1
|
Baptista ISC, Kandavalli V, Chauhan V, Bahrudeen MNM, Almeida BLB, Palma CSD, Dash S, Ribeiro AS. Sequence-dependent model of genes with dual σ factor preference. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194812. [PMID: 35338024 DOI: 10.1016/j.bbagrm.2022.194812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
Escherichia coli uses σ factors to quickly control large gene cohorts during stress conditions. While most of its genes respond to a single σ factor, approximately 5% of them have dual σ factor preference. The most common are those responsive to both σ70, which controls housekeeping genes, and σ38, which activates genes during stationary growth and stresses. Using RNA-seq and flow-cytometry measurements, we show that 'σ70+38 genes' are nearly as upregulated in stationary growth as 'σ38 genes'. Moreover, we find a clear quantitative relationship between their promoter sequence and their response strength to changes in σ38 levels. We then propose and validate a sequence dependent model of σ70+38 genes, with dual sensitivity to σ38 and σ70, that is applicable in the exponential and stationary growth phases, as well in the transient period in between. We further propose a general model, applicable to other stresses and σ factor combinations. Given this, promoters controlling σ70+38 genes (and variants) could become important building blocks of synthetic circuits with predictable, sequence-dependent sensitivity to transitions between the exponential and stationary growth phases.
Collapse
Affiliation(s)
- Ines S C Baptista
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Vinodh Kandavalli
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland; Department of Cell and Molecular Biology, Uppsala University, Uppsala 752 37, Sweden
| | - Vatsala Chauhan
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Mohamed N M Bahrudeen
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Bilena L B Almeida
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Cristina S D Palma
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Suchintak Dash
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Andre S Ribeiro
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland; Center of Technology and Systems (CTS-Uninova), NOVA University of Lisbon, 2829-516 Monte de Caparica, Portugal.
| |
Collapse
|
2
|
Effects of σ factor competition are promoter initiation kinetics dependent. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1281-8. [DOI: 10.1016/j.bbagrm.2016.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/29/2023]
|
3
|
Chen BS, Sun ZW, Hampsey M. A Gal4-sigma 54 hybrid protein that functions as a potent activator of RNA polymerase II transcription in yeast. J Biol Chem 2001; 276:23881-7. [PMID: 11313364 DOI: 10.1074/jbc.m102893200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial final sigma(54) protein associates with core RNA polymerase to form a holoenzyme complex that renders cognate promoters enhancer-dependent. Although unusual in bacteria, enhancer-dependent transcription is the paradigm in eukaryotes. Here we report that a fragment of Escherichia coli final sigma(54) encompassing amino acid residues 29-177 functions as a potent transcriptional activator in yeast when fused to a Gal4 DNA binding domain. Activation by Gal4-final sigma(54) is TATA-dependent and requires the SAGA coactivator complex, suggesting that Gal4-final sigma(54) functions by a normal mechanism of transcriptional activation. Surprisingly, deletion of the AHC1 gene, which encodes a polypeptide unique to the ADA coactivator complex, stimulates Gal4-final sigma(54)-mediated activation and enhances the toxicity of Gal4-final sigma(54). Accordingly, the SAGA and ADA complexes, both of which include Gcn5 as their histone acetyltransferase subunit, exert opposite effects on transcriptional activation by Gal4-final sigma(54). Gal4-final sigma(54) activation and toxicity are also dependent upon specific final sigma(54) residues that are required for activator-responsive promoter melting by final sigma(54) in bacteria, implying that activation is a consequence of final sigma(54)-specific features rather than a structurally fortuitous polypeptide fragment. As such, Gal4-final sigma(54) represents a novel tool with the potential to provide insight into the mechanism by which natural activators function in eukaryotic cells.
