1
|
Li Q, Wang Q, Wang R, Zhang L, Liu Z. The frameshifting element in coronaviruses: structure, function, and potential as a therapeutic target. Trends Pharmacol Sci 2025:S0165-6147(25)00069-0. [PMID: 40382241 DOI: 10.1016/j.tips.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 05/20/2025]
Abstract
The frameshifting element (FSE) comprises a slippery heptanucleotide sequence followed by a downstream RNA structure, such as a pseudoknot or stem-loop. Found in various RNA viruses, FSE regulates viral replication via programmed -1 ribosomal frameshifting (-1 PRF), making it a potential broad-spectrum antiviral target. Advances in RNA structural analysis have elucidated the dynamic conformations and cross-viral diversity of FSE, with the SARS-CoV-2 outbreak further highlighting its role in viral replication. Efforts to develop antiviral drugs targeting FSE have progressed through virtual and phenotypic screening. In this review, we explore the evolution, structure, and function of FSE in coronaviruses, evaluate recent advances in FSE-targeted drug development, and discuss their design advantages, efficacy, and challenges, providing insights for future antiviral strategies.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; Ningbo Institute of Marine Medicine, Peking University, Zhejiang, 315832, China
| | - Rui Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; Ningbo Institute of Marine Medicine, Peking University, Zhejiang, 315832, China.
| |
Collapse
|
2
|
Zhang H, Cañari-Chumpitaz C, Alexander L, Zhang H, Fan C, Bustamante C. DNA origami-enhanced force spectroscopy and AlphaFold structural analyses reveal the folding landscape of calcium-binding proteins. SCIENCE ADVANCES 2025; 11:eadv1962. [PMID: 40305599 PMCID: PMC12042886 DOI: 10.1126/sciadv.adv1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025]
Abstract
Understanding the intricate folding process of proteins and characterizing the intermediates they populate en route to their native state remain challenging despite the remarkable accuracy achieved through in silico approaches for predicting native protein structures. Here, we replaced the conventional flexible double-stranded DNA handle force transducers with solid DNA-origami bundles to conduct single-molecule folding force-spectroscopy studies on calerythrin, a compact multidomain calcium-binding globular protein. The resulting origami-enhanced data revealed a previously "hidden" folding intermediate and the hierarchical nature of the protein's folding pathway. A systematic comparison of the AlphaFold-predicted conformational ensemble of structures of the native state and folding intermediates across various calcium-binding proteins provides a structural rationalization for the folding behavior of this protein family. The integration of DNA origami-enhanced single-molecule experiments with in silico approaches, and structural analysis presented here, constitutes a comprehensive method to uncover the rules underlying the formation of intermediates within protein folding landscapes.
Collapse
Affiliation(s)
- Honglu Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Jason L. Choy Laboratory for Single Molecule Biophysics. Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cristhian Cañari-Chumpitaz
- Jason L. Choy Laboratory for Single Molecule Biophysics. Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Lisa Alexander
- Jason L. Choy Laboratory for Single Molecule Biophysics. Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Metagenomi Inc., Discovery, Emeryville, CA 94608, USA
| | - Huan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Carlos Bustamante
- Jason L. Choy Laboratory for Single Molecule Biophysics. Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Halma MTJ, Kumar S, van Eck J, Abeln S, Gates A, Wuite GJL. FAIR data for optical tweezers experiments. Biophys J 2025; 124:1255-1272. [PMID: 40083158 PMCID: PMC12044397 DOI: 10.1016/j.bpj.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/11/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
The single-molecule biophysics community has delivered significant impacts to our understanding of fundamental biological processes, yet the field is also siloed and has fragmented data structures, which impede data sharing and limit the ability to conduct comprehensive meta-analyses. To advance the field of optical tweezers in single-molecule biophysics, it is important that the field adopts open and collaborative data sharing that facilitate meta-analyses that combine diverse resources and supports more advanced analyses, akin to those seen in projects such as the Protein Data Bank and the 1000 Genomes Project. Here, we assess the state of data findability, accessibility, interoperability, and reusability (the FAIR principles) within the single-molecule optical tweezers field. By combining a qualitative review with quantitative tools from bibliometrics, our analysis suggests that the field has significant room for improvement in terms of FAIR adherence. Finally, we discuss the potential of compulsory data deposition and a minimal set of metadata standards to ensure reproducibility and interoperability between systems. While implementing these measures may not be straightforward, they are key steps that will enhance the integration of optical tweezers biophysics with the broader biomedical literature.
Collapse
Affiliation(s)
- Matthew T J Halma
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, North Holland, the Netherlands; Lumicks B.V., Amsterdam, North Holland, the Netherlands
| | - Sowmiyaa Kumar
- Department of Computer Science, Vrije Universiteit, Amsterdam, North Holland, the Netherlands
| | - Jan van Eck
- Department of Computer Science, Vrije Universiteit, Amsterdam, North Holland, the Netherlands
| | - Sanne Abeln
- Department of Computer Science, Vrije Universiteit, Amsterdam, North Holland, the Netherlands
| | - Alexander Gates
- School of Data Science, University of Virginia, Charlottesville, Virginia.
| | - Gijs J L Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, North Holland, the Netherlands; Lumicks B.V., Amsterdam, North Holland, the Netherlands.
| |
Collapse
|
4
|
Westerfield JM, Kozojedová P, Juli C, Metola A, von Heijne G. Cotranslational membrane insertion of the voltage-sensitive K + channel KvAP. Proc Natl Acad Sci U S A 2025; 122:e2412492122. [PMID: 40163725 PMCID: PMC12002286 DOI: 10.1073/pnas.2412492122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Voltage-sensor domains (VSDs), found in many voltage-sensitive ion channels and enzymes, are composed of four transmembrane helices (TMHs), including the atypical, highly positively charged S4 helix. VSDs are cotranslationally inserted into the membrane, raising the question of how the highly charged S4 helix is integrated into the lipid bilayer as it exits the ribosome. Here, we have used force profile analysis (FPA) to follow the cotranslational insertion of the six-TMH KvAP voltage-sensitive ion channel into the Escherichia coli inner membrane. We find that the insertion process proceeds through three semi-independent steps: i) insertion of the S1-S2 helix hairpin, ii) insertion of the S3-S5 helices, and iii) insertion of the Pore and S6 helices. Our analysis highlights the importance of the concerted insertion of helical hairpins, the dramatic influence of the positively charged residues in S4, and the unexpectedly strong forces and effects on downstream TMHs elicited by amphipathic and re-entrant helices.
Collapse
Affiliation(s)
- Justin M. Westerfield
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
| | - Petra Kozojedová
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
| | - Cara Juli
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
| | - Ane Metola
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
- Science for Life Laboratory, Stockholm University, SolnaSE-171 21, Sweden
| |
Collapse
|
5
|
Wilson CAM, Alfaro-Valdés HM, Kaplan M, D’Alessio C. Mechanical effect of protein glycosylation on BiP-mediated post-translational translocation and folding in the endoplasmic reticulum. Biophys Rev 2025; 17:435-447. [PMID: 40376427 PMCID: PMC12075051 DOI: 10.1007/s12551-025-01313-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/28/2025] [Indexed: 05/18/2025] Open
Abstract
About one-third of the proteins synthesized in eukaryotic cells are directed to the secretory pathway, where close to 70% are being N-glycosylated. N-glycosylation is a crucial modification for various cellular processes, including endoplasmic reticulum (ER) glycoprotein folding quality control, lysosome delivery, and cell signaling. The defects in N-glycosylation can lead to severe developmental diseases. For the proteins to be glycosylated, they must be translocated to the ER through the Sec61 translocon channel, either via co-translationally or post-translationally. N-glycosylation not only could accelerate post-translational translocation but may also enhance protein stability, while protein folding can assist in their movement into the ER. However, the precise mechanisms by which N-glycosylation and folding influence translocation remain poorly understood. The chaperone BiP is essential for post-translational translocation, using a "ratchet" mechanism to facilitate protein entry into the ER. Although research has explored how BiP interacts with protein substrates, there has been less focus on its binding to glycosylated substrates. Here, we review the effect of N-glycosylation on protein translocation, employing single-molecule studies and ensembles approaches to clarify the roles of BiP and N-glycosylation in these processes. Our review explores the possibility of a direct relationship between translocation and a ratchet effect of glycosylation and the importance of BiP in binding glycosylated proteins for the ER quality control system. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-025-01313-x.
Collapse
Affiliation(s)
- Christian A. M. Wilson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Hilda M. Alfaro-Valdés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Faculty of Science, Universidad de Valparaíso, Valparaíso, Chile
| | - Merve Kaplan
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxfordshire, UK
| | - Cecilia D’Alessio
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3)-Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales Aires, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Lentzsch AM, Lee JH, Shan SO. Mechanistic Insights into Protein Biogenesis and Maturation on the Ribosome. J Mol Biol 2025:169056. [PMID: 40024436 DOI: 10.1016/j.jmb.2025.169056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
The ribosome is a major cellular machine that converts genetic information into biological function. Emerging data show that the ribosome is not only a protein synthesis machine, but also participates in the maturation of the nascent protein into properly folded and active molecules. The ribosome surface near the opening of the polypeptide exit tunnel can interact directly with the newly synthesized proteins and, more importantly, provides a platform where numerous protein biogenesis factors assemble, gain access to the nascent chain, and direct them into diverse biogenesis pathways. In this article, we review the current understanding of cotranslational protein maturation pathways, with an emphasis on systems in which biochemical studies provided a high-resolution molecular understanding and yielded generalizable mechanistic principles.
