and suppressed yield. One promising option to address these challenges is the genetic improvement of wheat for enhanced resistance to environmental stress. Several decades of progress in genomics and genetic engineering has tremendously advanced our understanding of the molecular and genetic mechanisms underlying abiotic and biotic stress responses in wheat. These advances have heralded what might be considered a "golden age" of functional genomics for the genetic improvement of wheat. Here, we summarize the current knowledge on the molecular and genetic basis of wheat resistance to abiotic and biotic stresses, including the QTLs/genes involved, their functional and regulatory mechanisms, and strategies for genetic modification of wheat for improved stress resistance. In addition, we also provide perspectives on some key challenges that need to be addressed.
Collapse
Affiliation(s)
- Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
18
|
Mahmood MA, Mansoor S. Einkorn genomics reveals ancient roots of domesticated wheat. CELL GENOMICS 2023; 3:100406. [PMID: 37719140 PMCID: PMC10504668 DOI: 10.1016/j.xgen.2023.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Wheat is an important staple food crop that underwent complex genome duplications. During domestication, genetic changes occurred, improving modern wheat, but understanding its phylogenetic history has been lacking. Mahmood and Mansoor discuss a recent publication demonstrating the evolutionary history of domesticated wheat (Triticum monococcum), providing opportunities for advancements in cereal improvement.
Collapse
Affiliation(s)
- Muhammad Arslan Mahmood
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Shahid Mansoor
- International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| |
Collapse
|
19
|
Jost M, Outram MA, Dibley K, Zhang J, Luo M, Ayliffe M. Plant and pathogen genomics: essential approaches for stem rust resistance gene stacks in wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1223504. [PMID: 37727853 PMCID: PMC10505659 DOI: 10.3389/fpls.2023.1223504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/27/2023] [Indexed: 09/21/2023]
Abstract
The deployment of disease resistance genes is currently the most economical and environmentally sustainable method of crop protection. However, disease resistance genes can rapidly break down because of constant pathogen evolution, particularly when they are deployed singularly. Polygenic resistance is, therefore, considered the most durable, but combining and maintaining these genes by breeding is a laborious process as effective genes are usually unlinked. The deployment of polygenic resistance with single-locus inheritance is a promising innovation that overcomes these difficulties while enhancing resistance durability. Because of major advances in genomic technologies, increasing numbers of plant resistance genes have been cloned, enabling the development of resistance transgene stacks (RTGSs) that encode multiple genes all located at a single genetic locus. Gene stacks encoding five stem rust resistance genes have now been developed in transgenic wheat and offer both breeding simplicity and potential resistance durability. The development of similar genomic resources in phytopathogens has advanced effector gene isolation and, in some instances, enabled functional validation of individual resistance genes in RTGS. Here, the wheat stem rust pathosystem is used as an illustrative example of how host and pathogen genomic advances have been instrumental in the development of RTGS, which is a strategy applicable to many other agricultural crop species.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael Ayliffe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
20
|
Saripalli G, Adhikari L, Amos C, Kibriya A, Ahmed HI, Heuberger M, Raupp J, Athiyannan N, Wicker T, Abrouk M, Wallace S, Hosseinirad S, Chhuneja P, Livesay J, Rawat N, Krattinger SG, Poland J, Tiwari V. Integration of genetic and genomics resources in einkorn wheat enables precision mapping of important traits. Commun Biol 2023; 6:835. [PMID: 37573415 PMCID: PMC10423216 DOI: 10.1038/s42003-023-05189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/26/2023] [Indexed: 08/14/2023] Open
Abstract
Einkorn wheat (Triticum monococcum) is an ancient grain crop and a close relative of the diploid progenitor (T. urartu) of polyploid wheat. It is the only diploid wheat species having both domesticated and wild forms and therefore provides an excellent system to identify domestication genes and genes for traits of interest to utilize in wheat improvement. Here, we leverage genomic advancements for einkorn wheat using an einkorn reference genome assembly combined with skim-sequencing of a large genetic population of 812 recombinant inbred lines (RILs) developed from a cross between a wild and a domesticated T. monococcum accession. We identify 15,919 crossover breakpoints delimited to a median and average interval of 114 Kbp and 219 Kbp, respectively. This high-resolution mapping resource enables us to perform fine-scale mapping of one qualitative (red coleoptile) and one quantitative (spikelet number per spike) trait, resulting in the identification of small physical intervals (400 Kb to 700 Kb) with a limited number of candidate genes. Furthermore, an important domestication locus for brittle rachis is also identified on chromosome 7A. This resource presents an exciting route to perform trait discovery in diploid wheat for agronomically important traits and their further deployment in einkorn as well as tetraploid pasta wheat and hexaploid bread wheat cultivars.
Collapse
Affiliation(s)
- Gautam Saripalli
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Laxman Adhikari
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Cameron Amos
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ashraf Kibriya
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - John Raupp
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sydney Wallace
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Seyedali Hosseinirad
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Janelle Livesay
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Vijay Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA.
| |
Collapse
|
21
|
Ahmed HI, Heuberger M, Schoen A, Koo DH, Quiroz-Chavez J, Adhikari L, Raupp J, Cauet S, Rodde N, Cravero C, Callot C, Lazo GR, Kathiresan N, Sharma PK, Moot I, Yadav IS, Singh L, Saripalli G, Rawat N, Datla R, Athiyannan N, Ramirez-Gonzalez RH, Uauy C, Wicker T, Tiwari VK, Abrouk M, Poland J, Krattinger SG. Einkorn genomics sheds light on history of the oldest domesticated wheat. Nature 2023; 620:830-838. [PMID: 37532937 PMCID: PMC10447253 DOI: 10.1038/s41586-023-06389-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
Einkorn (Triticum monococcum) was the first domesticated wheat species, and was central to the birth of agriculture and the Neolithic Revolution in the Fertile Crescent around 10,000 years ago1,2. Here we generate and analyse 5.2-Gb genome assemblies for wild and domesticated einkorn, including completely assembled centromeres. Einkorn centromeres are highly dynamic, showing evidence of ancient and recent centromere shifts caused by structural rearrangements. Whole-genome sequencing analysis of a diversity panel uncovered the population structure and evolutionary history of einkorn, revealing complex patterns of hybridizations and introgressions after the dispersal of domesticated einkorn from the Fertile Crescent. We also show that around 1% of the modern bread wheat (Triticum aestivum) A subgenome originates from einkorn. These resources and findings highlight the history of einkorn evolution and provide a basis to accelerate the genomics-assisted improvement of einkorn and bread wheat.
Collapse
Affiliation(s)
- Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Adam Schoen
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Dal-Hoe Koo
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | - Laxman Adhikari
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - John Raupp
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Stéphane Cauet
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Nathalie Rodde
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Charlotte Cravero
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Caroline Callot
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Gerard R Lazo
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, USA
| | - Nagarajan Kathiresan
- KAUST Supercomputing Core Lab (KSL), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Parva K Sharma
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Ian Moot
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Inderjit Singh Yadav
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Lovepreet Singh
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Gautam Saripalli
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
22
|
Hao Y, Pan Y, Chen W, Rashid MAR, Li M, Che N, Duan X, Zhao Y. Contribution of Duplicated Nucleotide-Binding Leucine-Rich Repeat (NLR) Genes to Wheat Disease Resistance. PLANTS (BASEL, SWITZERLAND) 2023; 12:2794. [PMID: 37570947 PMCID: PMC10420896 DOI: 10.3390/plants12152794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Wheat has a large and diverse repertoire of NLRs involved in disease resistance, with over 1500 NLRs detected in some studies. These NLR genes occur as singletons or clusters containing copies of NLRs from different phylogenetic clades. The number of NLRs and cluster size can differ drastically among ecotypes and cultivars. Primarily, duplication has led to the evolution and diversification of NLR genes. Among the various mechanisms, whole genome duplication (WGD) is the most intense and leading cause, contributing to the complex evolutionary history and abundant gene set of hexaploid wheat. Tandem duplication or recombination is another major mechanism of NLR gene expansion in wheat. The diversity and divergence of duplicate NLR genes are responsible for the broad-spectrum resistance of most plant species with limited R genes. Understanding the mechanisms underlying the rapid evolution and diversification of wheat NLR genes will help improve disease resistance in crops. The present review focuses on the diversity and divergence of duplicate NLR genes and their contribution to wheat disease resistance. Moreover, we provide an overview of disease resistance-associated gene duplication and the underlying strategies in wheat.
