1
|
Li F, Phadte AS, Bhatia M, Barndt S, Monte Carlo Iii AR, Hou CFD, Yang R, Strock S, Pluciennik A. Structural and molecular basis of PCNA-activated FAN1 nuclease function in DNA repair. Nat Commun 2025; 16:4411. [PMID: 40368897 PMCID: PMC12078661 DOI: 10.1038/s41467-025-59323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/24/2025] [Indexed: 05/16/2025] Open
Abstract
FAN1 is a DNA dependent nuclease whose proper function is essential for maintaining human health. For example, a genetic variant in FAN1, Arg507 to His hastens onset of Huntington's disease, a repeat expansion disorder for which there is no cure. How the Arg507His mutation affects FAN1 structure and enzymatic function is unknown. Using cryo-EM and biochemistry, we have discovered that FAN1 arginine 507 is critical for its interaction with PCNA, and mutation of Arg507 to His attenuates assembly of the FAN1-PCNA complex on a disease-relevant extrahelical DNA extrusions formed within DNA repeats. This mutation concomitantly abolishes PCNA-FAN1-dependent cleavage of such extrusions, thus unraveling the molecular basis for a specific mutation in FAN1 that dramatically hastens the onset of Huntington's disease. These results underscore the importance of PCNA to the genome stabilizing function of FAN1.
Collapse
Affiliation(s)
- F Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A S Phadte
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - M Bhatia
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - S Barndt
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - A R Monte Carlo Iii
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - C-F D Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Institution for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, USA
| | - R Yang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - S Strock
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - A Pluciennik
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Aretz J, Jeyasankar G, Salerno-Kochan A, Thomsen M, Thieulin-Pardo G, Haque T, Monteagudo E, Felsenfeld D, Finley M, Vogt TF, Boudet J, Prasad BC. A FAN1 point mutation associated with accelerated Huntington's disease progression alters its PCNA-mediated assembly on DNA. Nat Commun 2025; 16:4412. [PMID: 40368883 PMCID: PMC12078616 DOI: 10.1038/s41467-025-59324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 04/17/2025] [Indexed: 05/16/2025] Open
Abstract
FAN1 is an endo- and exo-nuclease involved in DNA and interstrand crosslink repair. Genome-wide association studies of people with Huntington's disease revealed a strong association between the FAN1 R507H mutation and early disease onset, however the underlying mechanism(s) remains unclear. FAN1 has previously been implicated in modulating triplet repeat expansion in a PCNA dependent manner. To examine the role of PCNA on FAN1 activation, we solved the cryo-EM structures of a PCNA-FAN1-DNA complex. Our findings reveal that the FAN1 R507 residue directly interacts with PCNA D232. Biophysical interaction studies demonstrated that FAN1 enhances the binding affinity of PCNA for DNA, a synergistic effect disrupted in mutants carrying the R507H mutation. In contrast, PCNA does not affect the affinity of FAN1 for DNA but does modulate FAN1 activity upon ternary complex formation. The weakened and functionally altered FAN1 R507H-PCNA-DNA complex may partly impair the FAN1-mediated repair of CAG extrahelical extrusions, providing a potential explanation for the mutation's role in accelerating disease progression.
Collapse
Affiliation(s)
- Jonas Aretz
- Proteros biostructures GmbH, Bunsenstr. 7a, D - 82152, Martinsried, Germany
| | | | | | - Maren Thomsen
- Proteros biostructures GmbH, Bunsenstr. 7a, D - 82152, Martinsried, Germany
| | | | - Tasir Haque
- CHDI Management, Inc, the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, 08540, USA
| | - Edith Monteagudo
- CHDI Management, Inc, the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, 08540, USA
| | - Dan Felsenfeld
- CHDI Management, Inc, the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, 08540, USA
| | - Michael Finley
- CHDI Management, Inc, the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, 08540, USA
| | - Thomas F Vogt
- CHDI Management, Inc, the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, 08540, USA
| | - Julien Boudet
- CHDI Management, Inc, the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, 08540, USA.
| | - Brinda C Prasad
- CHDI Management, Inc, the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, 08540, USA.
| |
Collapse
|
3
|
Verschuren J, van Schendel R, van Bostelen I, Verkennis AEE, Knipscheer P, Tijsterman M. FAN1-mediated translesion synthesis and POLQ/HELQ-mediated end joining generate interstrand crosslink-induced mutations. Nat Commun 2025; 16:2495. [PMID: 40082407 PMCID: PMC11906846 DOI: 10.1038/s41467-025-57764-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
To counteract the damaging effects of DNA interstrand crosslinks (ICLs), cells have evolved various specialized ICL repair pathways. However, how ICL repair impacts genetic integrity remains incompletely understood. Here, we determined the mutagenic consequences of psoralen ICL repair in the animal model C. elegans and identify two mutagenic repair mechanisms: (i) translesion synthesis through POLH and REV1/3-mediated bypass, leading to single nucleotide polymorphisms (SNVs), and (ii) end joining via POLQ or HELQ action resulting in deletions. While we found no role for the Fanconi anemia genes FANCD2 and FANCI, disruption of TRAIP, which triggers unloading of the CMG helicase at sites of blocked replication, led to a strikingly altered repair profile, suggesting a role for DNA replication in the etiology of ICL-induced deletions. TRAIP deficiency did not affect SNV formation; instead, we found these SNVs to depend on the functionality of the Fanconi anemia-associated nuclease FAN1.
Collapse
Affiliation(s)
- Jip Verschuren
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ivo van Bostelen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alex E E Verkennis
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Puck Knipscheer
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
4
|
Li F, Phadte A, Bhatia M, Barndt S, Monte Carlo AR, Hou CFD, Yang R, Strock S, Pluciennik A. Structural and molecular basis of FAN1 defects in promoting Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617005. [PMID: 39416186 PMCID: PMC11482860 DOI: 10.1101/2024.10.07.617005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
FAN1 is a DNA dependent nuclease whose proper function is essential for maintaining human health. For example, a genetic variant in FAN1, Arg507 to His hastens onset of Huntington's disease, a repeat expansion disorder for which there is no cure. How the Arg507His mutation affects FAN1 structure and enzymatic function is unknown. Using cryo-EM and biochemistry, we have discovered that FAN1 arginine 507 is critical for its interaction with PCNA, and mutation of Arg507 to His attenuates assembly of the FAN1-PCNA on a disease-relevant extrahelical DNA extrusions formed within DNA repeats. This mutation concomitantly abolishes PCNA-FAN1-dependent cleavage of such extrusions, underscoring the importance of PCNA to the genome stabilizing function of FAN1. These results unravel the molecular basis for a specific mutation in FAN1 that dramatically hastens the onset of Huntington's disease.
Collapse
|
5
|
Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. Repair of genomic interstrand crosslinks. DNA Repair (Amst) 2024; 141:103739. [PMID: 39106540 PMCID: PMC11423799 DOI: 10.1016/j.dnarep.2024.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Genomic interstrand crosslinks (ICLs) are formed by reactive species generated during normal cellular metabolism, produced by the microbiome, and employed in cancer chemotherapy. While there are multiple options for replication dependent and independent ICL repair, the crucial step for each is unhooking one DNA strand from the other. Much of our insight into mechanisms of unhooking comes from powerful model systems based on plasmids with defined ICLs introduced into cells or cell free extracts. Here we describe the properties of exogenous and endogenous ICL forming compounds and provide an historical perspective on early work on ICL repair. We discuss the modes of unhooking elucidated in the model systems, the concordance or lack thereof in drug resistant tumors, and the evolving view of DNA adducts, including ICLs, formed by metabolic aldehydes.
Collapse
Affiliation(s)
- Marina A Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Althaf Shaik
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ishani Majumdar
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chen Ling
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
6
|
Ahmed A, Kato N, Gautier J. Replication-Independent ICL Repair: From Chemotherapy to Cell Homeostasis. J Mol Biol 2024; 436:168618. [PMID: 38763228 PMCID: PMC11227339 DOI: 10.1016/j.jmb.2024.168618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Interstrand crosslinks (ICLs) are a type of covalent lesion that can prevent transcription and replication by inhibiting DNA strand separation and instead trigger cell death. ICL inducing compounds are commonly used as chemotherapies due to their effectiveness in inhibiting cell proliferation. Naturally occurring crosslinking agents formed from metabolic processes can also pose a challenge to genome stability especially in slowly or non-dividing cells. Cells maintain a variety of ICL repair mechanisms to cope with this stressor within and outside the S phase of the cell cycle. Here, we discuss the mechanisms of various replication-independent ICL repair pathways and how crosslink repair efficiency is tied to aging and disease.
