1
|
Floris M, Moschella A, Alcalay M, Montella A, Tirelli M, Fontana L, Idda ML, Guarnieri P, Capasso M, Mammì C, Nicoletti P, Miozzo M. Pharmacogenetics in Italy: current landscape and future prospects. Hum Genomics 2024; 18:78. [PMID: 38987819 PMCID: PMC11234611 DOI: 10.1186/s40246-024-00612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/30/2024] [Indexed: 07/12/2024] Open
Abstract
Pharmacogenetics investigates sequence of genes that affect drug response, enabling personalized medication. This approach reduces drug-induced adverse reactions and improves clinical effectiveness, making it a crucial consideration for personalized medical care. Numerous guidelines, drawn by global consortia and scientific organizations, codify genotype-driven administration for over 120 active substances. As the scientific community acknowledges the benefits of genotype-tailored therapy over traditionally agnostic drug administration, the push for its implementation into Italian healthcare system is gaining momentum. This evolution is influenced by several factors, including the improved access to patient genotypes, the sequencing costs decrease, the growing of large-scale genetic studies, the rising popularity of direct-to-consumer pharmacogenetic tests, and the continuous improvement of pharmacogenetic guidelines. Since EMA (European Medicines Agency) and AIFA (Italian Medicines Agency) provide genotype information on drug leaflet without clear and explicit clinical indications for gene testing, the regulation of pharmacogenetic testing is a pressing matter in Italy. In this manuscript, we have reviewed how to overcome the obstacles in implementing pharmacogenetic testing in the clinical practice of the Italian healthcare system. Our particular emphasis has been on germline testing, given the absence of well-defined national directives in contrast to somatic pharmacogenetics.
Collapse
Affiliation(s)
- Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| | - Antonino Moschella
- Unit of Medical Genetics, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Myriam Alcalay
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milano, Italy
| | - Annalaura Montella
- CEINGE Biotecnologie Avanzate, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Matilde Tirelli
- CEINGE Biotecnologie Avanzate, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Laura Fontana
- Medical Genetics Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Maria Laura Idda
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Mario Capasso
- CEINGE Biotecnologie Avanzate, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Corrado Mammì
- Unit of Medical Genetics, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Paola Nicoletti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Monica Miozzo
- Medical Genetics Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
2
|
van der Wouden CH, Guchelaar HJ, Swen JJ. Precision Medicine Using Pharmacogenomic Panel-Testing: Current Status and Future Perspectives. Clin Lab Med 2022; 42:587-602. [PMID: 36368784 DOI: 10.1016/j.cll.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cathelijne H van der Wouden
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands; Leiden Network for Personalised Therapeutics, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands; Leiden Network for Personalised Therapeutics, Leiden, The Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands; Leiden Network for Personalised Therapeutics, Leiden, The Netherlands.
| |
Collapse
|
3
|
Nobakht E, Jagadeesan M, Paul R, Bromberg J, Dadgar S. Precision Medicine in Kidney Transplantation: Just Hype or a Realistic Hope? Transplant Direct 2021; 7:e650. [PMID: 33437865 PMCID: PMC7793397 DOI: 10.1097/txd.0000000000001102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Desirable outcomes including rejection- and infection-free kidney transplantation are not guaranteed despite current strategies for immunosuppression and using prophylactic antimicrobial medications. Graft survival depends on factors beyond human leukocyte antigen matching such as the level of immunosuppression, infections, and management of other comorbidities. Risk stratification of transplant patients based on predisposing genetic modifiers and applying precision pharmacotherapy may help improving the transplant outcomes. Unlike certain fields such as oncology in which consistent attempts are being carried out to move away from the "error and trial approach," transplant medicine is lagging behind in implementing personalized immunosuppressive therapy. The need for maintaining a precarious balance between underimmunosuppression and overimmunosuppression coupled with adverse effects of medications calls for a gene-based guidance for precision pharmacotherapy in transplantation. Technologic advances in molecular genetics have led to increased accessibility of genetic tests at a reduced cost and have set the stage for widespread use of gene-based therapies in clinical care. Evidence-based guidelines available for precision pharmacotherapy have been proposed, including guidelines from Clinical Pharmacogenetics Implementation Consortium, the Pharmacogenomics Knowledge Base National Institute of General Medical Sciences of the National Institutes of Health, and the US Food and Drug Administration. In this review, we discuss the implications of pharmacogenetics and potential role for genetic variants-based risk stratification in kidney transplantation. A single score that provides overall genetic risk, a polygenic risk score, can be achieved by combining of allograft rejection/loss-associated variants carried by an individual and integrated into practice after clinical validation.
Collapse
Affiliation(s)
- Ehsan Nobakht
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
| | - Muralidharan Jagadeesan
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
| | - Rohan Paul
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
| | - Jonathan Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Sherry Dadgar
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
- Personalized Medicine Care Diagnostics Laboratory (PMCDx), Inc., Germantown, MD
| |
Collapse
|
4
|
Özdemir V, Arga KY, Aziz RK, Bayram M, Conley SN, Dandara C, Endrenyi L, Fisher E, Garvey CK, Hekim N, Kunej T, Şardaş S, Von Schomberg R, Yassin AS, Yılmaz G, Wang W. Digging Deeper into Precision/Personalized Medicine: Cracking the Sugar Code, the Third Alphabet of Life, and Sociomateriality of the Cell. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:62-80. [PMID: 32027574 DOI: 10.1089/omi.2019.0220] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Precision/personalized medicine is a hot topic in health care. Often presented with the motto "the right drug, for the right patient, at the right dose, and the right time," precision medicine is a theory for rational therapeutics as well as practice to individualize health interventions (e.g., drugs, food, vaccines, medical devices, and exercise programs) using biomarkers. Yet, an alien visitor to planet Earth reading the contemporary textbooks on diagnostics might think precision medicine requires only two biomolecules omnipresent in the literature: nucleic acids (e.g., DNA) and proteins, known as the first and second alphabet of biology, respectively. However, the precision/personalized medicine community has tended to underappreciate the third alphabet of life, the "sugar code" (i.e., the information stored in glycans, glycoproteins, and glycolipids). This article brings together experts in precision/personalized medicine science, pharmacoglycomics, emerging technology governance, cultural studies, contemporary art, and responsible innovation to critically comment on the sociomateriality of the three alphabets of life together. First, the current transformation of targeted therapies with personalized glycomedicine and glycan biomarkers is examined. Next, we discuss the reasons as to why unraveling of the sugar code might have lagged behind the DNA and protein codes. While social scientists have historically noted the importance of constructivism (e.g., how people interpret technology and build their values, hopes, and expectations into emerging technologies), life scientists relied on the material properties of technologies in explaining why some innovations emerge rapidly and are more popular than others. The concept of sociomateriality integrates these two explanations by highlighting the inherent entanglement of the social and the material contributions to knowledge and what is presented to us as reality from everyday laboratory life. Hence, we present a hypothesis based on a sociomaterial conceptual lens: because materiality and synthesis of glycans are not directly driven by a template, and thus more complex and open ended than sequencing of a finite length genome, social construction of expectations from unraveling of the sugar code versus the DNA code might have evolved differently, as being future-uncertain versus future-proof, respectively, thus potentially explaining the "sugar lag" in precision/personalized medicine diagnostics over the past decades. We conclude by introducing systems scientists, physicians, and biotechnology industry to the concept, practice, and value of responsible innovation, while glycomedicine and other emerging biomarker technologies (e.g., metagenomics and pharmacomicrobiomics) transition to applications in health care, ecology, pharmaceutical/diagnostic industries, agriculture, food, and bioengineering, among others.