Collapse
Affiliation(s)
- B S Chen
- Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA
| | | | | |
Collapse
|
4
|
Kestermann M, Neukirchen S, Kloppstech K, Link G. Sequence and expression characteristics of a nuclear-encoded chloroplast sigma factor from mustard (Sinapis alba). Nucleic Acids Res 1998; 26:2747-53. [PMID: 9592164 PMCID: PMC147615 DOI: 10.1093/nar/26.11.2747] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plant chloroplasts contain transcription factors that functionally resemble bacterial sigma factors. We have cloned the full-length cDNA from mustard (Sinapis alba) for a 53 kDa derived polypeptide that contains similarity to regions 1.2-4.2 of sigma70-type factors. The amino acid sequence at the N-terminus has characteristics of a chloroplast transit peptide. An in vitro synthesized polypeptide containing this region was shown to be imported into the chloroplast and processed. The recombinant factor lacking the N-terminal extension was expressed in Escherichia coli and purified. It confers the ability on E.coli core RNA polymerase to bind specifically to a DNA fragment that contains the chloroplast psbA promoter. Transcription of the psbA template by E.coli core enzyme in the presence of recombinant SIG1 results in enhanced formation of transcripts of the size expected for correct initiation at the in vivo start site. Together, these data suggest that the mature protein acts as one of the chloroplast transcription factors in mustard. RNA gel blot hybridization reveals a transcript at approximately 1.8 kb, which is more abundant in light-grown than in dark-grown mustard seedlings.
Collapse
Affiliation(s)
- M Kestermann
- Plant Cell Physiology and Molecular Biology, University of Bochum, D-44780 Bochum, Germany
| | | | | | | |
Collapse
|
5
|
Gopal V, Chatterji D. Mutations in the 1.1 subdomain of Escherichia coli sigma factor sigma70 and disruption of its overall structure. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:613-8. [PMID: 9119031 DOI: 10.1111/j.1432-1033.1997.00613.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Among various group I sigma factors, two amino acids, Val55 and Ala59 are the conserved amino acids in the 1.1 hydrophobic subdomain. These two sites have been mutated to generate variants designated as [Gly55]sigma70 and [Gly59]sigma70, where glycine replaces valine and alanine, respectively. The function of these sigma mutants is reported here. The molecular mass of these proteins determined on denaturing gels was 70 kDa, which is the expected calculated molecular mass; wild-type sigma70 has an apparent molecular mass of 87 kDa. However, [Gly434]sigma70, which contains a mutation at the DNA-binding rpoD box region, also migrates as a 70-kDa protein on SDS/PAGE. Circular dichroism spectral analysis indicated that both [Gly55]sigma70 and [Gly59]sigma70 have reduced helicity (20%) compared to wild-type sigma70 (50%). Binding of sigma factors with the hydrophobic, surface active probe 1-anilinonapthalene-8-sulphonate, has shown that more hydrophobic surfaces are available/exposed in [Gly55]sigma70, [Gly59]sigma70 as well as in [Gly434]sigma70 in comparison to wild-type sigma70. Time-resolved emission spectroscopic studies have suggested transient binding between these mutants and DNA. The different holoenzyme RNA polymerases generated upon reconstituting these mutants independently with core RNA polymerase (alpha2beta beta') have shown reduced transcriptional activity in comparison to the enzyme containing wild-type sigma factor. However, another mutation (Val-->Gly) in the hydrophobic subdomain 1.2 at position 83, which is designated as [Gly83]sigma70, has similar properties as the wild-type with respect to its mobility on denaturing gels, circular dichroism profile, and transcriptional activity when reconstituted with core RNA polymerase. It appears that the 1.1 subdomain in sigma70 may interact hydrophobically with the 2.3/2.4 DNA-binding region.
