1
|
Desbois M, Grill B. Molecular regulation of axon termination in mechanosensory neurons. Development 2024; 151:dev202945. [PMID: 39268828 PMCID: PMC11698068 DOI: 10.1242/dev.202945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Spatially and temporally accurate termination of axon outgrowth, a process called axon termination, is required for efficient, precise nervous system construction and wiring. The mechanosensory neurons that sense low-threshold mechanical stimulation or gentle touch have proven exceptionally valuable for studying axon termination over the past 40 years. In this Review, we discuss progress made in deciphering the molecular and genetic mechanisms that govern axon termination in touch receptor neurons. Findings across model organisms, including Caenorhabditis elegans, Drosophila, zebrafish and mice, have revealed that complex signaling is required for termination with conserved principles and players beginning to surface. A key emerging theme is that axon termination is mediated by complex signaling networks that include ubiquitin ligase signaling hubs, kinase cascades, transcription factors, guidance/adhesion receptors and growth factors. Here, we begin a discussion about how these signaling networks could represent termination codes that trigger cessation of axon outgrowth in different species and types of mechanosensory neurons.
Collapse
Affiliation(s)
- Muriel Desbois
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98101, USA
| |
Collapse
|
2
|
Bai SY, Zeng DY, Ouyang M, Zeng Y, Tan W, Xu L. Synaptic cell adhesion molecules contribute to the pathogenesis and progression of fragile X syndrome. Front Cell Neurosci 2024; 18:1393536. [PMID: 39022311 PMCID: PMC11252757 DOI: 10.3389/fncel.2024.1393536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a monogenic cause of autism spectrum disorders. Deficiencies in the fragile X messenger ribonucleoprotein, encoded by the FMR1 gene, lead to various anatomical and pathophysiological abnormalities and behavioral deficits, such as spine dysmorphogenesis and learning and memory impairments. Synaptic cell adhesion molecules (CAMs) play crucial roles in synapse formation and neural signal transmission by promoting the formation of new synaptic contacts, accurately organizing presynaptic and postsynaptic protein complexes, and ensuring the accuracy of signal transmission. Recent studies have implicated synaptic CAMs such as the immunoglobulin superfamily, N-cadherin, leucine-rich repeat proteins, and neuroligin-1 in the pathogenesis of FXS and found that they contribute to defects in dendritic spines and synaptic plasticity in FXS animal models. This review systematically summarizes the biological associations between nine representative synaptic CAMs and FMRP, as well as the functional consequences of the interaction, to provide new insights into the mechanisms of abnormal synaptic development in FXS.
Collapse
Affiliation(s)
- Shu-Yuan Bai
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - De-Yang Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Ming Ouyang
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Yan Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Lang Xu
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Dong H, Li J, Wu Q, Jin Y. Confluence and convergence of Dscam and Pcdh cell-recognition codes. Trends Biochem Sci 2023; 48:1044-1057. [PMID: 37839971 DOI: 10.1016/j.tibs.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023]
Abstract
The ability of neurites of the same neuron to avoid each other (self-avoidance) is a conserved feature in both invertebrates and vertebrates. The key to self-avoidance is the generation of a unique subset of cell-surface proteins in individual neurons engaging in isoform-specific homophilic interactions that drive neurite repulsion rather than adhesion. Among these cell-surface proteins are fly Dscam1 and vertebrate clustered protocadherins (cPcdhs), as well as the recently characterized shortened Dscam (sDscam) in the Chelicerata. Herein, we review recent advances in our understanding of how cPcdh, Dscam, and sDscam cell-surface recognition codes are expressed and translated into cellular functions essential for neural wiring.
Collapse
Affiliation(s)
- Haiyang Dong
- The First Affiliated Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, China; MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, ZJ310058, China
| | - Jinhuan Li
- Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Systems Medicine for Cancer, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Wu
- Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Systems Medicine for Cancer, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yongfeng Jin
- The First Affiliated Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, China; MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, ZJ310058, China.
| |
Collapse
|
4
|
Dong H, Yang X, Wu L, Zhang S, Zhang J, Guo P, Du Y, Pan C, Fu Y, Li L, Shi J, Zhu Y, Ma H, Bian L, Xu B, Li G, Shi F, Huang J, He H, Jin Y. A systematic CRISPR screen reveals redundant and specific roles for Dscam1 isoform diversity in neuronal wiring. PLoS Biol 2023; 21:e3002197. [PMID: 37410725 PMCID: PMC10325099 DOI: 10.1371/journal.pbio.3002197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Drosophila melanogaster Down syndrome cell adhesion molecule 1 (Dscam1) encodes 19,008 diverse ectodomain isoforms via the alternative splicing of exon 4, 6, and 9 clusters. However, whether individual isoforms or exon clusters have specific significance is unclear. Here, using phenotype-diversity correlation analysis, we reveal the redundant and specific roles of Dscam1 diversity in neuronal wiring. A series of deletion mutations were performed from the endogenous locus harboring exon 4, 6, or 9 clusters, reducing to 396 to 18,612 potential ectodomain isoforms. Of the 3 types of neurons assessed, dendrite self/non-self discrimination required a minimum number of isoforms (approximately 2,000), independent of exon clusters or isoforms. In contrast, normal axon patterning in the mushroom body and mechanosensory neurons requires many more isoforms that tend to associate with specific exon clusters or isoforms. We conclude that the role of the Dscam1 diversity in dendrite self/non-self discrimination is nonspecifically mediated by its isoform diversity. In contrast, a separate role requires variable domain- or isoform-related functions and is essential for other neurodevelopmental contexts, such as axonal growth and branching. Our findings shed new light on a general principle for the role of Dscam1 diversity in neuronal wiring.
Collapse
Affiliation(s)
- Haiyang Dong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xi Yang
- Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lili Wu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shixin Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pengjuan Guo
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiwen Du
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Changkun Pan
- Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Fu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lei Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jilong Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanda Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongru Ma
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lina Bian
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guo Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianhua Huang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China, PR China
| | - Haihuai He
- Department of Neurosurgery, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Zhang S, Yang X, Dong H, Xu B, Wu L, Zhang J, Li G, Guo P, Li L, Fu Y, Du Y, Zhu Y, Shi J, Shi F, Huang J, He H, Jin Y. Cis mutagenesis in vivo reveals extensive noncanonical functions of Dscam1 isoforms in neuronal wiring. PNAS NEXUS 2023; 2:pgad135. [PMID: 37152679 PMCID: PMC10156172 DOI: 10.1093/pnasnexus/pgad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Drosophila Down syndrome cell adhesion molecule 1 (Dscam1) encodes tens of thousands of cell recognition molecules via alternative splicing, which are required for neural function. A canonical self-avoidance model seems to provide a central mechanistic basis for Dscam1 functions in neuronal wiring. Here, we reveal extensive noncanonical functions of Dscam1 isoforms in neuronal wiring. We generated a series of allelic cis mutations in Dscam1, encoding a normal number of isoforms, but with an altered isoform composition. Despite normal dendritic self-avoidance and self-/nonself-discrimination in dendritic arborization (da) neurons, which is consistent with the canonical self-avoidance model, these mutants exhibited strikingly distinct spectra of phenotypic defects in the three types of neurons: up to ∼60% defects in mushroom bodies, a significant increase in branching and growth in da neurons, and mild axonal branching defects in mechanosensory neurons. Remarkably, the altered isoform composition resulted in increased dendrite growth yet inhibited axon growth. Moreover, reducing Dscam1 dosage exacerbated axonal defects in mushroom bodies and mechanosensory neurons but reverted dendritic branching and growth defects in da neurons. This splicing-tuned regulation strategy suggests that axon and dendrite growth in diverse neurons cell-autonomously require Dscam1 isoform composition. These findings provide important insights into the functions of Dscam1 isoforms in neuronal wiring.
Collapse
Affiliation(s)
| | | | - Haiyang Dong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Lili Wu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Jian Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Guo Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Pengjuan Guo
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Lei Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Ying Fu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Yiwen Du
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Yanda Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Jilong Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Feng Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou ZJ310058, People's Republic of China
| | - Jianhua Huang
- Institute of Insect Sciences, Zhejiang University, Hangzhou ZJ310058, People’s Republic of China
| | - Haihuai He
- To whom correspondence should be addressed: (H.H.); (Y.J.)
| | - Yongfeng Jin
- To whom correspondence should be addressed: (H.H.); (Y.J.)
| |
Collapse
|
6
|
Hernández K, Godoy L, Newquist G, Kellermeyer R, Alavi M, Mathew D, Kidd T. Dscam1 overexpression impairs the function of the gut nervous system in Drosophila. Dev Dyn 2023; 252:156-171. [PMID: 36454543 PMCID: PMC9812936 DOI: 10.1002/dvdy.554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Down syndrome (DS) patients have a 100-fold increase in the risk of Hirschsprung syndrome of the colon and rectum (HSCR), a lack of enteric neurons in the colon. The leading DS candidate gene is trisomy of the Down syndrome cell adhesion molecule (DSCAM). RESULTS We find that Dscam1 protein is expressed in the Drosophila enteric/stomatogastric nervous system (SNS). Axonal Dscam1 phenotypes can be rescued equally by diverse isoforms. Overexpression of Dscam1 resulted in frontal and hindgut nerve overgrowth. Expression of dominant negative Dscam1-ΔC led to a truncated frontal nerve and increased branching of the hindgut nerve. Larval locomotion is influenced by feeding state, and we found that the average speed of larvae with Dscam1 SNS expression was reduced, whereas overexpression of Dscam1-ΔC significantly increased the speed. Dscam1 overexpression reduced the efficiency of food clearance from the larval gut. CONCLUSION Our work demonstrates that overexpression of Dscam1 can perturb gut function in a model system.