Collapse
Affiliation(s)
- Arooba Ahmed
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA
| | - Niyo Kato
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA; Department of Genetics and Development, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
7
|
Kim KH, Hong EP, Lee Y, McLean ZL, Elezi E, Lee R, Kwak S, McAllister B, Massey TH, Lobanov S, Holmans P, Orth M, Ciosi M, Monckton DG, Long JD, Lucente D, Wheeler VC, MacDonald ME, Gusella JF, Lee JM. Posttranscriptional regulation of FAN1 by miR-124-3p at rs3512 underlies onset-delaying genetic modification in Huntington's disease. Proc Natl Acad Sci U S A 2024; 121:e2322924121. [PMID: 38607933 PMCID: PMC11032436 DOI: 10.1073/pnas.2322924121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 04/14/2024] Open
Abstract
Many Mendelian disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, arise from expansions of CAG trinucleotide repeats. Despite the clear genetic causes, additional genetic factors may influence the rate of those monogenic disorders. Notably, genome-wide association studies discovered somewhat expected modifiers, particularly mismatch repair genes involved in the CAG repeat instability, impacting age at onset of HD. Strikingly, FAN1, previously unrelated to repeat instability, produced the strongest HD modification signals. Diverse FAN1 haplotypes independently modify HD, with rare genetic variants diminishing DNA binding or nuclease activity of the FAN1 protein, hastening HD onset. However, the mechanism behind the frequent and the most significant onset-delaying FAN1 haplotype lacking missense variations has remained elusive. Here, we illustrated that a microRNA acting on 3'-UTR (untranslated region) SNP rs3512, rather than transcriptional regulation, is responsible for the significant FAN1 expression quantitative trait loci signal and allelic imbalance in FAN1 messenger ribonucleic acid (mRNA), accounting for the most significant and frequent onset-delaying modifier haplotype in HD. Specifically, miR-124-3p selectively targets the reference allele at rs3512, diminishing the stability of FAN1 mRNA harboring that allele and consequently reducing its levels. Subsequent validation analyses, including the use of antagomir and 3'-UTR reporter vectors with swapped alleles, confirmed the specificity of miR-124-3p at rs3512. Together, these findings indicate that the alternative allele at rs3512 renders the FAN1 mRNA less susceptible to miR-124-3p-mediated posttranscriptional regulation, resulting in increased FAN1 levels and a subsequent delay in HD onset by mitigating CAG repeat instability.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Eun Pyo Hong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Yukyeong Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Zachariah L. McLean
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
- Medical and Population Genetics Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Emanuela Elezi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
| | | | | | - Branduff McAllister
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CardiffCF24 4HQ, United Kingdom
| | - Thomas H. Massey
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CardiffCF24 4HQ, United Kingdom
| | - Sergey Lobanov
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CardiffCF24 4HQ, United Kingdom
| | - Peter Holmans
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CardiffCF24 4HQ, United Kingdom
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, Bern University, CH-3000Bern 60, Switzerland
| | - Marc Ciosi
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Darren G. Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Jeffrey D. Long
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA52242
| | - Diane Lucente
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Vanessa C. Wheeler
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Marcy E. MacDonald
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
- Medical and Population Genetics Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - James F. Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Medical and Population Genetics Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Jong-Min Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
- Medical and Population Genetics Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| |
Collapse
|
8
|
Norton C, Clarke D, Holmstrom J, Stirland I, Reynolds PR, Jenkins TG, Arroyo JA. Altered Epigenetic Profiles in the Placenta of Preeclamptic and Intrauterine Growth Restriction Patients. Cells 2023; 12:1130. [PMID: 37190039 PMCID: PMC10136447 DOI: 10.3390/cells12081130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Intrauterine growth restriction (IUGR) and preeclampsia (PE) are placental pathologies known to complicate pregnancy and cause neonatal disorders. To date, there is a limited number of studies on the genetic similarity of these conditions. DNA methylation is a heritable epigenetic process that can regulate placental development. Our objective was to identify methylation patterns in placental DNA from normal, PE and IUGR-affected pregnancies. DNA was extracted, and bisulfite was converted, prior to being hybridized for the methylation array. Methylation data were SWAN normalized and differently methylated regions were identified using applications within the USEQ program. UCSC's Genome browser and Stanford's GREAT analysis were used to identify gene promoters. The commonality among affected genes was confirmed by Western blot. We observed nine significantly hypomethylated regions, two being significantly hypomethylated for both PE and IGUR. Western blot confirmed differential protein expression of commonly regulated genes. We conclude that despite the uniqueness of methylation profiles for PE and IUGR, the similarity of some methylation alterations in pathologies could explain the clinical similarities observed with these obstetric complications. These results also provide insight into the genetic similarity between PE and IUGR and suggest possible gene candidates plausibly involved in the onset of both conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juan A. Arroyo
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
9
|
Hespanhol JT, Karman L, Sanchez-Limache DE, Bayer-Santos E. Intercepting biological messages: Antibacterial molecules targeting nucleic acids during interbacterial conflicts. Genet Mol Biol 2023; 46:e20220266. [PMID: 36880694 PMCID: PMC9990079 DOI: 10.1590/1678-4685-gmb-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/25/2022] [Indexed: 03/08/2023] Open
Abstract
Bacteria live in polymicrobial communities and constantly compete for resources. These organisms have evolved an array of antibacterial weapons to inhibit the growth or kill competitors. The arsenal comprises antibiotics, bacteriocins, and contact-dependent effectors that are either secreted in the medium or directly translocated into target cells. During bacterial antagonistic encounters, several cellular components important for life become a weak spot prone to an attack. Nucleic acids and the machinery responsible for their synthesis are well conserved across the tree of life. These molecules are part of the information flow in the central dogma of molecular biology and mediate long- and short-term storage for genetic information. The aim of this review is to summarize the diversity of antibacterial molecules that target nucleic acids during antagonistic interbacterial encounters and discuss their potential to promote the emergence antibiotic resistance.
Collapse
Affiliation(s)
- Julia Takuno Hespanhol
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Lior Karman
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | | | - Ethel Bayer-Santos
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Hespanhol JT, Sanchez-Limache DE, Nicastro GG, Mead L, Llontop EE, Chagas-Santos G, Farah CS, de Souza RF, Galhardo RDS, Lovering AL, Bayer-Santos E. Antibacterial T6SS effectors with a VRR-Nuc domain are structure-specific nucleases. eLife 2022; 11:e82437. [PMID: 36226828 PMCID: PMC9635880 DOI: 10.7554/elife.82437] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/09/2022] [Indexed: 11/21/2022] Open
Abstract
The type VI secretion system (T6SS) secretes antibacterial effectors into target competitors. Salmonella spp. encode five phylogenetically distinct T6SSs. Here, we characterize the function of the SPI-22 T6SS of Salmonella bongori showing that it has antibacterial activity and identify a group of antibacterial T6SS effectors (TseV1-4) containing an N-terminal PAAR-like domain and a C-terminal VRR-Nuc domain encoded next to cognate immunity proteins with a DUF3396 domain (TsiV1-4). TseV2 and TseV3 are toxic when expressed in Escherichia coli and bacterial competition assays confirm that TseV2 and TseV3 are secreted by the SPI-22 T6SS. Phylogenetic analysis reveals that TseV1-4 are evolutionarily related to enzymes involved in DNA repair. TseV3 recognizes specific DNA structures and preferentially cleave splayed arms, generating DNA double-strand breaks and inducing the SOS response in target cells. The crystal structure of the TseV3:TsiV3 complex reveals that the immunity protein likely blocks the effector interaction with the DNA substrate. These results expand our knowledge on the function of Salmonella pathogenicity islands, the evolution of toxins used in biological conflicts, and the endogenous mechanisms regulating the activity of these toxins.
Collapse
Affiliation(s)
- Julia Takuno Hespanhol
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São PauloSão PauloBrazil
| | | | | | - Liam Mead
- Department of Biosciences, University of BirminghamBirminghamUnited Kingdom
| | - Edgar Enrique Llontop
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão PauloBrazil
| | - Gustavo Chagas-Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São PauloSão PauloBrazil
| | - Chuck Shaker Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão PauloBrazil
| | - Robson Francisco de Souza
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São PauloSão PauloBrazil
| | - Rodrigo da Silva Galhardo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São PauloSão PauloBrazil
| | - Andrew L Lovering
- Department of Biosciences, University of BirminghamBirminghamUnited Kingdom
| | - Ethel Bayer-Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São PauloSão PauloBrazil
| |
Collapse
|
11
|
Quist EM, Choudhary S, Lang R, Tokarz DA, Hoenerhoff M, Nagel J, Everitt JI. Proceedings of the 2022 National Toxicology Program Satellite Symposium. Toxicol Pathol 2022; 50:836-857. [PMID: 36165586 PMCID: PMC9678128 DOI: 10.1177/01926233221124825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 2022 annual National Toxicology Program Satellite Symposium, entitled "Pathology Potpourri," was held in Austin, Texas at the Society of Toxicologic Pathology's 40th annual meeting during a half-day session on Sunday, June 19. The goal of this symposium was to present and discuss challenging diagnostic pathology and/or nomenclature issues. This article presents summaries of the speakers' talks along with select images that were used by the audience for voting and discussion. Various lesions and topics covered during the symposium included induced and spontaneous neoplastic and nonneoplastic lesions in the mouse lung, spontaneous lesions in the reproductive tract of a female cynomolgus macaque, induced vascular lesions in a mouse asthma model and interesting case studies in a rhesus macaque, dog and genetically engineered mouse model.
Collapse
Affiliation(s)
| | | | | | | | - Mark Hoenerhoff
- Unit for Laboratory Animal Medicine In Vivo Animal Core, University of Michigan Medical School, Ann Arbor, MI
| | - Jonathan Nagel
- University of North Carolina – Chapel Hill, Chapel Hill, NC
- North Carolina State University, Raleigh, NC
| | | |
Collapse
|
12
|
Wang H, Li K, Xiao R, Xu L, Zhen J, Wang R, Sun J. Heterozygous Variants in a Patient with Karyomegalic Interstitial Nephritis. Nephron Clin Pract 2022; 147:223-228. [PMID: 35896079 DOI: 10.1159/000525445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/30/2022] [Indexed: 11/19/2022] Open
Abstract
Karyomegalic interstitial nephritis (KIN) is a rare kidney disease marked by large tubular nuclei, interstitial inflammation, tubular atrophy, and interstitial fibrosis. The current study presented the case of a 39-year-old man with deteriorating kidney function and a serum creatinine level of 2.08 mg/dL. The renal biopsy revealed that the main pathological features of renal tubular epithelial cells were obvious enlargement, irregular shape, and hyperchromatic nuclei. The genetic analysis of the patient revealed two heterozygous variants in the FAN1 gene, c.2485c>T, and c.2928dupT, located in exons 10 and 13, respectively. A diagnosis of KIN was rendered. The two variations of the proband are identified in separate alleles from the father and mother, respectively, according to his family's sequencing. This phenotype is consistent with an autosomal recessive pattern of inheritance. The patient was treated with the Chinese patent medicine Niaoduqing Particles. After 38 months of follow-up, renal function was barely changed with a serum creatinine of 1.73 mg/dL.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Kan Li
- Department of Central Sterile Supply, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rui Xiao
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liang Xu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junhui Zhen
- Department of Pathology, Shandong University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Sun
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
13
|
Exome sequencing of individuals with Huntington's disease implicates FAN1 nuclease activity in slowing CAG expansion and disease onset. Nat Neurosci 2022; 25:446-457. [PMID: 35379994 PMCID: PMC8986535 DOI: 10.1038/s41593-022-01033-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
Abstract
The age at onset of motor symptoms in Huntington's disease (HD) is driven by HTT CAG repeat length but modified by other genes. In this study, we used exome sequencing of 683 patients with HD with extremes of onset or phenotype relative to CAG length to identify rare variants associated with clinical effect. We discovered damaging coding variants in candidate modifier genes identified in previous genome-wide association studies associated with altered HD onset or severity. Variants in FAN1 clustered in its DNA-binding and nuclease domains and were associated predominantly with earlier-onset HD. Nuclease activities of purified variants in vitro correlated with residual age at motor onset of HD. Mutating endogenous FAN1 to a nuclease-inactive form in an induced pluripotent stem cell model of HD led to rates of CAG expansion similar to those observed with complete FAN1 knockout. Together, these data implicate FAN1 nuclease activity in slowing somatic repeat expansion and hence onset of HD.