Collapse
Affiliation(s)
- Vural Özdemir
- OMICS: A Journal of Integrative Biology, New Rochelle, New York.,Senior Advisor and Writer, Emerging Technology Governance and Responsible Innovation, Toronto, Ontario, Canada
| | - K Yalçın Arga
- Health Institutes of Turkey, Istanbul, Turkey.,Department of Bioengineering, Faculty of Engineering, Marmara University, İstanbul, Turkey
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| | - Mustafa Bayram
- Department of Food Engineering, Faculty of Engineering, Gaziantep University, Gaziantep, Turkey
| | - Shannon N Conley
- STS Futures Lab, School of Integrated Sciences, James Madison University, Harrisonburg, Virginia
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Laszlo Endrenyi
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Erik Fisher
- School for the Future of Innovation in Society and the Consortium for Science, Policy and Outcomes, Arizona State University, Tempe, Arizona
| | - Colin K Garvey
- Stanford Institute for Human-Centered Artificial Intelligence, Stanford University, Palo Alto, California
| | - Nezih Hekim
- Department of Biochemistry, Faculty of Medicine, İstanbul Medipol University, İstanbul, Turkey
| | - Tanja Kunej
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Domzale, Slovenia
| | - Semra Şardaş
- Faculty of Pharmacy, İstinye University, İstanbul, Turkey
| | - Rene Von Schomberg
- Directorate General for Research and Innovation, European Commission, Brussel, Belgium.,Technical University Darmstadt, Darmstadt, Germany
| | - Aymen S Yassin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| | - Gürçim Yılmaz
- Writer and Editor, Cultural Studies, and Curator of Contemporary Arts, İstanbul, Turkey
| | - Wei Wang
- Key Municipal Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
5
|
Banerjee BD, Kumar R, Thamineni KL, Shah H, Thakur GK, Sharma T. Effect of Environmental Exposure and Pharmacogenomics on Drug Metabolism. Curr Drug Metab 2020; 20:1103-1113. [PMID: 31933442 DOI: 10.2174/1389200221666200110153304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/02/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Pesticides are major xenobiotic compounds and environmental pollutants, which are able to alter drug-metabolizing enzyme as well as pharmacokinetics of drugs. Subsequent to the release of the human genome project, genetic variations (polymorphism) become an integral part of drug development due to their influence on disease susceptibility/ progression of the disease and their impact on drug absorption, distribution, metabolism of active metabolites and finally excretion of the drug. Genetic polymorphisms crucially regulate pharmacokinetics and pharmacodynamics of drugs under the influence of physiological condition, lifestyle, as well as pathological conditions collectively. OBJECTIVE To review all the evidence concerning the effect of environmental exposure on drug metabolism with reference to pharmacogenomics. METHODS Scientific data search and review of basic, epidemiological, pharmacogenomics and pharmacokinetics studies were undertaken to evaluate the influence of environmental contaminants on drug metabolism. RESULTS Various environmental contaminants like pesticides effectively alter drug metabolism at various levels under the influence of pharmacogenomics, which interferes with pharmacokinetics of drug metabolism. Genetic polymorphism of phase I and phase II xenobiotic-metabolizing enzymes remarkably alters disease susceptibility as well as the progression of disease under the influence of various environmental contaminants at various levels. CONCLUSION Individual specific drug response may be attributed to a large variety of factors alone or in combination ranging from genetic variations (SNP, insertion, deletion, duplication etc.) to physiological setting (gender, age, body size, and ethnicity), environmental or lifestyle factors (radiation exposure, smoking, alcohol, nutrition, exposure to toxins, etc.); and pathological conditions (obesity, diabetes, liver and renal function).
Collapse
Affiliation(s)
- Basu Dev Banerjee
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital (University of Delhi), Dilshad Garden, Delhi-110095, India
| | - Ranjeet Kumar
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital (University of Delhi), Dilshad Garden, Delhi-110095, India
| | - Krishna Latha Thamineni
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital (University of Delhi), Dilshad Garden, Delhi-110095, India
| | - Harendra Shah
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital (University of Delhi), Dilshad Garden, Delhi-110095, India
| | - Gaurav Kumar Thakur
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital (University of Delhi), Dilshad Garden, Delhi-110095, India
| | - Tusha Sharma
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital (University of Delhi), Dilshad Garden, Delhi-110095, India
| |
Collapse
|
6
|
Lauschke VM, Zhou Y, Ingelman-Sundberg M. Novel genetic and epigenetic factors of importance for inter-individual differences in drug disposition, response and toxicity. Pharmacol Ther 2019; 197:122-152. [PMID: 30677473 PMCID: PMC6527860 DOI: 10.1016/j.pharmthera.2019.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Individuals differ substantially in their response to pharmacological treatment. Personalized medicine aspires to embrace these inter-individual differences and customize therapy by taking a wealth of patient-specific data into account. Pharmacogenomic constitutes a cornerstone of personalized medicine that provides therapeutic guidance based on the genomic profile of a given patient. Pharmacogenomics already has applications in the clinics, particularly in oncology, whereas future development in this area is needed in order to establish pharmacogenomic biomarkers as useful clinical tools. In this review we present an updated overview of current and emerging pharmacogenomic biomarkers in different therapeutic areas and critically discuss their potential to transform clinical care. Furthermore, we discuss opportunities of technological, methodological and institutional advances to improve biomarker discovery. We also summarize recent progress in our understanding of epigenetic effects on drug disposition and response, including a discussion of the only few pharmacogenomic biomarkers implemented into routine care. We anticipate, in part due to exciting rapid developments in Next Generation Sequencing technologies, machine learning methods and national biobanks, that the field will make great advances in the upcoming years towards unlocking the full potential of genomic data.
Collapse
Affiliation(s)
- Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
7
|
Vil’ VA, Gorlov ES, Bityukov OV, Krylov IB, Nikishin GI, Pivnitsky KK, Terent’ev AO. Oxidative C–O coupling as a new idea in the ‘click-like chemistry’: malonyl peroxides for the conjugation of two molecules. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Lauschke VM, Ingelman-Sundberg M. Prediction of drug response and adverse drug reactions: From twin studies to Next Generation Sequencing. Eur J Pharm Sci 2019; 130:65-77. [PMID: 30684656 DOI: 10.1016/j.ejps.2019.01.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/12/2023]
Abstract
Understanding and predicting inter-individual differences related to the success of drug therapy is of tremendous importance, both during drug development and for clinical applications. Importantly, while seminal twin studies indicate that the majority of inter-individual differences in drug disposition are driven by hereditary factors, common genetic polymorphisms explain only less than half of this genetically encoded variability. Recent progress in Next Generation Sequencing (NGS) technologies has for the first time allowed to comprehensively map the genetic landscape of human pharmacogenes. Importantly, these projects have unveiled vast numbers of rare genetic variants, which are estimated to contribute substantially to the missing heritability of drug metabolism phenotypes. However, functional interpretation of these rare variants remains challenging and constitutes one of the important frontiers of contemporary pharmacogenomics. Furthermore, NGS technologies face challenges in the interrogation of genes residing in complex genomic regions, such as CYP2D6 and HLA genes. We here provide an update of the implementation of pharmacogenomic variations in the clinical setting and present emerging strategies that facilitate the translation of NGS data into clinically useful information. Importantly, we anticipate that these developments will soon result in a paradigm shift of pre-emptive genotyping away from the interrogation to candidate variants and towards the comprehensive profiling of an individuals genotype, thus allowing for a true individualization of patient drug treatment regimens.