Collapse
Affiliation(s)
- V Gopal
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
6
|
Reddy BV, Gopal V, Chatterji D. Recognition of promoter DNA by subdomain 4.2 of Escherichia coli sigma 70: a knowledge based model of -35 hexamer interaction with 4.2 helix-turn-helix motif. J Biomol Struct Dyn 1997; 14:407-19. [PMID: 9172641 DOI: 10.1080/07391102.1997.10508140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In Escherichia coli, subdomains 2.4 and 4.2 of the primary transcription factor sigma 70 are the most highly conserved regions and are responsible for the recognition of -10 and -35 promoter elements respectively. Mutational studies provide evidence to this end and indicate that the side chains of subdomain 4.2 make specific contacts with the nucleotides at -35. Subdomain 4.2 is highly conserved among group-1 sigma factors and is strongly homologous to the classical helix-turn-helix (HTH) motif shared by bacteriophage lembda cl, Cro, the CAP protein and other homeodomain proteins, suggesting that sigma factor also belongs to the HTH class of proteins. In this study, a single point mutation of the conserved hydrophobic residue valine at position 576, in the 4.2 subdomain results in a mutant that is transcriptionally inefficient although conformationally similar to wild-type sigma. The mutant sigma, like wild-type, migrates as a 87 kDa protein on SDS gels and has 50% helicity. However, transcription at "extended -10 promoter' by RNA polymerase containing mutant sigma 70-V576G, synthesized appreciable amount of RNA product, when compared with that generated by sigma 70-W434G, a mutation in -10 DNA binding domain. A model of HTH motif for the conserved 20 residue region of 4.2 domain of E. coli sigma 70 as well as its mutant sigma 70-V576G and sigma 70-V576T were constructed based on five other homologous HTH motifs from DNA-protein complexes for which X-ray or NMR structure is available. A B-DNA structure was designed for -35 region using sequence dependent base pair parameters. The modeled HTH structure was docked into the major groove formed by the -35 hexamer DNA using the DNA-recognition rules and amino acid-nucleotide base contact information of homologous DNA-protein complexes. Analysis of the residue contact information of the model was tested and found to have good agreement with the experimental reports.
Collapse
Affiliation(s)
- B V Reddy
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
7
|
Fox TD. Translational control of endogenous and recoded nuclear genes in yeast mitochondria: regulation and membrane targeting. EXPERIENTIA 1996; 52:1130-5. [PMID: 8988256 DOI: 10.1007/bf01952112] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mitochondrial gene expression in yeast, Saccharomyces cerevisiae, depends on translational activation of individual mRNAs by distinct proteins encoded in the nucleus. These unclearly coded mRNA-specific translational activators are bound to the inner membrane and function to mediate the interaction between mRNAs and mitochondrial ribosomes. This complex system, found to date only in organelles, appears to be an adaptation for targeting the synthesis of mitochondrially coded integral membrane proteins to the membrane. In addition, mRNA-specific translational activation is a rate-limiting step used to modulate expression of at least one mitochondrial gene in response to environmental conditions. Direct study of mitochondrial gene regulation and the targeting of mitochondrially coded proteins in vivo will now be possible using synthetic genes inserted into mtDNA that encode soluble reporter/passenger proteins.
Collapse
Affiliation(s)
- T D Fox
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA.
| |
Collapse
|
8
|
Artsimovitch I, Murakami K, Ishihama A, Howe MM. Transcription activation by the bacteriophage Mu Mor protein requires the C-terminal regions of both alpha and sigma70 subunits of Escherichia coli RNA polymerase. J Biol Chem 1996; 271:32343-8. [PMID: 8943297 DOI: 10.1074/jbc.271.50.32343] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Middle transcription of bacteriophage Mu requires Escherichia coli RNA polymerase and a Mu-encoded protein, Mor. Consistent with these requirements, the middle promoter, Pm, has a -10 hexamer but lacks a recognizable -35 hexamer. Interactions between Mor and RNA polymerase were studied using in vitro transcription, DNase I footprinting, and the yeast interaction trap system. We observed reduced promoter activity in vitro using reconstituted RNA polymerases with C-terminal deletions in alpha or sigma70. As predicted if alpha were binding to Pm, we detected a polymerase-dependent footprint in the -60 region. Reconstituted RNA polymerases containing Ala substitutions in the alpha C-terminal domain were used to assay Mor-dependent transcription from Pm in vitro. The D258A substitution and alpha deletion gave large reductions in activation, whereas the L262A, R265A, and N268A substitutions caused smaller reductions. The interaction trap assay revealed weak interactions between Mor and both alpha and sigma70; consistent with a key role of alpha-D258, the D258A substitution abolished interaction, whereas the R265A substitution did not. We propose that: (i) alpha-D258 is a Mor "contact site"; and (ii) residues Leu-262, Arg-265, and Asn-268 indirectly affect Mor-polymerase interaction by stabilizing the ternary complex via alpha-DNA contact.
