1
|
Aljanabi MA, Alrabadi N, Mahmoud SH, Haddad R, Alzoubi KH. Sildenafil Effect on Atrial Natriuretic Peptide Level in Pulmonary Hypertensive Rats. Cardiovasc Hematol Agents Med Chem 2025; 23:69-75. [PMID: 38797912 DOI: 10.2174/0118715257293794240516075211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Pulmonary Hypertension (PH) leads to changes in pulmonary vascular architecture, hypertrophy of the right ventricle, and heart failure. Sildenafil is a drug that can modulate PH by inducing smooth muscle relaxation and vasodilation. AIMS To investigate the ability of sildenafil to alleviate the monocritaline (MCT)-induced PH in rats and to estimate the role and its effect on the atrial natriuretic peptide (ANP) levels. METHODS 28 adult male rats were divided randomly into four groups: Group A (control group; n=7). Group B (MCT-treated group; n=7) was given a single dose of MCT 60 mg/kg subcutaneously. Group C (The reversal group; n=7) received a single dose of MCT 60 mg/kg subcutaneously for three weeks and then sildenafil at 50 mg/kg/day, given daily for another three weeks. Group D (The prevention group; n=7) simultaneously received a single dose of MCT 60 mg/kg subcutaneously and sildenafil daily at 50 mg/kg for three weeks. RESULTS The animals in the prevention group showed a significant decrease in ANP levels compared to the reversal and MCT-treated groups. This decrease was associated with a significant reduction in the Fulton index ratio in the prevention group compared to the reversal group. The nitric oxide levels were also significantly higher in the reversal group than in the control group. CONCLUSION Preventive sildenafil treatment was associated with a significant decrease in ANP levels and reduced MCT-induced cardiac hypertrophy in rats.
Collapse
Affiliation(s)
- Mukhallad A Aljanabi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Sahar H Mahmoud
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Razan Haddad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jadara University, Irbid, 21110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
2
|
Ogawa H, Kodama M. Structural insight into hormone recognition by the natriuretic peptide receptor-A. FEBS J 2024; 291:2273-2286. [PMID: 38437249 DOI: 10.1111/febs.17104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/21/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024]
Abstract
Atrial natriuretic peptide (ANP) plays a central role in the regulation of blood pressure and volume. ANP activities are mediated by natriuretic peptide receptor-A (NPR-A), a single-pass transmembrane receptor harboring intrinsic guanylate cyclase activity. This study investigated the mechanism underlying NPR-A-dependent hormone recognition through the determination of the crystal structures of the NPR-A extracellular hormone-binding domain complexed with full-length ANP, truncated mutants of ANP, and dendroaspis natriuretic peptide (DNP) isolated from the venom of the green Mamba snake, Dendroaspis angusticeps. The bound peptides possessed pseudo-two-fold symmetry, despite the lack of two-fold symmetry in the primary sequences, which enabled the tight coupling of the peptide to the receptor, and evidently contributes to guanylyl cyclase activity. The binding of DNP to the NPR-A was essentially identical to that of ANP; however, the affinity of DNP for NPR-A was higher than that of ANP owing to the additional interactions between distinctive sequences in the DNP and NPR-A. Consequently, our findings provide valuable insights that can be applied to the development of novel agonists for the treatment of various human diseases.
Collapse
Affiliation(s)
- Haruo Ogawa
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Masami Kodama
- Department of Bio-informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| |
Collapse
|
3
|
Du H, Wang R, Dai X, Yin Z, Liu Y, Su L, Chen H, Zhao S, Zheng L, Dong X, Zhai Y. Effect of Guanylate Cyclase-22-like on Ovarian Development of Orius nagaii (Hemiptera: Anthocoridae). INSECTS 2024; 15:110. [PMID: 38392529 PMCID: PMC10889437 DOI: 10.3390/insects15020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
This study identified and characterized the gene encoding recep tor-type guanylate cyclase-22-like (GCY-22; OnGCY) from the pirate bug Orius nagaii, an important biological control agent. The full-length cDNA of the GCY of O. nagaii was obtained by rapid amplification of cDNA ends (RACE); it had a total length of 4888 base pairs (bp), of which the open reading frame (ORF) was 3750 bp, encoding a polypeptide of 1249 amino acid residues. The physicochemical properties of OnGCY were predicted and analyzed by using relevant ExPASy software, revealing a molecular formula of C6502H10122N1698O1869S57, molecular weight of ~143,811.57 kDa, isoelectric point of 6.55, and fat index of 90.04. The resulting protein was also shown to have a signal peptide, two transmembrane regions, and a conserved tyrosine kinase (tyrkc). Silencing OnGCY by RNA interference significantly inhibited ovarian development and decreased fertility in female O. nagaii in the treated versus the control group. Additionally, OnGCY silencing significantly decreased the expression levels of other GCY and Vg genes. Thus, these results clarify the structure and biological function of OnGCY, which has an important role in insect fecundity. The results also provide a reference for agricultural pest control and future large-scale breeding of biological control agents.
Collapse
Affiliation(s)
- Huiling Du
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Ruijuan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Long Su
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xiaolin Dong
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| |
Collapse
|
4
|
Ensho T, Hino J, Ueda Y, Miyazato M, Iwakura H. Vascular endothelial cell-specific overexpression of CNP did not improve liver fibrosis in HFFCD-induced NASH, but did improve renal lesions. Peptides 2024; 172:171146. [PMID: 38157939 DOI: 10.1016/j.peptides.2023.171146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Mice with endothelial-cell-specific overexpression of C-type natriuretic peptide (E-CNP Tg mice) were shown to be protected against hepatic fibrosis and inflammation induced by high fat diet (HFD) feeding, with improved insulin sensitivity and attenuated weight gain. A recently developed high-fat, high-fructose, high-cholesterol diet (HFFCD) is considered to be a superior model to HFD, owing to the resemblance to human non-alcoholic steatohepatitis (NASH). In this study, we therefore aimed to reveal whether these previous findings with E-CNP Tg mice on HFD can be observed in a newly developed NASH model. Patients with NASH have been suggested to be at higher risk of developing chronic kidney disease, so we also assessed the kidney histology of these mice. After 8 months of HFFCD feeding, the livers of E-CNP Tg mice and controls showed progressive fibrosis, which resembled the features of human NASH. However, no significant differences were observed in NAFLD activity scores between E-CNP Tg mice and controls, although there was a tendency for improvement in E-CNP Tg mice. The reduced levels of GCB, a receptor for CNP, may have weakened the action of CNP in the current model. In the kidneys, HFFCD showed glomerular hypertrophy and tubular atrophy in the cortical region, which were suppressed in E-CNP Tg mice. The present study did not prove the therapeutic effect of CNP on NASH in the HFFCD model, but provided evidence of its potential beneficial effects on NASH-associated renal damage.
Collapse
Affiliation(s)
- Takuya Ensho
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, Wakayama, Japan
| | - Jun Hino
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Yoko Ueda
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, Wakayama, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Hiroshi Iwakura
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
5
|
Juraver-Geslin H, Devotta A, Saint-Jeannet JP. Developmental roles of natriuretic peptides and their receptors. Cells Dev 2023; 176:203878. [PMID: 37742795 PMCID: PMC10841480 DOI: 10.1016/j.cdev.2023.203878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Natriuretic peptides and their receptors are implicated in the physiological control of blood pressure, bone growth, and cardiovascular and renal homeostasis. They mediate their action through the modulation of intracellular levels of cGMP and cAMP, two second-messengers that have broad biological roles. In this review, we briefly describe the major players of this signaling pathway and their physiological roles in the adult, and discuss several reports describing their activity in the control of various aspects of embryonic development in several species. While the core components of this signaling pathway are well conserved, their functions have diverged in the embryo and the adult to control a diverse array of biological processes.
Collapse
Affiliation(s)
- Hugo Juraver-Geslin
- Department of Molecular Pathobiology, New York University, College of Dentistry, New York, NY 10010, USA
| | - Arun Devotta
- Department of Molecular Pathobiology, New York University, College of Dentistry, New York, NY 10010, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University, College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
6
|
Dhanusu Sivakalai S, Sowndhar Rajan B, Vellaichamy E. C-type natriuretic peptide (CNP) inhibits 7,12-Dimethylbenz[a]anthracene (DMBA)/Croton oil-induced skin tumor growth by modulating inflammation in Swiss albino mice. J Biochem Mol Toxicol 2023; 37:e23423. [PMID: 37352108 DOI: 10.1002/jbt.23423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
C-type natriuretic peptide (CNP) exhibits anti-inflammatory activity besides its natriuretic and diuretic functions. The present study aimed to determine the anticancer and synergistic therapeutic activity of CNP against a 7,12-Dimethylbenz[a]anthracene (DMBA)/Croton oil-induced skin tumor mouse model. CNP (2.5 µg/kg body weight) was injected either alone and/or in combination with Cisplatin (CDDP) (2 mg/kg body weight) for 4 weeks. The dorsal skin tumor incidences/growth and mortality rate were recorded during the experimental period of 16 weeks. The serum C-reactive protein (CRP), and lactate dehydrogenase (LDH) levels, infiltrating mast cells, and AgNORs proliferating cells count were analyzed in control and experimental mice. Further, the expression profile of marker genes of proliferation, inflammation, and progression molecules were analyzed using Reverse transcriptase-polymerase chain reaction (RT-PCR)/quantitative PCR (qPCR), western blot, and immunohistochemistry. The DMBA/Croton oil-induced mice exhibited 100% tumor incidence. Whereas, CNP alone, CDDP alone, and CNP+CDDP combination-treated mice exhibited 58%, 46%, and 24% tumor incidence, respectively. Also, a marked reduction in the levels of serum CRP and LDH, the number of infiltrating mast cells count and AgNORs proliferating cells count were noticed in the mice skin sections. Further, a significant reduction in both mRNA and protein expression levels of proliferation, inflammation, and progression markers were noticed in CNP (p < 0.01), CDDP (p < 0.01), and CNP+CDDP combination (p < 0.001) treated mice, respectively. The results of the present study suggest that CNP has anticancer activity. Further, the CNP+CDDP treatment has more promising anticancer activity as compared with CNP or CDDP alone treatment, probably due to the synergistic antiproliferative and anti-inflammatory activities of CNP and CDDP.
Collapse
Affiliation(s)
- Suresh Dhanusu Sivakalai
- Peptide Research and Molecular Cardiology Laboratory, Department of Biochemistry, Guindy Campus, University of Madras, Chennai, Tamil Nadu, India
| | - Boopathi Sowndhar Rajan
- Peptide Research and Molecular Cardiology Laboratory, Department of Biochemistry, Guindy Campus, University of Madras, Chennai, Tamil Nadu, India
| | - Elangovan Vellaichamy
- Peptide Research and Molecular Cardiology Laboratory, Department of Biochemistry, Guindy Campus, University of Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Bekele AT. Natriuretic Peptide Receptors (NPRs) as a Potential Target for the Treatment of Heart Failure. Curr Heart Fail Rep 2023; 20:429-440. [PMID: 37710133 DOI: 10.1007/s11897-023-00628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE OF REVIEW Heart failure is defined as a complex clinical syndrome that results from any structural or functional impairment of ventricular filling or ejection of blood. The natriuretic peptide is known to exert its biological action on the kidney, heart, blood vessels, renin-angiotensin system, autonomous nervous system, and central nervous system. The natriuretic peptide-natriuretic receptor system plays an important role in the regulation of blood pressure and body fluid volume through its pleiotropic effects. RECENT FINDINGS The clinical and animal studies suggest that natriuretic peptide-natriuretic receptors are important targets for the treatment of heart failure and other cardiovascular diseases. Even though attempts targeting natriuretic peptide receptors are underway for heart failure treatment, they seem insufficient despite the receptor systems' potential. This review summarizes natriuretic peptide-natriuretic receptor system's physiological actions and potential target for the treatment of heart failure. Natriuretic peptides play multiple roles in different parts of the body, almost all of the activities related to this receptor system appear to have the potential to be harnessed to treat heart failure or symptoms associated with heart failure.