Collapse
Affiliation(s)
| | - Luis Godoy
- Biology/MS 314, University of Nevada, Reno, NV 89557, USA
| | | | | | - Maryam Alavi
- Biology/MS 314, University of Nevada, Reno, NV 89557, USA
| | - Dennis Mathew
- Biology/MS 314, University of Nevada, Reno, NV 89557, USA
| | - Thomas Kidd
- Biology/MS 314, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
7
|
Dscam1: Is It a Ubiquitous Code for Dendritic Arborization? eNeuro 2023; 10:10/1/ENEURO.0440-22.2023. [PMID: 36702556 PMCID: PMC9884107 DOI: 10.1523/eneuro.0440-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
|
8
|
TRPC5OS induces tumorigenesis by increasing ENO1-mediated glucose uptake in breast cancer. Transl Oncol 2022; 22:101447. [PMID: 35584604 PMCID: PMC9119839 DOI: 10.1016/j.tranon.2022.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/17/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
|
9
|
Self-avoidance alone does not explain the function of Dscam1 in mushroom body axonal wiring. Curr Biol 2022; 32:2908-2920.e4. [PMID: 35659864 DOI: 10.1016/j.cub.2022.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/28/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022]
Abstract
Alternative splicing of Drosophila Dscam1 into 38,016 isoforms provides neurons with a unique molecular code for self-recognition and self-avoidance. A canonical model suggests that the homophilic binding of identical Dscam1 isoforms on the sister branches of mushroom body (MB) axons supports segregation with high fidelity, even when only a single isoform is expressed. Here, we generated a series of mutant flies with a single exon 4, 6, or 9 variant, encoding 1,584, 396, or 576 potential isoforms, respectively. Surprisingly, most of the mutants in the latter two groups exhibited obvious defects in the growth, branching, and segregation of MB axonal sister branches. This demonstrates that the repertoires of 396 and 576 Dscam1 isoforms were not sufficient for the normal patterning of axonal branches. Moreover, reducing Dscam1 levels largely reversed the defects caused by reduced isoform diversity, suggesting a functional link between Dscam1 expression levels and isoform diversity. Taken together, these results indicate that canonical self-avoidance alone does not explain the function of Dscam1 in MB axonal wiring.
Collapse
|
10
|
Dong H, Xu B, Guo P, Zhang J, Yang X, Li L, Fu Y, Shi J, Zhang S, Zhu Y, Shi Y, Zhou F, Bian L, You W, Shi F, Yang X, Huang J, He H, Jin Y. Hidden RNA pairings counteract the "first-come, first-served" splicing principle to drive stochastic choice in Dscam1 splice variants. SCIENCE ADVANCES 2022; 8:eabm1763. [PMID: 35080968 PMCID: PMC8791459 DOI: 10.1126/sciadv.abm1763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Drosophila melanogaster Dscam1 encodes 38,016 isoforms via mutually exclusive splicing; however, the regulatory mechanism behind this is not fully understood. Here, we found a set of hidden RNA secondary structures that balance the stochastic choice of Dscam1 splice variants (designated balancer RNA secondary structures). In vivo mutational analyses revealed the dual function of these balancer interactions in driving the stochastic choice of splice variants, through enhancement of the inclusion of distal exon 6s by cooperating with docking site–selector pairing to form a stronger multidomain pre-mRNA structure and through simultaneous repression of the inclusion of proximal exon 6s by antagonizing their docking site–selector pairings. Thus, we provide an elegant molecular model based on competition and cooperation between two sets of docking site–selector and balancer pairings, which counteracts the “first-come, first-served” principle. Our findings provide conceptual and mechanistic insight into the dynamics and functions of long-range RNA secondary structures.
Collapse
Affiliation(s)
- Haiyang Dong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Pengjuan Guo
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xi Yang
- Department of Neurosurgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu China
| | - Lei Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ying Fu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jilong Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shixin Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yanda Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yang Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fengyan Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lina Bian
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wendong You
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaofeng Yang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhua Huang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Haihuai He
- Department of Neurosurgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Ivanov TM, Pervouchine DD. Tandem Exon Duplications Expanding the Alternative Splicing Repertoire. Acta Naturae 2022; 14:73-81. [PMID: 35441045 PMCID: PMC9013439 DOI: 10.32607/actanaturae.11583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Tandem exon duplications play an important role in the evolution of eukaryotic genes, providing a generic mechanism for adaptive regulation of protein function. In recent studies, tandem exon duplications have been linked to mutually exclusive exon choice, a pattern of alternative splicing in which one and only one exon from a group of tandemly arranged exons is included in the mature transcript. Here, we revisit the problem of identifying tandem exon duplications in eukaryotic genomes using bioinformatic methods and show that tandemly duplicated exons are abundant not only in the coding parts, but also in the untranslated regions. We present a number of remarkable examples of tandem exon duplications, identify unannotated duplicated exons, and provide statistical support for their expression using large panels of RNA-seq experiments.
Collapse
Affiliation(s)
- T. M. Ivanov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - D. D. Pervouchine
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| |
Collapse
|
12
|
Structure of cell-cell adhesion mediated by the Down syndrome cell adhesion molecule. Proc Natl Acad Sci U S A 2021; 118:2022442118. [PMID: 34531300 DOI: 10.1073/pnas.2022442118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
The Down syndrome cell adhesion molecule (DSCAM) belongs to the immunoglobulin superfamily (IgSF) and plays important roles in neural development. It has a large ectodomain, including 10 Ig-like domains and 6 fibronectin III (FnIII) domains. Previous data have shown that DSCAM can mediate cell adhesion by forming homophilic dimers between cells and contributes to self-avoidance of neurites or neuronal tiling, which is important for neural network formation. However, the organization and assembly of DSCAM at cell adhesion interfaces has not been fully understood. Here we combine electron microscopy and other biophysical methods to characterize the structure of the DSCAM-mediated cell adhesion and generate three-dimensional views of the adhesion interfaces of DSCAM by electron tomography. The results show that mouse DSCAM forms a regular pattern at the adhesion interfaces. The Ig-like domains contribute to both trans homophilic interactions and cis assembly of the pattern, and the FnIII domains are crucial for the cis pattern formation as well as the interaction with the cell membrane. By contrast, no obvious assembly pattern is observed at the adhesion interfaces mediated by mouse DSCAML1 or Drosophila DSCAMs, suggesting the different structural roles and mechanisms of DSCAMs in mediating cell adhesion and neural network formation.
Collapse
|
13
|
The RNA-binding protein Musashi controls axon compartment-specific synaptic connectivity through ptp69D mRNA poly(A)-tailing. Cell Rep 2021; 36:109713. [PMID: 34525368 DOI: 10.1016/j.celrep.2021.109713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/24/2021] [Indexed: 10/20/2022] Open
Abstract
Synaptic targeting with subcellular specificity is essential for neural circuit assembly. Developing neurons use mechanisms to curb promiscuous synaptic connections and to direct synapse formation to defined subcellular compartments. How this selectivity is achieved molecularly remains enigmatic. Here, we discover a link between mRNA poly(A)-tailing and axon collateral branch-specific synaptic connectivity within the CNS. We reveal that the RNA-binding protein Musashi binds to the mRNA encoding the receptor protein tyrosine phosphatase Ptp69D, thereby increasing poly(A) tail length and Ptp69D protein levels. This regulation specifically promotes synaptic connectivity in one axon collateral characterized by a high degree of arborization and strong synaptogenic potential. In a different compartment of the same axon, Musashi prevents ectopic synaptogenesis, revealing antagonistic, compartment-specific functions. Moreover, Musashi-dependent Ptp69D regulation controls synaptic connectivity in the olfactory circuit. Thus, Musashi differentially shapes synaptic connectivity at the level of individual subcellular compartments and within different developmental and neuron type-specific contexts.
Collapse
|
14
|
Izadifar A, Courchet J, Virga DM, Verreet T, Hamilton S, Ayaz D, Misbaer A, Vandenbogaerde S, Monteiro L, Petrovic M, Sachse S, Yan B, Erfurth ML, Dascenco D, Kise Y, Yan J, Edwards-Faret G, Lewis T, Polleux F, Schmucker D. Axon morphogenesis and maintenance require an evolutionary conserved safeguard function of Wnk kinases antagonizing Sarm and Axed. Neuron 2021; 109:2864-2883.e8. [PMID: 34384519 DOI: 10.1016/j.neuron.2021.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 05/24/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
The molecular and cellular mechanisms underlying complex axon morphogenesis are still poorly understood. We report a novel, evolutionary conserved function for the Drosophila Wnk kinase (dWnk) and its mammalian orthologs, WNK1 and 2, in axon branching. We uncover that dWnk, together with the neuroprotective factor Nmnat, antagonizes the axon-destabilizing factors D-Sarm and Axundead (Axed) during axon branch growth, revealing a developmental function for these proteins. Overexpression of D-Sarm or Axed results in axon branching defects, which can be blocked by overexpression of dWnk or Nmnat. Surprisingly, Wnk kinases are also required for axon maintenance of adult Drosophila and mouse cortical pyramidal neurons. Requirement of Wnk for axon maintenance is independent of its developmental function. Inactivation of dWnk or mouse Wnk1/2 in mature neurons leads to axon degeneration in the adult brain. Therefore, Wnk kinases are novel signaling components that provide a safeguard function in both developing and adult axons.