Collapse
Affiliation(s)
- Alfred M Lentzsch
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Jae Ho Lee
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
7
|
Mittal S, Wang RE, Ros R, Ondrus AE, Singharoy A. Molecular dynamics model of mechanophore sensors for biological force measurement. Heliyon 2025; 11:e41178. [PMID: 39807516 PMCID: PMC11728885 DOI: 10.1016/j.heliyon.2024.e41178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/12/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore. These sensors are characterized using a multiscale approach combining equilibrium and steered QM/MM molecular dynamics models to capture the chemical, mechanical, and conformational transitions underlying force activation thresholds on a nano Newton scale. We find that chemical modification of the mechanophore and variation of its biomolecular tethers can tune the rate-determining step for fluorophore release and adjust the mechanochemical activation barrier. The models offer a new molecular framework for calibrated, programmable biomolecular force reporting within the live-cell regime, opening new opportunities to study mechanical phenomena in biological systems.
Collapse
Affiliation(s)
- Sumit Mittal
- School of Advanced Sciences and Languages, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh, 466114, India
| | - Rongsheng E. Wang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Robert Ros
- Department of Physics, Arizona State University, Tempe, AZ, 85287, USA
- Center for Single Molecule Biophysics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- Center for Biological Physics, Arizona State University, Tempe, AZ, 85287, USA
| | - Alison E. Ondrus
- Department of Chemistry and Pharmaceutical Sciences, University of Illinois Chicago, 900 W Taylor St, Science & Engineering Laboratories West South Building #608 Room 2230, Chicago, IL, 60607, USA
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
8
|
Xu X, Bell TW, Le T, Zhao I, Walker E, Wang Y, Xu N, Soleimanpour SA, Russ HA, Qi L, Tsai B, Liu M, Arvan P. Role of Sec61α2 Translocon in Insulin Biosynthesis. Diabetes 2024; 73:2034-2044. [PMID: 39325584 PMCID: PMC11579409 DOI: 10.2337/db24-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Translocational regulation of proinsulin biosynthesis in pancreatic β-cells is unknown, although several studies have reported an important accessory role for the Translocon-Associated Protein complex to assist preproinsulin delivery into the endoplasmic reticulum via the heterotrimeric Sec61 translocon (comprising α, β, and γ subunits). The actual protein-conducting channel is the α-subunit encoded either by Sec61A1 or its paralog Sec61A2. Although the underlying channel selectivity for preproinsulin translocation is unknown, almost all studies of Sec61α to date have focused on Sec61α1. There is currently no evidence to suggest that this gene product plays a major role in proinsulin production, whereas genome-wide association studies indicate linkage of Sec61A2 with diabetes. Here, we report that evolutionary differences in mouse preproinsulin signal peptides affect proinsulin biosynthesis. Moreover, we find that, although some preproinsulin translocation can proceed through Sec61α1, Sec61α2 has a greater impact on proinsulin biosynthesis in pancreatic β-cells. Remarkably, Sec61α2 translocon deficiency exerts a significant inhibitory effect on the biosynthesis of preproinsulin itself, including a disproportionate increase of full-length nascent chain unreleased from ribosomes. This study not only reveals novel translocational regulation of proinsulin biosynthesis but also provides a rationale for genetic evidence suggesting an important role of Sec61α2 in maintaining blood glucose homeostasis. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Xiaoxi Xu
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Truc Le
- Department of Chemistry, University of Nevada, Reno, NV
| | - Ivy Zhao
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Emily Walker
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Yiqing Wang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Ning Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Scott A. Soleimanpour
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Holger A. Russ
- Diabetes Institute, University of Florida College of Medicine, Gainesville, FL
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
9
|
Viader-Godoy X, Manosas M, Ritort F. Stacking correlation length in single-stranded DNA. Nucleic Acids Res 2024; 52:13243-13254. [PMID: 39460618 PMCID: PMC11602145 DOI: 10.1093/nar/gkae934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Base stacking is crucial in nucleic acid stabilization, from DNA duplex hybridization to single-stranded DNA (ssDNA) protein binding. While stacking energies are tiny in ssDNA, they are inextricably mixed with hydrogen bonding in DNA base pairing, making their measurement challenging. We conduct unzipping experiments with optical tweezers of short poly-purine (dA and alternating dG and dA) sequences of 20-40 bases. We introduce a helix-coil model of the stacking-unstacking transition that includes finite length effects and reproduces the force-extension curves. Fitting the model to the experimental data, we derive the stacking energy per base, finding the salt-independent value $\Delta G_0^{ST}=0.14(3)$ kcal/mol for poly-dA and $\Delta G_0^{ST}=0.07(3)$ kcal/mol for poly-dGdA. Stacking in these polymeric sequences is predominantly cooperative with a correlation length of ∼4 bases at zero force . The correlation length reaches a maximum of ∼10 and 5 bases at the stacking-unstacking transition force of ∼10 and 20 pN for poly-dA and poly-dGdA, respectively. The salt dependencies of the cooperativity parameter in ssDNA and the energy of DNA hybridization are in agreement, suggesting that double-helix stability is primarily due to stacking. Analysis of poly-rA and poly-rC RNA sequences shows a larger stacking stability but a lower stacking correlation length of ∼2 bases.
Collapse
Affiliation(s)
- Xavier Viader-Godoy
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028 Barcelona, Spain
- Dipartimento di Fisica e Astronomia Galileo Galilei, Università degli Studi di Padova, Via Francesco Marzolo, 8, 35131 Padova, Italy
| | - Maria Manosas
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08029 Barcelona, Spain
| | - Felix Ritort
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08029 Barcelona, Spain
| |
Collapse
|
10
|
Hamano T, Nagumo Y, Umehara T, Hirono K, Fujiwara K, Taguchi H, Chadani Y, Doi N. STALL-seq: mRNA-display selection of bacterial and eukaryotic translational arrest sequences from large random-sequence libraries. J Biol Chem 2024; 300:107978. [PMID: 39542254 DOI: 10.1016/j.jbc.2024.107978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
The translational arrest is a phenomenon wherein a temporary pause or slowing of the translation elongation reaction occurs due to the interaction between ribosome and nascent peptide. Recent studies have revealed that translational arrest peptides are involved in intracellular protein homeostasis regulatory functions, such as gene expression regulation at the translational level and regulation of cotranslational protein folding. Herein, we established a method for the large-scale in vitro selection of translational arrest peptides from DNA libraries by combining a modified mRNA display method and deep sequencing. We performed in vitro selection of translational arrest sequences from random-sequence libraries via mRNA display based on the Escherichia coli PURE system or wheat germ extract. Following several rounds of affinity selection, we obtained various candidate sequences that were not similar to known arrest peptides and subsequently confirmed their ribosome stalling activity by peptidyl-tRNA detection and toeprinting assay. Following the site-directed mutagenesis of the selected sequences, these clones were found to contain novel arrest peptide motifs. This method, termed STALL-seq (Selection of Translational Arrest sequences from Large Library sequencing), could be useful for the large-scale investigation of translational arrest sequences acting on both bacterial and eukaryotic ribosomes and could help discover novel intracellular regulatory mechanisms.
Collapse
Affiliation(s)
- Tadashi Hamano
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Yu Nagumo
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Tomofumi Umehara
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Kota Hirono
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuhei Chadani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan.
| |
Collapse
|
11
|
Kolář MH, McGrath H, Nepomuceno FC, Černeková M. Three Stages of Nascent Protein Translocation Through the Ribosome Exit Tunnel. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1873. [PMID: 39496527 DOI: 10.1002/wrna.1873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 11/06/2024]
Abstract
All proteins in living organisms are produced in ribosomes that facilitate the translation of genetic information into a sequence of amino acid residues. During translation, the ribosome undergoes initiation, elongation, termination, and recycling. In fact, peptide bonds are formed only during the elongation phase, which comprises periodic association of transfer RNAs and multiple auxiliary proteins with the ribosome and the addition of an amino acid to the nascent polypeptide one at a time. The protein spends a considerable amount of time attached to the ribosome. Here, we conceptually divide this portion of the protein lifetime into three stages. We define each stage on the basis of the position of the N-terminus of the nascent polypeptide within the ribosome exit tunnel and the context of the catalytic center. We argue that nascent polypeptides experience a variety of forces that determine how they translocate through the tunnel and interact with the tunnel walls. We review current knowledge about nascent polypeptide translocation and identify several white spots in our understanding of the birth of proteins.