Collapse
Affiliation(s)
- Adamu T Bekele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia.
| |
Collapse
|
8
|
Tsutsui H, Albert NM, Coats AJS, Anker SD, Bayes-Genis A, Butler J, Chioncel O, Defilippi CR, Drazner MH, Felker GM, Filippatos G, Fiuzat M, Ide T, Januzzi JL, Kinugawa K, Kuwahara K, Matsue Y, Mentz RJ, Metra M, Pandey A, Rosano G, Saito Y, Sakata Y, Sato N, Seferovic PM, Teerlink J, Yamamoto K, Yoshimura M. Natriuretic peptides: role in the diagnosis and management of heart failure: a scientific statement from the Heart Failure Association of the European Society of Cardiology, Heart Failure Society of America and Japanese Heart Failure Society. Eur J Heart Fail 2023; 25:616-631. [PMID: 37098791 DOI: 10.1002/ejhf.2848] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 04/27/2023] Open
Abstract
Natriuretic peptides, brain (B-type) natriuretic peptide (BNP) and N-terminal prohormone of brain natriuretic peptide (NT-proBNP) are globally and most often used for the diagnosis of heart failure (HF). In addition, they can have an important complementary role in the risk stratification of its prognosis. Since the development of angiotensin receptor-neprilysin inhibitors (ARNIs), the use of natriuretic peptides as therapeutic agents has grown in importance. The present document is the result of the Trilateral Cooperation Project among the Heart Failure Association of the European Society of Cardiology, the Heart Failure Society of America and the Japanese Heart Failure Society. It represents an expert consensus that aims to provide a comprehensive, up-to-date perspective on natriuretic peptides in the diagnosis and management of HF, with a focus on the following main issues: (1) history and basic research: discovery, production and cardiovascular protection; (2) diagnostic and prognostic biomarkers: acute HF, chronic HF, inclusion/endpoint in clinical trials, and natriuretic peptide-guided therapy; (3) therapeutic use: nesiritide (BNP), carperitide (ANP) and ARNIs; and (4) gaps in knowledge and future directions.
Collapse
Affiliation(s)
- Hiroyuki Tsutsui
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nancy M Albert
- Research and Innovation-Nursing Institute, Kaufman Center for Heart Failure-Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew J S Coats
- University of Warwick, Warwick, UK, and Monash University, Clayton, Australia
| | - Stefan D Anker
- Department of Cardiology and Berlin Institute of Health Center for Regenerative Therapies; German Centre for Cardiovascular Research partner site Berlin, Germany; Charite Universit atsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Antoni Bayes-Genis
- Heart Institute, Hospital Germans Trias i Pujol, CIBERCV, Badalona, Spain
- Universitat Autonoma Barcelona, Spain
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX, USA
- University of Mississippi, Jackson, MS, USA
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases Prof. C.C. Iliescu Bucharest, University of Medicine Carol Davila, Bucharest, Romania
| | | | - Mark H Drazner
- Clinical Chief of Cardiology, University of Texas Southwestern Medical Center, Department of Internal Medicine/Division of Cardiology, Dallas, TX, USA
| | - G Michael Felker
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Gerasimos Filippatos
- School of Medicine of National and Kapodistrian University of Athens, Athens University Hospital Attikon, Athens, Greece
| | - Mona Fiuzat
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Tomomi Ide
- From the Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - James L Januzzi
- Massachusetts General Hospital, Harvard Medical School and Baim Institute for Clinical Research, Boston, MA, USA
| | - Koichiro Kinugawa
- Second Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuya Matsue
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Robert J Mentz
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | - Marco Metra
- Cardiology. ASST Spedali Civili and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Ambarish Pandey
- Division of Cardiology, Department of Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Giuseppe Rosano
- Centre for Clinical and Basic Research, Department of Medical Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Japan
- Nara Prefecture Seiwa Medical Center, Sango, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoki Sato
- Department of Cardiovascular Medicine, Kawaguchi Cardiovascular and Respiratory Hospital, Kawaguchi, Japan
| | - Petar M Seferovic
- University of Belgrade Faculty of Medicine, Serbian Academy of Sciences and Arts, and Heart Failure Center, Belgrade University Medical Center, Belgrade, Serbia
| | - John Teerlink
- Section of Cardiology, San Francisco Veterans Affairs Medical Center and School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kazuhiro Yamamoto
- Department of Cardiovascular Medicine and Endocrinology and Metabolism, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Tsutsui H, Albert NM, Coats AJS, Anker SD, Bayes-Genis A, Butler J, Chioncel O, Defilippi CR, Drazner MH, Felker GM, Filippatos G, Fiuzat M, Ide T, Januzzi JL, Kinugawa K, Kuwahara K, Matsue Y, Mentz RJ, Metra M, Pandey A, Rosano G, Saito Y, Sakata Y, Sato N, Seferovic PM, Teerlink J, Yamamoto K, Yoshimura M. Natriuretic Peptides: Role in the Diagnosis and Management of Heart Failure: A Scientific Statement From the Heart Failure Association of the European Society of Cardiology, Heart Failure Society of America and Japanese Heart Failure Society. J Card Fail 2023; 29:787-804. [PMID: 37117140 DOI: 10.1016/j.cardfail.2023.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 04/30/2023]
Abstract
Natriuretic peptides, brain (B-type) natriuretic peptide (BNP) and N-terminal prohormone of brain natriuretic peptide (NT-proBNP) are globally and most often used for the diagnosis of heart failure (HF). In addition, they can have an important complementary role in the risk stratification of its prognosis. Since the development of angiotensin receptor neprilysin inhibitors (ARNIs), the use of natriuretic peptides as therapeutic agents has grown in importance. The present document is the result of the Trilateral Cooperation Project among the Heart Failure Association of the European Society of Cardiology, the Heart Failure Society of America and the Japanese Heart Failure Society. It represents an expert consensus that aims to provide a comprehensive, up-to-date perspective on natriuretic peptides in the diagnosis and management of HF, with a focus on the following main issues: (1) history and basic research: discovery, production and cardiovascular protection; (2) diagnostic and prognostic biomarkers: acute HF, chronic HF, inclusion/endpoint in clinical trials, and natriuretic peptides-guided therapy; (3) therapeutic use: nesiritide (BNP), carperitide (ANP) and ARNIs; and (4) gaps in knowledge and future directions.
Collapse
Affiliation(s)
- Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Nancy M Albert
- Research and Innovation-Nursing Institute, Kaufman Center for Heart Failure-Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew J S Coats
- University of Warwick, Warwick, UK, and Monash University, Clayton, Australia
| | - Stefan D Anker
- Department of Cardiology and Berlin Institute of Health Center for Regenerative Therapies; German Centre for Cardiovascular Research partner site Berlin, Germany; Charité Universitätsmedizin Berlin, Germany; Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Antoni Bayes-Genis
- Heart Institute, Hospital Germans Trias i Pujol, CIBERCV, Badalona, Spain; Universitat Autonoma Barcelona, Spain
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, USA; University of Mississippi, Jackson, Mississippi, USA
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases Prof. C.C. Iliescu Bucharest, University of Medicine Carol Davila, Bucharest, Romania
| | | | - Mark H Drazner
- Clinical Chief of Cardiology, University of Texas Southwestern Medical Center, Department of Internal Medicine/Division of Cardiology, Dallas, Texas, USA
| | - G Michael Felker
- Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gerasimos Filippatos
- School of Medicine of National and Kapodistrian University of Athens, Athens University Hospital Attikon, Athens, Greece
| | - Mona Fiuzat
- Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - James L Januzzi
- Massachusetts General Hospital, Harvard Medical School and Baim Institute for Clinical Research, Boston, Massachusetts, USA
| | - Koichiro Kinugawa
- Second Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuya Matsue
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Robert J Mentz
- Duke Clinical Research Institute, Durham, Nortth Carolina, USA; Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Marco Metra
- Cardiology. ASST Spedali Civili and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Ambarish Pandey
- Division of Cardiology, Department of Medicine, University of Texas Southwestern, Dallas, Texas, USA
| | - Giuseppe Rosano
- Centre for Clinical and Basic Research, Department of Medical Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Japan; Nara Prefecture Seiwa Medical Center, Sango, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoki Sato
- Department of Cardiovascular Medicine, Kawaguchi Cardiovascular and Respiratory Hospital, Kawaguchi, Japan
| | - Petar M Seferovic
- University of Belgrade Faculty of Medicine, Serbian Academy of Sciences and Arts, and Heart Failure Center, Belgrade University Medical Center, Belgrade, Serbia
| | - John Teerlink
- Section of Cardiology, San Francisco Veterans Affairs Medical Center and School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Kazuhiro Yamamoto
- Department of Cardiovascular Medicine and Endocrinology and Metabolism, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Harrington EO, Kumar A, Leandre V, Wilson ZS, Guarino B, Braza J, Lefort CT, Klinger JR. Natriuretic peptide receptor-C mediates the inhibitory effect of atrial natriuretic peptide on neutrophil recruitment to the lung during acute lung injury. Am J Physiol Lung Cell Mol Physiol 2022; 323:L438-L449. [PMID: 35943160 PMCID: PMC9529260 DOI: 10.1152/ajplung.00477.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 01/08/2023] Open
Abstract
Atrial natriuretic peptide (ANP) protects against acute lung injury (ALI), but the receptor that mediates this effect is not known. Transgenic mice with 0 (knockout), 1 (heterozygote), or 2 (wild-type) functional copies of Npr3, the gene that encodes for natriuretic peptide receptor-C (NPR-C), were treated with intravenous infusion of ANP or saline vehicle before oropharyngeal aspiration of Pseudomonas aeruginosa (PA103) or saline vehicle. Lung injury was assessed 4 h following aspiration by measurement of lung wet/dry (W/D) weight, whole lung leukocyte and cytokine levels, and protein, leukocyte, and cytokine concentration in bronchoalveolar lavage fluid (BALF). PA103 induced acute lung injury as evidenced by increases in lung W/D ratio and protein concentration in BALF. The severity of PA103-induced lung injury did not differ between NPR-C genotypes. Treatment with intravenous ANP infusion reduced PA103-induced increases in lung W/D and BALF protein concentration in all three NPRC genotypes. PA103 increased the percentage of leukocytes that were neutrophils and cytokine levels in whole lung and BALF in NPR-C wild-type and knockout mice. This effect was blunted by ANP in wild-type mice but not in the NPR-C knockout mice. NPR-C does not mediate the protective effect of ANP on endothelial cell permeability in settings of PA103-induced injury but may mediate the effect of ANP on inhibition of the recruitment of neutrophils to the lung and thereby attenuate the release of inflammatory cytokines.