Collapse
Affiliation(s)
- Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
9
|
Nebert DW. A Tribute to Elliot S. Vesell (1933–2018). Trends Pharmacol Sci 2018. [DOI: 10.1016/j.tips.2018.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Terent'ev AO, Vil' VA, Gorlov ES, Rusina ON, Korlyukov AA, Nikishin GI, Adam W. Selective Oxidative Coupling of 3H-Pyrazol-3-ones, Isoxazol-5(2H)-ones, Pyrazolidine-3,5-diones, and Barbituric Acids with Malonyl Peroxides: An Effective C-O Functionalization. ChemistrySelect 2017. [DOI: 10.1002/slct.201700720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospekt 47 Moscow 119991 Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia; 9 Miusskaya square Moscow 125047 Russian Federation
- All-Russian Research Institute for Phytopathology; B. Vyazyomy Moscow Region 143050 Russian Federation
| | - Vera A. Vil'
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospekt 47 Moscow 119991 Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia; 9 Miusskaya square Moscow 125047 Russian Federation
- All-Russian Research Institute for Phytopathology; B. Vyazyomy Moscow Region 143050 Russian Federation
| | - Evgenii S. Gorlov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospekt 47 Moscow 119991 Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia; 9 Miusskaya square Moscow 125047 Russian Federation
| | - Olga N. Rusina
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospekt 47 Moscow 119991 Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia; 9 Miusskaya square Moscow 125047 Russian Federation
| | - Alexander A. Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilova ul Moscow 119991 Russian Federation
- Pirogov Russian National Research Medical University; Ostrovitianov str. 1 Moscow 117997 Russian Federation
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospekt 47 Moscow 119991 Russian Federation
| | - Waldemar Adam
- Institute of Organic Chemistry; University of Würzburg; Am Hubland, D- 97074 Würzburg Germany
- Department of Chemistry, Faculty of Natural Sciences; University of Puerto Rico; Rio Piedras Puerto Rico 00931 USA
| |
Collapse
|
11
|
Khan DA. Pharmacogenomics and adverse drug reactions: Primetime and not ready for primetime tests. J Allergy Clin Immunol 2016; 138:943-955. [DOI: 10.1016/j.jaci.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 10/20/2022]
|
12
|
Bartlett MJ, Shephard EA. The integration and interpretation of pharmacogenomics - a comparative study between the United States of America and Europe: towards better health care. Drug Metab Pers Ther 2016; 31:91-6. [PMID: 27269898 DOI: 10.1515/dmpt-2015-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/06/2016] [Indexed: 12/27/2022]
Abstract
The study of pharmacogenomics has, by harnessing sequence information from human genomes, the potential to lead to novel approaches in drug discovery, an individualized application of drug therapy, and new insights into disease prevention. For this potential to be realized results need to be interpreted to the prescriber into a format which dictates an action. This mini review briefly describes the history, the regulatory environment, opinions towards, and implementation, integration and interpretation of pharmacogenomics in the United States of America and Europe. The article discusses also how interpretation of pharmacogenomics could move forward to better implementation in health care.
Collapse
|
13
|
Matthaei J, Brockmöller J, Tzvetkov MV, Sehrt D, Sachse-Seeboth C, Hjelmborg JB, Möller S, Halekoh U, Hofmann U, Schwab M, Kerb R. Heritability of metoprolol and torsemide pharmacokinetics. Clin Pharmacol Ther 2015; 98:611-21. [DOI: 10.1002/cpt.258] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/02/2015] [Indexed: 12/22/2022]
Affiliation(s)
- J Matthaei
- Institute for Clinical Pharmacology, University Medical Center, Göttingen; Georg-August University; Göttingen Germany
| | - J Brockmöller
- Institute for Clinical Pharmacology, University Medical Center, Göttingen; Georg-August University; Göttingen Germany
| | - MV Tzvetkov
- Institute for Clinical Pharmacology, University Medical Center, Göttingen; Georg-August University; Göttingen Germany
| | - D Sehrt
- Institute for Clinical Pharmacology, University Medical Center, Göttingen; Georg-August University; Göttingen Germany
| | - C Sachse-Seeboth
- Institute for Clinical Pharmacology, University Medical Center, Göttingen; Georg-August University; Göttingen Germany
| | - JB Hjelmborg
- Department of Epidemiology, Biostatistics and Biodemography; University of Southern Denmark; Odense Denmark
| | - S Möller
- Department of Epidemiology, Biostatistics and Biodemography; University of Southern Denmark; Odense Denmark
| | - U Halekoh
- Department of Epidemiology, Biostatistics and Biodemography; University of Southern Denmark; Odense Denmark
| | - U Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and Department of Clinical Pharmacology; University of Tübingen; Stuttgart Germany
| | - M Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and Department of Clinical Pharmacology; University of Tübingen; Stuttgart Germany
- Department of Clinical Pharmacology; University Hospital Tübingen; Tübingen Germany
| | - R Kerb
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and Department of Clinical Pharmacology; University of Tübingen; Stuttgart Germany
| |
Collapse
|
14
|
Clinical validation study of genetic markers for capecitabine efficacy in metastatic colorectal cancer patients. Pharmacogenet Genomics 2015; 25:279-88. [DOI: 10.1097/fpc.0000000000000119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Gupta PD. Pharmacogenetics, pharmacogenomics and ayurgenomics for personalized medicine: a paradigm shift. Indian J Pharm Sci 2015; 77:135-41. [PMID: 26009644 PMCID: PMC4442460 DOI: 10.4103/0250-474x.156543] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 10/26/2014] [Accepted: 03/06/2015] [Indexed: 01/11/2023] Open
Abstract
The value of health care can be increased tremendously through individualized medicine. With the promise of individualized medicine, healthcare professionals will be able to better predict disease risk, prevent development of disease and manage treatments more efficiently thereby allowing people to be healthier and active longer. The developments in the area of pharmacogenetics/pharmacogenomics can help the physicians achieve the target of personalized medicine. Personalized medicine will come to mean not just the right drug for the right individual, but the right drug for the specific disease affecting a specific individual. The use of personalized medicine will make clinical trials more efficient by lowering the costs that would arise due to adverse drug effects and prescription of drugs that have been proven ineffective in certain genotypes. The genotypic experiments have laid valuable insights into genetic underpinnings of diseases. However it is being realized that identification of sub-groups within normal controls corresponding to contrasting disease susceptibility could lead to more effective discovery of predictive markers for diseases. However there are no modern methods available to look at the inter-individual differences within ethnically matched healthy populations. Ayurveda, an exquisitely elaborate system of predictive medicine which has been practiced for over 3500 years in India, can help in bridging this gap. In contrast to the contemporary system of medicine, the therapeutic regimen in Ayurveda is implicated on tridoshas and prakriti. According to this system, every individual is born with his or her own basic constitution, which to a great extent regulates inter-individual variability in susceptibility to diseases and response to external environment, diet and drugs. Thus the researchers in India have demonstrated that integration of this stratified approach of Ayurveda into genomics i.e. Ayurgenomics could complement personalized medicine.
Collapse
Affiliation(s)
- Pooja D Gupta
- The Foundation for Medical Research, 84-A, RG Thadani Marg, Worli, Mumbai-400 018, India
| |
Collapse
|
16
|
Kasarskis A, Yang X, Schadt E. Integrative genomics strategies to elucidate the complexity of drug response. Pharmacogenomics 2012; 12:1695-715. [PMID: 22118053 DOI: 10.2217/pgs.11.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pharmacogenomic investigation from both genome-wide association studies and experiments focused on candidate loci involved in drug mechanism and metabolism has yielded a substantial and increasing list of robust genetic effects on drug therapy in humans. At the same time, reasonably comprehensive molecular data such as gene expression, proteomic and metabolomic data are now available for collections of hundreds to thousands of individuals. If these data are structured in a statistically robust and computationally tractable way, such as a network model, they can aid in the analysis of new pharmacogenomics studies by suggesting novel hypotheses for the regulation of genes involved in drug metabolism and response. Similarly, hypotheses taken from these same models can direct genome-wide association studies by focusing the genome-wide association studies analysis on a number of specific hypotheses informed by the relationships customarily seen between a gene's expression or protein activity and genetic variation at a particular locus. Network models based on other sorts of systematic biological data such as cell-based surveys of drug effect on gene expression and mining of literature and electronic medical records for associations between clinical and molecular phenotypes also promise similar utility. Although surely primitive in comparison with what will be developed, these model-based approaches to leveraging the increasing volume of data generated in the course of patient care and medical research nevertheless suggest a huge opportunity to improve our understanding of biological systems involved in pharmacogenomics and apply them to questions of medical relevance.