Collapse
Affiliation(s)
- Michal H Kolář
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Hugo McGrath
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Felipe C Nepomuceno
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Michaela Černeková
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
12
|
Khan D, Vinayak AA, Sitron CS, Brandman O. Mechanochemical forces regulate the composition and fate of stalled nascent chains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606406. [PMID: 39131335 PMCID: PMC11312545 DOI: 10.1101/2024.08.02.606406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The ribosome-associated quality control (RQC) pathway resolves stalled ribosomes. As part of RQC, stalled nascent polypeptide chains (NCs) are appended with CArboxy-Terminal amino acids (CAT tails) in an mRNA-free, non-canonical elongation process. CAT tail composition includes Ala, Thr, and potentially other residues. The relationship between CAT tail composition and function has remained unknown. Using biochemical approaches in yeast, we discovered that mechanochemical forces on the NC regulate CAT tailing. We propose CAT tailing initially operates in an "extrusion mode" that increases NC lysine accessibility for on-ribosome ubiquitination. Thr in CAT tails enhances NC extrusion by preventing formation of polyalanine, which can form α-helices that lower extrusion efficiency and disrupt termination of CAT tailing. After NC ubiquitylation, pulling forces on the NC switch CAT tailing to an Ala-only "release mode" which facilitates nascent chain release from large ribosomal subunits and NC degradation. Failure to switch from extrusion to release mode leads to accumulation of NCs on large ribosomal subunits and proteotoxic aggregation of Thr-rich CAT tails.
Collapse
Affiliation(s)
- Danish Khan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ananya A Vinayak
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cole S Sitron
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Onn Brandman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Ikeda Y, Miyazaki R, Tsukazaki T, Akiyama Y, Mori H. Translation arrest cancellation of VemP, a secretion monitor in Vibrio, is regulated by multiple cis and trans factors, including SecY. J Biol Chem 2024; 300:107735. [PMID: 39233231 PMCID: PMC11470409 DOI: 10.1016/j.jbc.2024.107735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
VemP is a secretory protein in the Vibrio species that monitors cellular protein-transport activity through its translation arrest, allowing expression of the downstream secD2-secF2 genes in the same operon, which encode components of the protein translocation machinery. When cellular protein-transport function is fully active, secD2/F2 expression remains repressed as VemP translation arrest is canceled immediately. The VemP arrest cancellation occurs on the SecY/E/G translocon in a late stage in the translocation process and requires both trans factors, SecD/F and PpiD/YfgM, and a cis element, Arg-85 in VemP; however, the detailed molecular mechanism remains elusive. This study aimed to elucidate how VemP passing through SecY specifically monitors SecD/F function. Genetic and biochemical studies showed that SecY is involved in the VemP arrest cancellation and that the arrested VemP is stably associated with a specific site in the protein-conducting pore of SecY. VemP-Bla reporter analyses revealed that a short hydrophobic segment adjacent to Arg-85 plays a critical role in the regulated arrest cancellation with its hydrophobicity correlating with the stability of the VemP arrest. We identified Gln-65 and Pro-67 in VemP as novel elements important for the regulation. We propose a model for the regulation of the VemP arrest cancellation by multiple cis elements and trans factors with different roles.
Collapse
Affiliation(s)
- Yuki Ikeda
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryoji Miyazaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Tomoya Tsukazaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Yoshinori Akiyama
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Mori
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
14
|
Pardo-Avila F, Kudva R, Levitt M, von Heijne G. Single-residue effects on the behavior of a nascent polypeptide chain inside the ribosome exit tunnel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608737. [PMID: 39229094 PMCID: PMC11370347 DOI: 10.1101/2024.08.20.608737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Nascent polypeptide chains (NCs) are extruded from the ribosome through an exit tunnel (ET) traversing the large ribosomal subunit. The ET's irregular and chemically complex wall allows for various NC-ET interactions. Translational arrest peptides (APs) bind in the ET to induce translational arrest, a property that can be exploited to study NC-ET interactions by Force Profile Analysis (FPA). We employed FPA and molecular dynamics (MD) simulations to investigate how individual residues placed in a glycine-serine repeat segment within an AP-stalled NC interact with the ET to exert a pulling force on the AP and release stalling. Our results indicate that large and hydrophobic residues generate a pulling force on the NC when placed ≳10 residues away from the peptidyl transfer center (PTC). Moreover, an asparagine placed 12 residues from the PTC makes a specific stabilizing interaction with the tip of ribosomal protein uL22 that reduces the pulling force on the NC, while a lysine or leucine residue in the same position increases the pulling force. Finally, the MD simulations suggest how the Mannheimia succiniproducens SecM AP interacts with the ET to promote translational stalling.
Collapse
Affiliation(s)
- Fátima Pardo-Avila
- Department of Structural Biology, Stanford University, Palo Alto, CA, USA
| | - Renuka Kudva
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
- Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden
| | - Michael Levitt
- Department of Structural Biology, Stanford University, Palo Alto, CA, USA
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
- Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden
| |
Collapse
|
15
|
Banerjee S, Chowdhury D, Chakraborty S, Haldar S. Force-regulated chaperone activity of BiP/ERdj3 is opposite to their homologs DnaK/DnaJ. Protein Sci 2024; 33:e5068. [PMID: 38864739 PMCID: PMC11168073 DOI: 10.1002/pro.5068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
Polypeptide chains experience mechanical tension while translocating through cellular tunnels, which are subsequently folded by molecular chaperones. However, interactions between tunnel-associated chaperones and these emerging polypeptides under force is not completely understood. Our investigation focused on mechanical chaperone activity of two tunnel-associated chaperones, BiP and ERdj3 both with and without mechanical constraints and comparing them with their cytoplasmic homologs: DnaK and DnaJ. While BiP/ERdj3 have been observed to exhibit robust foldase activity under force, DnaK/DnaJ showed holdase function. Importantly, the tunnel-associated chaperones (BiP/ERdj3) transitioned to a holdase state in the absence of force, indicating a force-dependent chaperone behavior. This chaperone-driven folding event in the tunnel generated an additional mechanical energy of up to 54 zJ, potentially aiding protein translocation. Our findings align with strain theory, where chaperones with higher intrinsic deformability act as mechanical foldases (BiP, ERdj3), while those with lower deformability serve as holdases (DnaK and DnaJ). This study thus elucidates the differential mechanically regulated chaperoning activity and introduces a novel perspective on co-translocational protein folding.
Collapse
Affiliation(s)
- Souradeep Banerjee
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
| | - Debojyoti Chowdhury
- Department of Chemical and Biological SciencesS.N. Bose National Center for Basic SciencesKolkataWest BengalIndia
| | - Soham Chakraborty
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
| | - Shubhasis Haldar
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
- Department of Chemical and Biological SciencesS.N. Bose National Center for Basic SciencesKolkataWest BengalIndia
- Technical Research Centre, S.N. Bose National Centre for Basic SciencesKolkataWest BengalIndia
| |
Collapse
|
16
|
Mesbah I, Habermann B, Rico F. MechanoProDB: a web-based database for exploring the mechanical properties of proteins. Database (Oxford) 2024; 2024:baae047. [PMID: 38837788 PMCID: PMC11152175 DOI: 10.1093/database/baae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/19/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
The mechanical stability of proteins is crucial for biological processes. To understand the mechanical functions of proteins, it is important to know the protein structure and mechanical properties. Protein mechanics is usually investigated through force spectroscopy experiments and simulations that probe the forces required to unfold the protein of interest. While there is a wealth of data in the literature on force spectroscopy experiments and steered molecular dynamics simulations of forced protein unfolding, this information is spread and difficult to access by non-experts. Here, we introduce MechanoProDB, a novel web-based database resource for collecting and mining data obtained from experimental and computational works. MechanoProDB provides a curated repository for a wide range of proteins, including muscle proteins, adhesion molecules and membrane proteins. The database incorporates relevant parameters that provide insights into the mechanical stability of proteins and their conformational stability such as the unfolding forces, energy landscape parameters and contour lengths of unfolding steps. Additionally, it provides intuitive annotations of the unfolding pathways of each protein, allowing users to explore the individual steps during mechanical unfolding. The user-friendly interface of MechanoProDB allows researchers to efficiently navigate, search and download data pertaining to specific protein folds or experimental conditions. Users can visualize protein structures using interactive tools integrated within the database, such as Mol*, and plot available data through integrated plotting tools. To ensure data quality and reliability, we have carefully manually verified and curated the data currently available on MechanoProDB. Furthermore, the database also features an interface that enables users to contribute new data and annotations, promoting community-driven comprehensiveness. The freely available MechanoProDB aims to streamline and accelerate research in the field of mechanobiology and biophysics by offering a unique platform for data sharing and analysis. MechanoProDB is freely available at https://mechanoprodb.ibdm.univ-amu.fr.