Collapse
Affiliation(s)
- Elizabeth O Harrington
- Vascular Research Lab, Providence Veterans Administration Medical Center, Providence, Rhode Island
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital, Providence, Rhode Island
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Ashok Kumar
- Vascular Research Lab, Providence Veterans Administration Medical Center, Providence, Rhode Island
| | - Verida Leandre
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island
| | - Zachary S Wilson
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island
| | - Brianna Guarino
- Vascular Research Lab, Providence Veterans Administration Medical Center, Providence, Rhode Island
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital, Providence, Rhode Island
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Julie Braza
- Vascular Research Lab, Providence Veterans Administration Medical Center, Providence, Rhode Island
| | - Craig T Lefort
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, Rhode Island
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - James R Klinger
- Vascular Research Lab, Providence Veterans Administration Medical Center, Providence, Rhode Island
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital, Providence, Rhode Island
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
11
|
Nakagawa H, Saito Y. Roles of Natriuretic Peptides and the Significance of Neprilysin in Cardiovascular Diseases. BIOLOGY 2022; 11:1017. [PMID: 36101398 PMCID: PMC9312343 DOI: 10.3390/biology11071017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) activate the guanylyl cyclase A receptor (GC-A), which synthesizes the second messenger cGMP in a wide variety of tissues and cells. C-type natriuretic peptide (CNP) activates the cGMP-producing guanylyl cyclase B receptor (GC-B) in chondrocytes, endothelial cells, and possibly smooth muscle cells, cardiomyocytes, and cardiac fibroblasts. The development of genetically modified mice has helped elucidate the physiological roles of natriuretic peptides via GC-A or GC-B. These include the hormonal effects of ANP/BNP in the vasculature, autocrine effects of ANP/BNP in cardiomyocytes, and paracrine effects of CNP in the vasculature and cardiomyocytes. Neprilysin (NEP) is a transmembrane neutral endopeptidase that degrades the three natriuretic peptides. Recently, mice overexpressing NEP, specifically in cardiomyocytes, revealed that local cardiac NEP plays a vital role in regulating natriuretic peptides in the heart tissue. Since NEP inhibition is a clinically accepted approach for heart failure treatment, the physiological roles of natriuretic peptides have regained attention. This article focuses on the physiological roles of natriuretic peptides elucidated in mice with GC-A or GC-B deletion, the significance of NEP in natriuretic peptide metabolism, and the long-term effects of angiotensin receptor-neprilysin inhibitor (ARNI) on cardiovascular diseases.
Collapse
Affiliation(s)
- Hitoshi Nakagawa
- Cardiovascular Medicine, Nara Medical University, Kashihara 634-8522, Nara, Japan;
| | - Yoshihiko Saito
- Nara Prefecture Seiwa Medical Center, Mimuro 636-0802, Nara, Japan
| |
Collapse
|
12
|
Physiological and Pathophysiological Effects of C-Type Natriuretic Peptide on the Heart. BIOLOGY 2022; 11:biology11060911. [PMID: 35741432 PMCID: PMC9219612 DOI: 10.3390/biology11060911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 01/06/2023]
Abstract
Simple Summary C-type natriuretic peptide (CNP) is the third member of the natriuretic peptide family. Unlike atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), CNP was not previously regarded as an important cardiac modulator. However, recent studies have revealed the physiological and pathophysiological importance of CNP in the heart; in concert with its cognate natriuretic peptide receptor-B (NPR-B), CNP has come to be regarded as the major heart-protective natriuretic peptide in the failed heart. In this review, I introduce the history of research on CNP in the cardiac field. Abstract C-type natriuretic peptide (CNP) is the third member of the natriuretic peptide family. Unlike other members, i.e., atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), which are cardiac hormones secreted from the atrium and ventricle of the heart, respectively, CNP is regarded as an autocrine/paracrine regulator with broad expression in the body. Because of its low expression levels compared to ANP and BNP, early studies failed to show its existence and role in the heart. However, recent studies have revealed the physiological and pathophysiological importance of CNP in the heart; in concert with the distribution of its specific natriuretic peptide receptor-B (NPR-B), CNP has come to be regarded as the major heart-protective natriuretic peptide in the failed heart. NPR-B generates intracellular cyclic guanosine 3′,5′-monophosphate (cGMP) upon CNP binding, followed by various molecular effects including the activation of cGMP-dependent protein kinases, which generates diverse cytoprotective actions in cardiomyocytes, as well as in cardiac fibroblasts. CNP exerts negative inotropic and positive lusitropic responses in both normal and failing heart models. Furthermore, osteocrin, the intrinsic and specific ligand for the clearance receptor for natriuretic peptides, can augment the effects of CNP and may supply a novel therapeutic strategy for cardiac protection.
Collapse
|
13
|
Bose A, Visweswariah SS. The pseudokinase domain in receptor guanylyl cyclases. Methods Enzymol 2022; 667:535-574. [PMID: 35525553 DOI: 10.1016/bs.mie.2022.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyclic GMP is produced by enzymes called guanylyl cyclases, of which the membrane-associated forms contain an intracellular pseudokinase domain that allosterically regulates the C-terminal guanylyl cyclase domain. Ligand binding to the extracellular domain of these single transmembrane-spanning domain receptors elicits an increase in cGMP levels in the cell. The pseudokinase domain (or kinase-homology domain) in these receptors appears to be critical for ligand-mediated activation. While the pseudokinase domain does not possess kinase activity, biochemical evidence indicates that the domain can bind ATP and thereby allosterically regulate the catalytic activity of these receptors. The pseudokinase domain also appears to be the site of interaction of regulatory proteins, as seen in the retinal guanylyl cyclases that are involved in visual signal transduction. In the absence of structural information on the pseudokinase-guanylyl cyclase domain organization of any member of this family of receptors, biochemical evidence has provided clues to the physical interaction of the pseudokinase and guanylyl cyclase domain. An α-helical linker region between the pseudokinase domain and the guanylyl cyclase domain regulates the basal activity of these receptors in the absence of a stimulatory ligand and is important for stabilizing the structure of the pseudokinase domain that can bind ATP. Here, we present an overview of salient features of ATP-mediated regulation of receptor guanylyl cyclases and describe biochemical approaches that allow a clearer understanding of the intricate interplay between the pseudokinase domain and catalytic domain in these proteins.
Collapse
Affiliation(s)
- Avipsa Bose
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
14
|
Takei Y. Evolution of the membrane/particulate guanylyl cyclase: From physicochemical sensors to hormone receptors. Gen Comp Endocrinol 2022; 315:113797. [PMID: 33957096 DOI: 10.1016/j.ygcen.2021.113797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Guanylyl cyclase (GC) is an enzyme that produces 3',5'-cyclic guanosine monophosphate (cGMP), one of the two canonical cyclic nucleotides used as a second messenger for intracellular signal transduction. The GCs are classified into two groups, particulate/membrane GCs (pGC) and soluble/cytosolic GCs (sGC). In relation to the endocrine system, pGCs include hormone receptors for natriuretic peptides (GC-A and GC-B) and guanylin peptides (GC-C), while sGC is a receptor for nitric oxide and carbon monoxide. Comparing the functions of pGCs in eukaryotes, it is apparent that pGCs perceive various environmental factors such as light, temperature, and various external chemical signals in addition to endocrine hormones, and transmit the information into the cell using the intracellular signaling cascade initiated by cGMP, e.g., cGMP-dependent protein kinases, cGMP-sensitive cyclic nucleotide-gated ion channels and cGMP-regulated phosphodiesterases. Among vertebrate pGCs, GC-E and GC-F are localized on retinal epithelia and are involved in modifying signal transduction from the photoreceptor, rhodopsin. GC-D and GC-G are localized in olfactory epithelia and serve as sensors at the extracellular domain for external chemical signals such as odorants and pheromones. GC-G also responds to guanylin peptides in the urine, which alters sensitivity to other chemicals. In addition, guanylin peptides that are secreted into the intestinal lumen, a pseudo-external environment, act on the GC-C on the apical membrane for regulation of epithelial transport. In this context, GC-C and GC-G appear to be in transition from exocrine pheromone receptor to endocrine hormone receptor. The pGCs also exist in various deuterostome and protostome invertebrates, and act as receptors for environmental, exocrine and endocrine factors including hormones. Tracing the evolutionary history of pGCs, it appears that pGCs first appeared as a sensor for physicochemical signals in the environment, and then evolved to function as hormone receptors. In this review, the author proposes an evolutionary history of pGCs that highlights the emerging role of the GC/cGMP system for signal transduction in hormone action.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan.
| |
Collapse
|
15
|
Sogawa-Fujiwara C, Fujiwara Y, Hanagata A, Yang Q, Mihara T, Kaji N, Kunieda T, Hori M. Npr2 mutant mice show vasodilation and undeveloped adipocytes in mesentery. BMC Res Notes 2021; 14:438. [PMID: 34838130 PMCID: PMC8626926 DOI: 10.1186/s13104-021-05853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/15/2021] [Indexed: 11/10/2022] Open
Abstract
Objective The biological importance for the signaling of C-type natriuretic peptide (CNP) and natriuretic peptide receptor B (NPR-B) has been recognized. However, the details remain unclear and are debatable. The Npr2 is a gene of NPR-B, and we previously reported a unique phenotype of a spontaneous mutant mouse lacking Npr2 (Npr2slw/slw), such as severe ileus-like disorder with bloodless blood vessels. In this study, we analyzed the bloodless mesenteric vascular morphology of Npr2slw/slw by histological observation to clarify the effects of the CNP/NPR-B signal deficiency. Results Blood vessels in the mesentery were clearly dilated in the preweaning Npr2slw/slw mice. Additionally, in the Npr2slw/slw mice, the lacteals were partially dilation or randomly direction mucosal epithelial cells in villi, and mesenteric adipocytes were undeveloped. These findings provide important information for understanding the role of CNP/NPR-B signals on intestine with mesentery.
Collapse
Affiliation(s)
- Chizuru Sogawa-Fujiwara
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Yasuhiro Fujiwara
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Atsuki Hanagata
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Qunhui Yang
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Taiki Mihara
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Noriyuki Kaji
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Tetsuo Kunieda
- Faculty of Veterinary Medcine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime, 794-8555, Japan
| | - Masatoshi Hori
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
16
|
Tegin G, Gao Y, Hamlyn JM, Clark BJ, El-Mallakh RS. Inhibition of endogenous ouabain by atrial natriuretic peptide is a guanylyl cyclase independent effect. PLoS One 2021; 16:e0260131. [PMID: 34793577 PMCID: PMC8601428 DOI: 10.1371/journal.pone.0260131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background Endogenous ouabain (EO) and atrial natriuretic peptide (ANP) are important in regulation of sodium and fluid balance. There is indirect evidence that ANP may be involved in the regulation of endogenous cardenolides. Methods H295R are human adrenocortical cells known to release EO. Cells were treated with ANP at physiologic concentrations or vehicle (0.1% DMSO), with or without guanylyl cyclase inhibitor 1,2,4 oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). Cyclic guanosine monophosphate (cGMP), the intracellular second messenger of ANP, was measured by a chemiluminescent immunoassay and EO was measured by radioimmunoassay of C18 extracted samples. Results EO secretion is inhibited by ANP treatment, with the most prolonged inhibition (90 min vs ≤ 60 min) occurring at physiologic ANP concentrations (50 pg/mL). Inhibition of guanylyl cyclase with ODQ, also reduces EO secretion. The inhibitory effects on EO release in response to cotreatment with ANP and ODQ appeared to be additive. Conclusions ANP inhibits basal EO secretion, and it is unlikely that this is mediated through ANP-A or ANP-B receptors (the most common natriuretic peptide receptors) or their cGMP second messenger; the underlying mechanisms involved are not revealed in the current studies. The role of ANP in the control of EO synthesis and secretion in vivo requires further investigation.