Collapse
|
14
|
Biomarkers Associated with Immune-Related Adverse Events under Checkpoint Inhibitors in Metastatic Melanoma. Cancers (Basel) 2022; 14:cancers14020302. [PMID: 35053465 PMCID: PMC8773840 DOI: 10.3390/cancers14020302] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Our aim was to check for possible associations between clinical parameters or NGS-based genetic alterations and the occurrence of immune-related adverse events (IRAE) in melanoma patients with immune checkpoint inhibitors (ICI). We analyzed 95 melanoma patients with ICI and were able to identify several biomarkers associated with the development of IRAE. Female sex was significantly associated with the development of hepatitis, increased total and relative monocytes at ICI initiation were significantly associated with the development of pancreatitis, the same, pre-existing autoimmune diseases. Furthermore, the following genetic alterations were identified being associated with IRAE: SMAD3 (pancreatitis); CD274, SLCO1B1 (hepatitis); PRDM1, CD274 (encephalitis); PRDM1, CD274, TSHR, FAN1 (myositis). Myositis and encephalitis, both, were associated with alterations of PRDM1 and CD274, which might explain their joined appearance in clinical practice. Our findings can help to assess the risk for the development of IRAE in melanoma patients with ICI. Abstract Immune checkpoint inhibitors (ICI) have revolutionized the therapeutic landscape of metastatic melanoma. However, ICI are often associated with immune-related adverse events (IRAE) such as colitis, hepatitis, pancreatitis, hypophysitis, pneumonitis, thyroiditis, exanthema, nephritis, myositis, encephalitis, or myocarditis. Biomarkers associated with the occurrence of IRAE would be desirable. In the literature, there is only little data available and furthermore mostly speculative, especially in view of genetic alterations. Our major aim was to check for possible associations between NGS-based genetic alterations and IRAE. We therefore analyzed 95 melanoma patients with ICI and evaluated their NGS results. We checked the data in view of potential associations between copy number variations (CNVs), small variations (VARs), human leucocyte antigen (HLA), sex, blood count parameters, pre-existing autoimmune diseases and the occurrence of IRAE. We conducted a literature research on genetic alterations hypothesized to be associated with the occurrence of IRAE. In total, we identified 39 genes that have been discussed as hypothetical biomarkers. We compared the list of these 39 genes with the tumor panel that our patients had received and focused our study on those 16 genes that were also included in the tumor panel used for NGS. Therefore, we focused our analyses on the following genes: AIRE, TERT, SH2B3, LRRK2, IKZF1, SMAD3, JAK2, PRDM1, CTLA4, TSHR, FAN1, SLCO1B1, PDCD1, IL1RN, CD274, UNG. We obtained relevant results: female sex was significantly associated with the development of hepatitis, combined immunotherapy with colitis, increased total and relative monocytes at therapy initiation were significantly associated with the development of pancreatitis, the same, pre-existing autoimmune diseases. Further significant associations were as follows: HLA homozygosity (hepatitis), and VARs on SMAD3 (pancreatitis). Regarding CNVs, significant markers included PRDM1 deletions and IL1RN (IRAE), CD274 duplications and SLCO1B1 (hepatitis), PRDM1 and CD274 (encephalitis), and PRDM1, CD274, TSHR, and FAN1 (myositis). Myositis and encephalitis, both, were associated with alterations of PRDM1 and CD274, which might explain their joined appearance in clinical practice. The association between HLA homozygosity and IRAE was clarified by finding HLA-A homozygosity as determining factor. We identified several genetic alterations hypothesized in the literature to be associated with the development of IRAE and found significant results concerning pre-existing autoimmune diseases and specific blood count parameters. Our findings can help to better understand the development of IRAE in melanoma patients. NGS might be a useful screening tool, however, our findings have yet to be confirmed in larger studies.
Collapse
|
15
|
Deshmukh AL, Caron MC, Mohiuddin M, Lanni S, Panigrahi GB, Khan M, Engchuan W, Shum N, Faruqui A, Wang P, Yuen RKC, Nakamori M, Nakatani K, Masson JY, Pearson CE. FAN1 exo- not endo-nuclease pausing on disease-associated slipped-DNA repeats: A mechanism of repeat instability. Cell Rep 2021; 37:110078. [PMID: 34879276 DOI: 10.1016/j.celrep.2021.110078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/02/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022] Open
Abstract
Ongoing inchworm-like CAG and CGG repeat expansions in brains, arising by aberrant processing of slipped DNAs, may drive Huntington's disease, fragile X syndrome, and autism. FAN1 nuclease modifies hyper-expansion rates by unknown means. We show that FAN1, through iterative cycles, binds, dimerizes, and cleaves slipped DNAs, yielding striking exo-nuclease pauses along slip-outs: 5'-C↓A↓GC↓A↓G-3' and 5'-C↓T↓G↓C↓T↓G-3'. CAG excision is slower than CTG and requires intra-strand A·A and T·T mismatches. Fully paired hairpins arrested excision, whereas disease-delaying CAA interruptions further slowed excision. Endo-nucleolytic cleavage is insensitive to slip-outs. Rare FAN1 variants are found in individuals with autism with CGG/CCG expansions, and CGG/CCG slip-outs show exo-nuclease pauses. The slip-out-specific ligand, naphthyridine-azaquinolone, which induces contractions of expanded repeats in vivo, requires FAN1 for its effect, and protects slip-outs from FAN1 exo-, but not endo-, nucleolytic digestion. FAN1's inchworm pausing of slip-out excision rates is well suited to modify inchworm expansion rates, which modify disease onset and progression.
Collapse
Affiliation(s)
- Amit Laxmikant Deshmukh
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Marie-Christine Caron
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, QC G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, QC G1R 3S3, Canada
| | - Mohiuddin Mohiuddin
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Gagan B Panigrahi
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Mahreen Khan
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Worrawat Engchuan
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Natalie Shum
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aisha Faruqui
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Peixiang Wang
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Ryan K C Yuen
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, the Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, QC G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, QC G1R 3S3, Canada
| | - Christopher E Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
16
|
Chand MT, Zaka A, Qu H. Association of karyomegalic interstitial nephritis with focal segmental glomerulosclerosis. Autops Case Rep 2021; 11:e2021343. [PMID: 34805010 PMCID: PMC8597774 DOI: 10.4322/acr.2021.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022]
Abstract
Karyomegalic interstitial nephritis (KIN), first described in 1974, is a rare form of chronic tubulointerstitial nephritis. It is defined by the presence of markedly enlarged, hyperchromatic nuclei with prominent nucleoli, mainly involving tubular epithelial cells of the kidney, accompanied by marked interstitial fibrosis. The disease presents as asymptomatic proteinuria, gradually progresses to chronic kidney disease and eventually leads to end-stage renal disease by 30-40 years. The etiology of the disease remains unclear; however, genetic risk factors and possible association with HLA (B27/35) is proposed by some. It has also been linked to FAN1 (FANCD2/FANC1- associated nuclease 1) mutation.
Collapse
Affiliation(s)
- Momal Tara Chand
- Ascension St John Hospital, Department of Pathology, Detroit, Michigan, USA
| | - Awais Zaka
- Ascension St John Hospital, Department of Nephrology, Detroit, Michigan, USA
| | - Hong Qu
- Ascension St John Hospital, Department of Pathology, Detroit, Michigan, USA
| |
Collapse
|
17
|
Zhao X, Lu H, Usdin K. FAN1's protection against CGG repeat expansion requires its nuclease activity and is FANCD2-independent. Nucleic Acids Res 2021; 49:11643-11652. [PMID: 34718701 PMCID: PMC8599916 DOI: 10.1093/nar/gkab899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/20/2021] [Accepted: 10/12/2021] [Indexed: 12/21/2022] Open
Abstract
The Repeat Expansion Diseases, a large group of human diseases that includes the fragile X-related disorders (FXDs) and Huntington's disease (HD), all result from expansion of a disease-specific microsatellite via a mechanism that is not fully understood. We have previously shown that mismatch repair (MMR) proteins are required for expansion in a mouse model of the FXDs, but that the FANCD2 and FANCI associated nuclease 1 (FAN1), a component of the Fanconi anemia (FA) DNA repair pathway, is protective. FAN1's nuclease activity has been reported to be dispensable for protection against expansion in an HD cell model. However, we show here that in a FXD mouse model a point mutation in the nuclease domain of FAN1 has the same effect on expansion as a null mutation. Furthermore, we show that FAN1 and another nuclease, EXO1, have an additive effect in protecting against MSH3-dependent expansions. Lastly, we show that the loss of FANCD2, a vital component of the Fanconi anemia DNA repair pathway, has no effect on expansions. Thus, FAN1 protects against MSH3-dependent expansions without diverting the expansion intermediates into the canonical FA pathway and this protection depends on FAN1 having an intact nuclease domain.
Collapse
Affiliation(s)
- Xiaonan Zhao
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Huiyan Lu
- Laboratory Animal Sciences section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Abstract
At fifteen different genomic locations, the expansion of a CAG/CTG repeat causes a neurodegenerative or neuromuscular disease, the most common being Huntington's disease and myotonic dystrophy type 1. These disorders are characterized by germline and somatic instability of the causative CAG/CTG repeat mutations. Repeat lengthening, or expansion, in the germline leads to an earlier age of onset or more severe symptoms in the next generation. In somatic cells, repeat expansion is thought to precipitate the rate of disease. The mechanisms underlying repeat instability are not well understood. Here we review the mammalian model systems that have been used to study CAG/CTG repeat instability, and the modifiers identified in these systems. Mouse models have demonstrated prominent roles for proteins in the mismatch repair pathway as critical drivers of CAG/CTG instability, which is also suggested by recent genome-wide association studies in humans. We draw attention to a network of connections between modifiers identified across several systems that might indicate pathway crosstalk in the context of repeat instability, and which could provide hypotheses for further validation or discovery. Overall, the data indicate that repeat dynamics might be modulated by altering the levels of DNA metabolic proteins, their regulation, their interaction with chromatin, or by direct perturbation of the repeat tract. Applying novel methodologies and technologies to this exciting area of research will be needed to gain deeper mechanistic insight that can be harnessed for therapies aimed at preventing repeat expansion or promoting repeat contraction.