Collapse
|
17
|
Kasaian K, Jones SJ. A new frontier in personalized cancer therapy: mapping molecular changes. Future Oncol 2011; 7:873-94. [PMID: 21732758 DOI: 10.2217/fon.11.63] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations in the genome of a normal cell can affect the function of its many genes and pathways. These alterations could eventually transform the cell from a normal to a malignant state by allowing an uncontrolled proliferation of the cell and formation of a cancer tumor. Each tumor in an individual patient can have hundreds of mutated genes and perturbed pathways. Cancers clinically presenting as the same type or subtype could potentially be very different at the molecular level and thus behave differently in response to therapy. The challenge is to distinguish the key mutations driving the cancer from the background of mutational noise and find ways to effectively target them. The promise is that such a molecular approach to classifying cancer will lead to better diagnostic, prognostic and personalized treatment strategies. This article provides an overview of advances in the molecular characterization of cancers and their applications in therapy.
Collapse
Affiliation(s)
- Katayoon Kasaian
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | |
Collapse
|
18
|
Abstract
For the past two decades, salivary diagnostic approaches have been developed to monitor oral diseases such as periodontal diseases and to assess caries risk. Recently, the combination of emerging biotechnologies and salivary diagnostics has extended the range of saliva-based diagnostics from the oral cavity to the whole physiologic system as most compounds found in blood are also present in saliva. Accordingly, saliva can reflect the physiologic state of the body, including emotional, endocrinal, nutritional and metabolic variations and acts as a source for the monitoring of oral and also systemic health. This review presents an update on the status of saliva diagnostics and delves into their applications to the discovery of biomarkers for cancer detection and therapeutic applications. Translating scientific findings of nucleic acids, proteins and metabolites in body fluids to clinical applications is a cumbersome and challenging journey. Our research group is pursuing the biology of salivary analytes and the development of technologies for detection of distinct biomarkers with high sensitivity and specificity. The avenue of saliva diagnostics incorporating transcriptomic, proteomic and metabolomic findings will enable us to connect salivary molecular analytes to monitor therapies, therapeutic outcomes, and finally disease progression in cancer.
Collapse
Affiliation(s)
- N Spielmann
- School of Dentistry and Dental Research Institute, University of California at Los Angeles, Los Angeles, CA, USA.
| | | |
Collapse
|
19
|
Davies SM, Dickinson A, Miller JS. Human polymorphism and variable outcomes of cancer chemotherapy and transplantation. Biol Blood Marrow Transplant 2009; 14:120-8. [PMID: 18162232 DOI: 10.1016/j.bbmt.2007.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Stella M Davies
- Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA
| | | | | |
Collapse
|
20
|
Davies DS, Thorgeirsson SS. Individual differences in the plasma half-lives of lipid soluble drugs in man. ACTA PHARMACOLOGICA ET TOXICOLOGICA 2009; 29 Suppl 3:181-90. [PMID: 5316400 DOI: 10.1111/j.1600-0773.1971.tb03298.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Ozdemir V, Suarez-Kurtz G, Stenne R, Somogyi AA, Someya T, Kayaalp SO, Kolker E. Risk assessment and communication tools for genotype associations with multifactorial phenotypes: the concept of "edge effect" and cultivating an ethical bridge between omics innovations and society. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2009; 13:43-61. [PMID: 19290811 PMCID: PMC2727354 DOI: 10.1089/omi.2009.0011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Applications of omics technologies in the postgenomics era swiftly expanded from rare monogenic disorders to multifactorial common complex diseases, pharmacogenomics, and personalized medicine. Already, there are signposts indicative of further omics technology investment in nutritional sciences (nutrigenomics), environmental health/ecology (ecogenomics), and agriculture (agrigenomics). Genotype-phenotype association studies are a centerpiece of translational research in omics science. Yet scientific and ethical standards and ways to assess and communicate risk information obtained from association studies have been neglected to date. This is a significant gap because association studies decisively influence which genetic loci become genetic tests in the clinic or products in the genetic test marketplace. A growing challenge concerns the interpretation of large overlap typically observed in distribution of quantitative traits in a genetic association study with a polygenic/multifactorial phenotype. To remedy the shortage of risk assessment and communication tools for association studies, this paper presents the concept of edge effect. That is, the shift in population edges of a multifactorial quantitative phenotype is a more sensitive measure (than population averages) to gauge the population level impact and by extension, policy significance of an omics marker. Empirical application of the edge effect concept is illustrated using an original analysis of warfarin pharmacogenomics and the VKORC1 genetic variation in a Brazilian population sample. These edge effect analyses are examined in relation to regulatory guidance development for association studies. We explain that omics science transcends the conventional laboratory bench space and includes a highly heterogeneous cast of stakeholders in society who have a plurality of interests that are often in conflict. Hence, communication of risk information in diagnostic medicine also demands attention to processes involved in production of knowledge and human values embedded in scientific practice, for example, why, how, by whom, and to what ends association studies are conducted, and standards are developed (or not). To ensure sustainability of omics innovations and forecast their trajectory, we need interventions to bridge the gap between omics laboratory and society. Appreciation of scholarship in history of omics science is one remedy to responsibly learn from the past to ensure a sustainable future in omics fields, both emerging (nutrigenomics, ecogenomics), and those that are more established (pharmacogenomics). Another measure to build public trust and sustainability of omics fields could be legislative initiatives to create a multidisciplinary oversight body, at arm's length from conflict of interests, to carry out independent, impartial, and transparent innovation analyses and prospective technology assessment.
Collapse
Affiliation(s)
- Vural Ozdemir
- Department of Social and Preventive Medicine, Bioethics Programs, Faculty of Medicine, University of Montréal, Montréal, Québec, Canada
| | | | - Raphaëlle Stenne
- Department of Biomedical Sciences, University of Montréal, Montréal, Québec, Canada
| | - Andrew A. Somogyi
- Discipline of Pharmacology, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - S. Oğuz Kayaalp
- Turkish Academy of Sciences (TUBA) and Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Eugene Kolker
- Bioinformatics and High-Throughput Data Analysis Laboratory, Seattle Children's Research Institute, Seattle, Washington
- Predictive Analytics, Seattle Children's Hospital
- Biomedical and Health Informatics Division, Medical Education and Biomedical Informatics Department, University of Washington, Seattle, Washington
| |
Collapse
|
22
|
Perera MA, Innocenti F, Ratain MJ. Pharmacogenetic testing for uridine diphosphate glucuronosyltransferase 1A1 polymorphisms: are we there yet? Pharmacotherapy 2009; 28:755-68. [PMID: 18503403 DOI: 10.1592/phco.28.6.755] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent changes to the labels of three prescription drugs--irinotecan, 6-mercaptopurine, and warfarin--include recommendations for pharmacogenetic testing in patients. Thus, clinicians are faced with determining the utility and practicality of pharmacogenetic testing in clinical practice. We illustrate the clinical implications that this testing may have using irinotecan, an agent approved for the treatment of metastatic colorectal cancer, as an example. A clinical association between the drug's active metabolite and toxicity has been found. By performing uridine diphosphate glucuronosyltransferase (UGT) 1A1 genetic testing, some studies have been able to predict which patients receiving irinotecan will experience the toxicity. Thus, irinotecan's package insert was revised to include a recommendation for such testing. In addition, the United States Food and Drug Administration approved a clinical test for the UGT1A1*28 allele. These events demonstrate that pharmacogenetics has entered the realm of clinical practice. However, the transition from bench to bedside of these tests has distinct challenges such as population differences, test sensitivity, and the role of other genetic and nongenetic factors that influence drug toxicity. In addition, ethical and logistic implications of pharmacogenetic testing exist.