Collapse
Affiliation(s)
- Gulay Tegin
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, Kentucky, United States of America
| | - Yonglin Gao
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, Kentucky, United States of America
| | - John M. Hamlyn
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Mississippi, United States of America
| | - Barbara J. Clark
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, United States of America
| | - Rif S. El-Mallakh
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Itch is one of the most primal sensations, being both ubiquitous and important for the well-being of animals. For more than a century, a desire to understand how itch is encoded by the nervous system has prompted the advancement of many theories. Within the past 15 years, our understanding of the molecular and neural mechanisms of itch has undergone a major transformation, and this remarkable progress continues today without any sign of abating. Here I describe accumulating evidence that indicates that itch is distinguished from pain through the actions of itch-specific neuropeptides that relay itch information to the spinal cord. According to this model, classical neurotransmitters transmit, inhibit and modulate itch information in a context-, space- and time-dependent manner but do not encode itch specificity. Gastrin-releasing peptide (GRP) is proposed to be a key itch-specific neuropeptide, with spinal neurons expressing GRP receptor (GRPR) functioning as a key part of a convergent circuit for the conveyance of peripheral itch information to the brain.
Collapse
|
18
|
Pandey KN. Molecular Signaling Mechanisms and Function of Natriuretic Peptide Receptor-A in the Pathophysiology of Cardiovascular Homeostasis. Front Physiol 2021; 12:693099. [PMID: 34489721 PMCID: PMC8416980 DOI: 10.3389/fphys.2021.693099] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
The discovery of atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP) and their cognate receptors has greatly increased our knowledge of the control of hypertension and cardiovascular homeostasis. ANP and BNP are potent endogenous hypotensive hormones that elicit natriuretic, diuretic, vasorelaxant, antihypertrophic, antiproliferative, and antiinflammatory effects, largely directed toward the reduction of blood pressure (BP) and cardiovascular diseases (CVDs). The principal receptor involved in the regulatory actions of ANP and BNP is guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which produces the intracellular second messenger cGMP. Cellular, biochemical, molecular, genetic, and clinical studies have facilitated understanding of the functional roles of natriuretic peptides (NPs), as well as the functions of their receptors, and signaling mechanisms in CVDs. Transgenic and gene-targeting (gene-knockout and gene-duplication) strategies have produced genetically altered novel mouse models and have advanced our knowledge of the importance of NPs and their receptors at physiological and pathophysiological levels in both normal and disease states. The current review describes the past and recent research on the cellular, molecular, genetic mechanisms and functional roles of the ANP-BNP/NPRA system in the physiology and pathophysiology of cardiovascular homeostasis as well as clinical and diagnostic markers of cardiac disorders and heart failure. However, the therapeutic potentials of NPs and their receptors for the diagnosis and treatment of cardiovascular diseases, including hypertension, heart failure, and stroke have just begun to be expanded. More in-depth investigations are needed in this field to extend the therapeutic use of NPs and their receptors to treat and prevent CVDs.
Collapse
Affiliation(s)
- Kailash N. Pandey
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
19
|
Kuwahara K. The natriuretic peptide system in heart failure: Diagnostic and therapeutic implications. Pharmacol Ther 2021; 227:107863. [PMID: 33894277 DOI: 10.1016/j.pharmthera.2021.107863] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Natriuretic peptides, which are activated in heart failure, play an important cardioprotective role. The most notable of the cardioprotective natriuretic peptides are atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), which are abundantly expressed and secreted in the atrium and ventricles, respectively, and C-type natriuretic peptide (CNP), which is expressed mainly in the vasculature, central nervous system, and bone. ANP and BNP exhibit antagonistic effects against angiotensin II via diuretic/natriuretic actions, vasodilatory actions, and inhibition of aldosterone secretion, whereas CNP is involved in the regulation of vascular tone and blood pressure, among other roles. ANP and BNP are of particular interest with respect to heart failure, as their levels, most notably BNP and N-terminal proBNP-a cleavage product produced when proBNP is processed to mature BNP-are increased in patients with heart failure. Furthermore, the identification of natriuretic peptides as sensitive markers of cardiac load has driven significant research into their physiological roles in cardiovascular homeostasis and disease, as well as their potential use as both biomarkers and therapeutics. In this review, I discuss the physiological functions of the natriuretic peptide family, with a particular focus on the basic research that has led to our current understanding of its roles in maintaining cardiovascular homeostasis, and the pathophysiological implications for the onset and progression of heart failure. The clinical significance and potential of natriuretic peptides as diagnostic and/or therapeutic agents are also discussed.
Collapse
Affiliation(s)
- Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| |
Collapse
|
20
|
Miyoshi T, Hosoda H, Minamino N. Significance of Atrial and Brain Natriuretic Peptide Measurements in Fetuses With Heart Failure. Front Physiol 2021; 12:654356. [PMID: 33815155 PMCID: PMC8012666 DOI: 10.3389/fphys.2021.654356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Fetal heart failure is mainly caused by congenital heart defect and arrhythmia. It is difficult to appropriately diagnose the severity of fetal heart failure simply by ultrasonography because the development of a fetal heart in fetoplacental circulation and how well the fetal myocardium can adapt to postnatal cardiopulmonary circulation are challenging to assess. In adult cardiology, natriuretic peptides (NPs) are the most useful biomarker of heart failure; however, studies investigating NP levels in the fetuses and amniotic fluid are quite limited. Furthermore, little is known about their production and metabolism. This review summarized the most relevant findings on NP levels in the umbilical cord blood and amniotic fluid. The findings can then extend their use as a diagnostic biomarker of heart failure in fetuses with congenital heart defect and/or arrhythmia.
Collapse
Affiliation(s)
- Takekazu Miyoshi
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan.,Clinical Research Center, National Center for Child Health and Development, Tokyo, Japan
| | - Hiroshi Hosoda
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
21
|
C-type natriuretic peptide-induced relaxation through cGMP-dependent protein kinase and SERCA activation is impaired in two kidney-one clip rat aorta. Life Sci 2021; 272:119223. [PMID: 33610574 DOI: 10.1016/j.lfs.2021.119223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
AIMS Hypertension underlies endothelial dysfunction, and activation of vasorelaxation signaling with low dependence on nitric oxide (NO) represents a good alternative for vascular modulation. C-type natriuretic peptide (CNP) causes relaxation by increasing cyclic guanosine 3',5'-monophosphate (cGMP) or Gi-protein activation through its natriuretic peptide receptor-B or -C, respectively. We have hypothesized that CNP could exerts its effects and could overcome endothelial dysfunction in two kidney-one clip (2K-1C) hypertensive rat aorta. Here, we investigate the intracellular signaling involved in CNP effects in hypertension. MATERIALS AND METHODS The 2K-1C hypertension was induced in male Wistar rats (200 g). CNP-induced vascular relaxation and cGMP production were investigated in rat thoracic aortas. The natriuretic peptide receptor-B and -C localization was evaluated by immunofluorescence. Calcium mobilization was assessed in endothelial cells from rat aortas. KEY FINDINGS CNP induced similar relaxation in normotensive and 2K-1C hypertensive rat aortas, which increased after endothelium removal. CNP-induced relaxation involved natriuretic peptide receptor-B and -C activation in 2K-1C rats. Nitric oxide synthase (NOS) and soluble guanylyl cyclase (sGC) counter-regulated CNP-particulate GC (pGC) activation in aortas. CNP reduced endothelial calcium and increased cGMP production, which was lower in 2K-1C. CNP-induced cGMP-dependent protein kinase (PKG) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) activation was impaired in 2K-1C rat aorta. SIGNIFICANCE Our results indicated CNP triggered relaxation through its natriuretic peptide receptor-B and -C in 2K-1C rat aortas, and that CNP-induced relaxation overcomes endothelial dysfunction in hypertension. In addition, NOS and sGC activities counter-regulate CNP-pGC activation to induce vascular relaxation.
Collapse
|
22
|
Kato J. Natriuretic peptides and neprilysin inhibition in hypertension and hypertensive organ damage. Peptides 2020; 132:170352. [PMID: 32610060 DOI: 10.1016/j.peptides.2020.170352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/22/2023]
Abstract
The family of natriuretic peptides (NPs) discovered in mammalian tissues including cardiac atrium and brain consists of three members, namely, atrial, B- and C-type natriuretic peptides (ANP, BNP, CNP). Since the discovery, basic and clinical studies have been vigorously performed to explore the biological functions and pathophysiological roles of NPs in a wide range of diseases including hypertension and heart failure. These studies revealed that ANP and BNP are hormones secreted from the heart into the blood stream in response to pre- or after-load, counteracting blood pressure (BP) elevation and fluid retention through specific receptors. Meanwhile, CNP was found to be produced by the vascular endothelium, acting as a local mediator potentially serving protective functions for the blood vessels. Because NPs not only exert blood pressure lowering actions but also alleviate hypertensive organ damage, attempts have been made to develop therapeutic agents for hypertension by utilizing this family of NPs. One strategy is to inhibit neprilysin, an enzyme degrading NPs, thereby enhancing the actions of endogenous peptides. Recently, a dual inhibitor of angiotensin receptor-neprilysin was approved for heart failure, and neprilysin inhibition has also been shown to be beneficial in treating patients with hypertension. This review summarizes the roles of NPs in regulating BP, with special references to hypertension and hypertensive organ damage, and discusses the therapeutic implications of neprilysin inhibition.
Collapse
Affiliation(s)
- Johji Kato
- Frontier Science Research Center, University of Miyazaki Faculty of Medicine, Cardiovascular Medicine, University of Miyazaki Hospital, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
23
|
Defective development and microcirculation of intestine in Npr2 mutant mice. Sci Rep 2020; 10:14761. [PMID: 32901096 PMCID: PMC7479618 DOI: 10.1038/s41598-020-71812-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Abstract
Intractable gastrointestinal (GI) diseases often develop during infancy. Our group previously reported that natriuretic peptide receptor B (NPR-B)-deficient Npr2slw/slw mice exhibit severe intestinal dysfunction, such as stenosis and distention, which resembles the dysfunction observed in Hirschsprung’s disease-allied disorders. However, the root cause of intestinal dysfunction and the detailed of pathophysiological condition in the intestine are not yet clear. Here, we report that the intestine of preweaning Npr2slw/slw mice showed bloodless blood vessels, and nodes were found in the lymphatic vessel. Additionally, the lacteals, smooth muscle, blood vessel, and nerves were barely observed in the villi of preweaning Npr2slw/slw mice. Moreover, intramuscular interstitial cells of Cajal (ICC-IM) were clearly reduced. In contrast, villi and ICC-IM were developed normally in surviving adult Npr2slw/slw mice. However, adult Npr2slw/slw mice exhibited partially hypoplastic blood vessels and an atrophied enteric nervous. Furthermore, adult Npr2slw/slw mice showed markedly reduced white adipose tissue. These findings suggest that the cause of GI dysfunction in preweaning Npr2slw/slw mice is attributed to defective intestinal development with microcirculation disorder. Thus, it is suggested that NPR-B signaling is involved in intestinal development and control of microcirculation and fat metabolism. This report provides new insights into intractable GI diseases, obesity, and NPR-B signaling.