Collapse
Affiliation(s)
- Yongchao Hao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wuying Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Muhammad Abdul Rehman Rashid
- Department of Agricultural Sciences/Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Mengyao Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Naixiu Che
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Xu Duan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Yan Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
23
|
Thatcher S, Jung M, Panangipalli G, Fengler K, Sanyal A, Li B, Llaca V, Habben J. The NLRomes of Zea mays NAM founder lines and Zea luxurians display presence-absence variation, integrated domain diversity, and mobility. MOLECULAR PLANT PATHOLOGY 2023; 24:742-757. [PMID: 36929631 PMCID: PMC10257044 DOI: 10.1111/mpp.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 06/11/2023]
Abstract
Plant pathogens cause significant crop loss worldwide, and new resistance genes deployed to combat diseases can be overcome quickly. Understanding the existing resistance gene diversity within the germplasm of major crops, such as maize, is crucial for the development of new disease-resistant varieties. We analysed the nucleotide-binding leucine-rich repeat receptors (NLRs) of 26 recently sequenced diverse founder lines from the maize nested association mapping (NAM) population and compared them to the R gene complement present in a wild relative of maize, Zea luxurians. We found that NLRs in both species contain a large diversity of atypical integrated domains, including many domains that have not previously been found in the NLRs of other species. Additionally, the single Z. luxurians genome was found to have greater integrated atypical domain diversity than all 26 NAM founder lines combined, indicating that this species may represent a rich source of novel resistance genes. NLRs were also found to have very high sequence diversity and presence-absence variation among the NAM founder lines, with a large NLR cluster on Chr10 representing a diversity hotspot. Additionally, NLRs were shown to be mobile within maize genomes, with several putative interchromosomal translocations identified.
Collapse
|
24
|
Tamborski J, Seong K, Liu F, Staskawicz BJ, Krasileva KV. Altering Specificity and Autoactivity of Plant Immune Receptors Sr33 and Sr50 Via a Rational Engineering Approach. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:434-446. [PMID: 36867580 PMCID: PMC10561695 DOI: 10.1094/mpmi-07-22-0154-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Many resistance genes deployed against pathogens in crops are intracellular nucleotide-binding (NB) leucine-rich repeat (LRR) receptors (NLRs). The ability to rationally engineer the specificity of NLRs will be crucial in the response to newly emerging crop diseases. Successful attempts to modify NLR recognition have been limited to untargeted approaches or depended on previously available structural information or knowledge of pathogen-effector targets. However, this information is not available for most NLR-effector pairs. Here, we demonstrate the precise prediction and subsequent transfer of residues involved in effector recognition between two closely related NLRs without their experimentally determined structure or detailed knowledge about their pathogen effector targets. By combining phylogenetics, allele diversity analysis, and structural modeling, we successfully predicted residues mediating interaction of Sr50 with its cognate effector AvrSr50 and transferred recognition specificity of Sr50 to the closely related NLR Sr33. We created synthetic versions of Sr33 that contain amino acids from Sr50, including Sr33syn, which gained the ability to recognize AvrSr50 with 12 amino-acid substitutions. Furthermore, we discovered that sites in the LRR domain needed to transfer recognition specificity to Sr33 also influence autoactivity in Sr50. Structural modeling suggests these residues interact with a part of the NB-ARC domain, which we named the NB-ARC latch, to possibly maintain the inactive state of the receptor. Our approach demonstrates rational modifications of NLRs, which could be useful to enhance existing elite crop germplasm. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Janina Tamborski
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, U.S.A
| | - Kyungyong Seong
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, U.S.A
| | - Furong Liu
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, U.S.A
- Innovative Genomics Institute, University of California Berkeley, 2151 Berkeley Way, Berkeley, CA 94720, U.S.A
| | - Brian J. Staskawicz
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, U.S.A
- Innovative Genomics Institute, University of California Berkeley, 2151 Berkeley Way, Berkeley, CA 94720, U.S.A
| | - Ksenia V. Krasileva
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, U.S.A
- Innovative Genomics Institute, University of California Berkeley, 2151 Berkeley Way, Berkeley, CA 94720, U.S.A
| |
Collapse
|
25
|
Joshi A, Song HG, Yang SY, Lee JH. Integrated Molecular and Bioinformatics Approaches for Disease-Related Genes in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2454. [PMID: 37447014 DOI: 10.3390/plants12132454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
Modern plant pathology relies on bioinformatics approaches to create novel plant disease diagnostic tools. In recent years, a significant amount of biological data has been generated due to rapid developments in genomics and molecular biology techniques. The progress in the sequencing of agriculturally important crops has made it possible to develop a better understanding of plant-pathogen interactions and plant resistance. The availability of host-pathogen genome data offers effective assistance in retrieving, annotating, analyzing, and identifying the functional aspects for characterization at the gene and genome levels. Physical mapping facilitates the identification and isolation of several candidate resistance (R) genes from diverse plant species. A large number of genetic variations, such as disease-causing mutations in the genome, have been identified and characterized using bioinformatics tools, and these desirable mutations were exploited to develop disease resistance. Moreover, crop genome editing tools, namely the CRISPR (clustered regulatory interspaced short palindromic repeats)/Cas9 (CRISPR-associated) system, offer novel and efficient strategies for developing durable resistance. This review paper describes some aspects concerning the databases, tools, and techniques used to characterize resistance (R) genes for plant disease management.
Collapse
Affiliation(s)
- Alpana Joshi
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agriculture Technology & Agri-Informatics, Shobhit Institute of Engineering & Technology, Meerut 250110, India
| | - Hyung-Geun Song
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Seo-Yeon Yang
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
26
|
Annan EN, Huang L. Molecular Mechanisms of the Co-Evolution of Wheat and Rust Pathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091809. [PMID: 37176866 PMCID: PMC10180972 DOI: 10.3390/plants12091809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Wheat (Triticum spp.) is a cereal crop domesticated >8000 years ago and the second-most-consumed food crop nowadays. Ever since mankind has written records, cereal rust diseases have been a painful awareness in antiquity documented in the Old Testament (about 750 B.C.). The pathogen causing the wheat stem rust disease is among the first identified plant pathogens in the 1700s, suggesting that wheat and rust pathogens have co-existed for thousands of years. With advanced molecular technologies, wheat and rust genomes have been sequenced, and interactions between the host and the rust pathogens have been extensively studied at molecular levels. In this review, we summarized the research at the molecular level and organized the findings based on the pathogenesis steps of germination, penetration, haustorial formation, and colonization of the rusts to present the molecular mechanisms of the co-evolution of wheat and rust pathogens.
Collapse
Affiliation(s)
- Emmanuel N Annan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
| | - Li Huang
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
| |
Collapse
|
27
|
Li H, Luo J, Zhang W, Hua L, Li K, Wang J, Xu B, Yang C, Wang G, Rouse MN, Dubcovsky J, Chen S. High-resolution mapping of SrTm4, a recessive resistance gene to wheat stem rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:120. [PMID: 37103626 PMCID: PMC10140103 DOI: 10.1007/s00122-023-04369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE The diploid wheat recessive stem rust resistance gene SrTm4 was fine-mapped to a 754-kb region on chromosome arm 2AmL and potential candidate genes were identified. Race Ug99 of Puccinia graminis f. sp. tritici (Pgt), the causal agent of wheat stem (or black) rust is one of the most serious threats to global wheat production. The identification, mapping, and deployment of effective stem rust resistance (Sr) genes are critical to reduce this threat. In this study, we generated SrTm4 monogenic lines and found that this gene confers resistance to North American and Chinese Pgt races. Using a large mapping population (9522 gametes), we mapped SrTm4 within a 0.06 cM interval flanked by marker loci CS4211 and 130K1519, which corresponds to a 1.0-Mb region in the Chinese Spring reference genome v2.1. A physical map of the SrTm4 region was constructed with 11 overlapping BACs from the resistant Triticum monococcum PI 306540. Comparison of the 754-kb physical map with the genomic sequence of Chinese Spring and a discontinuous BAC sequence of DV92 revealed a 593-kb chromosomal inversion in PI 306540. Within the candidate region, we identified an L-type lectin-domain containing receptor kinase (LLK1), which was disrupted by the proximal inversion breakpoint, as a potential candidate gene. Two diagnostic dominant markers were developed to detect the inversion breakpoints. In a survey of T. monococcum accessions, we identified 10 domesticated T. monococcum subsp. monococcum genotypes, mainly from the Balkans, carrying the inversion and showing similar mesothetic resistant infection types against Pgt races. The high-density map and tightly linked molecular markers developed in this study are useful tools to accelerate the deployment of SrTm4-mediated resistance in wheat breeding programs.