Collapse
Affiliation(s)
- Minoli A Perera
- Sections of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
23
|
|
24
|
Conney AH, Buening MK, Pantuck EJ, Pantuck CB, Fortner JG, Anderson KE, Kappas A. Regulation of human drug metabolism by dietary factors. CIBA FOUNDATION SYMPOSIUM 2008; 76:147-67. [PMID: 6906262 DOI: 10.1002/9780470720592.ch9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Several dietary factors influence the oxidative metabolism of chemicals in humans. Increasing the ratio of protein to carbohydrate or fat in the diet, feeding cabbage and brussels sprouts or feeding charcoal-broiled beef for several days stimulates human drug metabolism. The chronic ingestion of ethanol stimulates drug metabolism whereas the chronic ingestion of methylxanthine-containing foods inhibits drug metabolism. In contrast, an increase in the ratio of fat to carbohydrate in the diet of normal subjects or the fasting of obese individuals for several days has little or no effect on drug metabolism. Flavonoids in edible plants influence the metabolism of foreign chemicals by human liver in vitro. The addition of flavone, tangeretin or nobiletin to human liver microsomes activates both the hydroxylation of benzo[alpha]pyrene and the metabolism of aflatoxin B1 to mutagens. On the other hand, quercetin, kaempferol, morin and chrysin, which are also normally occurring flavonoids, inhibit the hydroxylation of benzo[alpha]pyrene by human liver microsomes.
Collapse
|
25
|
Katz DA, Murray B, Bhathena A, Sahelijo L. Defining drug disposition determinants: a pharmacogenetic-pharmacokinetic strategy. Nat Rev Drug Discov 2008; 7:293-305. [PMID: 18382463 DOI: 10.1038/nrd2486] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In preclinical and early clinical drug development, information about the factors influencing drug disposition is used to predict drug interaction potential, estimate and understand population pharmacokinetic variability, and select doses for clinical trials. However, both in vitro drug metabolism studies and pharmacogenetic association studies on human pharmacokinetic parameters have focused on a limited subset of the proteins involved in drug disposition. Furthermore, there has been a one-way information flow, solely using results of in vitro studies to select candidate genes for pharmacogenetic studies. Here, we propose a two-way pharmacogenetic-pharmacokinetic strategy that exploits the dramatic recent expansion in knowledge of functional genetic variation in proteins that influence drug disposition, and discuss how it could improve drug development.
Collapse
Affiliation(s)
- David A Katz
- Abbott Global Pharmaceutical Research & Development, 100 Abbott Park Road, Abbott Park, Illinois 60064-3500, USA.
| | | | | | | |
Collapse
|
26
|
Genomic medicine: a new frontier of medicine in the twenty first century. Genomic Med 2007; 1:3-7. [PMID: 18923923 DOI: 10.1007/s11568-007-9003-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Accepted: 03/19/2007] [Indexed: 10/23/2022] Open
|
27
|
Abstract
Because the US FDA has begun to focus on disclosure of pharmacogenetic testing results in applications for new drug approval and review of existing drugs (see, eg, http://www.fda.gov/OHRMS/DOCKETS/AC/05/slides/2005-4194S1_Slide-Index.htm), the application of such testing in a clinical setting is likely to increase substantially. Instead of small cohorts of patients, potentially nearly every participant in the large pivotal trials required for drug approval could help inform the future application of that drug. Psychiatry as a whole, and antidepressant prescribing ni particular, stands to benefit in the near term from the identification of newer treatment targets that may overcome some of the limitations of current therapeutics. On the other hand, despite the excitement about the rapid pace of development in psychiatric pharmacogenetics, a number of key issues remain to be addressed before these discoveries are applied in a clinical setting. Close coordination will be required between those who study treatment efficacy and effectiveness and those who study genetic variation in populations to ensure that studies yield results that have scientific importance and clinical importance as well.
Collapse
Affiliation(s)
- Roy H Perlis
- Pharmacogenetics Research Unit, Depression and Bipolar Clinical and Research Programs, Center for Human Genetics Research, Massachusetts General Hospital, 15 Parkman St., WACC 812, Boston, MA 02114, USA.
| |
Collapse
|
28
|
Roden DM, Altman RB, Benowitz NL, Flockhart DA, Giacomini KM, Johnson JA, Krauss RM, McLeod HL, Ratain MJ, Relling MV, Ring HZ, Shuldiner AR, Weinshilboum RM, Weiss ST. Pharmacogenomics: challenges and opportunities. Ann Intern Med 2006; 145:749-57. [PMID: 17116919 PMCID: PMC5006954 DOI: 10.7326/0003-4819-145-10-200611210-00007] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The outcome of drug therapy is often unpredictable, ranging from beneficial effects to lack of efficacy to serious adverse effects. Variations in single genes are 1 well-recognized cause of such unpredictability, defining the field of pharmacogenetics (see Glossary). Such variations may involve genes controlling drug metabolism, drug transport, disease susceptibility, or drug targets. The sequencing of the human genome and the cataloguing of variants across human genomes are the enabling resources for the nascent field of pharmacogenomics (see Glossary), which tests the idea that genomic variability underlies variability in drug responses. However, there are many challenges that must be overcome to apply rapidly accumulating genomic information to understand variable drug responses, including defining candidate genes and pathways; relating disease genes to drug response genes; precisely defining drug response phenotypes; and addressing analytic, ethical, and technological issues involved in generation and management of large drug response data sets. Overcoming these challenges holds the promise of improving new drug development and ultimately individualizing the selection of appropriate drugs and dosages for individual patients.
Collapse
Affiliation(s)
- Dan M Roden
- Vanderbilt University, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Pharmacogenetics and pharmacogenomics deal with the role of genetic factors in drug effectiveness and adverse drug reactions. The promise of a personalized medicine is beginning to be explored but requires much more clinical and translational research. Specific DNA abnormalities in some cancers already have led to effective targeted treatments. Racially determined frequency differences in pharmacogenetic traits may affect choice of treatment requiring specific testing rather than basing treatments according to racial designation. The role of genes in variable responses to foreign chemicals (xenobiotics) has been termed ecogenetics or toxicogenetics raising problems in public health and occupational medicine. Nutrigenetics refers to genetic variation in response to nutrients and may affect nutritional requirements and predisposition to chronic disease.
Collapse
Affiliation(s)
- Arno G. Motulsky
- Department of Medicine Medical Genetics and Genome Sciences, University of Washington, Seattle, WA 98195, USA
- School of Medicine, Zhejiang University, Hangzhou 310003, China
- †E-mail:;
| | - Ming Qi
- School of Medicine, Zhejiang University, Hangzhou 310003, China
- Beijing Genome Institute, CAS, Beijing 101300, China
- University of Rochester, NY 14642, USA
- †E-mail:;
| |
Collapse
|
30
|
Abstract
Although the field of pharmacogenetics has existed for nearly 50 years, it has begun to enter mainstream clinical practice only recently. Researchers and clinicians have now demonstrated that a wide assortment of genetic variants influence how individuals respond to medications. Many of these variants are relevant for psychiatry, affecting how patients respond to most antidepressants, antipsychotics, anxiolytics, and mood stabilizers. Enthusiasts hope that pharmacogenetics will soon usher in a new era of individualized medicine. However, determining the practical relevance of pharmacogenetic variants remains difficult, in part because of problems with study design and replication, and in part because a host of nongenetic factors (including age, diet, environmental exposures, and comorbid diseases) also influence how individuals respond to medications. Since individualized pharmacogenetic assessment remains difficult, some researchers have argued that race provides a convenient proxy for individual genetic variation, and that clinicians should choose medications and doses differently for different races. This approach remains extremely controversial because of the complexity of the genetic structure of the human population, the complexity of gene-environment interactions, and the complexity of the meanings of race in the United States.