Collapse
|
24
|
Martin P, Cohen A, Uddin S, Epelbaum L, Josiah S. Randomized, Double-Masked, Placebo-Controlled Dose Escalation Study of TAK-639 Topical Ophthalmic Solution in Subjects with Ocular Hypertension or Primary Open-Angle Glaucoma. Clin Ophthalmol 2020; 14:885-896. [PMID: 32256046 PMCID: PMC7093107 DOI: 10.2147/opth.s242932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose TAK-639 is a topical, nine-amino acid, synthetic, C-type natriuretic peptide analog in Phase 1 development for the treatment of ocular hypertension (OHT) and primary open-angle glaucoma (POAG). TAK-639 is postulated to lower intraocular pressure (IOP) through a novel mechanism of action (MOA) that increases trabecular meshwork outflow. We investigated the safety and tolerability of TAK-639 in subjects with OHT or POAG. Methods This was a phase 1, multicenter, randomized, double-masked, placebo-controlled, single- and multiple-dose escalation study. Subjects (aged 18-90 years) with OHT or POAG were randomized 5:2 to TAK-639 or placebo. Three dose levels were planned (0.1%, 0.3%, 0.6% TAK-639), each with four dosing regimens (QD, BID, TID, QID). Safety measures included treatment-emergent adverse events (TEAEs) and ophthalmologic examinations. Pharmacokinetics and pharmacodynamics (reduction of IOP) were also evaluated. Results In total, 63 subjects were randomized and received 0.1%, 0.3% and 0.6% TAK-639, as single dose, QD, or BID, and 0.1% and 0.3% TID. The study was terminated before 0.6% TID or QID dosing cohorts were studied; instead, 0.6% BID was repeated in a new cohort. TEAEs were instillation related and of mild-to-moderate intensity. There were no TEAEs leading to premature discontinuation, and no serious TEAEs. The most common treatment-related TEAEs were instillation site pain and transient corneal staining with fluorescein. There were no clinically significant concerns across dose groups for all other safety measures, including drop comfort, best corrected visual acuity, slit-lamp biomicroscopy, and corneal epithelial integrity. Little or no systemic exposure was observed. There was a marginal reduction in IOP in one cohort at the highest dose (0.6%) and regimen (BID) tested, suggesting biological plausibility of targeting the trabecular meshwork through this mechanism. Conclusion TAK-639 was generally well tolerated up to 0.6% BID. Further non-clinical studies will improve understanding of the MOA and the penetration of TAK-639 to the anterior chamber.
Collapse
|
25
|
Moyes AJ, Chu SM, Aubdool AA, Dukinfield MS, Margulies KB, Bedi KC, Hodivala-Dilke K, Baliga RS, Hobbs AJ. C-type natriuretic peptide co-ordinates cardiac structure and function. Eur Heart J 2020; 41:1006-1020. [PMID: 30903134 PMCID: PMC7068173 DOI: 10.1093/eurheartj/ehz093] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS C-type natriuretic peptide (CNP) is an essential endothelium-derived signalling species that governs vascular homoeostasis; CNP is also expressed in the heart but an intrinsic role for the peptide in cardiac function is not established. Herein, we employ unique transgenic strains with cell-specific deletion of CNP to define a central (patho)physiological capacity of CNP in maintaining heart morphology and contractility. METHODS AND RESULTS Cardiac structure and function were explored in wild type (WT), cardiomyocyte (cmCNP-/-), endothelium (ecCNP-/-), and fibroblast (fbCNP-/-)-specific CNP knockout mice, and global natriuretic peptide receptor (NPR)-B-/-, and NPR-C-/- animals at baseline and in experimental models of myocardial infarction and heart failure (HF). Endothelium-specific deletion of CNP resulted in impaired coronary responsiveness to endothelium-dependent- and flow-mediated-dilatation; changes mirrored in NPR-C-/- mice. Ex vivo, global ischaemia resulted in larger infarcts and diminished functional recovery in cmCNP-/- and NPR-C-/-, but not ecCNP-/-, vs. WT. The cardiac phenotype of cmCNP-/-, fbCNP-/-, and NPR-C-/- (but not ecCNP-/- or NPR-B-/-) mice was more severe in pressure overload- and sympathetic hyperactivation-induced HF compared with WT; these adverse effects were rescued by pharmacological CNP administration in WT, but not NPR-C-/-, mice. At a molecular level, CNP/NPR-C signalling is impaired in human HF but attenuates activation of well-validated pro-hypertrophic and pro-fibrotic pathways. CONCLUSION C-type natriuretic peptide of cardiomyocyte, endothelial and fibroblast origins co-ordinates and preserves cardiac structure, function, and coronary vasoreactivity via activation of NPR-C. Targeting NPR-C may prove an innovative approach to treating HF and ischaemic cardiovascular disorders.
Collapse
Affiliation(s)
- Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sandy M Chu
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Aisah A Aubdool
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Matthew S Dukinfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Kenneth B Margulies
- Heart Failure and Transplant Program, Perelman School of Medicine, University of Pennsylvania, Translational Research Center, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Kenneth C Bedi
- Heart Failure and Transplant Program, Perelman School of Medicine, University of Pennsylvania, Translational Research Center, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Reshma S Baliga
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
26
|
Ahmed A, Gulino A, Amayo S, Arancio W, Florena AM, Belmonte B, Jurjus A, Leone A, Miletich I. Natriuretic peptide system expression in murine and human submandibular salivary glands: a study of the spatial localisation of ANB, BNP, CNP and their receptors. J Mol Histol 2019; 51:3-13. [PMID: 31722080 DOI: 10.1007/s10735-019-09849-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/18/2019] [Indexed: 11/30/2022]
Abstract
The natriuretic peptide (NP) system comprises of three ligands, the Atrial Natriuretic Peptide (ANP), Brain Natriuretic peptide (BNP) and C-type Natriuretic peptide (CNP), and three natriuretic peptide receptors, NPRA, NPRB and NPRC. Here we present a comprehensive study of the natriuretic peptide system in healthy murine and human submandibular salivary glands (SMGs). We show CNP is the dominant NP in mouse and human SMG and is expressed together with NP receptors in ducts, autonomic nerves and the microvasculature of the gland, suggesting CNP autocrine signalling may take place in some of these glandular structures. These data suggest the NP system may control salivary gland function during homeostasis through the regulation of electrolyte re-absorption, neural stimulation and/or blood vessel wall contraction/relaxation. We also show abnormal expression of NPRA in the stroma of a subset of human SMGs resected from patients diagnosed with oral squamous cell carcinoma (OSCC) of non-salivary gland origin. This finding warrants further research to investigate a possible correlation between early OSCC invasion and NPRA overexpression.
Collapse
Affiliation(s)
- Araz Ahmed
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, Floor 27 Guy's Tower, London, SE1 9RT, UK
| | - Alessandro Gulino
- Dipartimento Di Promozione Della Salute, Materno-Infantile, Medicina Interna E Specialistica Di Eccellenza "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Simita Amayo
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, Floor 27 Guy's Tower, London, SE1 9RT, UK
| | - Walter Arancio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Ada Maria Florena
- Dipartimento Di Promozione Della Salute, Materno-Infantile, Medicina Interna E Specialistica Di Eccellenza "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Beatrice Belmonte
- Dipartimento Di Promozione Della Salute, Materno-Infantile, Medicina Interna E Specialistica Di Eccellenza "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut, Lebanon
| | - Angelo Leone
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, Floor 27 Guy's Tower, London, SE1 9RT, UK. .,Department of Biomedicine, Neuroscience and Advanced Diagnostic, Bi.N.D, School of Medicine, Institute of Anatomy and Histology, University of Palermo, Palermo, Italy.
| | - Isabelle Miletich
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, Floor 27 Guy's Tower, London, SE1 9RT, UK.
| |
Collapse
|
27
|
Öztop M, Özbek M, Liman N, Beyaz F, Ergün E, Ergün L, Kavraal UK, Ergen E. Expression patterns of natriuretic peptides in pre-hibernating and hibernating anatolian ground squirrel (Spermophilus xanthoprymnus) lung. Acta Histochem 2019; 121:852-865. [PMID: 31445760 DOI: 10.1016/j.acthis.2019.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/14/2022]
Abstract
Anatolian ground squirrel (Spermophilus xanthoprymnus) is a true hibernator. This animal transiently reduces pulmonary function during hibernation. Continuance of pulmonary function is very important to survive ground squirrels during the hibernation. Natriuretic peptides may be key players in the modulation of pulmonary hemostasis. However, NPs' role in pulmonary function during hibernation remains unclear. We aimed to investigate the localization and distribution of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) in squirrel lungs during pre-hibernation and hibernation periods using immunohistochemistry. Our immunohistochemical data indicate that ANP, BNP, and CNP were produced by the mucosal epithelium of terminal and respiratory bronchioles, smooth muscle cells in the lamina propria of terminal bronchioles and vascular smooth muscle cells, alveolar type II cells, and macrophages. ANP immunoreactivity was weaker than BNP and CNP immunoreactivities in these cells. The results also demonstrate that the number of ANP, BNP and CNP positive alveolar type II cells tended to increase, although statistically non-significant, during the hibernation period, but the expression of NPs in other pulmonary cells is unaffected by hibernation. This study firstly investigates ANP, BNP and CNP distribution in the Anatolian ground squirrel lung. However, further studies are required to dissect their functional roles during the hibernation.
Collapse
|
28
|
Millar JC, Savinainen A, Josiah S, Pang IH. Effects of TAK-639, a novel topical C-type natriuretic peptide analog, on intraocular pressure and aqueous humor dynamics in mice. Exp Eye Res 2019; 188:107763. [PMID: 31421135 DOI: 10.1016/j.exer.2019.107763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 11/25/2022]
Abstract
Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness, and individuals with ocular hypertension are at risk to develop POAG. Currently, the only modifiable risk factor for glaucoma progression is lowering of intraocular pressure (IOP). A novel mechanism for lowering IOP involves activation of the type B natriuretic peptide receptor (NPR-B), the naturally occurring agonist of which is C-type natriuretic peptide (CNP). Being a cyclic peptide of 22 amino acids, CNP does not readily penetrate the cornea and its ocular hypotensive effect requires intraocular injection. TAK-639 is a synthetic, cornea-permeable, 9-amino acid CNP analog has been studied for the treatment of ocular hypertension and POAG. We assessed TAK-639 in a receptor binding profile and the effects of TAK-639 on NPR-B-mediated cyclic GMP production in cultured transformed human trabecular meshwork (TM) cells (GTM-3). We also evaluated the effects of topical ocular administration of TAK-639 on mouse IOP and aqueous humor dynamics. Among 89 non-natriuretic peptide receptors, transporters, and channels evaluated, TAK-639 at 10 μM displaced ligand binding by more than 50% to only two receptors: the type 2 angiotensin receptor (IC50 = 8.2 μM) and the cholecystokinin A receptor (IC50 = 25.8 μM). In vitro, TAK-639 selectively activates NPR-B (EC50 = 61 ± 11 nM; GTM-3 cells) relative to NPR-A (EC50 = 2179 ± 670 nM; 293T cells). In vivo, TAK-639 lowered mouse IOP by three mechanisms: increase in aqueous humor outflow facility (C), reduction in the aqueous humor formation rate (Fin), and reduction in episcleral venous pressure (Pe). The maximum mean IOP decreases from baseline were -12.1%, -21.0%, and -36.1% for 0.1%, 0.3%, and 0.6% doses of TAK-639, respectively. Maximum IOP-lowering effect was seen at 2 h, and the duration of action was >6 h. With TAK-639 0.6%, at 2 h post-dose, aqueous outflow facility (C) increased by 155.8%, Fin decreased by 41.0%, the uveoscleral outflow rate (Fu) decreased by 52.6%, and Pe decreased by 31.5% (all p < 0.05). No ocular adverse effects were observed. TAK-639 is an efficacious IOP-lowering agent, with a unique combination of mechanisms of action on both aqueous formation and aqueous outflow facility. Further study of this mechanism of treatment may optimize pharmacologic outcomes and provide disease management in patients with POAG and ocular hypertension.