Collapse
Affiliation(s)
- Hongna Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Jing Luo
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Wenjun Zhang
- Department of Plant Sciences, University of California, Davis, CA95616, USA
| | - Lei Hua
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Kun Li
- Department of Plant Sciences, University of California, Davis, CA95616, USA
| | - Jian Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Binyang Xu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chen Yang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guiping Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Matthew N Rouse
- US Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory and Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA95616, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| | - Shisheng Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China.
| |
Collapse
|
28
|
Kou H, Zhang Z, Yang Y, Wei C, Xu L, Zhang G. Advances in the Mining of Disease Resistance Genes from Aegilops tauschii and the Utilization in Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040880. [PMID: 36840228 PMCID: PMC9966637 DOI: 10.3390/plants12040880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 06/02/2023]
Abstract
Aegilops tauschii is one of the malignant weeds that affect wheat production and is also the wild species ancestor of the D genome of hexaploid wheat (Triticum aestivum, AABBDD). It contains many disease resistance genes that have been lost in the long-term evolution of wheat and is an important genetic resource for the mining and utilization of wheat disease resistance genes. In recent years, the genome sequence of Aegilops tauschii has been preliminarily completed, which has laid a good foundation for the further exploration of wheat disease resistance genes in Aegilops tauschii. There are many studies on disease resistance genes in Aegilops tauschii; in order to provide better help for the disease resistance breeding of wheat, this paper analyzes and reviews the relationship between Aegilops tauschii and wheat, the research progress of Aegilops tauschii, the discovery of disease resistance genes from Aegilops tauschii, and the application of disease resistance genes from Aegilops tauschii to modern wheat breeding, providing a reference for the further exploration and utilization of Aegilops tauschii in wheat disease resistance breeding.
Collapse
Affiliation(s)
- Hongyun Kou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Zhenbo Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Yu Yang
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
| | - Changfeng Wei
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
| | - Lili Xu
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
| | - Guangqiang Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
- Shandong Shofine Seed Technology Co., Ltd., Jining 272400, China
| |
Collapse
|
29
|
Bonnamy M, Pinel-Galzi A, Gorgues L, Chalvon V, Hébrard E, Chéron S, Nguyen TH, Poulicard N, Sabot F, Pidon H, Champion A, Césari S, Kroj T, Albar L. Rapid evolution of an RNA virus to escape recognition by a rice nucleotide-binding and leucine-rich repeat domain immune receptor. THE NEW PHYTOLOGIST 2023; 237:900-913. [PMID: 36229931 DOI: 10.1111/nph.18532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Viral diseases are a major limitation for crop production, and their control is crucial for sustainable food supply. We investigated by a combination of functional genetics and experimental evolution the resistance of rice to the rice yellow mottle virus (RYMV), which is among the most devastating rice pathogens in Africa, and the mechanisms underlying the extremely fast adaptation of the virus to its host. We found that the RYMV3 gene that protects rice against the virus codes for a nucleotide-binding and leucine-rich repeat domain immune receptor (NLRs) from the Mla-like clade of NLRs. RYMV3 detects the virus by forming a recognition complex with the viral coat protein (CP). The virus escapes efficiently from detection by mutations in its CP, some of which interfere with the formation of the recognition complex. This study establishes that NLRs also confer in monocotyledonous plants immunity to viruses, and reveals an unexpected functional diversity for NLRs of the Mla clade that were previously only known as fungal disease resistance proteins. In addition, it provides precise insight into the mechanisms by which viruses adapt to plant immunity and gives important knowledge for the development of sustainable resistance against viral diseases of cereals.
Collapse
Affiliation(s)
- Mélia Bonnamy
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Agnès Pinel-Galzi
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Lucille Gorgues
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Véronique Chalvon
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Eugénie Hébrard
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Sophie Chéron
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | | | - Nils Poulicard
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - François Sabot
- DIADE, Univ Montpellier, IRD, 34394, Montpellier, France
| | - Hélène Pidon
- DIADE, Univ Montpellier, IRD, 34394, Montpellier, France
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, 06484, Quedlinburg, Germany
| | | | - Stella Césari
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Laurence Albar
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| |
Collapse
|
30
|
Marchal C, Pai H, Kamoun S, Kourelis J. Emerging principles in the design of bioengineered made-to-order plant immune receptors. CURRENT OPINION IN PLANT BIOLOGY 2022; 70:102311. [PMID: 36379872 DOI: 10.1016/j.pbi.2022.102311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Crop yield and global food security are under constant threat from plant pathogens with the potential to cause epidemics. Traditional breeding for disease resistance can be too slow to counteract these emerging threats, resulting in the need to retool the plant immune system using bioengineered made-to-order immune receptors. Efforts to engineer immune receptors have focused primarily on nucleotide-binding domain and leucine-rich repeat (NLR) immune receptors and proof-of-principles studies. Based upon a near-exhaustive literature search of previously engineered plant immune systems we distil five emerging principles in the design of bioengineered made-to-order plant NLRs and describe approaches based on other components. These emerging principles are anticipated to assist the functional understanding of plant immune receptors, as well as bioengineering novel disease resistance specificities.
Collapse
Affiliation(s)
- Clemence Marchal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Hsuan Pai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK.
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK.
| |
Collapse
|
31
|
Tirnaz S, Zandberg J, Thomas WJW, Marsh J, Edwards D, Batley J. Application of crop wild relatives in modern breeding: An overview of resources, experimental and computational methodologies. FRONTIERS IN PLANT SCIENCE 2022; 13:1008904. [PMID: 36466237 PMCID: PMC9712971 DOI: 10.3389/fpls.2022.1008904] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/25/2022] [Indexed: 06/01/2023]
Abstract
Global agricultural industries are under pressure to meet the future food demand; however, the existing crop genetic diversity might not be sufficient to meet this expectation. Advances in genome sequencing technologies and availability of reference genomes for over 300 plant species reveals the hidden genetic diversity in crop wild relatives (CWRs), which could have significant impacts in crop improvement. There are many ex-situ and in-situ resources around the world holding rare and valuable wild species, of which many carry agronomically important traits and it is crucial for users to be aware of their availability. Here we aim to explore the available ex-/in- situ resources such as genebanks, botanical gardens, national parks, conservation hotspots and inventories holding CWR accessions. In addition we highlight the advances in availability and use of CWR genomic resources, such as their contribution in pangenome construction and introducing novel genes into crops. We also discuss the potential and challenges of modern breeding experimental approaches (e.g. de novo domestication, genome editing and speed breeding) used in CWRs and the use of computational (e.g. machine learning) approaches that could speed up utilization of CWR species in breeding programs towards crop adaptability and yield improvement.
Collapse
|
32
|
Olivera PD, Szabo LJ, Kokhmetova A, Morgounov A, Luster DG, Jin Y. Puccinia graminis f. sp. tritici Population Causing Recent Wheat Stem Rust Epidemics in Kazakhstan Is Highly Diverse and Includes Novel Virulence Pathotypes. PHYTOPATHOLOGY 2022; 112:2403-2415. [PMID: 35671480 DOI: 10.1094/phyto-08-21-0320-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a reemerging disease that caused severe epidemics in northern Kazakhstan and western Siberia in the period of 2015 to 2019. We analyzed 51 stem rust samples collected between 2015 and 2017 in five provinces in Kazakhstan. A total of 112 Pgt races were identified from 208 single-pustule isolates. These races are phenotypically and genotypically diverse, and most of them are likely of sexual origin. No differentiation of phenotypes and single-nucleotide polymorphism genotypes was observed between isolates from Akmola and North Kazakhstan provinces, supporting the idea of a wide dispersal of inoculum in the northern regions of the country. Similarities in virulence profiles with Pgt races previously reported in Siberia, Russia, suggest that northern Kazakhstan and western Siberia constitute a single stem rust epidemiological region. In addition to the races of sexual origin, six races reported in Europe, the Caucasus, and East Africa were detected in Kazakhstan, indicating that this epidemiological region is not isolated, and spore inflow from the west occurs. Virulence alone or in combination to several genes effective against the Ug99 race group was detected, including novel virulence on Sr32 + Sr40 and Sr47. The occurrence of a highly diverse Pgt population with virulence to an important group of Sr genes demonstrated the importance of the pathogen's sexual cycle in generating new and potentially damaging virulence combinations.