Collapse
Affiliation(s)
- David S Jones
- Program in Science, Technology, and Society, Massachusetts Institute of Technology, Department of Social Medicine, Harvard Medical School, Cambridge, MA, USA.
| | | |
Collapse
|
31
|
Abstract
Abstract
The genetic basis of a differential response to drugs has been understood for a limited number of agents for over 30 years. This knowledge has generated hope that the individual basis for response to a wide range of drugs would be quickly known, and individualized drug selection and dosing would be possible for many or all disorders. Understanding the variable response to drugs seems particularly pressing in the field of oncology, in which the stakes are high (failure to cure cancer usually leads to death), drugs commonly have a narrow therapeutic index, and toxicities can be severe (a significant frequency of toxic death is a feature of most acute myeloid leukemia protocols, for example). However, in common with many new technologies, the generalizability and clinical application of pharmacogenetics has proved more challenging than expected. Difficulties include, in many examples, a modest clinical effect relative to genotype, therapy-specific, not broad, applicability and the very major challenge of unraveling the complexity of gene-gene interactions. In addition, ethical and economic challenges to the application of pharmacogenetics have moved to the fore in recent years, particularly in the context of racial differences in outcome of therapy. Genomic, rather than candidate gene approaches to identification of relevant loci are increasingly being explored, and significant progress is being made. However, greater understanding of the complexities of multiple gene modifiers of outcome, and the statistical challenge of understanding such data, will be needed before individualized therapy can be applied on a routine basis.
Collapse
Affiliation(s)
- Stella M Davies
- Cincinnati Children's Hospital and Medical Center, Cincinnati OH 45229, USA.
| |
Collapse
|
32
|
Walgren RA, Meucci MA, McLeod HL. Pharmacogenomic Discovery Approaches: Will the Real Genes Please Stand Up? J Clin Oncol 2005; 23:7342-9. [PMID: 16145062 DOI: 10.1200/jco.2005.03.0825] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic inheritance plays a significant role in the interindividual variability of drug response. The field of pharmacogenomics seeks to identify genetic factors that influence drug response, including both those that are inherited and those that arise within tumors, and use this information to improve drug therapy. Candidate gene approaches have led to clinical tests for toxicity avoidance (eg, TPMT, UGT1A1) and efficacy prediction (eg, epidermal growth factor receptor–activating mutations). However, the “right” genes are not known for most anticancer drugs. Strategies for uncovering pharmacogenomic associations vary widely from monogenic candidate gene approaches to polygenic genome-wide approaches. This review will place in context clinically relevant pharmacogenomic discovery approaches, including the relative strengths and weaknesses and the challenges inherent with achieving the goal of individualized therapy.
Collapse
Affiliation(s)
- Richard A Walgren
- Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8069, St Louis, MO 63110, USA
| | | | | |
Collapse
|
33
|
Bolt HM. Rifampicin, a keystone inducer of drug metabolism: from Herbert Remmer's pioneering ideas to modern concepts. Drug Metab Rev 2005; 36:497-509. [PMID: 15554232 DOI: 10.1081/dmr-200033432] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In 1972, Herbert Remmer's group at the University of Tübingen had developed a micro method to assess cytochrome P450 contents and activities of drug metabolising enzymes in needle biopsies from human liver. Upon application of this method to patients receiving different kinds of drug therapy, Herbert Remmer was the first to describe that total human hepatic cytochrome P450 was markedly elevated by the new anti-tuberculosis drug rifampicin. Similar observations were made for the antimycotic clotrimazol. In 1975, Herbert Remmer's group described the unique species difference that induction of cytochrome P450 by rifampicin did not occur in the rat. After the first clinical reports of impaired effectiveness of oral contraception in persons treated with rifampicin, studies at Herbert Remmer's Institute showed a 4-fold increase, after repetitive rifampicin administration to humans, in the ability of hepatic microsomes to ortho-hydroxylate the contraceptive estrogen ethinylestradiol, compared to microsomes from untreated normal subjects. Subsequent pharmacokinetic investigations were compatible with this induction of the estrogen-2-hydroxylase by rifampicin and provided a rational explanation for the classical drug interaction between rifampicin and oral contraceptives. These early studies, in the 1970s in Tübingen, were followed by further developments. It was realized that the cytochrome P450 isoenzyme 3A4 (CYP3A4) is the major CYP isozyme in the human liver metabolizing a variety of xenobiotics and endobiotics, being also responsible for the 2-hydroxylation of ethinylestradiol. The inducibility of CYP3A4 by barbiturates and rifampicin explains the effects of inducers to enhance the clearance of ethynylestradiol and thereby to reduce the effectiveness of oral contraceptives, rifampicin being one of the most potent inducers of human CYP3A4 gene expression. Since 1998, novel "orphan" members of the nuclear hormone receptor superfamily were cloned from mouse, rat, rabbit, and human origin. These so-called pregnane X receptors (PXR), across species, are activated by inducers of CYP3A4 expression. It now appears that PXR is a key mediator of complex induction processes of xenobiotic processing enzymes, which are triggered by rifampicin and other inducers. Studies of the structure and substrate affinities of PXR have provided the rational explanation of the unique species difference of rifampicin induction between humans and rats that was first described by Herbert Remmer.
Collapse
Affiliation(s)
- Hermann M Bolt
- Institut für Arbeitsphysiologie an der Universität Dortmund, Dortmund, Germany.
| |
Collapse
|
34
|
Watters JW, Kraja A, Meucci MA, Province MA, McLeod HL. Genome-wide discovery of loci influencing chemotherapy cytotoxicity. Proc Natl Acad Sci U S A 2004; 101:11809-14. [PMID: 15282376 PMCID: PMC511056 DOI: 10.1073/pnas.0404580101] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Little is known about the heritability of chemotherapy activity or the identity of genes that may enable the individualization of cancer chemotherapy. Although numerous genes are likely to influence chemotherapy response, current candidate gene-based pharmacogenetics approaches require a priori knowledge and the selection of a small number of candidate genes for hypothesis testing. In this study, an ex vivo familial genetics strategy using lymphoblastoid cells derived from Centre d'Etude du Polymorphisme Humain reference pedigrees was used to discover genetic determinants of chemotherapy cytotoxicity. Cytotoxicity to the mechanistically distinct chemotherapy agents 5-fluorouracil and docetaxel were shown to be heritable traits, with heritability values ranging from 0.26 to 0.65 for 5-fluorouracil and 0.21 to 0.70 for docetaxel, varying with dose. Genome-wide linkage analysis was also used to map a quantitative trait locus influencing the cellular effects of 5-fluorouracil to chromosome 9q13-q22 [logarithm of odds (LOD) = 3.44], and two quantitative trait loci influencing the cellular effects of docetaxel to chromosomes 5q11-21 (LOD = 2.21) and 9q13-q22 (LOD = 2.73). Finally, 5-fluorouracil and docetaxel were shown to cause apoptotic cell death involving caspase-3 cleavage in Centre d'Etude du Polymorphisme Humain lymphoblastoid cells. This study identifies genomic regions likely to harbor genes important for chemotherapy cytotoxicity using genome-wide linkage analysis in human pedigrees and provides a widely applicable strategy for pharmacogenomic discovery without the requirement for a priori candidate gene selection.
Collapse
Affiliation(s)
- James W Watters
- Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8069, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
35
|
Conney AH. Induction of drug-metabolizing enzymes: a path to the discovery of multiple cytochromes P450. Annu Rev Pharmacol Toxicol 2003; 43:1-30. [PMID: 12540740 DOI: 10.1146/annurev.pharmtox.43.100901.135754] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This article provides a personal account of the discovery of the induced synthesis of drug-metabolizing enzymes and of subsequent research that led to the discovery of multiple cytochromes P450 with different catalytic activities. The manuscript also emphasizes the role of environmental factors (in addition to genetic polymorphisms) in explaining person-to-person and day-to-day differences in rates and pathways of drug metabolism that occur in the human population.