Collapse
Affiliation(s)
- J Cameron Millar
- North Texas Eye Research Institute, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | | | - Iok-Hou Pang
- North Texas Eye Research Institute, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
29
|
Miyoshi T, Hosoda H, Miyazato M, Kangawa K, Yoshimatsu J, Minamino N. Metabolism of atrial and brain natriuretic peptides in the fetoplacental circulation of fetuses with congenital heart diseases. Placenta 2019; 83:26-32. [PMID: 31477203 DOI: 10.1016/j.placenta.2019.06.382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Natriuretic peptides (NPs) play a pivotal role in maintaining fetal circulation; however, little is known about their metabolism. The aim of the present study was to elucidate the metabolism of plasma NPs in the fetoplacental circulation. METHODS Plasma NP concentrations in maternal vein and umbilical artery (UA) and vein (UV) samples from fetuses with congenital heart defect (n = 86) or arrhythmia (n = 31) and controls (n = 127) were analyzed. RESULTS Levels of plasma atrial NP (ANP) and brain NP (BNP) showed good correlation between UV versus UA samples (p < 0.01). In all three fetus groups, the regression coefficients between UV and UA plasma ANP levels were close to 0.5, while those between UV and UA plasma BNP levels were close to 1. The molecular forms of immunoreactive ANP in UA plasma showed a single peak corresponding to mature ANP, while those of immunoreactive BNP in UA plasma showed two major peaks and several minor peaks corresponding to mature BNP-32 and its partially digested peptides, as well as glycosylated and non-glycosylated BNP precursors (proBNP). No correlation was found between fetuses and mothers in terms of either plasma ANP or BNP levels. CONCLUSIONS The mother and fetus independently secrete and metabolize both ANP and BNP. Fetal plasma ANP consists exclusively of the mature form, and the placenta and umbilical vessels are possible major sites of ANP metabolism. In contrast, fetal plasma BNP consists predominantly of the precursor forms, which may contribute to protecting BNP from metabolism in the fetoplacental circulation.
Collapse
Affiliation(s)
- Takekazu Miyoshi
- Department of Regenerative Medicine and Tissue Engineering (TM, HH), National Cerebral and Cardiovascular Center, Japan
| | - Hiroshi Hosoda
- Department of Regenerative Medicine and Tissue Engineering (TM, HH), National Cerebral and Cardiovascular Center, Japan.
| | - Mikiya Miyazato
- Department of Biochemistry (MM, KK), National Cerebral and Cardiovascular Center, Japan
| | - Kenji Kangawa
- Department of Biochemistry (MM, KK), National Cerebral and Cardiovascular Center, Japan
| | - Jun Yoshimatsu
- Department of Perinatology and Gynecology (JY), National Cerebral and Cardiovascular Center, Japan
| | - Naoto Minamino
- Omics Research Center (NM), National Cerebral and Cardiovascular Center, Japan
| |
Collapse
|
30
|
Moyes AJ, Hobbs AJ. C-type Natriuretic Peptide: A Multifaceted Paracrine Regulator in the Heart and Vasculature. Int J Mol Sci 2019; 20:E2281. [PMID: 31072047 PMCID: PMC6539462 DOI: 10.3390/ijms20092281] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
C-type natriuretic peptide (CNP) is an autocrine and paracrine mediator released by endothelial cells, cardiomyocytes and fibroblasts that regulates vital physiological functions in the cardiovascular system. These roles are conveyed via two cognate receptors, natriuretic peptide receptor B (NPR-B) and natriuretic peptide receptor C (NPR-C), which activate different signalling pathways that mediate complementary yet distinct cellular responses. Traditionally, CNP has been deemed the endothelial component of the natriuretic peptide system, while its sibling peptides, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), are considered the endocrine guardians of cardiac function and blood volume. However, accumulating evidence indicates that CNP not only modulates vascular tone and blood pressure, but also governs a wide range of cardiovascular effects including the control of inflammation, angiogenesis, smooth muscle and endothelial cell proliferation, atherosclerosis, cardiomyocyte contractility, hypertrophy, fibrosis, and cardiac electrophysiology. This review will focus on the novel physiological functions ascribed to CNP, the receptors/signalling mechanisms involved in mediating its cardioprotective effects, and the development of therapeutics targeting CNP signalling pathways in different disease pathologies.
Collapse
Affiliation(s)
- Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
31
|
Chen Y, Zheng Y, Iyer SR, Harders GE, Pan S, Chen HH, Ichiki T, Burnett JC, Sangaralingham SJ. C53: A novel particulate guanylyl cyclase B receptor activator that has sustained activity in vivo with anti-fibrotic actions in human cardiac and renal fibroblasts. J Mol Cell Cardiol 2019; 130:140-150. [PMID: 30954448 DOI: 10.1016/j.yjmcc.2019.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/08/2019] [Accepted: 03/31/2019] [Indexed: 01/01/2023]
Abstract
The native particulate guanylyl cyclase B receptor (pGC-B) activator, C-type natriuretic peptide (CNP), induces anti-remodeling actions in the heart and kidney through the generation of the second messenger 3', 5' cyclic guanosine monophosphate (cGMP). Indeed fibrotic remodeling, particularly in cardiorenal disease states, contributes to disease progression and thus, has been a key target for drug discovery and development. Although the pGC-B/cGMP system has been perceived as a promising anti-fibrotic pathway, its therapeutic potential is limited due to the rapid degradation and catabolism of CNP by neprilysin (NEP) and natriuretic peptide clearance receptor (NPRC). The goal of this study was to bioengineer and test in vitro and in vivo a novel pGC-B activator, C53. Here we established that C53 selectively generates cGMP via the pGC-B receptor and is highly resistant to NEP and has less interaction with NPRC in vitro. Furthermore in vivo, C53 had enhanced cGMP-generating actions that paralleled elevated plasma CNP-like levels, thus indicating a longer circulating half-life compared to CNP. Importantly in human cardiac fibroblasts (HCFs) and renal fibroblasts (HRFs), C53 exerted robust cGMP-generating actions, inhibited TGFβ-1 stimulated HCFs and HRFs proliferation chronically and suppressed the differentiation of HCFs and HRFs to myofibroblasts. The current findings advance innovation in drug discovery and highlight C53 as a novel pGC-B activator with sustained in vivo activity and anti-fibrotic actions in vitro. Future studies are warranted to explore the efficacy and therapeutic opportunity of C53 targeting fibrosis in cardiorenal disease states and beyond.
Collapse
Affiliation(s)
- Yang Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States.
| | - Ye Zheng
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States
| | - Seethalakshmi R Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States
| | - Gerald E Harders
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States
| | - Shuchong Pan
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States
| | - Horng H Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States
| | - Tomoko Ichiki
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States; Department of Physiology and Biomedical Engineering, United States
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States; Department of Physiology and Biomedical Engineering, United States.
| |
Collapse
|
32
|
Nakamori T, Chiba Y, Fujitani K, Makita A, Okubo T, Hirai K, Takamatsu N, Ohki-Hamazaki H. Characteristic expressions of the natriuretic peptide family in the telencephalon of juvenile chick. Brain Res 2019; 1708:116-125. [DOI: 10.1016/j.brainres.2018.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/22/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022]
|
33
|
Bartels ED, Guo S, Kousholt BS, Larsen JR, Hasenkam JM, Burnett J, Nielsen LB, Ashina M, Goetze JP. High doses of ANP and BNP exacerbate lipolysis in humans and the lipolytic effect of BNP is associated with cardiac triglyceride content in pigs. Peptides 2019; 112:43-47. [PMID: 30508635 DOI: 10.1016/j.peptides.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Drugs facilitating the cardioprotective effects of natriuretic peptides are introduced in heart failure treatment. ANP and BNP also stimulate lipolysis and increase circulating concentrations of free fatty acids (FFAs); an aspect, however, thought to be confined to primates. We examined the lipolytic effect of natriuretic peptide infusion in healthy young men and evaluated the effect in a porcine model of myocardial ischemia and reperfusion. Six young healthy normotensive men underwent infusion with ANP, BNP, or CNP for 20 min. Blood samples were collected before, during, and after infusion for measurement of FFAs. In a porcine model of myocardial ischemia and reperfusion, animals were infused for 3 h with either BNP (n = 7) or saline (n = 5). Blood samples were collected throughout the infusion period, and cardiac tissue was obtained after infusion for lipid analysis. In humans, ANP infusion dose-dependently increased the FFA concentration in plasma 2.5-10-fold (baseline vs. 0.05 μg/kg/min P < 0.002) and with BNP 1.6-3.5-fold (P = 0.001, baseline vs. 0.02 μg/kg/min) 30 min after initiation of infusion. Infusion of CNP did not affect plasma FFA. In pigs, BNP infusion induced a 3.5-fold increase in plasma FFA (P < 0.0001), which remained elevated throughout the infusion period. Triglyceride content in porcine right cardiac ventricle tissue increased ∼5.5 fold in animals infused with BNP (P = 0.02). Natriuretic peptide infusion has similar lipolytic activity in human and pig. Our data suggest that short-term infusion increases the cardiac lipid content, and that the pig is a suitable model for studies of long-term effects mediated by natriuretic peptides.