Collapse
Affiliation(s)
- Vanessa C. Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| | - Vincent Dion
- UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| |
Collapse
|
19
|
Loupe JM, Pinto RM, Kim KH, Gillis T, Mysore JS, Andrew MA, Kovalenko M, Murtha R, Seong I, Gusella JF, Kwak S, Howland D, Lee R, Lee JM, Wheeler VC, MacDonald ME. Promotion of somatic CAG repeat expansion by Fan1 knock-out in Huntington's disease knock-in mice is blocked by Mlh1 knock-out. Hum Mol Genet 2021; 29:3044-3053. [PMID: 32876667 PMCID: PMC7645713 DOI: 10.1093/hmg/ddaa196] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Recent genome-wide association studies of age-at-onset in Huntington’s disease (HD) point to distinct modes of potential disease modification: altering the rate of somatic expansion of the HTT CAG repeat or altering the resulting CAG threshold length-triggered toxicity process. Here, we evaluated the mouse orthologs of two HD age-at-onset modifier genes, FAN1 and RRM2B, for an influence on somatic instability of the expanded CAG repeat in Htt CAG knock-in mice. Fan1 knock-out increased somatic expansion of Htt CAG repeats, in the juvenile- and the adult-onset HD ranges, whereas knock-out of Rrm2b did not greatly alter somatic Htt CAG repeat instability. Simultaneous knock-out of Mlh1, the ortholog of a third HD age-at-onset modifier gene (MLH1), which suppresses somatic expansion of the Htt knock-in CAG repeat, blocked the Fan1 knock-out-induced acceleration of somatic CAG expansion. This genetic interaction indicates that functional MLH1 is required for the CAG repeat destabilizing effect of FAN1 loss. Thus, in HD, it is uncertain whether the RRM2B modifier effect on timing of onset may be due to a DNA instability mechanism. In contrast, the FAN1 modifier effects reveal that functional FAN1 acts to suppress somatic CAG repeat expansion, likely in genetic interaction with other DNA instability modifiers whose combined effects can hasten or delay onset and other CAG repeat length-driven phenotypes.
Collapse
Affiliation(s)
- Jacob M Loupe
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Ricardo Mouro Pinto
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Kyung-Hee Kim
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Tammy Gillis
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jayalakshmi S Mysore
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marissa A Andrew
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marina Kovalenko
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ryan Murtha
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - IhnSik Seong
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| | - Seung Kwak
- CHDI Foundation, Princeton, NJ 08540, USA
| | | | - Ramee Lee
- CHDI Foundation, Princeton, NJ 08540, USA
| | - Jong-Min Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.,Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
20
|
Hambarde S, Tsai CL, Pandita RK, Bacolla A, Maitra A, Charaka V, Hunt CR, Kumar R, Limbo O, Le Meur R, Chazin WJ, Tsutakawa SE, Russell P, Schlacher K, Pandita TK, Tainer JA. EXO5-DNA structure and BLM interactions direct DNA resection critical for ATR-dependent replication restart. Mol Cell 2021; 81:2989-3006.e9. [PMID: 34197737 PMCID: PMC8720176 DOI: 10.1016/j.molcel.2021.05.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/09/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Stalled DNA replication fork restart after stress as orchestrated by ATR kinase, BLM helicase, and structure-specific nucleases enables replication, cell survival, and genome stability. Here we unveil human exonuclease V (EXO5) as an ATR-regulated DNA structure-specific nuclease and BLM partner for replication fork restart. We find that elevated EXO5 in tumors correlates with increased mutation loads and poor patient survival, suggesting that EXO5 upregulation has oncogenic potential. Structural, mechanistic, and mutational analyses of EXO5 and EXO5-DNA complexes reveal a single-stranded DNA binding channel with an adjacent ATR phosphorylation motif (T88Q89) that regulates EXO5 nuclease activity and BLM binding identified by mass spectrometric analysis. EXO5 phospho-mimetic mutant rescues the restart defect from EXO5 depletion that decreases fork progression, DNA damage repair, and cell survival. EXO5 depletion furthermore rescues survival of FANCA-deficient cells and indicates EXO5 functions epistatically with SMARCAL1 and BLM. Thus, an EXO5 axis connects ATR and BLM in directing replication fork restart.
Collapse
Affiliation(s)
- Shashank Hambarde
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Neurosurgery, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Raj K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vijay Charaka
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Clayton R Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vashino Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Oliver Limbo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Remy Le Meur
- Departments of Biochemistry and Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Paul Russell
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katharina Schlacher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Neurosurgery, The Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Deshmukh AL, Porro A, Mohiuddin M, Lanni S, Panigrahi GB, Caron MC, Masson JY, Sartori AA, Pearson CE. FAN1, a DNA Repair Nuclease, as a Modifier of Repeat Expansion Disorders. J Huntingtons Dis 2021; 10:95-122. [PMID: 33579867 PMCID: PMC7990447 DOI: 10.3233/jhd-200448] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FAN1 encodes a DNA repair nuclease. Genetic deficiencies, copy number variants, and single nucleotide variants of FAN1 have been linked to karyomegalic interstitial nephritis, 15q13.3 microdeletion/microduplication syndrome (autism, schizophrenia, and epilepsy), cancer, and most recently repeat expansion diseases. For seven CAG repeat expansion diseases (Huntington's disease (HD) and certain spinocerebellar ataxias), modification of age of onset is linked to variants of specific DNA repair proteins. FAN1 variants are the strongest modifiers. Non-coding disease-delaying FAN1 variants and coding disease-hastening variants (p.R507H and p.R377W) are known, where the former may lead to increased FAN1 levels and the latter have unknown effects upon FAN1 functions. Current thoughts are that ongoing repeat expansions in disease-vulnerable tissues, as individuals age, promote disease onset. Fan1 is required to suppress against high levels of ongoing somatic CAG and CGG repeat expansions in tissues of HD and FMR1 transgenic mice respectively, in addition to participating in DNA interstrand crosslink repair. FAN1 is also a modifier of autism, schizophrenia, and epilepsy. Coupled with the association of these diseases with repeat expansions, this suggests a common mechanism, by which FAN1 modifies repeat diseases. Yet how any of the FAN1 variants modify disease is unknown. Here, we review FAN1 variants, associated clinical effects, protein structure, and the enzyme's attributed functional roles. We highlight how variants may alter its activities in DNA damage response and/or repeat instability. A thorough awareness of the FAN1 gene and FAN1 protein functions will reveal if and how it may be targeted for clinical benefit.
Collapse
Affiliation(s)
- Amit L. Deshmukh
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Antonio Porro
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Mohiuddin Mohiuddin
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Gagan B. Panigrahi
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Marie-Christine Caron
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Quebec, Canada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Jean-Yves Masson
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Quebec, Canada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, Quebec, Canada
| | | | - Christopher E. Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- University of Toronto, Program of Molecular Genetics, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Baddock HT, Yosaatmadja Y, Newman JA, Schofield CJ, Gileadi O, McHugh PJ. The SNM1A DNA repair nuclease. DNA Repair (Amst) 2020; 95:102941. [PMID: 32866775 PMCID: PMC7607226 DOI: 10.1016/j.dnarep.2020.102941] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 07/25/2020] [Indexed: 01/17/2023]
Abstract
Unrepaired, or misrepaired, DNA damage can contribute to the pathogenesis of a number of conditions, or disease states; thus, DNA damage repair pathways, and the proteins within them, are required for the safeguarding of the genome. Human SNM1A is a 5'-to-3' exonuclease that plays a role in multiple DNA damage repair processes. To date, most data suggest a role of SNM1A in primarily ICL repair: SNM1A deficient cells exhibit hypersensitivity to ICL-inducing agents (e.g. mitomycin C and cisplatin); and both in vivo and in vitro experiments demonstrate SNM1A and XPF-ERCC1 can function together in the 'unhooking' step of ICL repair. SNM1A further interacts with a number of other proteins that contribute to genome integrity outside canonical ICL repair (e.g. PCNA and CSB), and these may play a role in regulating SNM1As function, subcellular localisation, and post-translational modification state. These data also provide further insight into other DNA repair pathways to which SNM1A may contribute. This review aims to discuss all aspects of the exonuclease, SNM1A, and its contribution to DNA damage tolerance.
Collapse
Affiliation(s)
- Hannah T Baddock
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK
| | | | - Joseph A Newman
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, UK
| | | | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, OX3 7DQ, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK.
| |
Collapse
|
23
|
Kim KH, Hong EP, Shin JW, Chao MJ, Loupe J, Gillis T, Mysore JS, Holmans P, Jones L, Orth M, Monckton DG, Long JD, Kwak S, Lee R, Gusella JF, MacDonald ME, Lee JM. Genetic and Functional Analyses Point to FAN1 as the Source of Multiple Huntington Disease Modifier Effects. Am J Hum Genet 2020; 107:96-110. [PMID: 32589923 DOI: 10.1016/j.ajhg.2020.05.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 01/04/2023] Open
Abstract
A recent genome-wide association study of Huntington disease (HD) implicated genes involved in DNA maintenance processes as modifiers of onset, including multiple genome-wide significant signals in a chr15 region containing the DNA repair gene Fanconi-Associated Nuclease 1 (FAN1). Here, we have carried out detailed genetic, molecular, and cellular investigation of the modifiers at this locus. We find that missense changes within or near the DNA-binding domain (p.Arg507His and p.Arg377Trp) reduce FAN1's DNA-binding activity and its capacity to rescue mitomycin C-induced cytotoxicity, accounting for two infrequent onset-hastening modifier signals. We also idenified a third onset-hastening modifier signal whose mechanism of action remains uncertain but does not involve an amino acid change in FAN1. We present additional evidence that a frequent onset-delaying modifier signal does not alter FAN1 coding sequence but is associated with increased FAN1 mRNA expression in the cerebral cortex. Consistent with these findings and other cellular overexpression and/or suppression studies, knockout of FAN1 increased CAG repeat expansion in HD-induced pluripotent stem cells. Together, these studies support the process of somatic CAG repeat expansion as a therapeutic target in HD, and they clearly indicate that multiple genetic variations act by different means through FAN1 to influence HD onset in a manner that is largely additive, except in the rare circumstance that two onset-hastening alleles are present. Thus, an individual's particular combination of FAN1 haplotypes may influence their suitability for HD clinical trials, particularly if the therapeutic agent aims to reduce CAG repeat instability.