Collapse
Affiliation(s)
- Allan H Conney
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
36
|
Abstract
Pharmacogenomics aims to optimize patient management by customizing and synthesizing drugs based on genetic variations in drug response. Polymorphisms affecting metabolism, receptors, and absorption can influence drug sensitivity, toxicity, and dosing. The Human Genome Project, DNA chips, and bioinformatics advance the practice of this field by, respectively, identifying polymorphisms related to drug response, determining an individual's profile of polymorphisms, and integrating data to facilitate clinical decision making. Potential benefits of pharmacogenomics include increasing efficacy and preventing adverse drug reactions, thus improving patient care and decreasing costs. These factors imply that a thorough understanding of the principles and applications of pharmacogenomics will be an indispensable part of the future of drug therapy in clinical medicine.
Collapse
Affiliation(s)
- Y J Tsai
- Department of Medicine, St Joseph's Mercy Hospital, Ann Arbor, MI, USA
| | | |
Collapse
|
37
|
Rasmussen BB, Brix TH, Kyvik KO, Brøsen K. The interindividual differences in the 3-demthylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors. PHARMACOGENETICS 2002; 12:473-8. [PMID: 12172216 DOI: 10.1097/00008571-200208000-00008] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study investigated the role of genetic factors (CYP1A2) in caffeine metabolism. The CYP1A2 activity was determined in 378 Danish twins following oral intake of a single dose of 200 mg caffeine and subsequent determination of the caffeine ratio (AFMU+1MU+1MX)/17DMU in a 6-h urine sample. The mean (+/- SD) caffeine ratio was 5.9 +/- 3.4. The caffeine ratio was statistically significantly higher in men compared to women, in smoking men and women compared to non-smoking persons of the same gender and in women not taking oral contraceptives compared with women on oral contraceptives. Thus, we confirmed that CYP1A2 is more active in men than in women, that it is induced by smoking and inhibited by oral contraceptives. In the subsequent analysis of heritability, we included 49 monozygotic twin pairs and 34 same gender dizygotic twin pairs concordant for non-smoking and non-use of oral contraceptives. The intraclass correlation coefficient was 0.798 (95% confidence interval, 0.696-0.900) and 0.394 (95% confidence interval, 0.109-0.680) in the monozygotic and dizygotic twins, respectively. The correlation was statistically significantly higher (P = 0.0015) in the former compared with the latter. A biometrical model for the caffeine ratio including only additive genetic factors and unique environmental factors was the overall best fitting model. Estimates based on this model gave a heritability estimate of 0.725 (95% confidence interval 0.577-0.822). Unique environmental effects seem to account for the remainder 0.275 (95% confidence interval, 0.178-0.423). Our study shows that the CYP1A2 activity is mainly governed by genetic factors.
Collapse
Affiliation(s)
- Birgitte B Rasmussen
- Institute of Public Health, Clinical Pharmacology, University of Southern Denmark, Odense, Denmark
| | | | | | | |
Collapse
|
38
|
Rusnak JM, Kisabeth RM, Herbert DP, McNeil DM. Pharmacogenomics: a clinician's primer on emerging technologies for improved patient care. Mayo Clin Proc 2001; 76:299-309. [PMID: 11243277 DOI: 10.4065/76.3.299] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pharmacogenomics is a term recently coined to embody the concept of individualized and rational drug selection based on the genotype of a particular patient. Customization of drug therapy offers the potential for optimal safety and efficacy in an individual patient. Such a process contrasts current prescribing practices, which use medications shown to be safe and effective in patient populations or based on anecdotal experiences. Within patient populations, medications vary in their efficacy among individual patients. More importantly, a medication that is safe and effective in one patient may be ineffective or even harmful in another. Underlying many of these phenotypic differences are genotypic variants (polymorphisms) of key enzymes and proteins that affect the safety and efficacy of a drug in an individual patient. An understanding of these polymorphisms has the potential to enhance patient care by allowing physicians to customize the selection of medication to meet individual patient needs. Pharmacogenomics may also lead to improved compliance and shorter time to optimal disease management, thereby reducing morbidity and mortality. Significant cost savings could result from reductions in polypharmacy as well as from fewer physician encounters and hospitalizations for exacerbations of underlying illness and because of adverse drug reactions.
Collapse
Affiliation(s)
- J M Rusnak
- Department of Internal Medicine, Mayo Clinic, Rochester, Minn 55905, USA.
| | | | | | | |
Collapse
|
39
|
Niu T, Rogus JJ, Chen C, Wang B, Yang J, Fang Z, Weiss ST, Xu X. Familial aggregation of bronchodilator response: a community-based study. Am J Respir Crit Care Med 2000; 162:1833-7. [PMID: 11069822 DOI: 10.1164/ajrccm.162.5.9908127] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We investigated familial aggregation of bronchodilator response (BDR) among 4,946 subjects selected from 1,161 index families with asthma in a rural community in China. Each family unit consisted of both parents and their first and subsequent offspring, aged 8-20. Raw BDR measurements, defined as the percentage change in FEV(1) after 180 microg of albuterol, were adjusted to account for sex, age, height, weight, education, smoking, asthma, wheeze, and allergy status. Using these adjusted BDR values, we found significant correlation for father-first offspring pairs, mother-first offspring pairs, mother-subsequent offspring pairs, and first offspring-subsequent offspring pairs. The overall magnitude of the correlation coefficient (0.088-0.165) suggests a modest degree of familial clustering. The largest odds ratio was seen for subsequent offspring who had mothers and first offspring with adjusted BDR values above the median: 3.10 (95% CI: 1.85-5.20) in these index families with asthma. Thus, our data support a significant familial aggregation of BDR in this Chinese population, which points to a role of genetic factors in BDR.
Collapse
Affiliation(s)
- T Niu
- Program of Population Genetics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Large differences among normal human subjects in the efficacy and safety of many therapeutic agents are caused by genetically controlled polymorphisms of drug-metabolizing enzymes, drug transporters, and drug receptors. Development of pharmacogenomics as a new field has accelerated progress in pharmacogenetics by elucidating at the level of the human genome the inherited basis for those large interindividual variations. Examples discussed in this review illustrate how this approach can be used not only to guide new drug discovery but also to individualize therapy. Adverse drug reactions, often attributable to large differences among subjects in drug response, constitute a leading cause of death in the USA. Such high morbidity and mortality could be reduced by application of the principles of pharmacogenetics and pharmacogenomics, defined broadly as the study of genetically caused variability in drug response.
Collapse
Affiliation(s)
- E S Vesell
- Department of Pharmacology, Pennsylvania State University, College of Medicine, Hershey 17033, USA
| |
Collapse
|
41
|
Gillette JR. Laboratory of Chemical Pharmacology, National Heart, Lung, and Blood Institute, NIH: a short history. Annu Rev Pharmacol Toxicol 2000; 40:18-41. [PMID: 10836126 DOI: 10.1146/annurev.pharmtox.40.1.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Laboratory of Chemical Pharmacology (LCP) began in 1950 as the Section of Pharmacology within the National Heart Institute, the National Institutes of Health. Its first chief was Bernard B. Brodie, considered by many to be one of the fathers of modern pharmacology. Since its inception, LCP has made many significant contributions to the fields of pharmacology and toxicology. LCP was among the first to study (a) the effects of drugs on the turnover of serotonin and norepinephrine in brain and other tissues, (b) the absorption of drugs from the gastrointestinal tract and their passage across the blood-brain barrier, (c) the oxidation and reduction of drugs and other foreign compounds by liver microsomal enzymes (later known as the cytochrome P450 enzymes) and inhibitors and inducers of these enzymes, (d) the formation of toxic chemically reactive metabolites of drugs and other foreign compounds, and (e) mechanisms of immunological responses. Approximately 300 scientists worked in LCP during its existence, and they and their collaborators published more than 1,300 papers. This is a short history of the people who worked in it and of their contributions to biomedical sciences.