Collapse
Affiliation(s)
- Ismahene Mesbah
- Aix Marseille Univ, INSERM, DyNaMo, Turing Center of Living Systems (CENTURI), Marseille 13009, France
| | - Bianca Habermann
- Aix Marseille Univ, CNRS, IBDM UMR7288, Turing Center of Living Systems (CENTURI), Marseille 13009, France
| | - Felix Rico
- Aix Marseille Univ, INSERM, DyNaMo, Turing Center of Living Systems (CENTURI), Marseille 13009, France
| |
Collapse
|
17
|
Sheikhzadeh A, Safaei M, Fadaei Naeini V, Baghani M, Foroutan M, Baniassadi M. Multiscale modeling of unfolding and bond dissociation of rubredoxin metalloprotein. J Mol Graph Model 2024; 129:108749. [PMID: 38442439 DOI: 10.1016/j.jmgm.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Mechanical properties of proteins that have a crucial effect on their operation. This study used a molecular dynamics simulation package to investigate rubredoxin unfolding on the atomic scale. Different simulation techniques were applied, and due to the dissociation of covalent/hydrogen bonds, this protein demonstrates several intermediate states in force-extension behavior. A conceptual model based on the cohesive finite element method was developed to consider the intermediate damages that occur during unfolding. This model is based on force-displacement curves derived from molecular dynamics results. The proposed conceptual model is designed to accurately identify bond rupture points and determine the associated forces. This is achieved by conducting a thorough comparison between molecular dynamics and cohesive finite element results. The utilization of a viscoelastic cohesive zone model allows for the consideration of loading rate effects. This rate-dependent model can be further developed and integrated into the multiscale modeling of large assemblies of metalloproteins, providing a comprehensive understanding of mechanical behavior while maintaining a reduced computational cost.
Collapse
Affiliation(s)
- Aliakbar Sheikhzadeh
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Mohammad Safaei
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Vahid Fadaei Naeini
- Division of Machine Elements, Luleå University of Technology, Luleå, SE-97187, Sweden
| | - Mostafa Baghani
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Masumeh Foroutan
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Majid Baniassadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran; University of Strasbourg, CNRS, ICUBE Laboratory, Strasbourg, France.
| |
Collapse
|
18
|
Rajasekaran N, Kaiser CM. Navigating the complexities of multi-domain protein folding. Curr Opin Struct Biol 2024; 86:102790. [PMID: 38432063 DOI: 10.1016/j.sbi.2024.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
Proteome complexity has expanded tremendously over evolutionary time, enabling biological diversification. Much of this complexity is achieved by combining a limited set of structural units into long polypeptides. This widely used evolutionary strategy poses challenges for folding of the resulting multi-domain proteins. As a consequence, their folding differs from that of small single-domain proteins, which generally fold quickly and reversibly. Co-translational processes and chaperone interactions are important aspects of multi-domain protein folding. In this review, we discuss some of the recent experimental progress toward understanding these processes.
Collapse
Affiliation(s)
| | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
19
|
Alavi Z, Casanova-Morales N, Quiroga-Roger D, Wilson CAM. Towards the understanding of molecular motors and its relationship with local unfolding. Q Rev Biophys 2024; 57:e7. [PMID: 38715547 DOI: 10.1017/s0033583524000052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Molecular motors are machines essential for life since they convert chemical energy into mechanical work. However, the precise mechanism by which nucleotide binding, catalysis, or release of products is coupled to the work performed by the molecular motor is still not entirely clear. This is due, in part, to a lack of understanding of the role of force in the mechanical-structural processes involved in enzyme catalysis. From a mechanical perspective, one promising hypothesis is the Haldane-Pauling hypothesis which considers the idea that part of the enzymatic catalysis is strain-induced. It suggests that enzymes cannot be efficient catalysts if they are fully complementary to the substrates. Instead, they must exert strain on the substrate upon binding, using enzyme-substrate energy interaction (binding energy) to accelerate the reaction rate. A novel idea suggests that during catalysis, significant strain energy is built up, which is then released by a local unfolding/refolding event known as 'cracking'. Recent evidence has also shown that in catalytic reactions involving conformational changes, part of the heat released results in a center-of-mass acceleration of the enzyme, raising the possibility that the heat released by the reaction itself could affect the enzyme's integrity. Thus, it has been suggested that this released heat could promote or be linked to the cracking seen in proteins such as adenylate kinase (AK). We propose that the energy released as a consequence of ligand binding/catalysis is associated with the local unfolding/refolding events (cracking), and that this energy is capable of driving the mechanical work.
Collapse
Affiliation(s)
- Zahra Alavi
- Department of Physics, Loyola Marymount University, Los Angeles, CA, USA
| | | | - Diego Quiroga-Roger
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
20
|
Que Y, Qiu Y, Ding Z, Zhang S, Wei R, Xia J, Lin Y. The role of molecular chaperone CCT/TRiC in translation elongation: A literature review. Heliyon 2024; 10:e29029. [PMID: 38596045 PMCID: PMC11002246 DOI: 10.1016/j.heliyon.2024.e29029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Protein synthesis from mRNA is an energy-intensive and strictly controlled biological process. Translation elongation is a well-coordinated and multifactorial step in translation that ensures the accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of messenger RNA (mRNA). Which undergoes dynamic regulation due to cellular state and environmental determinants. An expanding body of research points to translational elongation as a crucial process that controls the translation of an mRNA through multiple feedback mechanisms. Molecular chaperones are key players in protein homeostasis to keep the balance between protein synthesis, folding, assembly, and degradation. Chaperonin-containing tailless complex polypeptide 1 (CCT) or tailless complex polypeptide 1 ring complex (TRiC) is an essential eukaryotic molecular chaperone that plays an essential role in assisting cellular protein folding and suppressing protein aggregation. In this review, we give an overview of the factors that influence translation elongation, focusing on different functions of molecular chaperones in translation elongation, including how they affect translation rates and post-translational modifications. We also provide an understanding of the mechanisms by which the molecular chaperone CCT plays multiple roles in the elongation phase of eukaryotic protein synthesis.
Collapse
Affiliation(s)
- Yueyue Que
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yudan Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zheyu Ding
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shanshan Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Rong Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jianing Xia
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yingying Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
21
|
Gersteuer F, Morici M, Gabrielli S, Fujiwara K, Safdari HA, Paternoga H, Bock LV, Chiba S, Wilson DN. The SecM arrest peptide traps a pre-peptide bond formation state of the ribosome. Nat Commun 2024; 15:2431. [PMID: 38503753 PMCID: PMC10951299 DOI: 10.1038/s41467-024-46762-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Nascent polypeptide chains can induce translational stalling to regulate gene expression. This is exemplified by the E. coli secretion monitor (SecM) arrest peptide that induces translational stalling to regulate expression of the downstream encoded SecA, an ATPase that co-operates with the SecYEG translocon to facilitate insertion of proteins into or through the cytoplasmic membrane. Here we present the structure of a ribosome stalled during translation of the full-length E. coli SecM arrest peptide at 2.0 Å resolution. The structure reveals that SecM arrests translation by stabilizing the Pro-tRNA in the A-site, but in a manner that prevents peptide bond formation with the SecM-peptidyl-tRNA in the P-site. By employing molecular dynamic simulations, we also provide insight into how a pulling force on the SecM nascent chain can relieve the SecM-mediated translation arrest. Collectively, the mechanisms determined here for SecM arrest and relief are also likely to be applicable for a variety of other arrest peptides that regulate components of the protein localization machinery identified across a wide range of bacteria lineages.
Collapse
Affiliation(s)
- Felix Gersteuer
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Martino Morici
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Sara Gabrielli
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Keigo Fujiwara
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Haaris A Safdari
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Lars V Bock
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shinobu Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.
| |
Collapse
|
22
|
Shao Y, Yesseyeva G, Zhi Y, Zhou J, Zong J, Zhou X, Fan X, Li S, Huang L, Zhang S, Dong F, Yang X, Zheng M, Sun J, Ma J. Comprehensive multi-omics analysis and experimental verification reveal PFDN5 is a novel prognostic and therapeutic biomarker for gastric cancer. Genomics 2024; 116:110821. [PMID: 38447684 DOI: 10.1016/j.ygeno.2024.110821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Prefoldin Subunit 5 (PFDN5) plays a critical role as a member of the prefoldins (PFDNs) in maintaining a finely tuned equilibrium between protein production and degradation. However, there has been no comprehensive analysis specifically focused on PFDN5 thus far. Here, a comprehensive multi-omics (transcriptomics, genomics, and proteomics) analysis, systematic molecular biology experiments (in vitro and in vivo), transcriptome sequencing and PCR Array were performed for identifying the value of PFDN5 in pan-cancer, especially in Gastric Cancer (GC). We found PFDN5 had the potential to serve as a prognostic and therapeutic biomarker in GC. And PFDN5 could promote the proliferation of GC cells, primarily by affecting the cell cycle, cell death and immune process etc. These findings provide novel insights into the molecular mechanisms and precise treatments of in GC.