Collapse
Affiliation(s)
- P D Olivera
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - L J Szabo
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - A Kokhmetova
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - A Morgounov
- International Maize and Wheat Improvement Center (CIMMYT), Ankara, Turkey
| | - D G Luster
- USDA-ARS Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702, U.S.A
| | - Y Jin
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, St. Paul, MN 55108, U.S.A
| |
Collapse
|
33
|
Mapuranga J, Zhang N, Zhang L, Liu W, Chang J, Yang W. Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:951095. [PMID: 36311120 PMCID: PMC9614308 DOI: 10.3389/fpls.2022.951095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Wheat is one of the most important staple foods on earth. Leaf rust, stem rust and stripe rust, caused by Puccini triticina, Puccinia f. sp. graminis and Puccinia f. sp. striiformis, respectively, continue to threaten wheat production worldwide. Utilization of resistant cultivars is the most effective and chemical-free strategy to control rust diseases. Convectional and molecular biology techniques identified more than 200 resistance genes and their associated markers from common wheat and wheat wild relatives, which can be used by breeders in resistance breeding programmes. However, there is continuous emergence of new races of rust pathogens with novel degrees of virulence, thus rendering wheat resistance genes ineffective. An integration of genomic selection, genome editing, molecular breeding and marker-assisted selection, and phenotypic evaluations is required in developing high quality wheat varieties with resistance to multiple pathogens. Although host genotype resistance and application of fungicides are the most generally utilized approaches for controlling wheat rusts, effective agronomic methods are required to reduce disease management costs and increase wheat production sustainability. This review gives a critical overview of the current knowledge of rust resistance, particularly race-specific and non-race specific resistance, the role of pathogenesis-related proteins, non-coding RNAs, and transcription factors in rust resistance, and the molecular basis of interactions between wheat and rust pathogens. It will also discuss the new advances on how integrated rust management methods can assist in developing more durable resistant cultivars in these pathosystems.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenxiang Yang
- College of Plant Protection, Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| |
Collapse
|
34
|
Karelov A, Kozub N, Sozinova O, Pirko Y, Sozinov I, Yemets A, Blume Y. Wheat Genes Associated with Different Types of Resistance against Stem Rust ( Puccinia graminis Pers.). Pathogens 2022; 11:pathogens11101157. [PMID: 36297214 PMCID: PMC9608978 DOI: 10.3390/pathogens11101157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Stem rust is one wheat's most dangerous fungal diseases. Yield losses caused by stem rust have been significant enough to cause famine in the past. Some races of stem rust are considered to be a threat to food security even nowadays. Resistance genes are considered to be the most rational environment-friendly and widely used way to control the spread of stem rust and prevent yield losses. More than 60 genes conferring resistance against stem rust have been discovered so far (so-called Sr genes). The majority of the Sr genes discovered have lost their effectiveness due to the emergence of new races of stem rust. There are some known resistance genes that have been used for over 50 years and are still effective against most known races of stem rust. The goal of this article is to outline the different types of resistance against stem rust as well as the effective and noneffective genes, conferring each type of resistance with a brief overview of their origin and usage.
Collapse
Affiliation(s)
- Anatolii Karelov
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
- Institute of Plant Protection, National Academy of Agrarian Sciences of Ukraine, 03022 Kyiv, Ukraine
- Correspondence: (A.K.); (Y.B.)
| | - Natalia Kozub
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
- Institute of Plant Protection, National Academy of Agrarian Sciences of Ukraine, 03022 Kyiv, Ukraine
| | - Oksana Sozinova
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
- Institute of Plant Protection, National Academy of Agrarian Sciences of Ukraine, 03022 Kyiv, Ukraine
| | - Yaroslav Pirko
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
| | - Igor Sozinov
- Institute of Plant Protection, National Academy of Agrarian Sciences of Ukraine, 03022 Kyiv, Ukraine
| | - Alla Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
| | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
- Correspondence: (A.K.); (Y.B.)
| |
Collapse
|
35
|
Mehnaz M, Dracatos PM, Dinh HX, Forrest K, Rouse MN, Park RF, Singh D. A novel locus conferring resistance to Puccinia hordei maps to the genomic region corresponding to Rph14 on barley chromosome 2HS. FRONTIERS IN PLANT SCIENCE 2022; 13:980870. [PMID: 36275572 PMCID: PMC9583899 DOI: 10.3389/fpls.2022.980870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Barley leaf rust (BLR), caused by Puccinia hordei, is best controlled through genetic resistance. An efficient resistance breeding program prioritizes the need to identify, characterize, and map new sources of resistance as well as understanding the effectiveness, structure, and function of resistance genes. In this study, three mapping populations were developed by crossing Israelian barley lines "AGG-396," "AGG-397," and "AGG-403" (carrying unknown leaf rust resistance) with a susceptible variety "Gus" to characterize and map resistance. Genetic analysis of phenotypic data from rust testing F3s with a P. hordei pathotype 5457 P+ revealed monogenic inheritance in all three populations. Targeted genotyping-by-sequencing of the three populations detected marker trait associations in the same genomic region on the short arm of chromosome 2H between 39 and 57 Mb (AGG-396/Gus), 44 and 64 Mb (AGG-397/Gus), and 31 and 58 Mb (AGG-403/Gus), suggesting that the resistance in all three lines is likely conferred by the same locus (tentatively designated RphAGG396). Two Kompetitive allele-specific PCR (KASP) markers, HvGBSv2-902 and HvGBSv2-932, defined a genetic distance of 3.8 cM proximal and 7.1 cM distal to RphAGG396, respectively. To increase the marker density at the RphAGG396 locus, 75 CAPS markers were designed between two flanking markers. Integration of marker data resulted in the identification of two critical recombinants and mapping RphAGG396 between markers- Mloc-28 (40.75 Mb) and Mloc-41 (41.92 Mb) narrowing the physical window to 1.17 Mb based on the Morex v2.0 reference genome assembly. To enhance map resolution, 600 F2s were genotyped with markers- Mloc-28 and Mloc-41 and nine recombinants were identified, placing the gene at a genetic distance of 0.5 and 0.2 cM between the two markers, respectively. Two annotated NLR (nucleotide-binding domain leucine-rich repeat) genes (r2.2HG0093020 and r2.2HG0093030) were identified as the best candidates for RphAGG396. A closely linked marker was developed for RphAGG396 that can be used for marker-assisted selection.
Collapse
Affiliation(s)
- Mehnaz Mehnaz
- School of Life and Environmental Sciences, Plant Breeding Institute, University of Sydney, Sydney, NSW, Australia
| | - Peter M. Dracatos
- Department of Animal, Plant and Soil Sciences, La Trobe University, AgriBio, Bundoora, VIC, Australia
| | - Hoan X. Dinh
- School of Life and Environmental Sciences, Plant Breeding Institute, University of Sydney, Sydney, NSW, Australia
| | - Kerrie Forrest
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Matthew N. Rouse
- USDA-ARS Cereal Disease Laboratory, Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Robert F. Park
- School of Life and Environmental Sciences, Plant Breeding Institute, University of Sydney, Sydney, NSW, Australia
| | - Davinder Singh
- School of Life and Environmental Sciences, Plant Breeding Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
36
|
Förderer A, Li E, Lawson AW, Deng YN, Sun Y, Logemann E, Zhang X, Wen J, Han Z, Chang J, Chen Y, Schulze-Lefert P, Chai J. A wheat resistosome defines common principles of immune receptor channels. Nature 2022; 610:532-539. [PMID: 36163289 PMCID: PMC9581773 DOI: 10.1038/s41586-022-05231-w] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/11/2022] [Indexed: 01/17/2023]
Abstract
Plant intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) detect pathogen effectors to trigger immune responses1. Indirect recognition of a pathogen effector by the dicotyledonous Arabidopsis thaliana coiled-coil domain containing NLR (CNL) ZAR1 induces the formation of a large hetero-oligomeric protein complex, termed the ZAR1 resistosome, which functions as a calcium channel required for ZAR1-mediated immunity2-4. Whether the resistosome and channel activities are conserved among plant CNLs remains unknown. Here we report the cryo-electron microscopy structure of the wheat CNL Sr355 in complex with the effector AvrSr356 of the wheat stem rust pathogen. Direct effector binding to the leucine-rich repeats of Sr35 results in the formation of a pentameric Sr35-AvrSr35 complex, which we term the Sr35 resistosome. Wheat Sr35 and Arabidopsis ZAR1 resistosomes bear striking structural similarities, including an arginine cluster in the leucine-rich repeats domain not previously recognized as conserved, which co-occurs and forms intramolecular interactions with the 'EDVID' motif in the coiled-coil domain. Electrophysiological measurements show that the Sr35 resistosome exhibits non-selective cation channel activity. These structural insights allowed us to generate new variants of closely related wheat and barley orphan NLRs that recognize AvrSr35. Our data support the evolutionary conservation of CNL resistosomes in plants and demonstrate proof of principle for structure-based engineering of NLRs for crop improvement.