Collapse
Affiliation(s)
- Azadeh Izadifar
- Life and Medical Sciences Institute (LIMES), Bonn, Germany; VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Julien Courchet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, 69622 Villeurbanne, France; Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Daniel M Virga
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Tine Verreet
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Stevie Hamilton
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Derya Ayaz
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Anke Misbaer
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sofie Vandenbogaerde
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Laloe Monteiro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, 69622 Villeurbanne, France
| | - Milan Petrovic
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sonja Sachse
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Bing Yan
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Maria-Luise Erfurth
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Dan Dascenco
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Jiekun Yan
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Gabriela Edwards-Faret
- Life and Medical Sciences Institute (LIMES), Bonn, Germany; VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Tommy Lewis
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Franck Polleux
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| | - Dietmar Schmucker
- Life and Medical Sciences Institute (LIMES), Bonn, Germany; VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
Hong W, Zhang J, Dong H, Shi Y, Ma H, Zhou F, Xu B, Fu Y, Zhang S, Hou S, Li G, Wu Y, Chen S, Zhu X, You W, Shi F, Yang X, Gong Z, Huang J, Jin Y. Intron-targeted mutagenesis reveals roles for Dscam1 RNA pairing architecture-driven splicing bias in neuronal wiring. Cell Rep 2021; 36:109373. [PMID: 34260933 DOI: 10.1016/j.celrep.2021.109373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/05/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022] Open
Abstract
Drosophila melanogaster Down syndrome cell adhesion molecule (Dscam1) can generate 38,016 different isoforms through largely stochastic, yet highly biased, alternative splicing. These isoforms are required for nervous functions. However, the functional significance of splicing bias remains unknown. Here, we provide evidence that Dscam1 splicing bias is required for mushroom body (MB) axonal wiring. We generate mutant flies with normal overall protein levels and an identical number but global changes in exon 4 and 9 isoform bias (DscamΔ4D-/- and DscamΔ9D-/-), respectively. In contrast to DscamΔ4D-/-, DscamΔ9D-/- exhibits remarkable MB defects, suggesting a variable domain-specific requirement for isoform bias. Importantly, changes in isoform bias cause axonal defects but do not influence the self-avoidance of axonal branches. We conclude that, in contrast to the isoform number that provides the molecular basis for neurite self-avoidance, isoform bias may play a role in MB axonal wiring by influencing non-repulsive signaling.
Collapse
Affiliation(s)
- Weiling Hong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Jian Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Haiyang Dong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Yang Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Hongru Ma
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Fengyan Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Ying Fu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Shixin Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Shouqing Hou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Guo Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Yandan Wu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Shuo Chen
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Xiaohua Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Wendong You
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Feng Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Xiaofeng Yang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Zhefeng Gong
- Department of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Jianhua Huang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China; Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China.
| |
Collapse
|
16
|
Qiu J, Wu L, Chang Y, Sun H, Sun J. Alternative splicing transitions associate with emerging atrophy phenotype during denervation-induced skeletal muscle atrophy. J Cell Physiol 2021; 236:4496-4514. [PMID: 33319931 DOI: 10.1002/jcp.30167] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/23/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022]
Abstract
Alternative splicing (AS) presents a key posttranscriptional regulatory mechanism associated with numerous physiological processes. However, little is known about its role in skeletal muscle atrophy. In this study, we used a rat model of denervated skeletal muscle atrophy and performed RNA-sequencing to analyze transcriptome profiling of tibialis anterior muscle at multiple time points following denervation. We found that AS is a novel mechanism involving muscle atrophy, which is independent changes at the transcript level. Bioinformatics analysis further revealed that AS transitions are associated with the appearance of the atrophic phenotype. Moreover, we found that the inclusion of multiple highly conserved exons of Obscn markedly increased at 3 days after denervation. In addition, we confirmed that this newly transcript inhibited C2C12 cell proliferation and exacerbated myotube atrophy. Finally, our study revealed that a large number of RNA-binding proteins were upregulated when the atrophy phenotype appeared. Our data emphasize the importance of AS in this process.
Collapse
Affiliation(s)
- Jiaying Qiu
- Department of Prenatal Screening and Diagnosis Center, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, Nantong, China
| | - Yan Chang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
17
|
Mitsogiannis MD, Pancho A, Aerts T, Sachse SM, Vanlaer R, Noterdaeme L, Schmucker D, Seuntjens E. Subtle Roles of Down Syndrome Cell Adhesion Molecules in Embryonic Forebrain Development and Neuronal Migration. Front Cell Dev Biol 2021; 8:624181. [PMID: 33585465 PMCID: PMC7876293 DOI: 10.3389/fcell.2020.624181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022] Open
Abstract
Down Syndrome (DS) Cell Adhesion Molecules (DSCAMs) are transmembrane proteins of the immunoglobulin superfamily. Human DSCAM is located within the DS critical region of chromosome 21 (duplicated in Down Syndrome patients), and mutations or copy-number variations of this gene have also been associated to Fragile X syndrome, intellectual disability, autism, and bipolar disorder. The DSCAM paralogue DSCAM-like 1 (DSCAML1) maps to chromosome 11q23, implicated in the development of Jacobsen and Tourette syndromes. Additionally, a spontaneous mouse DSCAM deletion leads to motor coordination defects and seizures. Previous research has revealed roles for DSCAMs in several neurodevelopmental processes, including synaptogenesis, dendritic self-avoidance, cell sorting, axon growth and branching. However, their functions in embryonic mammalian forebrain development have yet to be completely elucidated. In this study, we revealed highly dynamic spatiotemporal patterns of Dscam and Dscaml1 expression in definite cortical layers of the embryonic mouse brain, as well as in structures and ganglionic eminence-derived neural populations within the embryonic subpallium. However, an in-depth histological analysis of cortical development, ventral forebrain morphogenesis, cortical interneuron migration, and cortical-subcortical connectivity formation processes in Dscam and Dscaml1 knockout mice (Dscam del17 and Dscaml1 GT ) at several embryonic stages indicated that constitutive loss of Dscam and Dscaml1 does not affect these developmental events in a significant manner. Given that several Dscam- and Dscaml1-linked neurodevelopmental disorders are associated to chromosomal region duplication events, we furthermore sought to examine the neurodevelopmental effects of Dscam and Dscaml1 gain of function (GOF). In vitro, ex vivo, and in vivo GOF negatively impacted neural migration processes important to cortical development, and affected the morphology of maturing neurons. Overall, these findings contribute to existing knowledge on the molecular etiology of human neurodevelopmental disorders by elucidating how dosage variations of genes encoding adhesive cues can disrupt cell-cell or cell-environment interactions crucial for neuronal migration.
Collapse
Affiliation(s)
- Manuela D. Mitsogiannis
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anna Pancho
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Tania Aerts
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sonja M. Sachse
- Neuronal Wiring Laboratory, Department of Neurosciences, VIB-KU Leuven Center for Brain & Disease Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ria Vanlaer
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lut Noterdaeme
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dietmar Schmucker
- Neuronal Wiring Laboratory, Department of Neurosciences, VIB-KU Leuven Center for Brain & Disease Research, Katholieke Universiteit Leuven, Leuven, Belgium
- Neuronal Wiring Group, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Eve Seuntjens
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Lin TY, Chen PJ, Yu HH, Hsu CP, Lee CH. Extrinsic Factors Regulating Dendritic Patterning. Front Cell Neurosci 2021; 14:622808. [PMID: 33519386 PMCID: PMC7838386 DOI: 10.3389/fncel.2020.622808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Stereotypic dendrite arborizations are key morphological features of neuronal identity, as the size, shape and location of dendritic trees determine the synaptic input fields and how information is integrated within developed neural circuits. In this review, we focus on the actions of extrinsic intercellular communication factors and their effects on intrinsic developmental processes that lead to dendrite patterning. Surrounding neurons or supporting cells express adhesion receptors and secreted proteins that respectively, act via direct contact or over short distances to shape, size, and localize dendrites during specific developmental stages. The different ligand-receptor interactions and downstream signaling events appear to direct dendrite morphogenesis by converging on two categorical mechanisms: local cytoskeletal and adhesion modulation and global transcriptional regulation of key dendritic growth components, such as lipid synthesis enzymes. Recent work has begun to uncover how the coordinated signaling of multiple extrinsic factors promotes complexity in dendritic trees and ensures robust dendritic patterning.
Collapse
Affiliation(s)
- Tzu-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Pei-Ju Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Hsiang Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Hon Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
19
|
Hoersting AK, Schmucker D. Axonal branch patterning and neuronal shape diversity: roles in developmental circuit assembly: Axonal branch patterning and neuronal shape diversity in developmental circuit assembly. Curr Opin Neurobiol 2020; 66:158-165. [PMID: 33232861 DOI: 10.1016/j.conb.2020.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Recent progress in human genetics and single cell sequencing rapidly expands the list of molecular factors that offer important new contributions to our understanding of brain wiring. Yet many new molecular factors are being discovered that have never been studied in the context of neuronal circuit development. This is clearly asking for increased efforts to better understand the developmental mechanisms of circuit assembly [1]. Moreover, recent studies characterizing the developmental causes of some psychiatric diseases show impressive progress in reaching cellular resolution in their analysis. They provide concrete support emphasizing the importance of axonal branching and synapse formation as a hotspot for potential defects. Inspired by these new studies we will discuss progress but also challenges in understanding how neurite branching and neuronal shape diversity itself impacts on specificity of neuronal circuit assembly. We discuss the idea that neuronal shape acquisition itself is a key specificity factor in neuronal circuit assembly.
Collapse
Affiliation(s)
| | - Dietmar Schmucker
- Life and Medical Sciences Institute (LIMES), University Bonn, Bonn, Germany; Center for Brain and Disease Research, VIB Leuven, University Leuven, Belgium.
| |
Collapse
|
20
|
Hiesinger PR. Brain wiring with composite instructions. Bioessays 2020; 43:e2000166. [PMID: 33145823 DOI: 10.1002/bies.202000166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 11/12/2022]
Abstract
The quest for molecular mechanisms that guide axons or specify synaptic contacts has largely focused on molecules that intuitively relate to the idea of an "instruction." By contrast, "permissive" factors are traditionally considered background machinery without contribution to the information content of a molecularly executed instruction. In this essay, I recast this dichotomy as a continuum from permissive to instructive actions of single factors that provide relative contributions to a necessarily collaborative effort. Individual molecules or other factors do not constitute absolute instructions by themselves; they provide necessary context for each other, thereby creating a composite that defines the overall instruction. The idea of composite instructions leads to two main conclusions: first, a composite of many seemingly permissive factors can define a specific instruction even in the absence of a single dominant contributor; second, individual factors are not necessarily related intuitively to the overall instruction or phenotypic outcome.