Collapse
Affiliation(s)
- Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Galiya Yesseyeva
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihao Zhi
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajie Zhou
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiasheng Zong
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueliang Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Fan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Dong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junjun Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Mora M, Tapia-Rojo R, Garcia-Manyes S. Unfolding and Refolding Proteins Using Single-Molecule AFM. Methods Mol Biol 2024; 2694:339-354. [PMID: 37824012 DOI: 10.1007/978-1-0716-3377-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Single-molecule atomic force microscopy (AFM) allows capturing the conformational dynamics of an individual molecule under force. In this chapter, we describe a protocol for conducting a protein nanomechanical experiment using AFM, covering both the force-extension and force-clamp modes. Combined, these experiments provide an integrated vista of the molecular mechanisms-and their associated kinetics-underpinning the mechanical unfolding and refolding of individual proteins when exposed to mechanical load.
Collapse
Affiliation(s)
- Marc Mora
- Department of Physics, Randall Centre for Cell and Molecular Biophysics and London Centre for Nanotechnology, King's College London, London, UK
| | - Rafael Tapia-Rojo
- Department of Physics, Randall Centre for Cell and Molecular Biophysics and London Centre for Nanotechnology, King's College London, London, UK
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics and London Centre for Nanotechnology, King's College London, London, UK.
| |
Collapse
|
24
|
Chen X, Kaiser CM. AP profiling resolves co-translational folding pathway and chaperone interactions in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555749. [PMID: 37693575 PMCID: PMC10491307 DOI: 10.1101/2023.09.01.555749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Natural proteins have evolved to fold robustly along specific pathways. Folding begins during synthesis, guided by interactions of the nascent protein with the ribosome and molecular chaperones. However, the timing and progression of co-translational folding remain largely elusive, in part because the process is difficult to measure in the natural environment of the cytosol. We developed a high-throughput method to quantify co-translational folding in live cells that we term Arrest Peptide profiling (AP profiling). We employed AP profiling to delineate co-translational folding for a set of GTPase domains with very similar structures, defining how topology shapes folding pathways. Genetic ablation of major nascent chain-binding chaperones resulted in localized folding changes that suggest how functional redundancies among chaperones are achieved by distinct interactions with the nascent protein. Collectively, our studies provide a window into cellular folding pathways of complex proteins and pave the way for systematic studies on nascent protein folding at unprecedented resolution and throughput.
Collapse
Affiliation(s)
- Xiuqi Chen
- CMDB Graduate Program, Johns Hopkins University, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Present address: Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Christian M. Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
25
|
Höpfler M, Hegde RS. Control of mRNA fate by its encoded nascent polypeptide. Mol Cell 2023; 83:2840-2855. [PMID: 37595554 PMCID: PMC10501990 DOI: 10.1016/j.molcel.2023.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/20/2023]
Abstract
Cells tightly regulate mRNA processing, localization, and stability to ensure accurate gene expression in diverse cellular states and conditions. Most of these regulatory steps have traditionally been thought to occur before translation by the action of RNA-binding proteins. Several recent discoveries highlight multiple co-translational mechanisms that modulate mRNA translation, localization, processing, and stability. These mechanisms operate by recognition of the nascent protein, which is necessarily coupled to its encoding mRNA during translation. Hence, the distinctive sequence or structure of a particular nascent chain can recruit recognition factors with privileged access to the corresponding mRNA in an otherwise crowded cellular environment. Here, we draw on both well-established and recent examples to provide a conceptual framework for how cells exploit nascent protein recognition to direct mRNA fate. These mechanisms allow cells to dynamically and specifically regulate their transcriptomes in response to changes in cellular states to maintain protein homeostasis.
Collapse
|
26
|
Tan R, Hoare M, Welle KA, Swovick K, Hryhorenko JR, Ghaemmaghami S. Folding stabilities of ribosome-bound nascent polypeptides probed by mass spectrometry. Proc Natl Acad Sci U S A 2023; 120:e2303167120. [PMID: 37552756 PMCID: PMC10438377 DOI: 10.1073/pnas.2303167120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023] Open
Abstract
The folding of most proteins occurs during the course of their translation while their tRNA-bound C termini are embedded in the ribosome. How the close proximity of nascent proteins to the ribosome influences their folding thermodynamics remains poorly understood. Here, we have developed a mass spectrometry-based approach for determining the stabilities of nascent polypeptide chains using methionine oxidation as a folding probe. This approach enables quantitative measurement subglobal folding stabilities of ribosome nascent chains within complex protein mixtures and extracts. To validate the methodology, we analyzed the folding thermodynamics of three model proteins (dihydrofolate reductase, chemotaxis protein Y, and DNA polymerase IV) in soluble and ribosome-bound states. The data indicate that the ribosome can significantly alter the stability of nascent polypeptides. Ribosome-induced stability modulations were highly variable among different folding domains and were dependent on localized charge distributions within nascent polypeptides. The results implicated electrostatic interactions between the ribosome surface and nascent polypeptides as the cause of ribosome-induced stability modulations. The study establishes a robust proteomic methodology for analyzing localized stabilities within ribosome-bound nascent polypeptides and sheds light on how the ribosome influences the thermodynamics of protein folding.
Collapse
Affiliation(s)
- Ruiyue Tan
- Department of Biology, University of Rochester, Rochester, NY14627
| | - Margaret Hoare
- Department of Biology, University of Rochester, Rochester, NY14627
| | - Kevin A. Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| | - Kyle Swovick
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| | - Jennifer R. Hryhorenko
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| | - Sina Ghaemmaghami
- Department of Biology, University of Rochester, Rochester, NY14627
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| |
Collapse
|
27
|
Vu Q, Nissley DA, Jiang Y, O’Brien EP, Li MS. Is Posttranslational Folding More Efficient Than Refolding from a Denatured State: A Computational Study. J Phys Chem B 2023; 127:4761-4774. [PMID: 37200608 PMCID: PMC10240488 DOI: 10.1021/acs.jpcb.3c01694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/04/2023] [Indexed: 05/20/2023]
Abstract
The folding of proteins into their native conformation is a complex process that has been extensively studied over the past half-century. The ribosome, the molecular machine responsible for protein synthesis, is known to interact with nascent proteins, adding further complexity to the protein folding landscape. Consequently, it is unclear whether the folding pathways of proteins are conserved on and off the ribosome. The main question remains: to what extent does the ribosome help proteins fold? To address this question, we used coarse-grained molecular dynamics simulations to compare the mechanisms by which the proteins dihydrofolate reductase, type III chloramphenicol acetyltransferase, and d-alanine-d-alanine ligase B fold during and after vectorial synthesis on the ribosome to folding from the full-length unfolded state in bulk solution. Our results reveal that the influence of the ribosome on protein folding mechanisms varies depending on the size and complexity of the protein. Specifically, for a small protein with a simple fold, the ribosome facilitates efficient folding by helping the nascent protein avoid misfolded conformations. However, for larger and more complex proteins, the ribosome does not promote folding and may contribute to the formation of intermediate misfolded states cotranslationally. These misfolded states persist posttranslationally and do not convert to the native state during the 6 μs runtime of our coarse-grain simulations. Overall, our study highlights the complex interplay between the ribosome and protein folding and provides insight into the mechanisms of protein folding on and off the ribosome.
Collapse
Affiliation(s)
- Quyen
V. Vu
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Daniel A. Nissley
- Department
of Statistics, University of Oxford, Oxford OX1 3LB, U.K.
| | - Yang Jiang
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Edward P. O’Brien
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Bioinformatics
and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Institute
for Computational and Data Sciences, Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Mai Suan Li
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Institute
for Computational Sciences and Technology, Quang Trung Software City, Tan
Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
28
|
Ojima-Kato T, Nishikawa Y, Furukawa Y, Kojima T, Nakano H. Nascent MSKIK Peptide Cancels Ribosomal Stalling by Arrest Peptides in Escherichia coli. J Biol Chem 2023; 299:104676. [PMID: 37028767 DOI: 10.1016/j.jbc.2023.104676] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
The insertion of the DNA sequence encoding SKIK peptide adjacent to the M start codon of a difficult-to-express protein enhances protein production in Escherichia coli. In this report, we reveal that the increased production of the SKIK-tagged protein is not due to codon usage of the SKIK sequence. Furthermore, we found that insertion of SKIK or MSKIK just before the SecM arrest peptide (FSTPVWISQAQGIRAGP), which causes ribosomal stalling on mRNA, greatly increased the production of the protein containing the SecM arrest peptide in the E. coli reconstituted cell-free protein synthesis system (PURE system). A similar translation enhancement phenomenon by MSKIK was observed for the CmlA leader peptide, a ribosome arrest peptide, whose arrest is induced by chloramphenicol. These results strongly suggest that the nascent MSKIK peptide prevents or releases ribosomal stalling immediately following its generation during the translation process, resulting in an increase of protein production.