Collapse
Affiliation(s)
- Alexander Förderer
- Institute of Biochemistry, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ertong Li
- Institute of Biochemistry, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Aaron W Lawson
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ya-Nan Deng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yue Sun
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Elke Logemann
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Xiaoxiao Zhang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Wen
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhifu Han
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Normal University, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuhang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | | | - Jijie Chai
- Institute of Biochemistry, University of Cologne, Cologne, Germany.
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
37
|
Zhao YB, Liu MX, Chen TT, Ma X, Li ZK, Zheng Z, Zheng SR, Chen L, Li YZ, Tang LR, Chen Q, Wang P, Ouyang S. Pathogen effector AvrSr35 triggers Sr35 resistosome assembly via a direct recognition mechanism. SCIENCE ADVANCES 2022; 8:eabq5108. [PMID: 36083908 PMCID: PMC9462685 DOI: 10.1126/sciadv.abq5108] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/26/2022] [Indexed: 05/20/2023]
Abstract
Nucleotide-binding, leucine-rich repeat receptors (NLRs) perceive pathogen effectors to trigger plant immunity. The direct recognition mechanism of pathogen effectors by coiled-coil NLRs (CNLs) remains unclear. We demonstrate that the Triticum monococcum CNL Sr35 directly recognizes the pathogen effector AvrSr35 from Puccinia graminis f. sp. tritici and report a cryo-electron microscopy structure of Sr35 resistosome and a crystal structure of AvrSr35. We show that AvrSr35 forms homodimers that are disassociated into monomers upon direct recognition by the leucine-rich repeat domain of Sr35, which induces Sr35 resistosome assembly and the subsequent immune response. The first 20 amino-terminal residues of Sr35 are indispensable for immune signaling but not for plasma membrane association. Our findings reveal the direct recognition and activation mechanism of a plant CNL and provide insights into biochemical function of Sr35 resistosome.
Collapse
Affiliation(s)
- Yan-Bo Zhao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Meng-Xi Liu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Tao-Tao Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xiaomin Ma
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 515055, China
| | - Ze-Kai Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Zichao Zheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Si-Ru Zheng
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Lifei Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - You-Zhi Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Li-Rui Tang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Qi Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Peiyi Wang
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 515055, China
- Corresponding author. (S.O.); (P.W.)
| | - Songying Ouyang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Corresponding author. (S.O.); (P.W.)
| |
Collapse
|
38
|
Xiao J, Liu B, Yao Y, Guo Z, Jia H, Kong L, Zhang A, Ma W, Ni Z, Xu S, Lu F, Jiao Y, Yang W, Lin X, Sun S, Lu Z, Gao L, Zhao G, Cao S, Chen Q, Zhang K, Wang M, Wang M, Hu Z, Guo W, Li G, Ma X, Li J, Han F, Fu X, Ma Z, Wang D, Zhang X, Ling HQ, Xia G, Tong Y, Liu Z, He Z, Jia J, Chong K. Wheat genomic study for genetic improvement of traits in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1718-1775. [PMID: 36018491 DOI: 10.1007/s11427-022-2178-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 01/17/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.
Collapse
Affiliation(s)
- Jun Xiao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics, Northeast Normal University, Changchun, 130024, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Haiyan Jia
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Aimin Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Fei Lu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wuyun Yang
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Xuelei Lin
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Silong Sun
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Zefu Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangyao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuanghe Cao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qian Chen
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Kunpu Zhang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Guoqiang Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Ma
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Junming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Fangpu Han
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daowen Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| | - Yiping Tong
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhiyong Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- CIMMYT China Office, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
39
|
Liang X, Xu H, Zhu S, Zheng Y, Zhong W, Li H, Niu L, Wu L, Zhang L, Song J, He H, Liu C, Ma P. Genetically Dissecting the Novel Powdery Mildew Resistance Gene in Wheat Breeding Line PBDH1607. PLANT DISEASE 2022; 106:2145-2154. [PMID: 35108069 DOI: 10.1094/pdis-12-21-2771-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Powdery mildew is one of the most destructive diseases in wheat production. Identifying novel resistance genes and deploying them in new cultivars is the most effective approach to minimize wheat losses caused by powdery mildew. In this study, wheat breeding line PBDH1607 showed high resistance to powdery mildew at both the seedling and adult plant stages. Genetic analysis of the seedling data demonstrated that the resistance was controlled by a single dominant gene, tentatively designated PmPBDH. The ΔSNP index based on bulked segregant RNA sequencing indicated that PmPBDH was associated with an interval of about 30.8 Mb (713.5 to 744.3 Mb) on chromosome arm 4AL. Using newly developed markers, we mapped PmPBDH to a 3.2-cM interval covering 7.1 Mb (719,055,516 to 726,215,121 bp). This interval differed from those of Pm61 (717,963,176 to 719,260,469 bp), MlIW30 (732,769,506 to 732,790,522 bp), and MlNSF10 (729,275,816 to 731,365,462 bp) reported on the same chromosome arm. PmPBDH also differed from Pm61, MlIW30, and MlNSF10 by its response spectrum, origin, or inheritance mode, suggesting that PmPBDH should be a new Pm gene. In the candidate interval, five genes were found to be associated with PmPBDH via time course gene expression analysis, and thus they are candidate genes of PmPBDH. Six closely linked markers, including two kompetitive allele-specific PCR markers, were confirmed to be applicable for tracking PmPBDH in marker-assisted breeding.
Collapse
Affiliation(s)
- Xiao Liang
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Hongxing Xu
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shanying Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yongshen Zheng
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Wen Zhong
- Shandong Seed Administration Station, Jinan, Shandong 250100, China
| | - Haosheng Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Liping Niu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Liru Wu
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Lipei Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Jiancheng Song
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Huagang He
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| |
Collapse
|
40
|
Ancient variation of the AvrPm17 gene in powdery mildew limits the effectiveness of the introgressed rye Pm17 resistance gene in wheat. Proc Natl Acad Sci U S A 2022; 119:e2108808119. [PMID: 35857869 PMCID: PMC9335242 DOI: 10.1073/pnas.2108808119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Domesticated and wild wheat relatives provide an important source of new immune receptors for wheat resistance breeding against fungal pathogens. The durability of these resistance genes is variable and difficult to predict, yet it is crucial for effective resistance breeding. We identified a fungal effector protein recognized by an immune receptor introgressed from rye to wheat. We found that variants of the effector allowing the fungus to overcome the resistance are ancient. They were already present in the wheat powdery mildew gene pool before the introgression of the immune receptor and are therefore responsible for the rapid resistance breakdown. Our study demonstrates that the effort to identify durable resistance genes cannot be dissociated from studies of pathogen avirulence genes. Introgressions of chromosomal segments from related species into wheat are important sources of resistance against fungal diseases. The durability and effectiveness of introgressed resistance genes upon agricultural deployment is highly variable—a phenomenon that remains poorly understood, as the corresponding fungal avirulence genes are largely unknown. Until its breakdown, the Pm17 resistance gene introgressed from rye to wheat provided broad resistance against powdery mildew (Blumeria graminis). Here, we used quantitative trait locus (QTL) mapping to identify the corresponding wheat mildew avirulence effector AvrPm17. It is encoded by two paralogous genes that exhibit signatures of reoccurring gene conversion events and are members of a mildew sublineage specific effector cluster. Extensive haplovariant mining in wheat mildew and related sublineages identified several ancient virulent AvrPm17 variants that were present as standing genetic variation in wheat powdery mildew prior to the Pm17 introgression, thereby paving the way for the rapid breakdown of the Pm17 resistance. QTL mapping in mildew identified a second genetic component likely corresponding to an additional resistance gene present on the 1AL.1RS translocation carrying Pm17. This gene remained previously undetected due to suppressed recombination within the introgressed rye chromosomal segment. We conclude that the initial effectiveness of 1AL.1RS was based on simultaneous introgression of two genetically linked resistance genes. Our results demonstrate the relevance of pathogen-based genetic approaches to disentangling complex resistance loci in wheat. We propose that identification and monitoring of avirulence gene diversity in pathogen populations become an integral part of introgression breeding to ensure effective and durable resistance in wheat.
Collapse
|
41
|
Hussain B, Akpınar BA, Alaux M, Algharib AM, Sehgal D, Ali Z, Aradottir GI, Batley J, Bellec A, Bentley AR, Cagirici HB, Cattivelli L, Choulet F, Cockram J, Desiderio F, Devaux P, Dogramaci M, Dorado G, Dreisigacker S, Edwards D, El-Hassouni K, Eversole K, Fahima T, Figueroa M, Gálvez S, Gill KS, Govta L, Gul A, Hensel G, Hernandez P, Crespo-Herrera LA, Ibrahim A, Kilian B, Korzun V, Krugman T, Li Y, Liu S, Mahmoud AF, Morgounov A, Muslu T, Naseer F, Ordon F, Paux E, Perovic D, Reddy GVP, Reif JC, Reynolds M, Roychowdhury R, Rudd J, Sen TZ, Sukumaran S, Ozdemir BS, Tiwari VK, Ullah N, Unver T, Yazar S, Appels R, Budak H. Capturing Wheat Phenotypes at the Genome Level. FRONTIERS IN PLANT SCIENCE 2022; 13:851079. [PMID: 35860541 PMCID: PMC9289626 DOI: 10.3389/fpls.2022.851079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world's most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public-private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence.