Collapse
Affiliation(s)
- P Robin Hiesinger
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
21
|
Rizalar FS, Roosen DA, Haucke V. A Presynaptic Perspective on Transport and Assembly Mechanisms for Synapse Formation. Neuron 2020; 109:27-41. [PMID: 33098763 DOI: 10.1016/j.neuron.2020.09.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/26/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023]
Abstract
Neurons are highly polarized cells with a single axon and multiple dendrites derived from the cell body to form tightly associated pre- and postsynaptic compartments. As the biosynthetic machinery is largely restricted to the somatodendritic domain, the vast majority of presynaptic components are synthesized in the neuronal soma, packaged into synaptic precursor vesicles, and actively transported along the axon to sites of presynaptic biogenesis. In contrast with the significant progress that has been made in understanding synaptic transmission and processing of information at the post-synapse, comparably little is known about the formation and dynamic remodeling of the presynaptic compartment. We review here our current understanding of the mechanisms that govern the biogenesis, transport, and assembly of the key components for presynaptic neurotransmission, discuss how alterations in presynaptic assembly may impact nervous system function or lead to disease, and outline key open questions for future research.
Collapse
Affiliation(s)
- Filiz Sila Rizalar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Dorien A Roosen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
22
|
Hong W, Shi Y, Xu B, Jin Y. RNA secondary structures in Dscam1 mutually exclusive splicing: unique evolutionary signature from the midge. RNA (NEW YORK, N.Y.) 2020; 26:1086-1093. [PMID: 32471818 PMCID: PMC7430681 DOI: 10.1261/rna.075259.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/27/2020] [Indexed: 05/12/2023]
Abstract
The Drosophila melanogaster gene Dscam1 potentially generates 38,016 distinct isoforms via mutually exclusive splicing, which are required for both nervous and immune functions. However, the mechanism underlying splicing regulation remains obscure. Here we show apparent evolutionary signatures characteristic of competing RNA secondary structures in exon clusters 6 and 9 of Dscam1 in the two midge species (Belgica antarctica and Clunio marinus). Surprisingly, midge Dscam1 encodes only ∼6000 different isoforms through mutually exclusive splicing. Strikingly, the docking site of the exon 6 cluster is conserved in almost all insects and crustaceans but is specific in the midge; however, the docking site-selector base-pairings are conserved. Moreover, the docking site is complementary to all predicted selector sequences downstream from every variable exon 9 of the midge Dscam1, which is in accordance with the broad spectrum of their isoform expression. This suggests that these cis-elements mainly function through the formation of long-range base-pairings. This study provides a vital insight into the evolution and mechanism of Dscam1 alternative splicing.
Collapse
Affiliation(s)
- Weiling Hong
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, ZJ310058, China
| | - Yang Shi
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, ZJ310058, China
| | - Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, ZJ310058, China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, ZJ310058, China
| |
Collapse
|
23
|
Sanes JR, Zipursky SL. Synaptic Specificity, Recognition Molecules, and Assembly of Neural Circuits. Cell 2020; 181:536-556. [DOI: 10.1016/j.cell.2020.04.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023]
|
24
|
Xu B, Shi Y, Wu Y, Meng Y, Jin Y. Role of RNA secondary structures in regulating Dscam alternative splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194381. [DOI: 10.1016/j.bbagrm.2019.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
|
25
|
Inter-axonal recognition organizes Drosophila olfactory map formation. Sci Rep 2019; 9:11554. [PMID: 31399611 PMCID: PMC6689066 DOI: 10.1038/s41598-019-47924-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/26/2019] [Indexed: 11/20/2022] Open
Abstract
Olfactory systems across the animal kingdom show astonishing similarities in their morphological and functional organization. In mouse and Drosophila, olfactory sensory neurons are characterized by the selective expression of a single odorant receptor (OR) type and by the OR class-specific connection in the olfactory brain center. Monospecific OR expression in mouse provides each sensory neuron with a unique recognition identity underlying class-specific axon sorting into synaptic glomeruli. Here we show that in Drosophila, although OR genes are not involved in sensory neuron connectivity, afferent sorting via OR class-specific recognition defines a central mechanism of odortopic map formation. Sensory neurons mutant for the Ig-domain receptor Dscam converge into ectopic glomeruli with single OR class identity independent of their target cells. Mosaic analysis showed that Dscam prevents premature recognition among sensory axons of the same OR class. Single Dscam isoform expression in projecting axons revealed the importance of Dscam diversity for spatially restricted glomerular convergence. These data support a model in which the precise temporal-spatial regulation of Dscam activity controls class-specific axon sorting thereby indicating convergent evolution of olfactory map formation via self-patterning of sensory neurons.
Collapse
|
26
|
Dougan J, Hawsawi O, Burton LJ, Edwards G, Jones K, Zou J, Nagappan P, Wang G, Zhang Q, Danaher A, Bowen N, Hinton C, Odero-Marah VA. Proteomics-Metabolomics Combined Approach Identifies Peroxidasin as a Protector against Metabolic and Oxidative Stress in Prostate Cancer. Int J Mol Sci 2019; 20:E3046. [PMID: 31234468 PMCID: PMC6627806 DOI: 10.3390/ijms20123046] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Peroxidasin (PXDN), a human homolog of Drosophila PXDN, belongs to the family of heme peroxidases and has been found to promote oxidative stress in cardiovascular tissue, however, its role in prostate cancer has not been previously elucidated. We hypothesized that PXDN promotes prostate cancer progression via regulation of metabolic and oxidative stress pathways. We analyzed PXDN expression in prostate tissue by immunohistochemistry and found increased PXDN expression with prostate cancer progression as compared to normal tissue or cells. PXDN knockdown followed by proteomic analysis revealed an increase in oxidative stress, mitochondrial dysfunction and gluconeogenesis pathways. Additionally, Liquid Chromatography with tandem mass spectrometry (LC-MS/MS)-based metabolomics confirmed that PXDN knockdown induced global reprogramming associated with increased oxidative stress and decreased nucleotide biosynthesis. We further demonstrated that PXDN knockdown led to an increase in reactive oxygen species (ROS) associated with decreased cell viability and increased apoptosis. Finally, PXDN knockdown decreased colony formation on soft agar. Overall, the data suggest that PXDN promotes progression of prostate cancer by regulating the metabolome, more specifically, by inhibiting oxidative stress leading to decreased apoptosis. Therefore, PXDN may be a biomarker associated with prostate cancer and a potential therapeutic target.
Collapse
Affiliation(s)
- Jodi Dougan
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Ohuod Hawsawi
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Liza J Burton
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Gabrielle Edwards
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Kia Jones
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Jin Zou
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Peri Nagappan
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Guangdi Wang
- Department of Chemistry, Xavier University, New Orleans, LA 70125, USA.
| | - Qiang Zhang
- Department of Chemistry, Xavier University, New Orleans, LA 70125, USA.
| | - Alira Danaher
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Nathan Bowen
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Cimona Hinton
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | - Valerie A Odero-Marah
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| |
Collapse
|
27
|
Urwyler O, Izadifar A, Vandenbogaerde S, Sachse S, Misbaer A, Schmucker D. Branch-restricted localization of phosphatase Prl-1 specifies axonal synaptogenesis domains. Science 2019; 364:364/6439/eaau9952. [DOI: 10.1126/science.aau9952] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 03/29/2019] [Indexed: 01/21/2023]
Abstract
Central nervous system (CNS) circuit development requires subcellular control of synapse formation and patterning of synapse abundance. We identified the Drosophila membrane-anchored phosphatase of regenerating liver (Prl-1) as an axon-intrinsic factor that promotes synapse formation in a spatially restricted fashion. The loss of Prl-1 in mechanosensory neurons reduced the number of CNS presynapses localized on a single axon collateral and organized as a terminal arbor. Flies lacking all Prl-1 protein had locomotor defects. The overexpression of Prl-1 induced ectopic synapses. In mechanosensory neurons, Prl-1 modulates the insulin receptor (InR) signaling pathway within a single contralateral axon compartment, thereby affecting the number of synapses. The axon branch–specific localization and function of Prl-1 depend on untranslated regions of the prl-1 messenger RNA (mRNA). Therefore, compartmentalized restriction of Prl-1 serves as a specificity factor for the subcellular control of axonal synaptogenesis.
Collapse
|
28
|
Abstract
How the nervous system is wired has been a central question of neuroscience since the inception of the field, and many of the foundational discoveries and conceptual advances have been made through the study of invertebrate experimental organisms, including Caenorhabditis elegans and Drosophila melanogaster. Although many guidance molecules and receptors have been identified, recent experiments have shed light on the many modes of action for these pathways. Here, we summarize the recent progress in determining how the physical and temporal constraints of the surrounding environment provide instructive regulations in nervous system wiring. We use Netrin and its receptors as an example to analyze the complexity of how they guide neurite outgrowth. In neurite repair, conserved injury detection and response-signaling pathways regulate gene expression and cytoskeletal dynamics. We also describe recent developments in the research on molecular mechanisms of neurite regeneration in worms and flies.