Collapse
|
42
|
Abstract
The main events described in this essay occurred between 30 and 40 years ago. Care has been exercised to describe these events as accurately as possible. I have confined myself to the facts as best I can recollect them now. I have also attempted to recapture the spirit and ambiance of the individual laboratories, their directors, and the scientists working there, leaving philosophical interpretations to others. I feel privileged to have been permitted to work in these laboratories and with these scientists. Despite present difficulties besetting those who desire to devote their lives to scientific research, I encourage these hardy souls to pursue their vision and wish for them the good fortune I had in being associated with so many supportive, brilliant, and interesting researchers.
Collapse
Affiliation(s)
- E S Vesell
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| |
Collapse
|
43
|
Abstract
Large pharmacokinetic variations, ranging in magnitude from 4- to 40-fold, often exist among the members of a given population. These variations create differences in risk of cancer by accelerating metabolic activation of certain environmental carcinogens in some subjects, while retarding such rates in other subjects. To identify specific genetic and environmental causes of large interindividual variations in these rates, several methods have been developed to probe hepatic cytochrome P-450 isozymes responsible for xenobiotic activation. In patients, dynamic interactions occur between genetic and environmental factors causing large interindividual variations in xenobiotic metabolism. Even the same patient can change dosage requirements with time and condition. Appropriate marker drugs can sensitively indicate pharmacokinetic capacity at any given time in a patient or normal volunteer. With respect to genetic factors, twin and family studies are the traditional methods used to test pharmacogenetic hypotheses. Representative examples are cited to illustrate how twin and family studies serve this purpose. Monogenic control of large interindividual variations in the activity of approx. 12 P-450 isozymes has been described. Individual metabolic pathways need to be investigated for drugs biotransformed by multiple pathways. Since many hepatic P-450 isozymes are extremely sensitive to perturbation by numerous environmental alterations, the critical role of selection criteria is stressed to assure that all subjects of twin and family studies are under as uniform environmental conditions as possible. Otherwise, the operation of genetic factors may be concealed or misinterpreted in studies that do not use gene cloning or protein sequence.
Collapse
Affiliation(s)
- E S Vesell
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey 17033
| |
Collapse
|
44
|
Bellward GD, Norstrom RJ, Whitehead PE, Elliott JE, Bandiera SM, Dworschak C, Chang T, Forbes S, Cadario B, Hart LE. Comparison of polychlorinated dibenzodioxin levels with hepatic mixed-function oxidase induction in great blue herons. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1990; 30:33-52. [PMID: 2348479 DOI: 10.1080/15287399009531408] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As part of the Canadian Wildlife Service monitoring of great blue herons in British Columbia, eggs were collected from three colonies with low, intermediate, and high levels of PCDD and PCDF contamination: Nicomekl, Vancouver, and Crofton, respectively. One egg from each nest was used for chemical analysis by GC-MS; the others were hatched. Liver microsomes were prepared from the heron chicks and used for determination of cytochrome P-450-dependent activities. No erythromycin N-demethylase activity was found in any sample. Ethoxyresorufin O-dealkylase activity in the Nicomekl group was similar to that in pigeons, a control altricial species. The ethoxyresorufin activity in the herons from the Crofton colony was 2.6-fold higher than in the Nicomekl group. The Vancouver colony was intermediate. No difference among the three heron colonies was found in pentoxyresorufin O-dealkylase activity, although levels were 20-33 times that in the pigeon. Chemical analysis was carried out on paired heron eggs. Vancouver and Crofton eggs contained 13.5 and 21 times the levels of 2,3,7,8-TCDD compared to the Nicomekl group. The Crofton eggs contained higher levels of several other contaminants also. A highly significant correlation (p less than .001) was found between ethoxyresorufin O-dealkylase and 2,3,7,8-TCDD concentrations. The correlation coefficient did not change when ethoxyresorufin O-dealkylase was compared to total chemical contamination using several toxic equivalency factors. Multiple regression analysis resulted in only one predictor variable for ethoxyresorufin O-dealkylase: 2,3,7,8-TCDD.
Collapse
Affiliation(s)
- G D Bellward
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kalow W. The Pennsylvania State University College of Medicine 1990 Bernard B. Brodie Lecture. Pharmacogenetics: past and future. Life Sci 1990; 47:1385-97. [PMID: 2250557 DOI: 10.1016/0024-3205(90)90517-u] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- W Kalow
- Department of Pharmacology, University of Toronto, Ontario
| |
Collapse
|
46
|
Affiliation(s)
- E S Vesell
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey 17033
| |
Collapse
|
47
|
Chua SS, Benrimoj SI, Triggs EJ. Pharmacokinetics of non-prescription sympathomimetic agents. Biopharm Drug Dispos 1989; 10:1-14. [PMID: 2647163 DOI: 10.1002/bdd.2510100102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The pharmacokinetics of non-prescription sympathomimetic agents are discussed with respect to absorption from the gastrointestinal tract, volumes of distribution, metabolism and renal excretion. Where specific data are not available, postulations are made with inference from the chemical structures of these agents, or from studies with other drugs. No studies on hypertensive patients have been found, but attempts are made to correlate any possible changes in the pharmacokinetics of these sympathomimetic agents to hypertensive patients as a high proportion of the elderly population is hypertensive. Sympathomimetic agents with lesser polar hydroxyl groups, for example, are thought to be more lipophilic and are more readily absorbed from the gastrointestinal tract, have higher volumes of distribution, and are more extensively metabolized. Major metabolic pathways include oxidation, deamination, demethylation, and conjugation. Most of these agents are excreted primarily through the kidneys and due to their basic nature, the rate of excretion is dependent on urinary pHs. Any alteration in kidney functions such as in the aged is, therefore, expected to have some clinical significance on the pharmacokinetics of these agents.
Collapse
Affiliation(s)
- S S Chua
- Department of Pharmacy, University of Queensland, St. Lucia, Australia
| | | | | |
Collapse
|
48
|
Kolmodin-Hedman B. Enzyme induction: its relevance for internal exposure and health risks. Int Arch Occup Environ Health 1988; Suppl:76-83. [PMID: 3049388 DOI: 10.1007/978-3-642-73476-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Affiliation(s)
- J C Mucklow
- Department of Postgraduate Medicine, University of Keele, Staffordshire, U.K
| |
Collapse
|
50
|
Smith PB, Caldwell J, Smith RL, Horner MW, Moss MS. The bioavailability of phenylbutazone in the horse. Xenobiotica 1987; 17:435-43. [PMID: 3604253 DOI: 10.3109/00498258709043950] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
[phenyl-14C]-Phenylbutazone was administered to 2 horses p.o. and i.v. on separate occasions. Plasma levels and urinary and faecal elimination of 14C were monitored for up to 7 days after dosing. Phenylbutazone was rapidly and extensively absorbed after oral administration, and its bioavailability was 91% assessed by comparison of plasma AUCs of unchanged drug after p.o. and i.v. administration. The plasma elimination half-life of phenylbutazone was 9.7 h and this was independent of the route of administration. The pattern of elimination of phenylbutazone was independent of the route of administration, with 55% of the dose being found in the urine in 3 days and a further 39% in the faeces in 7 days. These data, which are the first reports of the absolute bioavailability and excretion pathways of phenylbutazone in the horse, are discussed in terms of their significance for the gastrointestinal toxicity of this drug.
Collapse
|