Collapse
|
24
|
DNA clamp function of the monoubiquitinated Fanconi anaemia ID complex. Nature 2020; 580:278-282. [PMID: 32269332 PMCID: PMC7398534 DOI: 10.1038/s41586-020-2110-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022]
Abstract
The FANCI-FANCD2 (ID) complex, mutated in the Fanconi Anemia (FA) cancer predisposition syndrome, is required for the repair of interstrand crosslinks (ICL) and related lesions1. The FA pathway is activated when a replication fork stalls at an ICL2, triggering the mono-ubiquitination of the ID complex. ID mono-ubiquitination is essential for ICL repair by excision, translesion synthesis and homologous recombination, but its function was hitherto unknown1,3. Here, the 3.5 Å cryo-EM structure of mono-ubiquitinated ID (IDUb) bound to DNA reveals that it forms a closed ring that encircles the DNA. Compared to the cryo-EM structure of the non-ubiquitinated ID complex bound to ICL DNA, described here as well, mono-ubiquitination triggers a complete re-arrangement of the open, trough-like ID structure through the ubiquitin of one protomer binding to the other protomer in a reciprocal fashion. The structures, in conjunction with biochemical data, indicate the mono-ubiquitinated ID complex looses its preference for ICL and related branched DNA structures, becoming a sliding DNA clamp that can coordinate the subsequent repair reactions. Our findings also reveal how mono-ubiquitination in general can induce an alternate structure with a new function.
Collapse
|
25
|
Mukherjee A, Vasquez KM. Targeting Chromosomal Architectural HMGB Proteins Could Be the Next Frontier in Cancer Therapy. Cancer Res 2020; 80:2075-2082. [PMID: 32152151 DOI: 10.1158/0008-5472.can-19-3066] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/24/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
Chromatin-associated architectural proteins are part of a fundamental support system for cellular DNA-dependent processes and can maintain/modulate the efficiency of DNA replication, transcription, and DNA repair. Interestingly, prognostic outcomes of many cancer types have been linked with the expression levels of several of these architectural proteins. The high mobility group box (HMGB) architectural protein family has been well studied in this regard. The differential expression levels of HMGB proteins and/or mRNAs and their implications in cancer etiology and prognosis present the potential of novel targets that can be explored to increase the efficacy of existing cancer therapies. HMGB1, the most studied member of the HMGB protein family, has pleiotropic roles in cells including an association with nucleotide excision repair, base excision repair, mismatch repair, and DNA double-strand break repair. Moreover, the HMGB proteins have been identified in regulating DNA damage responses and cell survival following treatment with DNA-damaging agents and, as such, may play roles in modulating the efficacy of chemotherapeutic drugs by modulating DNA repair pathways. Here, we discuss the functions of HMGB proteins in DNA damage processing and their potential roles in cancer etiology, prognosis, and therapeutics.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas.
| |
Collapse
|
26
|
Caldwell BJ, Bell CE. Structure and mechanism of the Red recombination system of bacteriophage λ. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 147:33-46. [PMID: 30904699 DOI: 10.1016/j.pbiomolbio.2019.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 01/27/2023]
Abstract
While much of this volume focuses on mammalian DNA repair systems that are directly involved in genome stability and cancer, it is important to still be mindful of model systems from prokaryotes. Herein we review the Red recombination system of bacteriophage λ, which consists of an exonuclease for resecting dsDNA ends, and a single-strand annealing protein (SSAP) for binding the resulting 3'-overhang and annealing it to a complementary strand. The genetics and biochemistry of Red have been studied for over 50 years, in work that has laid much of the foundation for understanding DNA recombination in higher eukaryotes. In fact, the Red exonuclease (λ exo) is homologous to Dna2, a nuclease involved in DNA end-resection in eukaryotes, and the Red annealing protein (Redβ) is homologous to Rad52, the primary SSAP in eukaryotes. While eukaryotic recombination involves an elaborate network of proteins that is still being unraveled, the phage systems are comparatively simple and streamlined, yet still encompass the fundamental features of recombination, namely DNA end-resection, homologous pairing (annealing), and a coupling between them. Moreover, the Red system has been exploited in powerful methods for bacterial genome engineering that are important for functional genomics and systems biology. However, several mechanistic aspects of Red, particularly the action of the annealing protein, remain poorly understood. This review will focus on the proteins of the Red recombination system, with particular attention to structural and mechanistic aspects, and how the lessons learned can be applied to eukaryotic systems.
Collapse
Affiliation(s)
- Brian J Caldwell
- Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Road, Columbus, OH, 43210, USA
| | - Charles E Bell
- Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Road, Columbus, OH, 43210, USA; Department of Chemistry and Biochemistry, 484 West 12th Avenue, 1060 Carmack Road, Columbus, OH, 43210, USA.
| |
Collapse
|
27
|
Yates M, Maréchal A. Ubiquitylation at the Fork: Making and Breaking Chains to Complete DNA Replication. Int J Mol Sci 2018; 19:E2909. [PMID: 30257459 PMCID: PMC6213728 DOI: 10.3390/ijms19102909] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
The complete and accurate replication of the genome is a crucial aspect of cell proliferation that is often perturbed during oncogenesis. Replication stress arising from a variety of obstacles to replication fork progression and processivity is an important contributor to genome destabilization. Accordingly, cells mount a complex response to this stress that allows the stabilization and restart of stalled replication forks and enables the full duplication of the genetic material. This response articulates itself on three important platforms, Replication Protein A/RPA-coated single-stranded DNA, the DNA polymerase processivity clamp PCNA and the FANCD2/I Fanconi Anemia complex. On these platforms, the recruitment, activation and release of a variety of genome maintenance factors is regulated by post-translational modifications including mono- and poly-ubiquitylation. Here, we review recent insights into the control of replication fork stability and restart by the ubiquitin system during replication stress with a particular focus on human cells. We highlight the roles of E3 ubiquitin ligases, ubiquitin readers and deubiquitylases that provide the required flexibility at stalled forks to select the optimal restart pathways and rescue genome stability during stressful conditions.
Collapse
Affiliation(s)
- Maïlyn Yates
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| | - Alexandre Maréchal
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| |
Collapse
|
28
|
A senataxin-associated exonuclease SAN1 is required for resistance to DNA interstrand cross-links. Nat Commun 2018; 9:2592. [PMID: 29968717 PMCID: PMC6030175 DOI: 10.1038/s41467-018-05008-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/07/2018] [Indexed: 02/02/2023] Open
Abstract
Interstrand DNA cross-links (ICLs) block both replication and transcription, and are commonly repaired by the Fanconi anemia (FA) pathway. However, FA-independent repair mechanisms of ICLs remain poorly understood. Here we report a previously uncharacterized protein, SAN1, as a 5′ exonuclease that acts independently of the FA pathway in response to ICLs. Deletion of SAN1 in HeLa cells and mouse embryonic fibroblasts causes sensitivity to ICLs, which is prevented by re-expression of wild type but not nuclease-dead SAN1. SAN1 deletion causes DNA damage and radial chromosome formation following treatment with Mitomycin C, phenocopying defects in the FA pathway. However, SAN1 deletion is not epistatic with FANCD2, a core FA pathway component. Unexpectedly, SAN1 binds to Senataxin (SETX), an RNA/DNA helicase that resolves R-loops. SAN1-SETX binding is increased by ICLs, and is required to prevent cross-link sensitivity. We propose that SAN1 functions with SETX in a pathway necessary for resistance to ICLs. When DNA interstrand cross-links damage occurs, it causes disruption of replication and transcription. Here the authors identify FAM120B/SAN1, a 5′ exonuclease involved in the repair process of Interstrand Crosslinks independently of the Fanconi Anemia pathway.
Collapse
|
29
|
Amunugama R, Willcox S, Wu RA, Abdullah UB, El-Sagheer AH, Brown T, McHugh PJ, Griffith JD, Walter JC. Replication Fork Reversal during DNA Interstrand Crosslink Repair Requires CMG Unloading. Cell Rep 2018; 23:3419-3428. [PMID: 29924986 PMCID: PMC6086610 DOI: 10.1016/j.celrep.2018.05.061] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 03/29/2018] [Accepted: 05/17/2018] [Indexed: 01/08/2023] Open
Abstract
DNA interstrand crosslinks (ICLs) are extremely cytotoxic, but the mechanism of their repair remains incompletely understood. Using Xenopus egg extracts, we previously showed that repair of a cisplatin ICL is triggered when two replication forks converge on the lesion. After CDC45/MCM2-7/GINS (CMG) ubiquitylation and unloading by the p97 segregase, FANCI-FANCD2 promotes DNA incisions by XPF-ERCC1, leading to ICL unhooking. Here, we report that, during this cell-free ICL repair reaction, one of the two converged forks undergoes reversal. Fork reversal fails when CMG unloading is inhibited, but it does not require FANCI-FANCD2. After one fork has undergone reversal, the opposing fork that still abuts the ICL undergoes incisions. Our data show that replication fork reversal at an ICL requires replisome disassembly. We present a revised model of ICL repair that involves a reversed fork intermediate.
Collapse
Affiliation(s)
- Ravindra Amunugama
- Howard Hughes Medical Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - R Alex Wu
- Howard Hughes Medical Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ummi B Abdullah
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | - Tom Brown
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK; Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Peter J McHugh
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Johannes C Walter
- Howard Hughes Medical Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Jin H, Roy U, Lee G, Schärer OD, Cho Y. Structural mechanism of DNA interstrand cross-link unhooking by the bacterial FAN1 nuclease. J Biol Chem 2018; 293:6482-6496. [PMID: 29514982 PMCID: PMC5925792 DOI: 10.1074/jbc.ra118.002171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/05/2018] [Indexed: 01/04/2023] Open
Abstract
DNA interstrand cross-links (ICLs) block the progress of the replication and transcription machineries and can weaken chromosomal stability, resulting in various diseases. FANCD2-FANCI-associated nuclease (FAN1) is a conserved structure-specific nuclease that unhooks DNA ICLs independently of the Fanconi anemia pathway. Recent structural studies have proposed two different mechanistic features for ICL unhooking by human FAN1: a specific basic pocket that recognizes the terminal phosphate of a 1-nucleotide (nt) 5' flap or FAN1 dimerization. Herein, we show that despite lacking these features, Pseudomonas aeruginosa FAN1 (PaFAN1) cleaves substrates at ∼3-nt intervals and resolves ICLs. Crystal structures of PaFAN1 bound to various DNA substrates revealed that its conserved basic Arg/Lys patch comprising Arg-228 and Lys-260 recognizes phosphate groups near the 5' terminus of a DNA substrate with a 1-nt flap or a nick. Substitution of Lys-260 did not affect PaFAN1's initial endonuclease activity but significantly decreased its subsequent exonuclease activity and ICL unhooking. The Arg/Lys patch also interacted with phosphates at a 3-nt gap, and this interaction could drive movement of the scissile phosphates into the PaFAN1-active site. In human FAN1, the ICL-resolving activity was not affected by individual disruption of the Arg/Lys patch or basic pocket. However, simultaneous substitution of both FAN1 regions significantly reduced its ICL-resolving activity, suggesting that these two basic regions play a complementary role in ICL repair. On the basis of these findings, we propose a conserved role for two basic regions in FAN1 to guide ICL unhooking and to maintain genomic stability.