Collapse
Affiliation(s)
- Claire E Richardson
- Department of Biology, Stanford University, Stanford, California 94305, USA;
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, California 94305, USA; .,Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
29
|
Sphingolipid-dependent Dscam sorting regulates axon segregation. Nat Commun 2019; 10:813. [PMID: 30778062 PMCID: PMC6379420 DOI: 10.1038/s41467-019-08765-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/17/2019] [Indexed: 12/22/2022] Open
Abstract
Neurons are highly polarized cells with distinct protein compositions in axonal and dendritic compartments. Cellular mechanisms controlling polarized protein sorting have been described for mature nervous system but little is known about the segregation in newly differentiated neurons. In a forward genetic screen for regulators of Drosophila brain circuit development, we identified mutations in SPT, an evolutionary conserved enzyme in sphingolipid biosynthesis. Here we show that reduced levels of sphingolipids in SPT mutants cause axonal morphology defects similar to loss of cell recognition molecule Dscam. Loss- and gain-of-function studies show that neuronal sphingolipids are critical to prevent aggregation of axonal and dendritic Dscam isoforms, thereby ensuring precise Dscam localization to support axon branch segregation. Furthermore, SPT mutations causing neurodegenerative HSAN-I disorder in humans also result in formation of stable Dscam aggregates and axonal branch phenotypes in Drosophila neurons, indicating a causal link between developmental protein sorting defects and neuronal dysfunction. Little is known about the initial segregation of axonal and dendritic proteins during the differentiation of newly generated neurons. Here authors use a forward genetic screen to identify the role of sphingolipids in regulating the sub-cellular distribution of Dscam for neuronal patterning in Drosophila Mushroom Bodies
Collapse
|
30
|
Sachse SM, Lievens S, Ribeiro LF, Dascenco D, Masschaele D, Horré K, Misbaer A, Vanderroost N, De Smet AS, Salta E, Erfurth ML, Kise Y, Nebel S, Van Delm W, Plaisance S, Tavernier J, De Strooper B, De Wit J, Schmucker D. Nuclear import of the DSCAM-cytoplasmic domain drives signaling capable of inhibiting synapse formation. EMBO J 2019; 38:embj.201899669. [PMID: 30745319 DOI: 10.15252/embj.201899669] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 11/09/2022] Open
Abstract
DSCAM and DSCAML1 are immunoglobulin and cell adhesion-type receptors serving important neurodevelopmental functions including control of axon growth, branching, neurite self-avoidance, and neuronal cell death. The signal transduction mechanisms or effectors of DSCAM receptors, however, remain poorly characterized. We used a human ORFeome library to perform a high-throughput screen in mammalian cells and identified novel cytoplasmic signaling effector candidates including the Down syndrome kinase Dyrk1a, STAT3, USP21, and SH2D2A. Unexpectedly, we also found that the intracellular domains (ICDs) of DSCAM and DSCAML1 specifically and directly interact with IPO5, a nuclear import protein of the importin beta family, via a conserved nuclear localization signal. The DSCAM ICD is released by γ-secretase-dependent cleavage, and both the DSCAM and DSCAML1 ICDs efficiently translocate to the nucleus. Furthermore, RNA sequencing confirms that expression of the DSCAM as well as the DSCAML1 ICDs alone can profoundly alter the expression of genes associated with neuronal differentiation and apoptosis, as well as synapse formation and function. Gain-of-function experiments using primary cortical neurons show that increasing the levels of either the DSCAM or the DSCAML1 ICD leads to an impairment of neurite growth. Strikingly, increased expression of either full-length DSCAM or the DSCAM ICD, but not the DSCAML1 ICD, significantly decreases synapse numbers in primary hippocampal neurons. Taken together, we identified a novel membrane-to-nucleus signaling mechanism by which DSCAM receptors can alter the expression of regulators of neuronal differentiation and synapse formation and function. Considering that chromosomal duplications lead to increased DSCAM expression in trisomy 21, our findings may help uncover novel mechanisms contributing to intellectual disability in Down syndrome.
Collapse
Affiliation(s)
- Sonja M Sachse
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sam Lievens
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Luís F Ribeiro
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Dan Dascenco
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Delphine Masschaele
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katrien Horré
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Anke Misbaer
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Nele Vanderroost
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anne Sophie De Smet
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Evgenia Salta
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Yoshiaki Kise
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Siegfried Nebel
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | | | - Jan Tavernier
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,Dementia Research Institute, University College London, London, UK
| | - Joris De Wit
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Dietmar Schmucker
- VIB Center for Brain & Disease Research, Leuven, Belgium .,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Jin Y, Li H. Revisiting Dscam diversity: lessons from clustered protocadherins. Cell Mol Life Sci 2019; 76:667-680. [PMID: 30343321 PMCID: PMC11105660 DOI: 10.1007/s00018-018-2951-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
The complexity of neuronal wiring relies on the extraordinary recognition diversity of cell surface molecules. Drosophila Dscam1 and vertebrate clustered protocadherins (Pcdhs) are two classic examples of the striking diversity from a complex genomic locus, wherein the former encodes more than 10,000 distinct isoforms via alternative splicing, while the latter employs alternative promoters to attain isoform diversity. These structurally unrelated families show remarkably striking molecular parallels and even similar functions. Recent studies revealed a novel Dscam gene family with tandemly arrayed 5' cassettes in Chelicerata (e.g., the scorpion Mesobuthus martensii and the tick Ixodes scapularis), similar to vertebrate clustered Pcdhs. Likewise, octopus shows a more remarkable expansion of the Pcdh isoform repertoire than human. These discoveries of Dscam and Pcdh diversification reshape the evolutionary landscape of recognition molecule diversity and provide a greater understanding of convergent molecular strategies for isoform diversity. This article reviews new insights into the evolution, regulatory mechanisms, and functions of Dscam and Pcdh isoform diversity. In particular, the convergence of clustered Dscams and Pcdhs is highlighted.
Collapse
Affiliation(s)
- Yongfeng Jin
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang (ZJ), People's Republic of China.
| | - Hao Li
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang (ZJ), People's Republic of China
| |
Collapse
|
32
|
DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring. Neural Dev 2018; 13:22. [PMID: 30219101 PMCID: PMC6138929 DOI: 10.1186/s13064-018-0118-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/26/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Proper patterning of dendritic and axonal arbors is a critical step in the formation of functional neuronal circuits. Developing circuits rely on an array of molecular cues to shape arbor morphology, but the underlying mechanisms guiding the structural formation and interconnectivity of pre- and postsynaptic arbors in real time remain unclear. Here we explore how Down syndrome cell adhesion molecule (DSCAM) differentially shapes the dendritic morphology of central neurons and their presynaptic retinal ganglion cell (RGC) axons in the developing vertebrate visual system. METHODS The cell-autonomous role of DSCAM, in tectal neurons and in RGCs, was examined using targeted single-cell knockdown and overexpression approaches in developing Xenopus laevis tadpoles. Axonal arbors of RGCs and dendritic arbors of tectal neurons were visualized using real-time in vivo confocal microscopy imaging over the course of 3 days. RESULTS In the Xenopus visual system, DSCAM immunoreactivity is present in RGCs, cells in the optic tectum and the tectal neuropil at the time retinotectal synaptic connections are made. Downregulating DSCAM in tectal neurons significantly increased dendritic growth and branching rates while inducing dendrites to take on tortuous paths. Overexpression of DSCAM, in contrast, reduced dendritic branching and growth rate. Functional deficits mediated by tectal DSCAM knockdown were examined using visually guided behavioral assays in swimming tadpoles, revealing irregular behavioral responses to visual stimulus. Functional deficits in visual behavior also corresponded with changes in VGLUT/VGAT expression, markers of excitatory and inhibitory transmission, in the tectum. Conversely, single-cell DSCAM knockdown in the retina revealed that RGC axon arborization at the target is influenced by DSCAM, where axons grew at a slower rate and remained relatively simple. In the retina, dendritic arbors of RGCs were not affected by the reduction of DSCAM expression. CONCLUSIONS Together, our observations implicate DSCAM in the control of both pre- and postsynaptic structural and functional connectivity in the developing retinotectal circuit, where it primarily acts as a neuronal brake to limit and guide postsynaptic dendrite growth of tectal neurons while it also facilitates arborization of presynaptic RGC axons cell autonomously.
Collapse
|
33
|
Jin Y, Dong H, Shi Y, Bian L. Mutually exclusive alternative splicing of pre-mRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1468. [PMID: 29423937 DOI: 10.1002/wrna.1468] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
Abstract
Pre-mRNA alternative splicing is an important mechanism used to expand protein diversity in higher eukaryotes, and mutually exclusive splicing is a specific type of alternative splicing in which only one of the exons in a cluster is included in functional transcripts. The most extraordinary example of this is the Drosophila melanogaster Down's syndrome cell adhesion molecule gene (Dscam), which potentially encodes 38,016 different isoforms through mutually exclusive splicing. Mutually exclusive splicing is a unique and challenging model that can be used to elucidate the evolution, regulatory mechanism, and function of alternative splicing. The use of new approaches has not only greatly expanded the mutually exclusive exome, but has also enabled the systematic analyses of single-cell alternative splicing during development. Furthermore, the identification of long-range RNA secondary structures provides a mechanistic framework for the regulation of mutually exclusive splicing (i.e., Dscam splicing). This article reviews recent insights into the identification, underlying mechanism, and roles of mutually exclusive splicing. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Yongfeng Jin
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Haiyang Dong
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yang Shi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lina Bian
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Koch M, Nicolas M, Zschaetzsch M, de Geest N, Claeys A, Yan J, Morgan MJ, Erfurth ML, Holt M, Schmucker D, Hassan BA. A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury. Front Cell Neurosci 2018; 11:416. [PMID: 29472843 PMCID: PMC5809495 DOI: 10.3389/fncel.2017.00416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
Injury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducted a gain-of-function genetic screen in Drosophila to identify strong inducers of axonal growth after injury. We focus on a novel axis the Down Syndrome Cell Adhesion Molecule (Dscam1), the de-ubiquitinating enzyme Fat Facets (Faf)/Usp9x and the Jun N-Terminal Kinase (JNK) pathway transcription factor Kayak (Kay)/Fos. Genetic and biochemical analyses link these genes in a common signaling pathway whereby Faf stabilizes Dscam1 protein levels, by acting on the 3'-UTR of its mRNA, and Dscam1 acts upstream of the growth-promoting JNK signal. The mammalian homolog of Faf, Usp9x/FAM, shares both the regenerative and Dscam1 stabilizing activities, suggesting a conserved mechanism.