Collapse
Affiliation(s)
- Babar Hussain
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | | | - Michael Alaux
- Université Paris-Saclay, INRAE, URGI, Versailles, France
| | - Ahmed M. Algharib
- Department of Environment and Bio-Agriculture, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Gudbjorg I. Aradottir
- Department of Pathology, The National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Arnaud Bellec
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Alison R. Bentley
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Halise B. Cagirici
- Crop Improvement and Genetics Research, USDA, Agricultural Research Service, Albany, CA, United States
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Fred Choulet
- French National Research Institute for Agriculture, Food and the Environment, INRAE, GDEC, Clermont-Ferrand, France
| | - James Cockram
- The John Bingham Laboratory, The National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Francesca Desiderio
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Pierre Devaux
- Research & Innovation, Florimond Desprez Group, Cappelle-en-Pévèle, France
| | - Munevver Dogramaci
- USDA, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Gabriel Dorado
- Department of Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| | | | - David Edwards
- University of Western Australia, Perth, WA, Australia
| | - Khaoula El-Hassouni
- State Plant Breeding Institute, The University of Hohenheim, Stuttgart, Germany
| | - Kellye Eversole
- International Wheat Genome Sequencing Consortium (IWGSC), Bethesda, MD, United States
| | - Tzion Fahima
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT, Australia
| | - Sergio Gálvez
- Department of Languages and Computer Science, ETSI Informática, Campus de Teatinos, Universidad de Málaga, Andalucía Tech, Málaga, Spain
| | - Kulvinder S. Gill
- Department of Crop Science, Washington State University, Pullman, WA, United States
| | - Liubov Govta
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Goetz Hensel
- Center of Plant Genome Engineering, Heinrich-Heine-Universität, Düsseldorf, Germany
- Division of Molecular Biology, Centre of Region Haná for Biotechnological and Agriculture Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
| | - Pilar Hernandez
- Institute for Sustainable Agriculture (IAS-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | | | - Amir Ibrahim
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | | | | | - Tamar Krugman
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Yinghui Li
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Shuyu Liu
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | - Amer F. Mahmoud
- Department of Plant Pathology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Alexey Morgounov
- Food and Agriculture Organization of the United Nations, Riyadh, Saudi Arabia
| | - Tugdem Muslu
- Molecular Biology, Genetics and Bioengineering, Sabanci University, Istanbul, Turkey
| | - Faiza Naseer
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Etienne Paux
- French National Research Institute for Agriculture, Food and the Environment, INRAE, GDEC, Clermont-Ferrand, France
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Gadi V. P. Reddy
- USDA-Agricultural Research Service, Southern Insect Management Research Unit, Stoneville, MS, United States
| | - Jochen Christoph Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Rajib Roychowdhury
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Jackie Rudd
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | - Taner Z. Sen
- Crop Improvement and Genetics Research, USDA, Agricultural Research Service, Albany, CA, United States
| | | | | | | | - Naimat Ullah
- Institute of Biological Sciences (IBS), Gomal University, D. I. Khan, Pakistan
| | - Turgay Unver
- Ficus Biotechnology, Ostim Teknopark, Ankara, Turkey
| | - Selami Yazar
- General Directorate of Research, Ministry of Agriculture, Ankara, Turkey
| | | | - Hikmet Budak
- Montana BioAgriculture, Inc., Missoula, MT, United States
| |
Collapse
|
42
|
Mohanty JK, Jha UC, Dixit GP, Parida SK. Harnessing the hidden allelic diversity of wild Cicer to accelerate genomics-assisted chickpea crop improvement. Mol Biol Rep 2022; 49:5697-5715. [PMID: 35708861 DOI: 10.1007/s11033-022-07613-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Chickpea, commonly called Bengal gram or Garbanzo bean, faces a productivity crisis around the globe due to numerous biotic and abiotic stresses. The eroded genetic base of the cultivated Cicer gene pool is becoming a significant bottleneck in developing stress-resilient chickpea cultivars. In this scenario, the crop wild relatives (CWR) of chickpea, with the useful genomic wealth of their wild adaptation, give a ray of hope to improve the genetic background of the cultivated Cicer gene pool. To extrapolate these unearthed genomic diversities of wild, we require a thorough understanding of the pre-historic domestication episodes that are changing their shape with the expansion of the available scientific evidence. Keeping aforesaid in view, the current review article provides a glimpsed overview on several efforts done so far to reveal the mysterious origin and evolution of the Cicer gene pool, along with the constraints in their utilization for chickpea crop improvement. It encapsulates various stress-resilient CWR of chickpea and their use in several pre-breeding programs to develop numerous breeding populations for crop genetic enhancement. Further, this review will recapitulate the significant contributions of structural, functional and comparative genomics, pan-genomics and diverse genomics-assisted breeding strategy in dissecting the untapped trait-specific allelic/gene diversity and domestication pattern behind the CWR of chickpea, along with their potential and promises. We expect the newly explored genetic variations may be used in the breeding programs for re-wilding the cultigens' genomic background to open a new avenue for genetic gain and crop improvement capacity of chickpea.
Collapse
Affiliation(s)
- Jitendra Kumar Mohanty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Uday Chand Jha
- ICAR-Indian Institute of Pulse Research (IIPR), Kanpur, 208024, India
| | - G P Dixit
- ICAR-Indian Institute of Pulse Research (IIPR), Kanpur, 208024, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
43
|
Lin G, Chen H, Tian B, Sehgal SK, Singh L, Xie J, Rawat N, Juliana P, Singh N, Shrestha S, Wilson DL, Shult H, Lee H, Schoen AW, Tiwari VK, Singh RP, Guttieri MJ, Trick HN, Poland J, Bowden RL, Bai G, Gill B, Liu S. Cloning of the broadly effective wheat leaf rust resistance gene Lr42 transferred from Aegilops tauschii. Nat Commun 2022; 13:3044. [PMID: 35650212 PMCID: PMC9160033 DOI: 10.1038/s41467-022-30784-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
The wheat wild relative Aegilops tauschii was previously used to transfer the Lr42 leaf rust resistance gene into bread wheat. Lr42 confers resistance at both seedling and adult stages, and it is broadly effective against all leaf rust races tested to date. Lr42 has been used extensively in the CIMMYT international wheat breeding program with resulting cultivars deployed in several countries. Here, using a bulked segregant RNA-Seq (BSR-Seq) mapping strategy, we identify three candidate genes for Lr42. Overexpression of a nucleotide-binding site leucine-rich repeat (NLR) gene AET1Gv20040300 induces strong resistance to leaf rust in wheat and a mutation of the gene disrupted the resistance. The Lr42 resistance allele is rare in Ae. tauschii and likely arose from ectopic recombination. Cloning of Lr42 provides diagnostic markers and over 1000 CIMMYT wheat lines carrying Lr42 have been developed documenting its widespread use and impact in crop improvement.
Collapse
Affiliation(s)
- Guifang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Hui Chen
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Bin Tian
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA.,Syngenta Crop Protection, Research Triangle Park, Durham, NC, 27709, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57006, USA
| | - Lovepreet Singh
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Jingzhong Xie
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA.,State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Philomin Juliana
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico.,Borlaug Institute for South Asia, Ludhiana, India
| | - Narinder Singh
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA.,Bayer R&D Services LLC, Kansas City, MO, 64153, USA
| | - Sandesh Shrestha
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Duane L Wilson
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Hannah Shult
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Hyeonju Lee
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Adam William Schoen
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
| | - Mary J Guttieri
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, 66506-5502, USA
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA.,Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Robert L Bowden
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, 66506-5502, USA
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506-5502, USA.,Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, 66506-5502, USA
| | - Bikram Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA.