Collapse
Affiliation(s)
- Emil D Bartels
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Song Guo
- Department of Neurology and Danish Headache Center, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte S Kousholt
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jens R Larsen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - J Michael Hasenkam
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - John Burnett
- Department of Cardiorenal physiology (Mayo Clinic, Rochester, MN, USA
| | - Lars B Nielsen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Copenhagen University, Denmark; Aarhus University, Denmark
| | - Messoud Ashina
- Department of Neurology and Danish Headache Center, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen University, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Cardiorenal physiology (Mayo Clinic, Rochester, MN, USA; Copenhagen University, Denmark
| |
Collapse
|
34
|
Matsuo A, Nagai-Okatani C, Nishigori M, Kangawa K, Minamino N. Natriuretic peptides in human heart: Novel insight into their molecular forms, functions, and diagnostic use. Peptides 2019; 111:3-17. [PMID: 30120963 DOI: 10.1016/j.peptides.2018.08.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 01/16/2023]
Abstract
Among the three natriuretic peptides, atrial/A-type natriuretic peptide (ANP) and brain/B-type natriuretic peptide (BNP) are primarily produced by, and secreted from, heart tissue. They maintain cardiovascular homeostasis by binding to natriuretic peptide receptor-A. Since plasma ANP and BNP concentrations, as well as expression, are elevated in response to increased body fluid volume and pressure load on the heart wall, these peptides are widely utilized as diagnostic biomarkers for evaluating heart failure. Regardless of their high utility, differences in their molecular forms between healthy and diseased subjects and how these relate to pathophysiology have not well been examined. Recent studies have shown that the circulating molecular forms of ANP and BNP are not uniform; bioactive α-ANP is the major ANP form, whereas the weakly active proBNP is the major BNP form. The relative ratios of the different molecular forms are altered under different pathophysiological conditions. These facts indicate that detailed measurements of each form may provide useful information on the pathophysiological state of heart tissue. Here, we revisit the relationship between the molecular forms of, and pathophysiological alterations in, human ANP and BNP and discuss the possible utility of the measurement of each of the molecular forms. The third peptide, C-type natriuretic peptide, activates natriuretic peptide receptor-B, but little is known about its production and function in the heart because of its extremely low levels. However, through recent studies, its role in the heart is gradually becoming clear. Here, we summarize its molecular forms, assay systems, and functions in the heart.
Collapse
Affiliation(s)
- Ayaka Matsuo
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan
| | - Chiaki Nagai-Okatani
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Mitsuhiro Nishigori
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan
| | - Kenji Kangawa
- Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan.
| |
Collapse
|
35
|
The regulatory role of the kinase-homology domain in receptor guanylyl cyclases: nothing 'pseudo' about it! Biochem Soc Trans 2018; 46:1729-1742. [PMID: 30420416 DOI: 10.1042/bst20180472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 01/05/2023]
Abstract
The availability of genome sequence information and a large number of protein structures has allowed the cataloging of genes into various families, based on their function and predicted biochemical activity. Intriguingly, a number of proteins harbor changes in the amino acid sequence at residues, that from structural elucidation, are critical for catalytic activity. Such proteins have been categorized as 'pseudoenzymes'. Here, we review the role of the pseudokinase (or kinase-homology) domain in receptor guanylyl cyclases. These are multidomain single-pass, transmembrane proteins harboring an extracellular ligand-binding domain, and an intracellular domain composed of a kinase-homology domain that regulates the activity of the associated guanylyl cyclase domain. Mutations that lie in the kinase-homology domain of these receptors are associated with human disease, and either abolish or enhance cGMP production by these receptors to alter downstream signaling events. This raises the interesting possibility that one could identify molecules that bind to the pseudokinase domain and regulate the activities of these receptors, in order to alleviate symptoms in patients harboring these mutations.
Collapse
|
36
|
Krichevskiy LA, Kozlov IA. Natriuretic Peptides in Cardiac Anesthesia and Intensive Care. J Cardiothorac Vasc Anesth 2018; 33:1407-1419. [PMID: 30228053 DOI: 10.1053/j.jvca.2018.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 01/16/2023]
Abstract
Natriuretic peptides, predominantly B-type, are widely used in cardiology as prognostic and diagnostic biomarkers or, much less often, as a substantive treatment tool. They are hormones that are produced mainly in the myocardium in response to overload and ischemia, and their level quite accurately reflects the degree of myocardial dysfunction. Although their use in cardiac anesthesia and intensive care setting seems to be very beneficial for assessing the risk of acute disturbance of myocardial function or its laboratory monitoring, the actual significance of natriuretic peptides in this area is not yet recognized. This is due to the lack of clear diagnostic and prognostic values for these biomarkers supported by high-quality researches. On the basis of the available data, main advantages, existing difficulties, and most effective ways of using natriuretic peptides for determining the risk of heart surgery and assessing the severity of sepsis, pneumonia, and other critical conditions have been discussed in this review. In addition, the expediency of using natriuretic peptides as target parameters for goal-oriented therapy and as a substantive tool for treatment is considered.
Collapse
Affiliation(s)
- Lev A Krichevskiy
- Department of Anesthesiology and Intensive Care, City Clinical Hospital n.a. S.S.Yudin, Department of Health of Moscow, Moscow, Russia.
| | - Igor A Kozlov
- Department of Anaesthesiology, Moscow Regional Research Clinical Institute n.a. M.F. Vladimirskiy, Moscow, Russia
| |
Collapse
|
37
|
Fitzakerley JL, Trachte GJ. Genetics of guanylyl cyclase pathways in the cochlea and their influence on hearing. Physiol Genomics 2018; 50:780-806. [PMID: 29958079 DOI: 10.1152/physiolgenomics.00056.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although hearing loss is the most common sensory deficit in Western societies, there are no successful pharmacological treatments for this disorder. Recent experiments have demonstrated that manipulation of intracellular cyclic guanosine monophosphate (cGMP) concentrations can have both beneficial and harmful effects on hearing. In this review, we will examine the role of cGMP as a key second messenger involved in many aspects of cochlear function and discuss the known functions of downstream effectors of cGMP in sound processing. The nitric oxide-stimulated soluble guanylyl cyclase system (sGC) and the two natriuretic peptide-stimulated particulate GCs (pGCs) will be more extensively covered because they have been studied most thoroughly. The cochlear GC systems are attractive targets for medical interventions that improve hearing while simultaneously representing an under investigated source of sensorineural hearing loss.
Collapse
Affiliation(s)
- Janet L Fitzakerley
- Department of Biomedical Sciences, University of Minnesota Medical School , Duluth, Minnesota
| | - George J Trachte
- Department of Biomedical Sciences, University of Minnesota Medical School , Duluth, Minnesota
| |
Collapse
|
38
|
Abstract
Natriuretic peptides are structurally related, functionally diverse hormones. Circulating atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are delivered predominantly by the heart. Two C-type natriuretic peptides (CNPs) are paracrine messengers, notably in bone, brain, and vessels. Natriuretic peptides act by binding to the extracellular domains of three receptors, NPR-A, NPR-B, and NPR-C of which the first two are guanylate cyclases. NPR-C is coupled to inhibitory proteins. Atrial wall stress is the major regulator of ANP secretion; however, atrial pressure changes plasma ANP only modestly and transiently, and the relation between plasma ANP and atrial wall tension (or extracellular volume or sodium intake) is weak. Absence and overexpression of ANP-related genes are associated with modest blood pressure changes. ANP augments vascular permeability and reduces vascular contractility, renin and aldosterone secretion, sympathetic nerve activity, and renal tubular sodium transport. Within the physiological range of plasma ANP, the responses to step-up changes are unimpressive; in man, the systemic physiological effects include diminution of renin secretion, aldosterone secretion, and cardiac preload. For BNP, the available evidence does not show that cardiac release to the blood is related to sodium homeostasis or body fluid control. CNPs are not circulating hormones, but primarily paracrine messengers important to ossification, nervous system development, and endothelial function. Normally, natriuretic peptides are not powerful natriuretic/diuretic hormones; common conclusions are not consistently supported by hard data. ANP may provide fine-tuning of reno-cardiovascular relationships, but seems, together with BNP, primarily involved in the regulation of cardiac performance and remodeling. © 2017 American Physiological Society. Compr Physiol 8:1211-1249, 2018.
Collapse
Affiliation(s)
- Peter Bie
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
39
|
C-type natriuretic peptide: a link between hyperandrogenism and anovulation in a mouse model of polycystic ovary syndrome. Clin Sci (Lond) 2018; 132:905-908. [PMID: 29739821 DOI: 10.1042/cs20171491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 01/25/2023]
Abstract
The polycystic ovary (PCO) syndrome (PCOS) is the most common cause of anovulatory infertility in women and is associated with several clinical disorders. Despite the great amount of research in the area, mechanisms involved in the genesis of this syndrome remain poorly understood. In a recent issue of Clinical Science (vol. 132, issue 7, 759-776), Wang and colleagues, highlight the important role of overactivated C-type natriuretic peptide (CNP) and natriuretic peptide receptor 2 (CNP/NPR2) system in preventing oocyte maturation and ovulation in PCOS mice model induced by androgen. Dehydroepiandrosterone (DHEA) treatment caused anovulation, high levels of androgen and estrogen receptors (AR and ER) in the ovary, high expression of CNP and natriuretic peptide receptor 2 (NPR2) in granulosa cells (GC), and an increase in testosterone and estradiol (E2) levels in sera. The high level of CNP/NPR2 was associated with oocyte meiotic arrest and very low ovulation rate. Treatment with human chorionic gonadotropin (hCG) or inhibitors of AR or ER reduced the level of CNP/NPR2, which resulted in meiotic resumption and ovulation. The article provided important information for understanding the effect of ovarian steroids on control of oocyte maturation and fertility and highlighted CNP/NPR2 as a specific pathway that is potentially involved in the ovulatory disruption in PCOS.
Collapse
|
40
|
Takahama H, Takashio S, Nishikimi T, Hayashi T, Nagai-Okatani C, Nakagawa Y, Amaki M, Ohara T, Hasegawa T, Sugano Y, Kanzaki H, Yasuda S, Kangawa K, Minamino N, Anzai T. Ratio of pro-B-type natriuretic peptide (BNP) to total BNP is decreased in mild, but not severe, acute decompensated heart failure patients: A novel compensatory mechanism for acute heart failure. Int J Cardiol 2018; 258:165-171. [DOI: 10.1016/j.ijcard.2017.12.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/09/2017] [Accepted: 12/13/2017] [Indexed: 11/30/2022]
|
41
|
Chiba A, Watanabe-Takano H, Miyazaki T, Mochizuki N. Cardiomyokines from the heart. Cell Mol Life Sci 2018; 75:1349-1362. [PMID: 29238844 PMCID: PMC11105766 DOI: 10.1007/s00018-017-2723-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
Abstract
The heart is regarded as an endocrine organ as well as a pump for circulation, since atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were discovered in cardiomyocytes to be secreted as hormones. Both ANP and BNP bind to their receptors expressed on remote organs, such as kidneys and blood vessels; therefore, the heart controls the circulation by pumping blood and by secreting endocrine peptides. Cardiomyocytes secrete other peptides besides natriuretic peptides. Although most of such cardiomyocyte-derived peptides act on the heart in autocrine/paracrine fashions, several peptides target remote organs. In this review, to overview current knowledge of endocrine properties of the heart, we focus on cardiomyocyte-derived peptides (cardiomyokines) that act on the remote organs as well as the heart. Cardiomyokines act on remote organs to regulate cardiovascular homeostasis, systemic metabolism, and inflammation. Therefore, through its endocrine function, the heart can maintain physiological conditions and prevent organ damage under pathological conditions.
Collapse
Affiliation(s)
- Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Haruko Watanabe-Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan.
- AMED-CREST, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan.
| |
Collapse
|
42
|
Bork NI, Nikolaev VO. cGMP Signaling in the Cardiovascular System-The Role of Compartmentation and Its Live Cell Imaging. Int J Mol Sci 2018. [PMID: 29534460 PMCID: PMC5877662 DOI: 10.3390/ijms19030801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ubiquitous second messenger 3′,5′-cyclic guanosine monophosphate (cGMP) regulates multiple physiologic processes in the cardiovascular system. Its intracellular effects are mediated by stringently controlled subcellular microdomains. In this review, we will illustrate the current techniques available for real-time cGMP measurements with a specific focus on live cell imaging methods. We will also discuss currently accepted and emerging mechanisms of cGMP compartmentation in the cardiovascular system.