Collapse
Affiliation(s)
- Marta Koch
- Laboratory of Neurogenetics, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium
| | - Maya Nicolas
- Laboratory of Neurogenetics, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium
| | - Marlen Zschaetzsch
- Laboratory of Neurogenetics, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium
| | - Natalie de Geest
- Laboratory of Neurogenetics, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium
| | - Annelies Claeys
- Laboratory of Neurogenetics, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium
| | - Jiekun Yan
- Laboratory of Neurogenetics, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium
| | - Matthew J Morgan
- Laboratory of Neurogenetics, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium
| | - Maria-Luise Erfurth
- Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium.,Neuronal Wiring Lab, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Matthew Holt
- Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium.,Laboratory of Glia Biology, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Dietmar Schmucker
- Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium.,Neuronal Wiring Lab, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Bassem A Hassan
- Laboratory of Neurogenetics, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium.,Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, UPMC, Sorbonne Universités, Paris, France
| |
Collapse
|
35
|
A chelicerate-specific burst of nonclassical Dscam diversity. BMC Genomics 2018; 19:66. [PMID: 29351731 PMCID: PMC5775551 DOI: 10.1186/s12864-017-4420-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The immunoglobulin (Ig) superfamily receptor Down syndrome cell adhesion molecule (Dscam) gene can generate tens of thousands of isoforms via alternative splicing, which is essential for both nervous and immune systems in insects. However, further information is required to develop a comprehensive view of Dscam diversification across the broad spectrum of Chelicerata clades, a basal branch of arthropods and the second largest group of terrestrial animals. RESULTS In this study, a genome-wide comprehensive analysis of Dscam genes across Chelicerata species revealed a burst of nonclassical Dscams, categorised into four types-mDscam, sDscamα, sDscamβ, and sDscamγ-based on their size and structure. Although the mDscam gene class includes the highest number of Dscam genes, the sDscam genes utilise alternative promoters to expand protein diversity. Furthermore, we indicated that the 5' cassette duplicate is inversely correlated with the sDscam gene duplicate. We showed differential and sDscam- biased expression of nonclassical Dscam isoforms. Thus, the Dscam isoform repertoire across Chelicerata is entirely dominated by the number and expression levels of nonclassical Dscams. Taken together, these data show that Chelicerata evolved a large conserved and lineage-specific repertoire of nonclassical Dscams. CONCLUSIONS This study showed that arthropods have a large diversified Chelicerata-specific repertoire of nonclassical Dscam isoforms, which are structurally and mechanistically distinct from those of insects. These findings provide a global framework for the evolution of Dscam diversity in arthropods and offer mechanistic insights into the diversification of the clade-specific Ig superfamily repertoire.
Collapse
|
36
|
Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, Dickstein DL, Harony-Nicolas H, De Rubeis S, Drapeau E, Buxbaum JD, Hof PR. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol 2017; 134:537-566. [PMID: 28584888 PMCID: PMC5693718 DOI: 10.1007/s00401-017-1736-4] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) has a major impact on the development and social integration of affected individuals and is the most heritable of psychiatric disorders. An increase in the incidence of ASD cases has prompted a surge in research efforts on the underlying neuropathologic processes. We present an overview of current findings in neuropathology studies of ASD using two investigational approaches, postmortem human brains and ASD animal models, and discuss the overlap, limitations, and significance of each. Postmortem examination of ASD brains has revealed global changes including disorganized gray and white matter, increased number of neurons, decreased volume of neuronal soma, and increased neuropil, the last reflecting changes in densities of dendritic spines, cerebral vasculature and glia. Both cortical and non-cortical areas show region-specific abnormalities in neuronal morphology and cytoarchitectural organization, with consistent findings reported from the prefrontal cortex, fusiform gyrus, frontoinsular cortex, cingulate cortex, hippocampus, amygdala, cerebellum and brainstem. The paucity of postmortem human studies linking neuropathology to the underlying etiology has been partly addressed using animal models to explore the impact of genetic and non-genetic factors clinically relevant for the ASD phenotype. Genetically modified models include those based on well-studied monogenic ASD genes (NLGN3, NLGN4, NRXN1, CNTNAP2, SHANK3, MECP2, FMR1, TSC1/2), emerging risk genes (CHD8, SCN2A, SYNGAP1, ARID1B, GRIN2B, DSCAM, TBR1), and copy number variants (15q11-q13 deletion, 15q13.3 microdeletion, 15q11-13 duplication, 16p11.2 deletion and duplication, 22q11.2 deletion). Models of idiopathic ASD include inbred rodent strains that mimic ASD behaviors as well as models developed by environmental interventions such as prenatal exposure to sodium valproate, maternal autoantibodies, and maternal immune activation. In addition to replicating some of the neuropathologic features seen in postmortem studies, a common finding in several animal models of ASD is altered density of dendritic spines, with the direction of the change depending on the specific genetic modification, age and brain region. Overall, postmortem neuropathologic studies with larger sample sizes representative of the various ASD risk genes and diverse clinical phenotypes are warranted to clarify putative etiopathogenic pathways further and to promote the emergence of clinically relevant diagnostic and therapeutic tools. In addition, as genetic alterations may render certain individuals more vulnerable to developing the pathological changes at the synapse underlying the behavioral manifestations of ASD, neuropathologic investigation using genetically modified animal models will help to improve our understanding of the disease mechanisms and enhance the development of targeted treatments.
Collapse
Affiliation(s)
- Merina Varghese
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Neha Keshav
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah Jacot-Descombes
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Unit of Psychiatry, Department of Children and Teenagers, University Hospitals and School of Medicine, Geneva, CH-1205, Switzerland
| | - Tahia Warda
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bridget Wicinski
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dara L Dickstein
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Hala Harony-Nicolas
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elodie Drapeau
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joseph D Buxbaum
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
37
|
Abstract
Alternative pre-mRNA splicing provides an effective means for expanding coding capacity of eukaryotic genomes. Recent studies suggest that co-expression of different splice isoforms may increase diversity of RNAs and proteins at a single-cell level. A pertinent question in the field is whether such co-expression is biologically meaningful or, rather, represents insufficiently stringent splicing regulation. Here we argue that isoform co-expression may produce functional outcomes that are difficult and sometimes impossible to achieve using other regulation strategies. Far from being a ‘splicing noise’, co-expression is often established through co-ordinated activity of specific cis-elements and trans-acting factors. Further work in this area may uncover new biological functions of alternative splicing (AS) and generate important insights into mechanisms allowing different cell types to attain their unique molecular identities.
Collapse
|
38
|
Motti D, Lerch JK, Danzi MC, Gans JH, Kuo F, Slepak TI, Bixby JL, Lemmon VP. Identification of miRNAs involved in DRG neurite outgrowth and their putative targets. FEBS Lett 2017; 591:2091-2105. [PMID: 28626869 PMCID: PMC5864114 DOI: 10.1002/1873-3468.12718] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/07/2017] [Accepted: 06/11/2017] [Indexed: 12/14/2022]
Abstract
Peripheral neurons regenerate their axons after injury. Transcriptional regulation by microRNAs (miRNAs) is one possible mechanism controlling regeneration. We profiled miRNA expression in mouse dorsal root ganglion neurons after a sciatic nerve crush, and identified 49 differentially expressed miRNAs. We evaluated the functional role of each miRNA using a phenotypic analysis approach. To predict the targets of the miRNAs we employed RNA-Sequencing and examined transcription at the isoform level. We identify thousands of differentially expressed isoforms and bioinformatically associate the miRNAs that modulate neurite growth with their putative target isoforms to outline a network of regulatory events underlying peripheral nerve regeneration. MiR-298, let-7a, and let-7f enhance neurite growth and target the majority of isoforms in the differentially expressed network.
Collapse
Affiliation(s)
- Dario Motti
- The Miami Project To Cure Paralysis, The University of Miami Miller School of Medicine, Miami, FL
| | - Jessica K. Lerch
- The Department of Neuroscience, The Ohio State University, Columbus, OH
| | - Matt C. Danzi
- The Miami Project To Cure Paralysis, The University of Miami Miller School of Medicine, Miami, FL
| | - Jared H. Gans
- The Miami Project To Cure Paralysis, The University of Miami Miller School of Medicine, Miami, FL
| | - Frank Kuo
- The Miami Project To Cure Paralysis, The University of Miami Miller School of Medicine, Miami, FL
| | - Tatiana I. Slepak
- The Miami Project To Cure Paralysis, The University of Miami Miller School of Medicine, Miami, FL
| | - John L. Bixby
- The Miami Project To Cure Paralysis, The University of Miami Miller School of Medicine, Miami, FL
- The Department of Molecular and Cellular Pharmacology, The University of Miami Miller School of Medicine, Miami, FL
- The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, FL
- The Center for Computational Science, The University of Miami, Miami, FL
| | - Vance P. Lemmon
- The Miami Project To Cure Paralysis, The University of Miami Miller School of Medicine, Miami, FL
- The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, FL
- The Center for Computational Science, The University of Miami, Miami, FL
| |
Collapse
|
39
|
DSCAM promotes axon fasciculation and growth in the developing optic pathway. Proc Natl Acad Sci U S A 2017; 114:1702-1707. [PMID: 28137836 DOI: 10.1073/pnas.1618606114] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although many aspects of optic pathway development are beginning to be understood, the mechanisms promoting the growth of retinal ganglion cell (RGC) axons toward visual targets remain largely unknown. Down syndrome cell adhesion molecule (Dscam) is expressed by mouse RGCs shortly after they differentiate at embryonic day 12 and is essential for multiple aspects of postnatal visual system development. Here we show that Dscam is also required during embryonic development for the fasciculation and growth of RGC axons. Dscam is expressed along the developing optic pathway in a pattern consistent with a role in regulating RGC axon outgrowth. In mice carrying spontaneous mutations in Dscam (Dscamdel17 ; Dscam2J), RGC axons pathfind normally, but growth from the chiasm toward their targets is impaired, resulting in a delay in RGC axons reaching the dorsal thalamus compared with that seen in wild-type littermates. Conversely, Dscam gain of function results in exuberant growth into the dorsal thalamus. The growth of ipsilaterally projecting axons is particularly affected. Axon organization in the optic chiasm and tract and RGC growth cone morphologies are also altered in Dscam mutants. In vitro DSCAM promotes RGC axon growth and fasciculation, and can act independently of cell contact. In vitro and in situ DSCAM is required both in the RGC axons and in their environment for the promotion of axon outgrowth, consistent with a homotypic mode of action. These findings identify DSCAM as a permissive signal that promotes the growth and fasciculation of RGC axons, controlling the timing of when RGC axons reach their targets.