Collapse
Affiliation(s)
- Teruyo Ojima-Kato
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Yuma Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yuki Furukawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takaaki Kojima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hideo Nakano
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
29
|
Bui PT, Hoang TX. The protein escape process at the ribosomal exit tunnel has conserved mechanisms across the domains of life. J Chem Phys 2023; 158:015102. [PMID: 36610950 DOI: 10.1063/5.0129532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The ribosomal exit tunnel is the primary structure affecting the release of nascent proteins at the ribosome. The ribosomal exit tunnels from different species have elements of conservation and differentiation in structural and physico-chemical properties. In this study, by simulating the elongation and escape processes of nascent proteins at the ribosomal exit tunnels of four different organisms, we show that the escape process has conserved mechanisms across the domains of life. Specifically, it is found that the escape process of proteins follows the diffusion mechanism given by a simple diffusion model, and the median escape time positively correlates with the number of hydrophobic residues and the net charge of a protein for all the exit tunnels considered. These properties hold for 12 distinct proteins considered in two slightly different and improved Gō-like models. It is also found that the differences in physico-chemical properties of the tunnels lead to quantitative differences in the protein escape times. In particular, the relatively strong hydrophobicity of E. coli's tunnel and the unusually high number of negatively charged amino acids on the tunnel's surface of H. marismortui lead to substantially slower escapes of proteins at these tunnels than at those of S. cerevisiae and H. sapiens.
Collapse
Affiliation(s)
- Phuong Thuy Bui
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| | - Trinh Xuan Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| |
Collapse
|
30
|
Yu S, Srebnik S, Dao Duc K. Geometric differences in the ribosome exit tunnel impact the escape of small nascent proteins. Biophys J 2023; 122:20-29. [PMID: 36463403 PMCID: PMC9822834 DOI: 10.1016/j.bpj.2022.11.2945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
The exit tunnel is the subcompartment of the ribosome that contains the nascent polypeptide chain and, as such, is involved in various vital functions, including regulation of translation and protein folding. As the geometry of the tunnel shows important differences across species, we focus on key geometrical features of eukaryote and prokaryote tunnels. We used a simple coarse-grained molecular dynamics model to study the role of the tunnel geometry in the post-translational escape of short proteins (short open reading frames [sORFs]) with lengths ranging from 6 to 56 amino acids. We found that the probability of escape for prokaryotes is one for all but the 12-mer chains. Moreover, proteins of this length have an extremely low escape probability in eukaryotes. A detailed examination of the associated single trajectories and energy profiles showed that these variations can be explained by the interplay between the protein configurational space and the confinement effects introduced by the constriction sites of the ribosome exit tunnel. For certain lengths, either one or both of the constriction sites can lead to the trapping of the protein in the "pocket" regions preceding these sites. As the distribution of existing sORFs indicates some bias in length that is consistent with our findings, we finally suggest that the constraints imposed by the tunnel geometry have impacted the evolution of sORFs.
Collapse
Affiliation(s)
- Shiqi Yu
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Simcha Srebnik
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Khanh Dao Duc
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
31
|
Beedle AEM, Garcia-Manyes S. The role of single protein elasticity in mechanobiology. NATURE REVIEWS. MATERIALS 2023; 8:10-24. [PMID: 37469679 PMCID: PMC7614781 DOI: 10.1038/s41578-022-00488-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 07/21/2023]
Abstract
In addition to biochemical signals and genetic considerations, mechanical forces are rapidly emerging as a master regulator of human physiology. Yet the molecular mechanisms that regulate force-induced functionalities across a wide range of scales, encompassing the cell, tissue or organ levels, are comparatively not so well understood. With the advent, development and refining of single molecule nanomechanical techniques, enabling to exquisitely probe the conformational dynamics of individual proteins under the effect of a calibrated force, we have begun to acquire a comprehensive knowledge on the rich plethora of physicochemical principles that regulate the elasticity of single proteins. Here we review the major advances underpinning our current understanding of how the elasticity of single proteins regulates mechanosensing and mechanotransduction. We discuss the present limitations and future challenges of such a prolific and burgeoning field.
Collapse
Affiliation(s)
- Amy EM Beedle
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, London, UK
| |
Collapse
|
32
|
Halma MTJ, Tuszynski JA, Wuite GJL. Optical tweezers for drug discovery. Drug Discov Today 2023; 28:103443. [PMID: 36396117 DOI: 10.1016/j.drudis.2022.103443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
The time taken and the cost of producing novel therapeutic drugs presents a significant burden - a typical target-based drug discovery process involves computational screening of drug libraries, compound assays and expensive clinical trials. This review summarises the value of dynamic conformational information obtained by optical tweezers and how this information can target 'undruggable' proteins. Optical tweezers provide insights into the link between biological mechanisms and structural conformations, which can be used in drug discovery. Developing workflows including software and sample preparation will improve throughput, enabling adoption of optical tweezers in biopharma. As a complementary tool, optical tweezers increase the number of drug candidates, improve the understanding of a target's complex structural dynamics and elucidate interactions between compounds and their targets.
Collapse
Affiliation(s)
- Matthew T J Halma
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands; LUMICKS B.V, Paalbergweg 3, 1105 AG Amsterdam, The Netherlands
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, 116 St 85 Ave, Edmonton, Alberta T6G 2R3, Canada
| | - Gijs J L Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Mermans D, Nicolaus F, Baygin A, von Heijne G. Cotranslational folding of human growth hormone in vitro and in Escherichia coli. FEBS Lett 2022; 597:1355-1362. [PMID: 36520514 DOI: 10.1002/1873-3468.14562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Human growth hormone (hGH) is a four-helix bundle protein of considerable pharmacological interest. Recombinant hGH is produced in bacteria, yet little is known about its folding during expression in Escherichia coli. We have studied the cotranslational folding of hGH using force profile analysis (FPA), both during in vitro translation in the absence and presence of the chaperone trigger factor (TF), and when expressed in E. coli. We find that the main folding transition starts before hGH is completely released from the ribosome, and that it can interact with TF and possibly other chaperones.
Collapse
Affiliation(s)
- Daphne Mermans
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Felix Nicolaus
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Aysel Baygin
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Sweden.,Science for Life Laboratory Stockholm University, Solna, Sweden
| |
Collapse
|
34
|
McGrath H, Černeková M, Kolář MH. Binding of the peptide deformylase on the ribosome surface modulates the exit tunnel interior. Biophys J 2022; 121:4443-4451. [PMID: 36335428 PMCID: PMC9748369 DOI: 10.1016/j.bpj.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Proteosynthesis on ribosomes is regulated at many levels. Conformational changes of the ribosome, possibly induced by external factors, may transfer over large distances and contribute to the regulation. The molecular principles of this long-distance allostery within the ribosome remain poorly understood. Here, we use structural analysis and atomistic molecular dynamics simulations to investigate peptide deformylase (PDF), an enzyme that binds to the ribosome surface near the ribosomal protein uL22 during translation and chemically modifies the emerging nascent peptide. Our simulations of the entire ribosome-PDF complex reveal that the PDF undergoes a swaying motion on the ribosome surface at the submicrosecond timescale. We show that the PDF affects the conformational dynamics of parts of the ribosome over distances of more than 5 nm. Using a supervised-learning algorithm, we demonstrate that the exit tunnel is influenced by the presence or absence of PDF. Our findings suggest a possible effect of the PDF on the nascent peptide translocation through the ribosome exit tunnel.
Collapse
Affiliation(s)
- Hugo McGrath
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Michaela Černeková
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Michal H Kolář
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic.
| |
Collapse
|
35
|
Hilton MA, Manning HW, Górniak I, Brady SK, Johnson MM, Zimmer J, Lang MJ. Single-molecule investigations of single-chain cellulose biosynthesis. Proc Natl Acad Sci U S A 2022; 119:e2122770119. [PMID: 36161928 PMCID: PMC9546554 DOI: 10.1073/pnas.2122770119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Cellulose biosynthesis in sessile bacterial colonies originates in the membrane-integrated bacterial cellulose synthase (Bcs) AB complex. We utilize optical tweezers to measure single-strand cellulose biosynthesis by BcsAB from Rhodobacter sphaeroides. Synthesis depends on uridine diphosphate glucose, Mg2+, and cyclic diguanosine monophosphate, with the last displaying a retention time of ∼80 min. Below a stall force of 12.7 pN, biosynthesis is relatively insensitive to force and proceeds at a rate of one glucose addition every 2.5 s at room temperature, increasing to two additions per second at 37°. At low forces, conformational hopping is observed. Single-strand cellulose stretching unveiled a persistence length of 6.2 nm, an axial stiffness of 40.7 pN, and an ability for complexes to maintain a tight grip, with forces nearing 100 pN. Stretching experiments exhibited hysteresis, suggesting that cellulose microstructure underpinning robust biofilms begins to form during synthesis. Cellohexaose spontaneously binds to nascent single cellulose strands, impacting polymer mechanical properties and increasing BcsAB activity.