Collapse
Affiliation(s)
- Hyeonseok Jin
- From the Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbook 37673, South Korea
| | - Upasana Roy
- the Departments of Chemistry and Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794
| | - Gwangrog Lee
- the Department of Biology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Orlando D Schärer
- the Departments of Chemistry and Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794
- the Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, South Korea, and
- the Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Yunje Cho
- From the Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbook 37673, South Korea,
| |
Collapse
|
31
|
Abstract
Fanconi anaemia (FA) is a genetic disorder that is characterized by bone marrow failure (BMF), developmental abnormalities and predisposition to cancer. Together with other proteins involved in DNA repair processes and cell division, the FA proteins maintain genome homeostasis, and germline mutation of any one of the genes that encode FA proteins causes FA. Monoallelic inactivation of some FA genes, such as FA complementation group D1 (FANCD1; also known as the breast and ovarian cancer susceptibility gene BRCA2), leads to adult-onset cancer predisposition but does not cause FA, and somatic mutations in FA genes occur in cancers in the general population. Carcinogenesis resulting from a dysregulated FA pathway is multifaceted, as FA proteins monitor multiple complementary genome-surveillance checkpoints throughout interphase, where monoubiquitylation of the FANCD2-FANCI heterodimer by the FA core complex promotes recruitment of DNA repair effectors to chromatin lesions to resolve DNA damage and mitosis. In this Review, we discuss how the FA pathway safeguards genome integrity throughout the cell cycle and show how studies of FA have revealed opportunities to develop rational therapeutics for this genetic disease and for malignancies that acquire somatic mutations within the FA pathway.
Collapse
Affiliation(s)
- Grzegorz Nalepa
- Department of Pediatrics, Section of Pediatric Hematology-Oncology, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut Street, R4-421, Indianapolis, Indiana 46202, USA
- Riley Hospital for Children at Indiana University Health, 705 Riley Hospital Drive, Room 5900, Indianapolis, Indiana 46202, USA
- Department of Biochemistry, Indiana University School of Medicine
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - D Wade Clapp
- Riley Hospital for Children at Indiana University Health, 705 Riley Hospital Drive, Room 5900, Indianapolis, Indiana 46202, USA
- Department of Biochemistry, Indiana University School of Medicine
- Department of Microbiology and Immunology, Indiana University School of Medicine
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| |
Collapse
|
32
|
Rao T, Longerich S, Zhao W, Aihara H, Sung P, Xiong Y. Importance of homo-dimerization of Fanconi-associated nuclease 1 in DNA flap cleavage. DNA Repair (Amst) 2018. [PMID: 29518739 PMCID: PMC7105229 DOI: 10.1016/j.dnarep.2018.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fanconi-associated nuclease 1 (FAN1) removes interstrand DNA crosslinks (ICLs) through its DNA flap endonuclease and exonuclease activities. Crystal structures of human and bacterial FAN1 bound to a DNA flap have been solved. The Pseudomonas aeruginosa bacterial FAN1 and human FAN1 (hFAN1) missing a flexible loop are monomeric, while intact hFAN1 is homo-dimeric in structure. Importantly, the monomeric and dimeric forms of FAN1 exhibit very different DNA binding modes. Here, we interrogate the functional differences between monomeric and dimeric forms of FAN1 and provide an explanation for the discrepancy in oligomeric state between the two hFAN1 structures. Specifically, we show that the flexible loop in question is needed for hFAN1 dimerization. While monomeric and dimeric bacterial or human FAN1 proteins cleave a short 5′ flap strand with similar efficiency, optimal cleavage of a long 5′ flap strand is contingent upon protein dimerization. Our study therefore furnishes biochemical evidence for a role of hFAN1 homodimerization in biological processes that involve 5′ DNA Flap cleavage.
Collapse
Affiliation(s)
- Timsi Rao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Simonne Longerich
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
33
|
Kato N, Kawasoe Y, Williams H, Coates E, Roy U, Shi Y, Beese LS, Schärer OD, Yan H, Gottesman ME, Takahashi TS, Gautier J. Sensing and Processing of DNA Interstrand Crosslinks by the Mismatch Repair Pathway. Cell Rep 2017; 21:1375-1385. [PMID: 29091773 PMCID: PMC5806701 DOI: 10.1016/j.celrep.2017.10.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/21/2017] [Accepted: 10/08/2017] [Indexed: 12/20/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) that are repaired in non-dividing cells must be recognized independently of replication-associated DNA unwinding. Using cell-free extracts from Xenopus eggs that support neither replication nor transcription, we establish that ICLs are recognized and processed by the mismatch repair (MMR) machinery. We find that ICL repair requires MutSα (MSH2-MSH6) and the mismatch recognition FXE motif in MSH6, strongly suggesting that MutSα functions as an ICL sensor. MutSα recruits MutLα and EXO1 to ICL lesions, and the catalytic activity of both these nucleases is essential for ICL repair. As anticipated for a DNA unwinding-independent recognition process, we demonstrate that least distorting ICLs fail to be recognized and repaired by the MMR machinery. This establishes that ICL structure is a critical determinant of repair efficiency outside of DNA replication.
Collapse
Affiliation(s)
- Niyo Kato
- Institute of Cancer Genetics, Columbia University, New York, NY 10032, USA
| | | | - Hannah Williams
- Institute of Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Elena Coates
- Institute of Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Upasana Roy
- Department of Chemistry and Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yuqian Shi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Lorena S Beese
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Orlando D Schärer
- Department of Chemistry and Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; Institute for Basic Science Center for Genomic Integrity and School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Hong Yan
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Max E Gottesman
- Institute of Cancer Research, Columbia University, New York, NY 10032, USA
| | | | - Jean Gautier
- Institute of Cancer Genetics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
34
|
FAN1 interaction with ubiquitylated PCNA alleviates replication stress and preserves genomic integrity independently of BRCA2. Nat Commun 2017; 8:1073. [PMID: 29051491 PMCID: PMC5648898 DOI: 10.1038/s41467-017-01074-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/16/2017] [Indexed: 11/08/2022] Open
Abstract
Interstrand cross-link (ICL) hypersensitivity is a characteristic trait of Fanconi anemia (FA). Although FANCD2-associated nuclease 1 (FAN1) contributes to ICL repair, FAN1 mutations predispose to karyomegalic interstitial nephritis (KIN) and cancer rather than to FA. Thus, the biological role of FAN1 remains unclear. Because fork stalling in FAN1-deficient cells causes chromosomal instability, we reasoned that the key function of FAN1 might lie in the processing of halted replication forks. Here, we show that FAN1 contains a previously-uncharacterized PCNA interacting peptide (PIP) motif that, together with its ubiquitin-binding zinc finger (UBZ) domain, helps recruit FAN1 to ubiquitylated PCNA accumulated at stalled forks. This prevents replication fork collapse and controls their progression. Furthermore, we show that FAN1 preserves replication fork integrity by a mechanism that is distinct from BRCA2-dependent homologous recombination. Thus, targeting FAN1 activities and its interaction with ubiquitylated PCNA may offer therapeutic opportunities for treatment of BRCA-deficient tumors.
Collapse
|
35
|
|
36
|
Abdullah UB, McGouran JF, Brolih S, Ptchelkine D, El-Sagheer AH, Brown T, McHugh PJ. RPA activates the XPF-ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks. EMBO J 2017; 36:2047-2060. [PMID: 28607004 PMCID: PMC5510000 DOI: 10.15252/embj.201796664] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/13/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
During replication-coupled DNA interstrand crosslink (ICL) repair, the XPF-ERCC1 endonuclease is required for the incisions that release, or "unhook", ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL Here, we report that while purified XPF-ERCC1 incises simple ICL-containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single-stranded DNA (ssDNA)-binding replication protein A (RPA) selectively restores XPF-ERCC1 endonuclease activity on this structure. The 5'-3' exonuclease SNM1A can load from the XPF-ERCC1-RPA-induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF-ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo.
Collapse
Affiliation(s)
- Ummi B Abdullah
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Sanja Brolih
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Denis Ptchelkine
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, UK
| | | | - Tom Brown
- Department of Chemistry, University of Oxford, Oxford, UK.,Department of Oncology, University of Oxford, Oxford, UK
| | - Peter J McHugh
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
37
|
Lehmann J, Seebode C, Smolorz S, Schubert S, Emmert S. XPF knockout via CRISPR/Cas9 reveals that ERCC1 is retained in the cytoplasm without its heterodimer partner XPF. Cell Mol Life Sci 2017; 74:2081-2094. [PMID: 28130555 PMCID: PMC11107539 DOI: 10.1007/s00018-017-2455-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 01/05/2023]
Abstract
The XPF/ERCC1 heterodimeric complex is essentially involved in nucleotide excision repair (NER), interstrand crosslink (ICL), and double-strand break repair. Defects in XPF lead to severe diseases like xeroderma pigmentosum (XP). Up until now, XP-F patient cells have been utilized for functional analyses. Due to the multiple roles of the XPF/ERCC1 complex, these patient cells retain at least one full-length allele and residual repair capabilities. Despite the essential function of the XPF/ERCC1 complex for the human organism, we successfully generated a viable immortalised human XPF knockout cell line with complete loss of XPF using the CRISPR/Cas9 technique in fetal lung fibroblasts (MRC5Vi cells). These cells showed a markedly increased sensitivity to UVC, cisplatin, and psoralen activated by UVA as well as reduced repair capabilities for NER and ICL repair as assessed by reporter gene assays. Using the newly generated knockout cells, we could show that human XPF is markedly involved in homologous recombination repair (HRR) but dispensable for non-homologous end-joining (NHEJ). Notably, ERCC1 was not detectable in the nucleus of the XPF knockout cells indicating the necessity of a functional XPF/ERCC1 heterodimer to allow ERCC1 to enter the nucleus. Overexpression of wild-type XPF could reverse this effect as well as the repair deficiencies.