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA.
| |
Collapse
|
44
|
Ferjaoui S, Aouini L, Slimane RB, Ammar K, Dreisigacker S, Schouten HJ, Sapkota S, Bahri BA, Ben M'Barek S, Visser RGF, Kema GHJ, Hamza S. Deciphering resistance to Zymoseptoria tritici in the Tunisian durum wheat landrace accession 'Agili39'. BMC Genomics 2022; 23:372. [PMID: 35581550 PMCID: PMC9112612 DOI: 10.1186/s12864-022-08560-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/14/2022] [Indexed: 01/28/2023] Open
Abstract
Background Septoria tritici blotch (STB), caused by Zymoseptoria tritici (Z. tritici), is an important biotic threat to durum wheat in the entire Mediterranean Basin. Although most durum wheat cultivars are susceptible to Z. tritici, research in STB resistance in durum wheat has been limited. Results In our study, we have identified resistance to a wide array of Z. tritici isolates in the Tunisian durum wheat landrace accession ‘Agili39’. Subsequently, a recombinant inbred population was developed and tested under greenhouse conditions at the seedling stage with eight Z. tritici isolates and for five years under field conditions with three Z. tritici isolates. Mapping of quantitative trait loci (QTL) resulted in the identification of two major QTL on chromosome 2B designated as Qstb2B_1 and Qstb2B_2. The Qstb2B_1 QTL was mapped at the seedling and the adult plant stage (highest LOD 33.9, explained variance 61.6%), conferring an effective resistance against five Z. tritici isolates. The Qstb2B_2 conferred adult plant resistance (highest LOD 32.9, explained variance 42%) and has been effective at the field trials against two Z. tritici isolates. The physical positions of the flanking markers linked to Qstb2B_1 and Qstb2B_2 indicate that these two QTL are 5 Mb apart. In addition, we identified two minor QTL on chromosomes 1A (Qstb1A) and chromosome 7A (Qstb7A) (highest LODs 4.6 and 4.0, and explained variances of 16% and 9%, respectively) that were specific to three and one Z. tritici isolates, respectively. All identified QTL were derived from the landrace accession Agili39 that represents a valuable source for STB resistance in durum wheat. Conclusion This study demonstrates that Z. tritici resistance in the ‘Agili39’ landrace accession is controlled by two minor and two major QTL acting in an additive mode. We also provide evidence that the broad efficacy of the resistance to STB in ‘Agili 39’ is due to a natural pyramiding of these QTL. A sustainable use of this Z. tritici resistance source and a positive selection of the linked markers to the identified QTL will greatly support effective breeding for Z. tritici resistance in durum wheat. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08560-2.
Collapse
Affiliation(s)
- Sahbi Ferjaoui
- Laboratory of Bioaggressors and Integrated Protection in Agriculture (BPIA), National Institute of Agronomy of Tunisia (INAT), 43 Avenue Charles Nicolle, 1082 El Mahrajène, Tunis, Tunisia.,Present Address Field Crops Laboratory, Regional Field Crops Research Center of Beja (CRRGC), P.O. Box 9000, Beja, Tunisia
| | - Lamia Aouini
- Bio-Interaction and Plant Health, Wageningen University and Research, PO Box 16, 6700AA, Wageningen, The Netherlands.,The Graduate School 'Experimental Plant Sciences' (EPS), Wageningen Campus, 6708 PB, Wageningen, The Netherlands.,Present Address Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Rim B Slimane
- Laboratory of Bioaggressors and Integrated Protection in Agriculture (BPIA), National Institute of Agronomy of Tunisia (INAT), 43 Avenue Charles Nicolle, 1082 El Mahrajène, Tunis, Tunisia.,Present address Higher Institute of Agronomy of Chott Meriam (ISA-CM), 4042, Sousse, Tunisia
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6‑641, 06600, Mexico, D.F., Mexico
| | - Suzanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6‑641, 06600, Mexico, D.F., Mexico
| | - Henk J Schouten
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Suraj Sapkota
- Institute of Plant Breeding, Genetics and Genomics, Department of Plant Pathology and Institute of Plant Breeding, University of Georgia, Griffin, GA, 30223, USA.,Present Address United States Department of Agriculture USDA, Crop Genetics and Breeding Research Unit, Tifton, GA, USA
| | - Bochra A Bahri
- Laboratory of Bioaggressors and Integrated Protection in Agriculture (BPIA), National Institute of Agronomy of Tunisia (INAT), 43 Avenue Charles Nicolle, 1082 El Mahrajène, Tunis, Tunisia.,Institute of Plant Breeding, Genetics and Genomics, Department of Plant Pathology and Institute of Plant Breeding, University of Georgia, Griffin, GA, 30223, USA
| | - Sarrah Ben M'Barek
- CRP-Wheat Septoria Phenotyping Platform (CIMMYT-IRESA), Regional Field Crops Research Center of Beja (CRRGC), BP 350, 9000, Beja, Tunisia
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Gert H J Kema
- Bio-Interaction and Plant Health, Wageningen University and Research, PO Box 16, 6700AA, Wageningen, The Netherlands.,Laboratory of Phytopathology, Wageningen University and Research, PO box 16, 6700AA, Wageningen, The Netherlands
| | - Sonia Hamza
- Laboratory of Bioaggressors and Integrated Protection in Agriculture (BPIA), National Institute of Agronomy of Tunisia (INAT), 43 Avenue Charles Nicolle, 1082 El Mahrajène, Tunis, Tunisia.
| |
Collapse
|
45
|
Vikas VK, Pradhan AK, Budhlakoti N, Mishra DC, Chandra T, Bhardwaj SC, Kumar S, Sivasamy M, Jayaprakash P, Nisha R, Shajitha P, Peter J, Geetha M, Mir RR, Singh K, Kumar S. Multi-locus genome-wide association studies (ML-GWAS) reveal novel genomic regions associated with seedling and adult plant stage leaf rust resistance in bread wheat (Triticum aestivum L.). Heredity (Edinb) 2022; 128:434-449. [PMID: 35418669 DOI: 10.1038/s41437-022-00525-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
Leaf rust is one of the important diseases limiting global wheat production and productivity. To identify quantitative trait nucleotides (QTNs) or genomic regions associated with seedling and adult plant leaf rust resistance, multilocus genome-wide association studies (ML-GWAS) were performed on a panel of 400 diverse wheat genotypes using 35 K single-nucleotide polymorphism (SNP) genotyping assays and trait data of leaf rust resistance. Association analyses using six multi-locus GWAS models revealed a set of 201 significantly associated QTNs for seedling and 65 QTNs for adult plant resistance (APR), explaining 1.98-31.72% of the phenotypic variation for leaf rust. Among these QTNs, 51 reliable QTNs for seedling and 15 QTNs for APR were consistently detected in at least two GWAS models and were considered reliable QTNs. Three genomic regions were pleiotropic, each controlling two to three pathotype-specific seedling resistances to leaf rust. We also identified candidate genes, such as leucine-rich repeat receptor-like (LRR) protein kinases, P-loop containing nucleoside triphosphate hydrolase and serine-threonine/tyrosine-protein kinases (STPK), which have a role in pathogen recognition and disease resistance linked to the significantly associated genomic regions. The QTNs identified in this study can prove useful in wheat molecular breeding programs aimed at enhancing resistance to leaf rust and developing next-generation leaf rust-resistant varieties.
Collapse
Affiliation(s)
- V K Vikas
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | | | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | | | - Tilak Chandra
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - S C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, Himachal Pradesh, 171002, India
| | - Subodh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, Himachal Pradesh, 171002, India
| | - M Sivasamy
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | - P Jayaprakash
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | - R Nisha
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | - P Shajitha
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | - John Peter
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | - M Geetha
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India.,Genetic Resource Division, ICRISAT, Patancheru, Hyderabad, India
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India.
| |
Collapse
|
46
|
Ortiz D, Chen J, Outram MA, Saur IM, Upadhyaya NM, Mago R, Ericsson DJ, Cesari S, Chen C, Williams SJ, Dodds PN. The stem rust effector protein AvrSr50 escapes Sr50 recognition by a substitution in a single surface-exposed residue. THE NEW PHYTOLOGIST 2022; 234:592-606. [PMID: 35107838 PMCID: PMC9306850 DOI: 10.1111/nph.18011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/12/2022] [Indexed: 05/28/2023]
Abstract
Pathogen effectors are crucial players during plant colonisation and infection. Plant resistance mostly relies on effector recognition to activate defence responses. Understanding how effector proteins escape from plant surveillance is important for plant breeding and resistance deployment. Here we examined the role of genetic diversity of the stem rust (Puccinia graminis f. sp. tritici (Pgt)) AvrSr50 gene in determining recognition by the corresponding wheat Sr50 resistance gene. We solved the crystal structure of a natural variant of AvrSr50 and used site-directed mutagenesis and transient expression assays to dissect the molecular mechanisms explaining gain of virulence. We report that AvrSr50 can escape recognition by Sr50 through different mechanisms including DNA insertion, stop codon loss or by amino-acid variation involving a single substitution of the AvrSr50 surface-exposed residue Q121. We also report structural homology of AvrSr50 to cupin superfamily members and carbohydrate-binding modules indicating a potential role in binding sugar moieties. This study identifies key polymorphic sites present in AvrSr50 alleles from natural stem rust populations that play important roles to escape from Sr50 recognition. This constitutes an important step to better understand Pgt effector evolution and to monitor AvrSr50 variants in natural rust populations.