Collapse
Affiliation(s)
- Mark A. Hilton
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Harris W. Manning
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Ireneusz Górniak
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908
| | - Sonia K. Brady
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Madeline M. Johnson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908
- HHMI, Chevy Chase, MD 20815
| | - Matthew J. Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37235
| |
Collapse
|
36
|
Hassell D, Denney A, Singer E, Benson A, Roth A, Ceglowski J, Steingesser M, McMurray M. Chaperone requirements for de novo folding of Saccharomyces cerevisiae septins. Mol Biol Cell 2022; 33:ar111. [PMID: 35947497 PMCID: PMC9635297 DOI: 10.1091/mbc.e22-07-0262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022] Open
Abstract
Polymers of septin protein complexes play cytoskeletal roles in eukaryotic cells. The specific subunit composition within complexes controls functions and higher-order structural properties. All septins have globular GTPase domains. The other eukaryotic cytoskeletal NTPases strictly require assistance from molecular chaperones of the cytosol, particularly the cage-like chaperonins, to fold into oligomerization-competent conformations. We previously identified cytosolic chaperones that bind septins and influence the oligomerization ability of septins carrying mutations linked to human disease, but it was unknown to what extent wild-type septins require chaperone assistance for their native folding. Here we use a combination of in vivo and in vitro approaches to demonstrate chaperone requirements for de novo folding and complex assembly by budding yeast septins. Individually purified septins adopted nonnative conformations and formed nonnative homodimers. In chaperonin- or Hsp70-deficient cells, septins folded slower and were unable to assemble posttranslationally into native complexes. One septin, Cdc12, was so dependent on cotranslational chaperonin assistance that translation failed without it. Our findings point to distinct translation elongation rates for different septins as a possible mechanism to direct a stepwise, cotranslational assembly pathway in which general cytosolic chaperones act as key intermediaries.
Collapse
Affiliation(s)
- Daniel Hassell
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ashley Denney
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Emily Singer
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Aleyna Benson
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew Roth
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Julia Ceglowski
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Marc Steingesser
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael McMurray
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
37
|
Zhou LM, Shi Y, Zhu X, Hu G, Cao G, Hu J, Qiu CW. Recent Progress on Optical Micro/Nanomanipulations: Structured Forces, Structured Particles, and Synergetic Applications. ACS NANO 2022; 16:13264-13278. [PMID: 36053722 DOI: 10.1021/acsnano.2c05634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optical manipulation has achieved great success in the fields of biology, micro/nano robotics and physical sciences in the past few decades. To date, the optical manipulation is still witnessing substantial progress powered by the growing accessibility of the complex light field, advanced nanofabrication and developed understandings of light-matter interactions. In this perspective, we highlight recent advancements of optical micro/nanomanipulations in cutting-edge applications, which can be fostered by structured optical forces enabled with diverse auxiliary multiphysical field/forces and structured particles. We conclude with our vision of ongoing and futuristic directions, including heat-avoided and heat-utilized manipulation, nonlinearity-mediated trapping and manipulation, metasurface/two-dimensional material based optical manipulation, as well as interface-based optical manipulation.
Collapse
Affiliation(s)
- Lei-Ming Zhou
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
| | - Xiaoyu Zhu
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Guangtao Cao
- School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410004, China
| | - Jigang Hu
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
38
|
Cotranslational folding and assembly of the dimeric Escherichia coli inner membrane protein EmrE. Proc Natl Acad Sci U S A 2022; 119:e2205810119. [PMID: 35994672 PMCID: PMC9436324 DOI: 10.1073/pnas.2205810119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In recent years, it has become clear that many homo- and heterodimeric cytoplasmic proteins in both prokaryotic and eukaryotic cells start to dimerize cotranslationally (i.e., while at least one of the two chains is still attached to the ribosome). Whether this is also possible for integral membrane proteins is, however, unknown. Here, we apply force profile analysis (FPA)-a method where a translational arrest peptide (AP) engineered into the polypeptide chain is used to detect force generated on the nascent chain during membrane insertion-to demonstrate cotranslational interactions between a fully membrane-inserted monomer and a nascent, ribosome-tethered monomer of the Escherichia coli inner membrane protein EmrE. Similar cotranslational interactions are also seen when the two monomers are fused into a single polypeptide. Further, we uncover an apparent intrachain interaction between E14 in transmembrane helix 1 (TMH1) and S64 in TMH3 that forms at a precise nascent chain length during cotranslational membrane insertion of an EmrE monomer. Like soluble proteins, inner membrane proteins thus appear to be able to both start to fold and start to dimerize during the cotranslational membrane insertion process.
Collapse
|
39
|
Chaudhuri D, Banerjee S, Chakraborty S, Chowdhury D, Haldar S. Direct Observation of the Mechanical Role of Bacterial Chaperones in Protein Folding. Biomacromolecules 2022; 23:2951-2967. [PMID: 35678300 DOI: 10.1021/acs.biomac.2c00451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein folding under force is an integral source of generating mechanical energy in various cellular processes, ranging from protein translation to degradation. Although chaperones are well known to interact with proteins under mechanical force, how they respond to force and control cellular energetics remains unknown. To address this question, we introduce a real-time magnetic tweezer technology herein to mimic the physiological force environment on client proteins, keeping the chaperones unperturbed. We studied two structurally distinct client proteins--protein L and talin with seven different chaperones─independently and in combination and proposed a novel mechanical activity of chaperones. We found that chaperones behave differently, while these client proteins are under force, than their previously known functions. For instance, tunnel-associated chaperones (DsbA and trigger factor), otherwise working as holdase without force, assist folding under force. This process generates an additional mechanical energy up to ∼147 zJ to facilitate translation or translocation. However, well-known cytoplasmic foldase chaperones (PDI, thioredoxin, or DnaKJE) do not possess the mechanical folding ability under force. Notably, the transferring chaperones (DnaK, DnaJ, and SecB) act as holdase and slow down the folding process, both in the presence and absence of force, to prevent misfolding of the client proteins. This provides an emerging insight of mechanical roles of chaperones: they can generate or consume energy by shifting the energy landscape of the client proteins toward a folded or an unfolded state, suggesting an evolutionary mechanism to minimize energy consumption in various biological processes.
Collapse
Affiliation(s)
- Deep Chaudhuri
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Souradeep Banerjee
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Debojyoti Chowdhury
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| |
Collapse
|
40
|
León-González JA, Flatet P, Juárez-Ramírez MS, Farías-Rico JA. Folding and Evolution of a Repeat Protein on the Ribosome. Front Mol Biosci 2022; 9:851038. [PMID: 35707224 PMCID: PMC9189291 DOI: 10.3389/fmolb.2022.851038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Life on earth is the result of the work of proteins, the cellular nanomachines that fold into elaborated 3D structures to perform their functions. The ribosome synthesizes all the proteins of the biosphere, and many of them begin to fold during translation in a process known as cotranslational folding. In this work we discuss current advances of this field and provide computational and experimental data that highlight the role of ribosome in the evolution of protein structures. First, we used the sequence of the Ankyrin domain from the Drosophila Notch receptor to launch a deep sequence-based search. With this strategy, we found a conserved 33-residue motif shared by different protein folds. Then, to see how the vectorial addition of the motif would generate a full structure we measured the folding on the ribosome of the Ankyrin repeat protein. Not only the on-ribosome folding data is in full agreement with classical in vitro biophysical measurements but also it provides experimental evidence on how folded proteins could have evolved by duplication and fusion of smaller fragments in the RNA world. Overall, we discuss how the ribosomal exit tunnel could be conceptualized as an active site that is under evolutionary pressure to influence protein folding.
Collapse
Affiliation(s)
- José Alberto León-González
- Synthetic Biology Program, Center for Genome Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - Perline Flatet
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - María Soledad Juárez-Ramírez
- Synthetic Biology Program, Center for Genome Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - José Arcadio Farías-Rico
- Synthetic Biology Program, Center for Genome Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
- *Correspondence: José Arcadio Farías-Rico,
| |
Collapse
|
41
|
Fedorov AN. Biosynthetic Protein Folding and Molecular Chaperons. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S128-S19. [PMID: 35501992 DOI: 10.1134/s0006297922140115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The problem of linear polypeptide chain folding into a unique tertiary structure is one of the fundamental scientific challenges. The process of folding cannot be fully understood without its biological context, especially for big multidomain and multisubunit proteins. The principal features of biosynthetic folding are co-translational folding of growing nascent polypeptide chains and involvement of molecular chaperones in the process. The review summarizes available data on the early events of nascent chain folding, as well as on later advanced steps, including formation of elements of native structure. The relationship between the non-uniformity of translation rate and folding of the growing polypeptide is discussed. The results of studies on the effect of biosynthetic folding features on the parameters of folding as a physical process, its kinetics and mechanisms, are presented. Current understanding and hypotheses on the relationship of biosynthetic folding with the fundamental physical parameters and current views on polypeptide folding in the context of energy landscapes are discussed.
Collapse
Affiliation(s)
- Alexey N Fedorov
- Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
42
|
Rajasekaran N, Kaiser CM. Co-Translational Folding of Multi-Domain Proteins. Front Mol Biosci 2022; 9:869027. [PMID: 35517860 PMCID: PMC9065291 DOI: 10.3389/fmolb.2022.869027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
The majority of proteins in nature are composed of multiple domains connected in a single polypeptide. How these long sequences fold into functional structures without forming toxic misfolds or aggregates is poorly understood. Their folding is inextricably linked to protein synthesis and interactions with cellular machinery, making mechanistic studies challenging. Recent progress has revealed critical features of multi-domain protein folding in isolation and in the context of translation by the ribosome. In this review, we discuss challenges and progress in understanding multi-domain protein folding, and highlight how molecular interactions shape folding and misfolding pathways. With the development of new approaches and model systems, the stage is now set for mechanistically exploring the folding of large multi-domain proteins.