Collapse
Affiliation(s)
- Janin Lehmann
- Clinic and Policlinic for Dermatology and Venereology, University Medical Centre Rostock, Strempelstrasse 13, 18057, Rostock, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Centre Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Christina Seebode
- Clinic and Policlinic for Dermatology and Venereology, University Medical Centre Rostock, Strempelstrasse 13, 18057, Rostock, Germany
| | - Sabine Smolorz
- Department of Dermatology, Venereology and Allergology, University Medical Centre Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Steffen Schubert
- Department of Dermatology, Venereology and Allergology, University Medical Centre Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Centre Rostock, Strempelstrasse 13, 18057, Rostock, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Centre Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany.
| |
Collapse
|
38
|
Li YH, Zhang GG. Network-based characterization and prediction of human DNA repair genes and pathways. Sci Rep 2017; 8:45714. [PMID: 28368026 PMCID: PMC5377940 DOI: 10.1038/srep45714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/03/2017] [Indexed: 11/14/2022] Open
Abstract
Network biology is a useful strategy to understand cell’s functional organization. In this study, for the first time, we successfully introduced network approaches to study properties of human DNA repair genes. Compared with non-DNA repair genes, we found distinguishing features for DNA repair genes: (i) they tend to have higher degrees; (ii) they tend to be located at global network center; (iii) they tend to interact directly with each other. Based on these features, we developed the first algorithm to predict new DNA repair genes. We tested several machine-learning models and found that support vector machine with kernel function of radial basis function (RBF) achieve the best performance, with precision = 0.74 and area under curve (AUC) = 0.96. In the end, we applied the algorithm to predict new DNA repair genes and got 32 new candidates. Literature supporting four of the predictions was found. We believe the network approaches introduced here might open a new avenue to understand DNA repair genes and pathways. The suggested algorithm and the predicted genes might be helpful for scientists in the field.
Collapse
Affiliation(s)
- Yan-Hui Li
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, P. R. China
| | - Gai-Gai Zhang
- Special Medical Ward (Geratology Department) First Hospital of Tsinghua University Beijing, P. R. China
| |
Collapse
|
39
|
Yang Z, Nejad MI, Varela JG, Price NE, Wang Y, Gates KS. A role for the base excision repair enzyme NEIL3 in replication-dependent repair of interstrand DNA cross-links derived from psoralen and abasic sites. DNA Repair (Amst) 2017; 52:1-11. [PMID: 28262582 PMCID: PMC5424475 DOI: 10.1016/j.dnarep.2017.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 12/23/2022]
Abstract
Interstrand DNA-DNA cross-links are highly toxic lesions that are important in medicinal chemistry, toxicology, and endogenous biology. In current models of replication-dependent repair, stalling of a replication fork activates the Fanconi anemia pathway and cross-links are "unhooked" by the action of structure-specific endonucleases such as XPF-ERCC1 that make incisions flanking the cross-link. This process generates a double-strand break, which must be subsequently repaired by homologous recombination. Recent work provided evidence for a new, incision-independent unhooking mechanism involving intrusion of a base excision repair (BER) enzyme, NEIL3, into the world of cross-link repair. The evidence suggests that the glycosylase action of NEIL3 unhooks interstrand cross-links derived from an abasic site or the psoralen derivative trioxsalen. If the incision-independent NEIL3 pathway is blocked, repair reverts to the incision-dependent route. In light of the new model invoking participation of NEIL3 in cross-link repair, we consider the possibility that various BER glycosylases or other DNA-processing enzymes might participate in the unhooking of chemically diverse interstrand DNA cross-links.
Collapse
Affiliation(s)
- Zhiyu Yang
- University of Missouri Department of Chemistry, 125 Chemistry Building Columbia, MO 65211, United States
| | - Maryam Imani Nejad
- University of Missouri Department of Chemistry, 125 Chemistry Building Columbia, MO 65211, United States
| | - Jacqueline Gamboa Varela
- University of Missouri Department of Chemistry, 125 Chemistry Building Columbia, MO 65211, United States
| | - Nathan E Price
- University of California-Riverside, Department of Chemistry, 501 Big Springs Road Riverside, CA 92521-0403, United States
| | - Yinsheng Wang
- University of California-Riverside, Department of Chemistry, 501 Big Springs Road Riverside, CA 92521-0403, United States
| | - Kent S Gates
- University of Missouri Department of Chemistry, 125 Chemistry Building Columbia, MO 65211, United States; University of Missouri Department of Biochemistry, 125 Chemistry Building Columbia, MO 65211, United States.
| |
Collapse
|
40
|
Dehé PM, Gaillard PHL. Control of structure-specific endonucleases to maintain genome stability. Nat Rev Mol Cell Biol 2017; 18:315-330. [PMID: 28327556 DOI: 10.1038/nrm.2016.177] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structure-specific endonucleases (SSEs) have key roles in DNA replication, recombination and repair, and emerging roles in transcription. These enzymes have specificity for DNA secondary structure rather than for sequence, and therefore their activity must be precisely controlled to ensure genome stability. In this Review, we discuss how SSEs are controlled as part of genome maintenance pathways in eukaryotes, with an emphasis on the elaborate mechanisms that regulate the members of the major SSE families - including the xeroderma pigmentosum group F-complementing protein (XPF) and MMS and UV-sensitive protein 81 (MUS81)-dependent nucleases, and the flap endonuclease 1 (FEN1), XPG and XPG-like endonuclease 1 (GEN1) enzymes - during processes such as DNA adduct repair, Holliday junction processing and replication stress. We also discuss newly characterized connections between SSEs and other classes of DNA-remodelling enzymes and cell cycle control machineries, which reveal the importance of SSE scaffolds such as the synthetic lethal of unknown function 4 (SLX4) tumour suppressor for the maintenance of genome stability.
Collapse
Affiliation(s)
- Pierre-Marie Dehé
- Centre de Recherche en Cancérologie de Marseille, CRCM, CNRS, Aix Marseille Université, INSERM, Institut Paoli-Calmettes, 27 Boulevard Leï Roure, 13009 Marseille, France
| | - Pierre-Henri L Gaillard
- Centre de Recherche en Cancérologie de Marseille, CRCM, CNRS, Aix Marseille Université, INSERM, Institut Paoli-Calmettes, 27 Boulevard Leï Roure, 13009 Marseille, France
| |
Collapse
|
41
|
Nikolova T, Roos WP, Krämer OH, Strik HM, Kaina B. Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling. Biochim Biophys Acta Rev Cancer 2017; 1868:29-39. [PMID: 28143714 DOI: 10.1016/j.bbcan.2017.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 01/20/2023]
Abstract
Chloroethylating nitrosoureas (CNU), such as lomustine, nimustine, semustine, carmustine and fotemustine are used for the treatment of malignant gliomas, brain metastases of different origin, melanomas and Hodgkin disease. They alkylate the DNA bases and give rise to the formation of monoadducts and subsequently interstrand crosslinks (ICL). ICL are critical cytotoxic DNA lesions that link the DNA strands covalently and block DNA replication and transcription. As a result, S phase progression is inhibited and cells are triggered to undergo apoptosis and necrosis, which both contribute to the effectiveness of CNU-based cancer therapy. However, tumor cells resist chemotherapy through the repair of CNU-induced DNA damage. The suicide enzyme O6-methylguanine-DNA methyltransferase (MGMT) removes the precursor DNA lesion O6-chloroethylguanine prior to its conversion into ICL. In cells lacking MGMT, the formed ICL evoke complex enzymatic networks to accomplish their removal. Here we discuss the mechanism of ICL repair as a survival strategy of healthy and cancer cells and DNA damage signaling as a mechanism contributing to CNU-induced cell death. We also discuss therapeutic implications and strategies based on sequential and simultaneous treatment with CNU and the methylating drug temozolomide.
Collapse
Affiliation(s)
- Teodora Nikolova
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Wynand P Roos
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Herwig M Strik
- Department of Neurology, University Medical Center, Baldinger Strasse, 35033 Marburg, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|
42
|
Sato K, Shimomuki M, Katsuki Y, Takahashi D, Kobayashi W, Ishiai M, Miyoshi H, Takata M, Kurumizaka H. FANCI-FANCD2 stabilizes the RAD51-DNA complex by binding RAD51 and protects the 5'-DNA end. Nucleic Acids Res 2016; 44:10758-10771. [PMID: 27694619 PMCID: PMC5159555 DOI: 10.1093/nar/gkw876] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/22/2016] [Accepted: 09/21/2016] [Indexed: 01/12/2023] Open
Abstract
The FANCI-FANCD2 (I-D) complex is considered to work with RAD51 to protect the damaged DNA in the stalled replication fork. However, the means by which this DNA protection is accomplished have remained elusive. In the present study, we found that the I-D complex directly binds to RAD51, and stabilizes the RAD51-DNA filament. Unexpectedly, the DNA binding activity of FANCI, but not FANCD2, is explicitly required for the I-D complex-mediated RAD51-DNA filament stabilization. The RAD51 filament stabilized by the I-D complex actually protects the DNA end from nucleolytic degradation by an FA-associated nuclease, FAN1. This DNA end protection is not observed with the RAD51 mutant from FANCR patient cells. These results clearly answer the currently enigmatic question of how RAD51 functions with the I-D complex to prevent genomic instability at the stalled replication fork.
Collapse
Affiliation(s)
- Koichi Sato
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Mayo Shimomuki
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yoko Katsuki
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - Daisuke Takahashi
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Wataru Kobayashi
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Masamichi Ishiai
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroyuki Miyoshi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan .,Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
43
|
Thongthip S, Bellani M, Gregg SQ, Sridhar S, Conti BA, Chen Y, Seidman MM, Smogorzewska A. Fan1 deficiency results in DNA interstrand cross-link repair defects, enhanced tissue karyomegaly, and organ dysfunction. Genes Dev 2016; 30:645-59. [PMID: 26980189 PMCID: PMC4803051 DOI: 10.1101/gad.276261.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thongthip et al. describe a FANCD2/FANCI-associated nuclease 1 (Fan1)-deficient mouse and show that FAN1 is required for cellular and organismal resistance to DNA interstrand cross-links. Karyomegaly becomes prominent in the kidneys and livers of Fan1-deficient mice with age, and mice develop liver dysfunction. Deficiency of FANCD2/FANCI-associated nuclease 1 (FAN1) in humans leads to karyomegalic interstitial nephritis (KIN), a rare hereditary kidney disease characterized by chronic renal fibrosis, tubular degeneration, and characteristic polyploid nuclei in multiple tissues. The mechanism of how FAN1 protects cells is largely unknown but is thought to involve FAN1's function in DNA interstrand cross-link (ICL) repair. Here, we describe a Fan1-deficient mouse and show that FAN1 is required for cellular and organismal resistance to ICLs. We show that the ubiquitin-binding zinc finger (UBZ) domain of FAN1, which is needed for interaction with FANCD2, is not required for the initial rapid recruitment of FAN1 to ICLs or for its role in DNA ICL resistance. Epistasis analyses reveal that FAN1 has cross-link repair activities that are independent of the Fanconi anemia proteins and that this activity is redundant with the 5′–3′ exonuclease SNM1A. Karyomegaly becomes prominent in kidneys and livers of Fan1-deficient mice with age, and mice develop liver dysfunction. Treatment of Fan1-deficient mice with ICL-inducing agents results in pronounced thymic and bone marrow hypocellularity and the disappearance of c-kit+ cells. Our results provide insight into the mechanism of FAN1 in ICL repair and demonstrate that the Fan1 mouse model effectively recapitulates the pathological features of human FAN1 deficiency.