Collapse
Affiliation(s)
- Diana Ortiz
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
- National Research Institute for AgricultureFood and Environment, Genetics and Breeding of Fruit and Vegetables UnitMontfavet84143France
| | - Jian Chen
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Megan A. Outram
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Isabel M.L. Saur
- Department of Plant–Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologne50829Germany
- University of Plant SciencesUniversity of CologneCologne50674Germany
- Cluster of Excellence on Plant SciencesCologne50674Germany
| | - Narayana M. Upadhyaya
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| | - Rohit Mago
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| | - Daniel J. Ericsson
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Australian SynchrotronMacromolecular CrystallographyClaytonVic.3168Australia
| | - Stella Cesari
- PHIM Plant Health InstituteUniversité de MontpellierINRAE, CIRADInstitut AgroIRDMontpellier34980France
| | - Chunhong Chen
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| | - Simon J. Williams
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Peter N. Dodds
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| |
Collapse
|
47
|
Unravelling the Genetic Architecture of Rust Resistance in the Common Bean (Phaseolus vulgaris L.) by Combining QTL-Seq and GWAS Analysis. PLANTS 2022; 11:plants11070953. [PMID: 35406934 PMCID: PMC9002482 DOI: 10.3390/plants11070953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 11/30/2022]
Abstract
The common bean (Phaseolus vulgaris L.) is the most important legume crop directly used for human consumption worldwide. Bean rust, caused by Uromyces appendiculatus, is a devastating disease and usually causes severe loss of seed yield and pod quality. Deployment of resistant cultivars is the best strategy to combat this disease. However, despite being the largest snap bean-producing country, the genetic basis research of rust resistance has largely lagged in China. In this study, an RIL population and a diversity panel were evaluated for rust resistance against a purified rust isolate Cua-LS using a detached leaf assay. Deploying a QTL-Seq analysis in the RIL population, a 1.81 Mb interval on chromosome 4, a 2.73 Mb interval on chromosome 5 and a 1.26 Mb interval on chromosome 6 were identified as major QTLs for rust resistance, designated as Qur-1, Qur-2 and Qur-3, respectively. Through a GWAS diversity panel, 64 significant SNPs associated with rust resistance were detected, distributed in all 11 chromosomes and explaining 19–49% of the phenotypic variation. Synteny analysis showed that Qur-2 was validated in GWAS, but the rust QTL/SNPs detected in our study were different from the known genes, except Ur-11. A total of 114 candidate genes, including the typical NBS-LRR genes, protein kinase superfamily proteins and ABC transporter family proteins, were identified and proposed as the likely candidates. The identified 17 resistant accessions will enrich the resistant germplasm resources, and the detected QTLs/SNPs will facilitate the molecular breeding of rust resistance in the common bean.
Collapse
|
48
|
Adhikari L, Raupp J, Wu S, Wilson D, Evers B, Koo DH, Singh N, Friebe B, Poland J. Genetic characterization and curation of diploid A-genome wheat species. PLANT PHYSIOLOGY 2022; 188:2101-2114. [PMID: 35134208 PMCID: PMC8968256 DOI: 10.1093/plphys/kiac006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
A-genome diploid wheats represent the earliest domesticated and cultivated wheat species in the Fertile Crescent and include the donor of the wheat A sub-genome. The A-genome species encompass the cultivated einkorn (Triticum monococcum L. subsp. monococcum), wild einkorn (T. monococcum L. subsp. aegilopoides (Link) Thell.), and Triticum urartu. We evaluated the collection of 930 accessions in the Wheat Genetics Resource Center (WGRC) using genotyping by sequencing and identified 13,860 curated single-nucleotide polymorphisms. Genomic analysis detected misclassified and genetically identical (>99%) accessions, with most of the identical accessions originating from the same or nearby locations. About 56% (n = 520) of the WGRC A-genome species collections were genetically identical, supporting the need for genomic characterization for effective curation and maintenance of these collections. Population structure analysis confirmed the morphology-based classifications of the accessions and reflected the species geographic distributions. We also showed that T. urartu is the closest A-genome diploid to the A-subgenome in common wheat (Triticum aestivum L.) through phylogenetic analysis. Population analysis within the wild einkorn group showed three genetically distinct clusters, which corresponded with wild einkorn races α, β, and γ described previously. The T. monococcum genome-wide FST scan identified candidate genomic regions harboring a domestication selection signature at the Non-brittle rachis 1 (Btr1) locus on the short arm of chromosome 3Am at ∼70 Mb. We established an A-genome core set (79 accessions) based on allelic diversity, geographical distribution, and available phenotypic data. The individual species core set maintained at least 79% of allelic variants in the A-genome collection and constituted a valuable genetic resource to improve wheat and domesticated einkorn in breeding programs.
Collapse
Affiliation(s)
- Laxman Adhikari
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66502, USA
- Wheat Genetic Resource Center (WGRC), Kansas State University, Manhattan, Kansas 66502, USA
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - John Raupp
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66502, USA
- Wheat Genetic Resource Center (WGRC), Kansas State University, Manhattan, Kansas 66502, USA
| | - Shuangye Wu
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66502, USA
- Wheat Genetic Resource Center (WGRC), Kansas State University, Manhattan, Kansas 66502, USA
| | - Duane Wilson
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66502, USA
- Wheat Genetic Resource Center (WGRC), Kansas State University, Manhattan, Kansas 66502, USA
| | - Byron Evers
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66502, USA
- Wheat Genetic Resource Center (WGRC), Kansas State University, Manhattan, Kansas 66502, USA
| | - Dal-Hoe Koo
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66502, USA
- Wheat Genetic Resource Center (WGRC), Kansas State University, Manhattan, Kansas 66502, USA
| | - Narinder Singh
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66502, USA
- Wheat Genetic Resource Center (WGRC), Kansas State University, Manhattan, Kansas 66502, USA
| | - Bernd Friebe
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66502, USA
- Wheat Genetic Resource Center (WGRC), Kansas State University, Manhattan, Kansas 66502, USA
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66502, USA
- Wheat Genetic Resource Center (WGRC), Kansas State University, Manhattan, Kansas 66502, USA
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
49
|
QTL mapping for adult plant resistance to wheat stripe rust in M96-5 × Guixie 3 wheat population. J Appl Genet 2022; 63:265-279. [PMID: 35338429 PMCID: PMC8979893 DOI: 10.1007/s13353-022-00686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 11/02/2022]
Abstract
Development of cultivars with multiple resistances has proven to be an effective way to prevent diseases in wheat breeding. The Guixie 3 variety (GX3) has shown excellent performance in resistance to stripe rust in field for many years. The purpose of this study was to detect quantitative trait loci (QTL) associated with resistance to stripe rust in the adult plant stage and determine closely linked molecular markers. A population of recombinant inbred lines (n = 228) was derived from a cross between the susceptible landrace Mian 96-5 (M96-5) and GX3 variety and evaluated in multiple field studies, and QTL analysis enabled to elucidate genetic architecture of wheat resistance to stripe rust. A total of 19 QTL for stripe rust resistance were mapped on 12 chromosomes using phenotypic data from multiple field tests over the course of 6 years. These chromosomes included 1B (2), 1D (2), 2A (2), 2B (2), 2D (1), 4B (2), 4D (1), 5A (3), 5B (1), 6A (1), 6B (1), and 7B (1). Two stable QTL on chromosomes 2AS (Qyr.gaas.2A) and 6AL (Qyr.gaas.6A) were detected in six and five different environments, respectively; in both QTL, positive allele was contributed by GX3 variety. Qyr.gaas.2A was found to be crucial for increasing adult plant resistance, which may explain the large phenotypic variation of 45.52%. Our results provide theoretical and molecular insight for wheat breeding and suggest the cloning of genes associated with the GX3 variety may be beneficial in future studies.
Collapse
|
50
|
Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat Commun 2022; 13:1607. [PMID: 35338132 PMCID: PMC8956640 DOI: 10.1038/s41467-022-29132-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines show high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance. Aegilops sharonensis is a wild diploid relative of wheat. Here, the authors assemble the genome of Ae. sharonensis and use the assembly as an aid to clone the Ae. sharonensis-derived stem rust resistance gene Sr62 in the allohexaploid genome of wheat.
Collapse
|