Collapse
Affiliation(s)
| | - Christian M. Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States,Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States,*Correspondence: Christian M. Kaiser,
| |
Collapse
|
43
|
Thermodynamics of co-translational folding and ribosome-nascent chain interactions. Curr Opin Struct Biol 2022; 74:102357. [PMID: 35390638 DOI: 10.1016/j.sbi.2022.102357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
Proteins can begin the conformational search for their native structure in parallel with biosynthesis on the ribosome, in a process termed co-translational folding. In contrast to the reversible folding of isolated domains, as a nascent chain emerges from the ribosome exit tunnel during translation the free energy landscape it explores also evolves as a function of chain length. While this presents a substantially more complex measurement problem, this review will outline the progress that has been made recently in understanding, quantitatively, the process by which a nascent chain attains its full native stability, as well as the mechanisms through which interactions with the nearby ribosome surface can perturb or modulate this process.
Collapse
|
44
|
Banerjee S, Nara R, Chakraborty S, Chowdhury D, Haldar S. Integrin Regulated Autoimmune Disorders: Understanding the Role of Mechanical Force in Autoimmunity. Front Cell Dev Biol 2022; 10:852878. [PMID: 35372360 PMCID: PMC8971850 DOI: 10.3389/fcell.2022.852878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
The pathophysiology of autoimmune disorders is multifactorial, where immune cell migration, adhesion, and lymphocyte activation play crucial roles in its progression. These immune processes are majorly regulated by adhesion molecules at cell–extracellular matrix (ECM) and cell–cell junctions. Integrin, a transmembrane focal adhesion protein, plays an indispensable role in these immune cell mechanisms. Notably, integrin is regulated by mechanical force and exhibit bidirectional force transmission from both the ECM and cytosol, regulating the immune processes. Recently, integrin mechanosensitivity has been reported in different immune cell processes; however, the underlying mechanics of these integrin-mediated mechanical processes in autoimmunity still remains elusive. In this review, we have discussed how integrin-mediated mechanotransduction could be a linchpin factor in the causation and progression of autoimmune disorders. We have provided an insight into how tissue stiffness exhibits a positive correlation with the autoimmune diseases’ prevalence. This provides a plausible connection between mechanical load and autoimmunity. Overall, gaining insight into the role of mechanical force in diverse immune cell processes and their dysregulation during autoimmune disorders will open a new horizon to understand this physiological anomaly.
Collapse
|
45
|
Kaldmäe M, Vosselman T, Zhong X, Lama D, Chen G, Saluri M, Kronqvist N, Siau JW, Ng AS, Ghadessy FJ, Sabatier P, Vojtesek B, Sarr M, Sahin C, Österlund N, Ilag LL, Väänänen VA, Sedimbi S, Arsenian-Henriksson M, Zubarev RA, Nilsson L, Koeck PJ, Rising A, Abelein A, Fritz N, Johansson J, Lane DP, Landreh M. A “spindle and thread” mechanism unblocks p53 translation by modulating N-terminal disorder. Structure 2022; 30:733-742.e7. [DOI: 10.1016/j.str.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 01/08/2023]
|
46
|
The folding and misfolding mechanisms of multidomain proteins. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Tahmaz I, Shahmoradi Ghahe S, Topf U. Prefoldin Function in Cellular Protein Homeostasis and Human Diseases. Front Cell Dev Biol 2022; 9:816214. [PMID: 35111762 PMCID: PMC8801880 DOI: 10.3389/fcell.2021.816214] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/29/2021] [Indexed: 01/05/2023] Open
Abstract
Cellular functions are largely performed by proteins. Defects in the production, folding, or removal of proteins from the cell lead to perturbations in cellular functions that can result in pathological conditions for the organism. In cells, molecular chaperones are part of a network of surveillance mechanisms that maintains a functional proteome. Chaperones are involved in the folding of newly synthesized polypeptides and assist in refolding misfolded proteins and guiding proteins for degradation. The present review focuses on the molecular co-chaperone prefoldin. Its canonical function in eukaryotes involves the transfer of newly synthesized polypeptides of cytoskeletal proteins to the tailless complex polypeptide 1 ring complex (TRiC/CCT) chaperonin which assists folding of the polypeptide chain in an energy-dependent manner. The canonical function of prefoldin is well established, but recent research suggests its broader function in the maintenance of protein homeostasis under physiological and pathological conditions. Interestingly, non-canonical functions were identified for the prefoldin complex and also for its individual subunits. We discuss the latest findings on the prefoldin complex and its subunits in the regulation of transcription and proteasome-dependent protein degradation and its role in neurological diseases, cancer, viral infections and rare anomalies.
Collapse
Affiliation(s)
- Ismail Tahmaz
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Somayeh Shahmoradi Ghahe
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ulrike Topf
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
48
|
Rico-Pasto M, Alemany A, Ritort F. Force-Dependent Folding Kinetics of Single Molecules with Multiple Intermediates and Pathways. J Phys Chem Lett 2022; 13:1025-1032. [PMID: 35072478 PMCID: PMC9882750 DOI: 10.1021/acs.jpclett.1c03521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Most single-molecule studies derive the kinetic rates of native, intermediate, and unfolded states from equilibrium hopping experiments. Here, we apply the Kramers kinetic diffusive model to derive the force-dependent kinetic rates of intermediate states from nonequilibrium pulling experiments. From the kinetic rates, we also extract the force-dependent kinetic barriers and the equilibrium folding energies. We apply our method to DNA hairpins with multiple folding pathways and intermediates. The experimental results agree with theoretical predictions. Furthermore, the proposed nonequilibrium single-molecule approach permits us to characterize kinetic and thermodynamic properties of native, unfolded, and intermediate states that cannot be derived from equilibrium hopping experiments.
Collapse
Affiliation(s)
- Marc Rico-Pasto
- Small
Biosystems Lab, Condensed Matter Physics Department, University of Barcelona, C/Martí i Franqués 1, Barcelona, 08028, Spain
| | - Anna Alemany
- Department
of Anatomy and Embryology, Leiden University
Medical Center, Leiden, 2333ZC, The Netherlands
| | - Felix Ritort
- Small
Biosystems Lab, Condensed Matter Physics Department, University of Barcelona, C/Martí i Franqués 1, Barcelona, 08028, Spain
| |
Collapse
|
49
|
Nicolaus F, Ibrahimi F, den Besten A, von Heijne G. Upstream charged and hydrophobic residues impact the timing of membrane insertion of transmembrane helices. FEBS Lett 2022; 596:1004-1012. [PMID: 35038773 DOI: 10.1002/1873-3468.14286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/10/2022]
Abstract
During SecYEG-mediated cotranslational insertion of membrane proteins, transmembrane helices (TMHs) first make contact with the membrane when their N-terminal end is ~45 residues away from the peptidyl transferase center. However, we recently uncovered instances where the first contact is delayed by up to ~10 residues. Here, we recapitulate these effects using a model TMH fused to two short segments from the Escherichia coli inner membrane protein BtuC: a positively charged loop and a re-entrant loop. We show that the critical residues are two Arg residues in the positively charged loop and four hydrophobic residues in the re-entrant loop. Thus, both electrostatic and hydrophobic interactions involving sequence elements that are not part of a TMH can impact the way the latter behaves during membrane insertion.
Collapse
Affiliation(s)
- Felix Nicolaus
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Fatima Ibrahimi
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Anne den Besten
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Box 1031, SE-171 21, Solna, Sweden
| |
Collapse
|
50
|
Agirrezabala X, Samatova E, Macher M, Liutkute M, Maiti M, Gil-Carton D, Novacek J, Valle M, Rodnina MV. A switch from α-helical to β-strand conformation during co-translational protein folding. EMBO J 2022; 41:e109175. [PMID: 34994471 PMCID: PMC8844987 DOI: 10.15252/embj.2021109175] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/09/2022] Open
Abstract
Cellular proteins begin to fold as they emerge from the ribosome. The folding landscape of nascent chains is not only shaped by their amino acid sequence but also by the interactions with the ribosome. Here, we combine biophysical methods with cryo‐EM structure determination to show that folding of a β‐barrel protein begins with formation of a dynamic α‐helix inside the ribosome. As the growing peptide reaches the end of the tunnel, the N‐terminal part of the nascent chain refolds to a β‐hairpin structure that remains dynamic until its release from the ribosome. Contacts with the ribosome and structure of the peptidyl transferase center depend on nascent chain conformation. These results indicate that proteins may start out as α‐helices inside the tunnel and switch into their native folds only as they emerge from the ribosome. Moreover, the correlation of nascent chain conformations with reorientation of key residues of the ribosomal peptidyl‐transferase center suggest that protein folding could modulate ribosome activity.
Collapse
Affiliation(s)
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - Meline Macher
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - Marija Liutkute
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - Manisankar Maiti
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - David Gil-Carton
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jiri Novacek
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Mikel Valle
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| |
Collapse
|