Collapse
Affiliation(s)
- Nadja I Bork
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg 20246, Germany.
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Hamburg 20246, Germany.
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg 20246, Germany.
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Hamburg 20246, Germany.
| |
Collapse
|
43
|
Ma Q, Zhang L. C-type natriuretic peptide functions as an innate neuroprotectant in neonatal hypoxic-ischemic brain injury in mouse via natriuretic peptide receptor 2. Exp Neurol 2018; 304:58-66. [PMID: 29501420 DOI: 10.1016/j.expneurol.2018.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 12/22/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is the most common cause of brain injury in neonates, which leads to high neonatal mortality and severe neurological morbidity in later life (Vannucci, 2000; Volpe, 2001). Yet the molecular mechanisms of neuronal death and brain damage induced by neonatal HI remain largely elusive. Herein, using both in vivo and in vitro models, we determine an endogenous neuroprotectant role of c-type natriuretic peptide (CNP) in preserving neuronal survival after HI brain injury in mouse pups. Postnatal day 7 (P7) mouse pups with CNP deficiency (Nppclbab/lbab) exhibit increased brain infarct size and worsened long-term locomotor function after neonatal HI compared with wildtype control (Nppc+/+). In isolated primary cortical neurons, recombinant CNP dose-dependently protects primary neurons from oxygen-glucose deprivation (OGD) insult. This neuroprotective effect appears to be mediated through its cognate natriuretic peptide receptor 2 (NPR2), in that antagonization of NPR2, but not NPR3, exacerbates neuronal death and counteracts the protective effect of CNP on primary neurons exposed to OGD insult. Immunoblot and confocal microscopy demonstrate the abundant expression of NPR2 in neurons of the neonatal brain and in isolated primary cortical neurons as well. Moreover, similar to CNP deficiency, administration of NPR2 antagonist P19 via intracerebroventricular injection prior to HI results in exacerbated neuronal death and brain injury after HI. Altogether, the present study indicates that CNP and its cognate receptor NPR2 mainly expressed in neurons represent an innate neuroprotective mechanism in neonatal HI brain injury.
Collapse
Affiliation(s)
- Qingyi Ma
- The Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
44
|
Kawakami R, Lee CYW, Scott C, Bailey KR, Schirger JA, Chen HH, Benike SL, Cannone V, Martin FL, Sangaralingham SJ, Ichiki T, Burnett JC. A Human Study to Evaluate Safety, Tolerability, and Cyclic GMP Activating Properties of Cenderitide in Subjects With Stable Chronic Heart Failure. Clin Pharmacol Ther 2018; 104:546-552. [PMID: 29226471 PMCID: PMC5995613 DOI: 10.1002/cpt.974] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022]
Abstract
Cenderitide is a novel designer natriuretic peptide (NP) composed of C‐type natriuretic peptide (CNP) fused to the C‐terminus of Dendroaspis natriuretic peptide (DNP). Cenderitide was engineered to coactivate the two NP receptors, particulate guanylyl cyclase (pGC)‐A and ‐B. The rationale for its design was to achieve the renal‐enhancing and antifibrotic properties of dual receptor activation, but without clinically significant hypotension. Here we report the first clinical trial on the safety, tolerability, and cyclic guanosine monophosphate (cGMP) activating properties of Cenderitide in subjects with stable heart failure (HF). Four‐hour infusion of Cenderitide was safe, well‐tolerated, and significantly increased plasma cGMP levels and urinary cGMP excretion without adverse effects with no change in blood pressure. Thus, Cenderitide has a favorable safety profile and expected pharmacological effects in stable human HF. Our results support further investigations of Cenderitide in HF as a potential future cGMP‐enhancing therapeutic strategy.
Collapse
Affiliation(s)
- Rika Kawakami
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Candace Y W Lee
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher Scott
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Kent R Bailey
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, USA
| | - John A Schirger
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Horng H Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sherry L Benike
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Valentina Cannone
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Clinical and Experimental Medicine, University of Parma Medical School, Parma, Italy
| | - Fernando L Martin
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Tomoko Ichiki
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
45
|
Evolving Role of Natriuretic Peptides from Diagnostic Tool to Therapeutic Modality. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1067:109-131. [PMID: 29411335 DOI: 10.1007/5584_2018_143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natriuretic peptides (NP) are widely recognized as key regulators of blood pressure, water and salt homeostasis. In addition, they play a critical role in physiological cardiac growth and mediate a variety of biological effects including antiproliferative and anti-inflammatory effects in other organs and tissues. The cardiac release of NPs ANP and BNP represents an important compensatory mechanism during acute and chronic cardiac overload and during the pathogenesis of heart failure where their actions counteract the sustained activation of renin-angiotensin-aldosterone and other neurohormonal systems. Elevated circulating plasma NP levels correlate with the severity of heart failure and particularly BNP and the pro-peptide, NT-proBNP have been established as biomarkers for the diagnosis of heart failure as well as prognostic markers for cardiovascular risk. Despite activation of the NP system in heart failure it is inadequate to prevent progressive fluid and sodium retention and cardiac remodeling. Therapeutic approaches included administration of synthetic peptide analogs and the inhibition of NP-degrading enzyme neutral endopeptidase (NEP). Of all strategies only the combined NEP/ARB inhibition with sacubitril/valsartan had shown clinical success in reducing cardiovascular mortality and morbidity in patients with heart failure.
Collapse
|
46
|
Compartmentation of Natriuretic Peptide Signalling in Cardiac Myocytes: Effects on Cardiac Contractility and Hypertrophy. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-54579-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
|
47
|
Santhekadur PK, Kumar DP, Seneshaw M, Mirshahi F, Sanyal AJ. The multifaceted role of natriuretic peptides in metabolic syndrome. Biomed Pharmacother 2017; 92:826-835. [PMID: 28599248 PMCID: PMC5737745 DOI: 10.1016/j.biopha.2017.05.136] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 12/19/2022] Open
Abstract
Due to globalization and sophisticated western and sedentary lifestyle, metabolic syndrome has emerged as a serious public health challenge. Obesity is significantly increasing worldwide because of increased high calorie food intake and decreased physical activity leading to hypertension, dyslipidemia, atherosclerosis, and insulin resistance. Thus, metabolic syndrome constitutes cardiovascular disease, type 2 diabetes, obesity, and nonalcoholic fatty liver disease (NAFLD) and recently some cancers are also considered to be associated with this syndrome. There is increasing evidence of the involvement of natriuretic peptides (NP) in the pathophysiology of metabolic diseases. The natriuretic peptides are cardiac hormones, which are produced in the cardiac atrium, ventricles of the heart and the endothelium. These peptides are involved in the homeostatic control of body water, sodium intake, potassium transport, lipolysis in adipocytes and regulates blood pressure. The three known natriuretic peptide hormones present in the natriuretic system are atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and c-type natriuretic peptide (CNP). These three peptides primarily function as endogenous ligands and mainly act via their membrane receptors such as natriuretic peptide receptor A (NPR-A), natriuretic peptide receptor B (NPR-B) and natriuretic peptide receptor C (NPR-C) and regulate various physiological and metabolic functions. This review will shed light on the structure and function of natriuretic peptides and their receptors and their role in the metabolic syndrome.
Collapse
Affiliation(s)
- Prasanna K Santhekadur
- McGuire Research Institute, McGuire Veterans Affairs Medical Center, Richmond, VA, USA; Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Divya P Kumar
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mulugeta Seneshaw
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Faridoddin Mirshahi
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Arun J Sanyal
- McGuire Research Institute, McGuire Veterans Affairs Medical Center, Richmond, VA, USA; Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
48
|
Nagai-Okatani C, Kangawa K, Minamino N. Three molecular forms of atrial natriuretic peptides: quantitative analysis and biological characterization. J Pept Sci 2017; 23:486-495. [PMID: 28120499 DOI: 10.1002/psc.2969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 11/09/2022]
Abstract
Atrial natriuretic peptide (ANP) is primarily produced in the heart tissue and plays a pivotal role in maintaining cardiovascular homeostasis in endocrine and autocrine/paracrine systems and has clinical applications as a biomarker and a therapeutic agent for cardiac diseases. ANP is synthesized by atrial cardiomyocytes as a preprohormone that is processed by a signal peptidase and stored in secretory granules as a prohormone. Subsequent proteolytic processing of ANP by corin during the secretion process results in a bioactive form consisting of 28 amino acid residues. Mechanical stretch of the atrial wall and multiple humoral factors directly stimulates the transcription and secretion of ANP. Secreted ANP elicits natriuretic and diuretic effects via cyclic guanosine monophosphate produced through binding to the guanylyl cyclase-A/natriuretic peptide receptor-A. Circulating ANP is subjected to rapid clearance by a natriuretic peptide receptor-C-mediated mechanism and proteolytic degradation by neutral endopeptidase. In humans, ANP is present as three endogenous molecular forms: bioactive α-ANP, a homodimer of α-ANP designated as β-ANP, and an ANP precursor designated as proANP (also referred to as γ-ANP). The proANP and especially β-ANP, as minor forms in circulation, are notably increased in patients with cardiac diseases, suggesting the utility of monitoring the pathophysiological conditions that result in abnormal proANP processing that cannot be monitored by inactive N-terminal proANP-related fragments. Emerging plate-based sandwich immunoassays for individual quantitation of the three ANP forms enables evaluation of diagnostic implications and net ANP bioactivity. This new tool may provide further understanding in the pathophysiology of cardiac diseases. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chiaki Nagai-Okatani
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Kenji Kangawa
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
49
|
Kong N, Xu X, Zhang Y, Wang Y, Hao X, Zhao Y, Qiao J, Xia G, Zhang M. Natriuretic peptide type C induces sperm attraction for fertilization in mouse. Sci Rep 2017; 7:39711. [PMID: 28054671 PMCID: PMC5214687 DOI: 10.1038/srep39711] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/25/2016] [Indexed: 12/23/2022] Open
Abstract
Mammalian spermatozoa undergo selective movement along the isthmus of the oviduct to the ampulla during ovulation, which is a prerequisite for fertilization. The factor(s) that involves in selective spermatozoa movement is still unknown. In this study, we found that the oviductal epithelium in mouse ampulla expressed high levels of natriuretic peptide type C (NPPC) in the presence of ovulated oocyte-cumulus complexes (OCCs). Spermatozoa expressed NPPC receptor natriuretic peptide receptor 2 (NPR2, a guanylyl cyclase) on the midpiece of flagellum. NPPC increased intracellular levels of cGMP and Ca2+ of spermatozoa, and induced sperm accumulation in the capillary by attraction. Importantly, spermatozoa from Npr2 mutant mice were not attracted by NPPC, preventing fertilization in vivo. Oocyte-derived paracrine factors promoted the expression of Nppc mRNA in the ampulla. Therefore, NPPC secreted by oviductal ampulla attracts spermatozoa towards oocytes, which is essential for fertilization.
Collapse
Affiliation(s)
- Nana Kong
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoting Xu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yakun Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoqiong Hao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Reproductive Medical Center, Peking University Third Hospital, Beijing 100191, China
| | - Guoliang Xia
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meijia Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
50
|
Meyer T, Herrmann-Lingen C. Natriuretic Peptides in Anxiety and Panic Disorder. ANXIETY 2017; 103:131-145. [DOI: 10.1016/bs.vh.2016.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|