Collapse
|
40
|
Li SA, Cheng L, Yu Y, Wang JH, Chen Q. Structural basis of Dscam1 homodimerization: Insights into context constraint for protein recognition. SCIENCE ADVANCES 2016; 2:e1501118. [PMID: 27386517 PMCID: PMC4928987 DOI: 10.1126/sciadv.1501118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 04/29/2016] [Indexed: 02/05/2023]
Abstract
The Drosophila neural receptor Dscam1 (Down syndrome cell adhesion molecule 1) plays an essential role in neuronal wiring and self-avoidance. Dscam1 potentially encodes 19,008 ectodomains through alternative RNA splicing and exhibits exquisite isoform-specific homophilic binding, which makes it an exceptional example for studying protein binding specificity. However, structural information on Dscam1 is limited, which hinders illumination of the mechanism of Dscam1 isoform-specific recognition. Whether different Dscam1 isoforms adopt the same dimerization mode remains a subject of debate. We present 12 Dscam1 crystal structures, provide direct evidence indicating that all isoforms adopt a conserved homodimer geometry in a modular fashion, identify two mechanisms for the Ig2 binding domain to dispel electrostatic repulsion during dimerization, decode Ig2 binding specificity by a central motif at its symmetry center, uncover the role of glycosylation in Dscam1 homodimerization, and find electrostatic potential complementarity to help define the binding region and the antiparallel binding mode. We then propose a concept that the context of a protein may set restrictions to regulate its binding specificity, which provides a better understanding of protein recognition.
Collapse
Affiliation(s)
- Shu-Ang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, P. R. China
| | - Linna Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, P. R. China
| | - Yamei Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, P. R. China
| | - Jia-Huai Wang
- Departments of Medical Oncology and Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Pediatrics and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, P. R. China
| |
Collapse
|
41
|
Tetley RJ, Blanchard GB, Fletcher AG, Adams RJ, Sanson B. Unipolar distributions of junctional Myosin II identify cell stripe boundaries that drive cell intercalation throughout Drosophila axis extension. eLife 2016; 5:e12094. [PMID: 27183005 PMCID: PMC4915814 DOI: 10.7554/elife.12094] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/10/2016] [Indexed: 12/21/2022] Open
Abstract
Convergence and extension movements elongate tissues during development. Drosophila germ-band extension (GBE) is one example, which requires active cell rearrangements driven by Myosin II planar polarisation. Here, we develop novel computational methods to analyse the spatiotemporal dynamics of Myosin II during GBE, at the scale of the tissue. We show that initial Myosin II bipolar cell polarization gives way to unipolar enrichment at parasegmental boundaries and two further boundaries within each parasegment, concomitant with a doubling of cell number as the tissue elongates. These boundaries are the primary sites of cell intercalation, behaving as mechanical barriers and providing a mechanism for how cells remain ordered during GBE. Enrichment at parasegment boundaries during GBE is independent of Wingless signaling, suggesting pair-rule gene control. Our results are consistent with recent work showing that a combinatorial code of Toll-like receptors downstream of pair-rule genes contributes to Myosin II polarization via local cell-cell interactions. We propose an updated cell-cell interaction model for Myosin II polarization that we tested in a vertex-based simulation.
Collapse
Affiliation(s)
- Robert J Tetley
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Richard J Adams
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
42
|
Yue Y, Meng Y, Ma H, Hou S, Cao G, Hong W, Shi Y, Guo P, Liu B, Shi F, Yang Y, Jin Y. A large family of Dscam genes with tandemly arrayed 5' cassettes in Chelicerata. Nat Commun 2016; 7:11252. [PMID: 27080167 PMCID: PMC4835542 DOI: 10.1038/ncomms11252] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/07/2016] [Indexed: 02/04/2023] Open
Abstract
Drosophila Dscam1 (Down Syndrome Cell Adhesion Molecules) and vertebrate clustered protocadherins (Pcdhs) are two classic examples of the extraordinary isoform diversity from a single genomic locus. Dscam1 encodes 38,016 distinct isoforms via mutually exclusive splicing in D. melanogaster, while the vertebrate clustered Pcdhs utilize alternative promoters to generate isoform diversity. Here we reveal a shortened Dscam gene family with tandemly arrayed 5' cassettes in Chelicerata. These cassette repeats generally comprise two or four exons, corresponding to variable Immunoglobulin 7 (Ig7) or Ig7-8 domains of Drosophila Dscam1. Furthermore, extraordinary isoform diversity has been generated through a combination of alternating promoter and alternative splicing. These sDscams have a high sequence similarity with Drosophila Dscam1, and share striking organizational resemblance to the 5' variable regions of vertebrate clustered Pcdhs. Hence, our findings have important implications for understanding the functional similarities between Drosophila Dscam1 and vertebrate Pcdhs, and may provide further mechanistic insights into the regulation of isoform diversity.
Collapse
Affiliation(s)
- Yuan Yue
- Institute of Biochemistry, Innovation Center for Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Yijun Meng
- College of Life and Environmental Sciences; Hangzhou Normal University, Hangzhou, Zhejiang ZJ310036, China
| | - Hongru Ma
- Institute of Biochemistry, Innovation Center for Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Shouqing Hou
- Institute of Biochemistry, Innovation Center for Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Guozheng Cao
- Institute of Biochemistry, Innovation Center for Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Weiling Hong
- Institute of Biochemistry, Innovation Center for Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Yang Shi
- Institute of Biochemistry, Innovation Center for Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Pengjuan Guo
- Institute of Biochemistry, Innovation Center for Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Baoping Liu
- Institute of Biochemistry, Innovation Center for Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Feng Shi
- Institute of Biochemistry, Innovation Center for Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Yun Yang
- Institute of Biochemistry, Innovation Center for Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Yongfeng Jin
- Institute of Biochemistry, Innovation Center for Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| |
Collapse
|
43
|
Hassan BA, Hiesinger PR. Beyond Molecular Codes: Simple Rules to Wire Complex Brains. Cell 2016; 163:285-91. [PMID: 26451480 DOI: 10.1016/j.cell.2015.09.031] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Indexed: 11/30/2022]
Abstract
Molecular codes, like postal zip codes, are generally considered a robust way to ensure the specificity of neuronal target selection. However, a code capable of unambiguously generating complex neural circuits is difficult to conceive. Here, we re-examine the notion of molecular codes in the light of developmental algorithms. We explore how molecules and mechanisms that have been considered part of a code may alternatively implement simple pattern formation rules sufficient to ensure wiring specificity in neural circuits. This analysis delineates a pattern-based framework for circuit construction that may contribute to our understanding of brain wiring.
Collapse
Affiliation(s)
- Bassem A Hassan
- Center for the Biology of Disease, VIB, 3000 Leuven, Belgium; Center for Human Genetics, University of Leuven School of Medicine, 3000 Leuven, Belgium.
| | - P Robin Hiesinger
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charite Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
44
|
Yue Y, Yang Y, Dai L, Cao G, Chen R, Hong W, Liu B, Shi Y, Meng Y, Shi F, Xiao M, Jin Y. Long-range RNA pairings contribute to mutually exclusive splicing. RNA (NEW YORK, N.Y.) 2016; 22:96-110. [PMID: 26554032 PMCID: PMC4691838 DOI: 10.1261/rna.053314.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/06/2015] [Indexed: 05/16/2023]
Abstract
Mutually exclusive splicing is an important means of increasing the protein repertoire, by which the Down's syndrome cell adhesion molecule (Dscam) gene potentially generates 38,016 different isoforms in Drosophila melanogaster. However, the regulatory mechanisms remain obscure due to the complexity of the Dscam exon cluster. Here, we reveal a molecular model for the regulation of the mutually exclusive splicing of the serpent pre-mRNA based on competition between upstream and downstream RNA pairings. Such dual RNA pairings confer fine tuning of the inclusion of alternative exons. Moreover, we demonstrate that the splicing outcome of alternative exons is mediated in relative pairing strength-correlated mode. Combined comparative genomics analysis and experimental evidence revealed similar bidirectional structural architectures in exon clusters 4 and 9 of the Dscam gene. Our findings provide a novel mechanistic framework for the regulation of mutually exclusive splicing and may offer potentially applicable insights into long-range RNA-RNA interactions in gene regulatory networks.