Collapse
Affiliation(s)
- Supawat Thongthip
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Marina Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Siobhan Q Gregg
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Sunandini Sridhar
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Brooke A Conti
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Yanglu Chen
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
44
|
Johnson CA, Collis SJ. Ciliogenesis and the DNA damage response: a stressful relationship. Cilia 2016; 5:19. [PMID: 27335639 PMCID: PMC4916530 DOI: 10.1186/s13630-016-0040-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/22/2016] [Indexed: 01/27/2023] Open
Abstract
Both inherited and sporadic mutations can give rise to a plethora of human diseases. Through myriad diverse cellular processes, sporadic mutations can arise through a failure to accurately replicate the genetic code or by inaccurate separation of duplicated chromosomes into daughter cells. The human genome has therefore evolved to encode a large number of proteins that work together with regulators of the cell cycle to ensure that it remains error-free. This is collectively known as the DNA damage response (DDR), and genome stability mechanisms involve a complex network of signalling and processing factors that ensure redundancy and adaptability of these systems. The importance of genome stability mechanisms is best illustrated by the dramatic increased risk of cancer in individuals with underlying disruption to genome maintenance mechanisms. Cilia are microtubule-based sensory organelles present on most vertebrate cells, where they facilitate transduction of external signals into the cell. When not embedded within the specialised ciliary membrane, components of the primary cilium's basal body help form the microtubule organising centre that controls cellular trafficking and the mitotic segregation of chromosomes. Ciliopathies are a collection of diseases associated with functional disruption to cilia function through a variety of different mechanisms. Ciliopathy phenotypes can vary widely, and although some cellular overgrowth phenotypes are prevalent in a subset of ciliopathies, an increased risk of cancer is not noted as a clinical feature. However, recent studies have identified surprising genetic and functional links between cilia-associated proteins and genome maintenance factors. The purpose of this mini-review is to therefore highlight some of these discoveries and discuss their implications with regards to functional crosstalk between the DDR and ciliogenesis pathways, and how this may impact on the development of human disease.
Collapse
Affiliation(s)
- Colin A. Johnson
- />Section of Ophthalmology and Neurosciences, Wellcome Trust Brenner Building, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds, LS9 7TF UK
| | - Spencer J. Collis
- />Genome Stability Group, Department of Oncology and Metabolism, Academic Unit of Molecular Oncology, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX UK
| |
Collapse
|
45
|
Roy U, Mukherjee S, Sharma A, Frank EG, Schärer OD. The structure and duplex context of DNA interstrand crosslinks affects the activity of DNA polymerase η. Nucleic Acids Res 2016; 44:7281-91. [PMID: 27257072 PMCID: PMC5009737 DOI: 10.1093/nar/gkw485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/20/2016] [Indexed: 12/18/2022] Open
Abstract
Several important anti-tumor agents form DNA interstrand crosslinks (ICLs), but their clinical efficiency is counteracted by multiple complex DNA repair pathways. All of these pathways require unhooking of the ICL from one strand of a DNA duplex by nucleases, followed by bypass of the unhooked ICL by translesion synthesis (TLS) polymerases. The structures of the unhooked ICLs remain unknown, yet the position of incisions and processing of the unhooked ICLs significantly influence the efficiency and fidelity of bypass by TLS polymerases. We have synthesized a panel of model unhooked nitrogen mustard ICLs to systematically investigate how the state of an unhooked ICL affects pol η activity. We find that duplex distortion induced by a crosslink plays a crucial role in translesion synthesis, and length of the duplex surrounding an unhooked ICL critically affects polymerase efficiency. We report the synthesis of a putative ICL repair intermediate that mimics the complete processing of an unhooked ICL to a single crosslinked nucleotide, and find that it provides only a minimal obstacle for DNA polymerases. Our results raise the possibility that, depending on the structure and extent of processing of an ICL, its bypass may not absolutely require TLS polymerases.
Collapse
Affiliation(s)
- Upasana Roy
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Shivam Mukherjee
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Anjali Sharma
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Ekaterina G Frank
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Orlando D Schärer
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
46
|
Roy U, Schärer OD. Involvement of translesion synthesis DNA polymerases in DNA interstrand crosslink repair. DNA Repair (Amst) 2016; 44:33-41. [PMID: 27311543 DOI: 10.1016/j.dnarep.2016.05.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
DNA interstrand crosslinks (ICLs) covalently join the two strands of a DNA duplex and block essential processes such as DNA replication and transcription. Several important anti-tumor drugs such as cisplatin and nitrogen mustards exert their cytotoxicity by forming ICLs. However, multiple complex pathways repair ICLs and these are thought to contribute to the development of resistance towards ICL-inducing agents. While the understanding of many aspects of ICL repair is still rudimentary, studies in recent years have provided significant insights into the pathways of ICL repair. In this perspective we review the recent advances made in elucidating the mechanisms of ICL repair with a focus on the role of TLS polymerases. We describe the emerging models for how these enzymes contribute to and are regulated in ICL repair, discuss the key open questions and examine the implications for this pathway in anti-cancer therapy.
Collapse
Affiliation(s)
- Upasana Roy
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Orlando D Schärer
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-3400, USA.
| |
Collapse
|
47
|
Isnard P, Rabant M, Labaye J, Antignac C, Knebelmann B, Zaidan M. Karyomegalic Interstitial Nephritis: A Case Report and Review of the Literature. Medicine (Baltimore) 2016; 95:e3349. [PMID: 27196444 PMCID: PMC4902386 DOI: 10.1097/md.0000000000003349] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Karyomegalic interstitial nephritis is a rare cause of hereditary chronic interstitial nephritis, described for the first time over 40 years ago.A 36-year-old woman, of Turkish origin, presented with chronic kidney disease and high blood pressure. She had a history of recurrent upper respiratory tract infections but no familial history of nephropathy. Physical examination was unremarkable. Laboratory tests showed serum creatinine at 2.3 mg/dL with an estimated glomerular filtration rate of 26 mL/min/1.73m, and gamma-glutamyl transpeptidase and alkaline phosphatase at 3 and 1.5 times the upper normal limit. Urinalysis showed 0.8 g/day of nonselective proteinuria, microscopic hematuria, and aseptic leukocyturia. Immunological tests and tests for human immunodeficiency and hepatitis B and C viruses were negative. Complement level and serum proteins electrophoresis were normal. Analysis of the renal biopsy showed severe interstitial fibrosis and tubular atrophy. Numerous tubular cells had nuclear enlargement with irregular outlines, hyperchromatic aspect, and prominent nucleoli. These findings were highly suggestive of karyomegalic interstitial nephritis, which was further confirmed by exome sequencing of FAN1 gene showing an identified homozygous frameshift mutation due to a one-base-pair deletion in exon 12 (c.2616delA).The present case illustrates a rare but severe cause of hereditary interstitial nephritis, sometimes accompanied by subtle extrarenal manifestations. Identification of mutations in FAN1 gene underscores recent insights linking inadequate DNA repair and susceptibility to chronic kidney disease.
Collapse
Affiliation(s)
- Pierre Isnard
- From the Department of Nephrology-Transplantation (PI, BK, MZ), Necker Hospital, APHP, Paris; Department of Pathology (MR), Necker Hospital, APHP, Paris; Paris Descartes-Sorbonne Paris Cité University (MR, BK, MZ), Paris; Department of Nephrology (JL), Armed Forces Hospital of Val de Grâce, Paris; Department of Genetics (CA), Necker Hospital, APHP, Paris; Laboratory of Hereditary Kidney Diseases (CA), INSERM U1163, Paris; Imagine Institute (CA), Paris Descartes-Sorbonne Paris Cité University, Paris; and Department of Cell biology (BK, MZ), Institut Necker Enfants Malades, INSERM U1151, Paris, France
| | | | | | | | | | | |
Collapse
|
48
|
Li Z, Pearlman AH, Hsieh P. DNA mismatch repair and the DNA damage response. DNA Repair (Amst) 2016; 38:94-101. [PMID: 26704428 PMCID: PMC4740233 DOI: 10.1016/j.dnarep.2015.11.019] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/17/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022]
Abstract
This review discusses the role of DNA mismatch repair (MMR) in the DNA damage response (DDR) that triggers cell cycle arrest and, in some cases, apoptosis. Although the focus is on findings from mammalian cells, much has been learned from studies in other organisms including bacteria and yeast [1,2]. MMR promotes a DDR mediated by a key signaling kinase, ATM and Rad3-related (ATR), in response to various types of DNA damage including some encountered in widely used chemotherapy regimes. An introduction to the DDR mediated by ATR reveals its immense complexity and highlights the many biological and mechanistic questions that remain. Recent findings and future directions are highlighted.
Collapse
Affiliation(s)
- Zhongdao Li
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA
| | - Alexander H Pearlman
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA
| | - Peggy Hsieh
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA.
| |
Collapse
|
49
|
Affiliation(s)
- Peng-Xian Yan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | |
Collapse
|
50
|
Bogliolo M, Surrallés J. Fanconi anemia: a model disease for studies on human genetics and advanced therapeutics. Curr Opin Genet Dev 2015; 33:32-40. [PMID: 26254775 DOI: 10.1016/j.gde.2015.07.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/19/2015] [Accepted: 07/21/2015] [Indexed: 12/18/2022]
Abstract
Fanconi anemia (FA) is characterized by bone marrow failure, malformations, and chromosome fragility. We review the recent discovery of FA genes and efforts to develop genetic therapies for FA in the last five years. Because current data exclude FANCM as an FA gene, 15 genes remain bona fide FA genes and three (FANCO, FANCR and FANCS) cause an FA like syndrome. Monoallelic mutations in 6 FA associated genes (FANCD1, FANCJ, FANCM, FANCN, FANCO and FANCS) predispose to breast and ovarian cancer. The products of all these genes are involved in the repair of stalled DNA replication forks by unhooking DNA interstrand cross-links and promoting homologous recombination. The genetic characterization of patients with FA is essential for developing therapies, including hematopoietic stem cell transplantation from a savior sibling donor after embryo selection, gene therapy, or genome editing using genetic recombination or engineered nucleases. Newly acquired knowledge about FA promises to provide therapeutic strategies in the near future.
Collapse
Affiliation(s)
- Massimo Bogliolo
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - Jordi Surrallés
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain.
| |
Collapse
|