Collapse
Affiliation(s)
- Yuan Yue
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Yun Yang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Lanzhi Dai
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Guozheng Cao
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Ran Chen
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Weiling Hong
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Baoping Liu
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Yang Shi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Yijun Meng
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Feng Shi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Mu Xiao
- Institute of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Yongfeng Jin
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| |
Collapse
|
45
|
Fernandes KA, Bloomsburg SJ, Miller CJ, Billingslea SA, Merrill MM, Burgess RW, Libby RT, Fuerst PG. Novel axon projection after stress and degeneration in the Dscam mutant retina. Mol Cell Neurosci 2015; 71:1-12. [PMID: 26691152 DOI: 10.1016/j.mcn.2015.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 11/17/2022] Open
Abstract
The Down syndrome cell adhesion molecule gene (Dscam) is required for normal dendrite patterning and promotes developmental cell death in the mouse retina. Loss-of-function studies indicate that Dscam is required for refinement of retinal ganglion cell (RGC) axons in the lateral geniculate nucleus, and in this study we report and describe a requirement for Dscam in the maintenance of RGC axon projections within the retina. Mouse Dscam loss of function phenotypes related to retinal ganglion cell axon outgrowth and targeting have not been previously reported, despite the abundance of axon phenotypes reported in Drosophila Dscam1 loss and gain of function models. Analysis of the Dscam deficient retina was performed by immunohistochemistry and Western blot analysis during postnatal development of the retina. Conditional targeting of Dscam and Jun was performed to identify factors underlying axon-remodeling phenotypes. A subset of RGC axons were observed to project and branch extensively within the Dscam mutant retina after eye opening. Axon remodeling was preceded by histological signs of RGC stress. These included neurofilament accumulation, axon swelling, axon blebbing and activation of JUN, JNK and AKT. Novel and extensive projection of RGC axons within the retina was observed after upregulation of these markers, and novel axon projections were maintained to at least one year of age. Further analysis of retinas in which Dscam was conditionally targeted with Brn3b or Pax6α Cre indicated that axon stress and remodeling could occur in the absence of hydrocephalus, which frequently occurs in Dscam mutant mice. Analysis of mice mutant for the cell death gene Bax, which executes much of Dscam dependent cell death, identified a similar axon misprojection phenotype. Deleting Jun and Dscam resulted in increased axon remodeling compared to Dscam or Bax mutants. Retinal ganglion cells have a very limited capacity to regenerate after damage in the adult retina, compared to the extensive projections made in the embryo. In this study we find that DSCAM and JUN limit ectopic growth of RGC axons, thereby identifying these proteins as targets for promoting axon regeneration and reconnection.
Collapse
Affiliation(s)
- K A Fernandes
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - S J Bloomsburg
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA
| | - C J Miller
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA
| | - S A Billingslea
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA
| | - M M Merrill
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA
| | - R W Burgess
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - R T Libby
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - P G Fuerst
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA; WWAMI Medical Education Program, Moscow, ID 83844, USA.
| |
Collapse
|
46
|
Jain S, Welshhans K. Netrin-1 induces local translation of down syndrome cell adhesion molecule in axonal growth cones. Dev Neurobiol 2015; 76:799-816. [PMID: 26518186 DOI: 10.1002/dneu.22360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/14/2015] [Accepted: 10/28/2015] [Indexed: 01/16/2023]
Abstract
Down syndrome cell adhesion molecule (DSCAM) plays an important role in many neurodevelopmental processes such as axon guidance, dendrite arborization, and synapse formation. DSCAM is located in the Down syndrome trisomic region of human chromosome 21 and may contribute to the Down syndrome brain phenotype, which includes a reduction in the formation of long-distance connectivity. The local translation of a select group of mRNA transcripts within growth cones is necessary for the formation of appropriate neuronal connectivity. Interestingly, we have found that Dscam mRNA is localized to growth cones of mouse hippocampal neurons, and is dynamically regulated in response to the axon guidance molecule, netrin-1. Furthermore, netrin-1 stimulation results in an increase in locally translated DSCAM protein in growth cones. Deleted in colorectal cancer (DCC), a netrin-1 receptor, is required for the netrin-1-induced increase in Dscam mRNA local translation. We also find that two RNA-binding proteins-fragile X mental retardation protein (FMRP) and cytoplasmic polyadenylation element binding protein (CPEB)-colocalize with Dscam mRNA in growth cones, suggesting their regulation of Dscam mRNA localization and translation. Finally, overexpression of DSCAM in mouse cortical neurons results in a severe stunting of axon outgrowth and branching, suggesting that an increase in DSCAM protein results in a structural change having functional consequences. Taken together, these results suggest that netrin-1-induced local translation of Dscam mRNA during embryonic development may be an important mechanism to regulate axon growth and guidance in the developing nervous system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 799-816, 2016.
Collapse
Affiliation(s)
- Shruti Jain
- Department of Biological Sciences, Kent State University, Kent, Ohio, 44242
| | - Kristy Welshhans
- Department of Biological Sciences, Kent State University, Kent, Ohio, 44242.,School of Biomedical Sciences, Kent State University, Kent, Ohio, 44242
| |
Collapse
|
47
|
Dascenco D, Erfurth ML, Izadifar A, Song M, Sachse S, Bortnick R, Urwyler O, Petrovic M, Ayaz D, He H, Kise Y, Thomas F, Kidd T, Schmucker D. Slit and Receptor Tyrosine Phosphatase 69D Confer Spatial Specificity to Axon Branching via Dscam1. Cell 2015; 162:1140-54. [PMID: 26317474 PMCID: PMC4699798 DOI: 10.1016/j.cell.2015.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 06/30/2015] [Accepted: 07/10/2015] [Indexed: 11/26/2022]
Abstract
Axonal branching contributes substantially to neuronal circuit complexity. Studies in Drosophila have shown that loss of Dscam1 receptor diversity can fully block axon branching in mechanosensory neurons. Here we report that cell-autonomous loss of the receptor tyrosine phosphatase 69D (RPTP69D) and loss of midline-localized Slit inhibit formation of specific axon collaterals through modulation of Dscam1 activity. Genetic and biochemical data support a model in which direct binding of Slit to Dscam1 enhances the interaction of Dscam1 with RPTP69D, stimulating Dscam1 dephosphorylation. Single-growth-cone imaging reveals that Slit/RPTP69D are not required for general branch initiation but instead promote the extension of specific axon collaterals. Hence, although regulation of intrinsic Dscam1-Dscam1 isoform interactions is essential for formation of all mechanosensory-axon branches, the local ligand-induced alterations of Dscam1 phosphorylation in distinct growth-cone compartments enable the spatial specificity of axon collateral formation.
Collapse
Affiliation(s)
- Dan Dascenco
- Neuronal Wiring Laboratory, VIB, Herestraat 49, 3000 Leuven, Belgium; Department of Oncology, School of Medicine, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Maria-Luise Erfurth
- Neuronal Wiring Laboratory, VIB, Herestraat 49, 3000 Leuven, Belgium; Department of Oncology, School of Medicine, University of Leuven, Herestraat 49, 3000 Leuven, Belgium; Institute of Biochemistry, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Azadeh Izadifar
- Neuronal Wiring Laboratory, VIB, Herestraat 49, 3000 Leuven, Belgium; Department of Oncology, School of Medicine, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Minmin Song
- Biology/MS 314, University of Nevada, Reno, NV 89557, USA
| | - Sonja Sachse
- Neuronal Wiring Laboratory, VIB, Herestraat 49, 3000 Leuven, Belgium; Department of Oncology, School of Medicine, University of Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Biology, Chemistry & Pharmacy, Free University Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Rachel Bortnick
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Olivier Urwyler
- Neuronal Wiring Laboratory, VIB, Herestraat 49, 3000 Leuven, Belgium; Department of Oncology, School of Medicine, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Milan Petrovic
- Neuronal Wiring Laboratory, VIB, Herestraat 49, 3000 Leuven, Belgium; Department of Oncology, School of Medicine, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Derya Ayaz
- Neuronal Wiring Laboratory, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Haihuai He
- Neuronal Wiring Laboratory, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Yoshiaki Kise
- Neuronal Wiring Laboratory, VIB, Herestraat 49, 3000 Leuven, Belgium; Department of Oncology, School of Medicine, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Franziska Thomas
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Thomas Kidd
- Biology/MS 314, University of Nevada, Reno, NV 89557, USA
| | - Dietmar Schmucker
- Neuronal Wiring Laboratory, VIB, Herestraat 49, 3000 Leuven, Belgium; Department of Oncology, School of Medicine, University of Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
48
|
Petrovic M, Schmucker D. Axonal wiring in neural development: Target-independent mechanisms help to establish precision and complexity. Bioessays 2015; 37:996-1004. [DOI: 10.1002/bies.201400222] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Milan Petrovic
- Neuronal Wiring Laboratory; VIB; Leuven Belgium
- Department of Oncology, School of Medicine; University of Leuven; Leuven Belgium
| | - Dietmar Schmucker
- Neuronal Wiring Laboratory; VIB; Leuven Belgium
- Department of Oncology, School of Medicine; University of Leuven; Leuven Belgium
| |
Collapse
|
49
|
Raj B, Blencowe B. Alternative Splicing in the Mammalian Nervous System: Recent Insights into Mechanisms and Functional Roles. Neuron 2015; 87:14-27. [DOI: 10.1016/j.neuron.2015.05.004] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
DSCAM promotes refinement in the mouse retina through cell death and restriction of exploring dendrites. J Neurosci 2015; 35:5640-54. [PMID: 25855178 DOI: 10.1523/jneurosci.2202-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this study we develop and use a gain-of-function mouse allele of the Down syndrome cell adhesion molecule (Dscam) to complement loss-of-function models. We assay the role of Dscam in promoting cell death, spacing, and laminar targeting of neurons in the developing mouse retina. We find that ectopic or overexpression of Dscam is sufficient to drive cell death. Gain-of-function studies indicate that Dscam is not sufficient to increase spatial organization, prevent cell-to-cell pairing, or promote active avoidance in the mouse retina, despite the similarity of the Dscam loss-of-function phenotype in the mouse retina to phenotypes observed in Drosophila Dscam1 mutants. Both gain- and loss-of-function studies support a role for Dscam in targeting neurites; DSCAM is necessary for precise dendrite lamination, and is sufficient to retarget neurites of outer retinal cells after ectopic expression. We further demonstrate that DSCAM guides dendrite targeting in type 2 dopaminergic amacrine cells, by restricting the stratum in which exploring retinal dendrites stabilize, in a Dscam dosage-dependent manner. Based on these results we propose a single model to account for the numerous Dscam gain- and loss-of-function phenotypes reported in the mouse retina whereby DSCAM eliminates inappropriately placed cells and connections.
Collapse
|