Collapse
Affiliation(s)
- I Artsimovitch
- Department of Microbiology and Immunology, University of Tennessee-Memphis, Memphis, Tennessee 38163, USA.
| | | | | | | |
Collapse
|
9
|
Künzler M, Springer C, Braus GH. The transcriptional apparatus required for mRNA encoding genes in the yeast Saccharomyces cerevisiae emerges from a jigsaw puzzle of transcription factors. FEMS Microbiol Rev 1996; 19:117-36. [PMID: 8988567 DOI: 10.1111/j.1574-6976.1996.tb00256.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The number of identified yeast factors involved in transcription has dramatically increased in recent years and the understanding of the interplay between the different factors has become more and more puzzling. Transcription initiation at the core promoter of mRNA encoding genes consisting of upstream, TATA and initiator elements requires an approximately ribosome-sized complex of more than 50 polypeptides. The recent identification and isolation of an RNA polymerase holoenzyme which seems to be preassembled before interacting with a promoter allowed a better understanding of the roles, assignments and interplays of the various constituents of the basal transcription machinery. Recruitment of this complex to the promoter is achieved by numerous interactions with a variety of DNA-bound proteins. These interactions can be direct or mediated by additional adaptor proteins. Other proteins negatively affect transcription by interrupting the recruitment process through protein-protein or protein-DNA interactions. Some basic features of cis-acting elements, the transcriptional apparatus and various trans-acting factors involved in the initiation of mRNA synthesis in yeast are summarized.
Collapse
Affiliation(s)
- M Künzler
- Institute of Microbiology, Biochemistry and Genetics, Friedrich-Alexander-University, Erlangen, Germany
| | | | | |
Collapse
|
10
|
Kumar A, Williamson HS, Fujita N, Ishihama A, Hayward RS. A partially functional 245-amino-acid internal deletion derivative of Escherichia coli sigma 70. J Bacteriol 1995; 177:5193-6. [PMID: 7665506 PMCID: PMC177307 DOI: 10.1128/jb.177.17.5193-5196.1995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two hundred forty-five consecutive amino acids of the sigma 70 subunit of Escherichia coli RNA polymerase are not conserved in the homologous protein of Bacillus subtilis. We show that their deletion from a sigma 70-32 hybrid protein caused no severe loss of function in vivo, while sigma 70 itself retained considerable function in vitro.
Collapse
Affiliation(s)
- A Kumar
- Institute of Cell and Molecular Biology, University of Edinburgh, Scotland
| | | | | | | | | |
Collapse
|
11
|
Khazak V, Sadhale PP, Woychik NA, Brent R, Golemis EA. Human RNA polymerase II subunit hsRPB7 functions in yeast and influences stress survival and cell morphology. Mol Biol Cell 1995; 6:759-75. [PMID: 7579693 PMCID: PMC301239 DOI: 10.1091/mbc.6.7.759] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Using a screen to identify human genes that promote pseudohyphal conversion in Saccharomyces cerevisiae, we obtained a cDNA encoding hsRPB7, a human homologue of the seventh largest subunit of yeast RNA polymerase II (RPB7). Overexpression of yeast RPB7 in a comparable strain background caused more pronounced cell elongation than overexpression of hsRPB7. hsRPB7 sequence and function are strongly conserved with its yeast counterpart because its expression can rescue deletion of the essential RPB7 gene at moderate temperatures. Further, immuno-precipitation of RNA polymerase II from yeast cells containing hsRPB7 revealed that the hsRPB7 assembles the complete set of 11 other yeast subunits. However, at temperature extremes and during maintenance at stationary phase, hsRPB7-containing yeast cells lose viability rapidly, stress-sensitive phenotypes reminiscent of those associated with deletion of the RPB4 subunit with which RPB7 normally complexes. Two-hybrid analysis revealed that although hsRPB7 and RPB4 interact, the association is of lower affinity than the RPB4-RPB7 interaction, providing a probable mechanism for the failure of hsRPB7 to fully function in yeast cells at high and low temperatures. Finally, surprisingly, hsRPB7 RNA in human cells is expressed in a tissue-specific pattern that differs from that of the RNA polymerase II largest subunit, implying a potential regulatory role for hsRPB7. Taken together, these results suggest that some RPB7 functions may be analogous to those possessed by the stress-specific prokaryotic sigma factor rpoS.
Collapse
Affiliation(s)
- V Khazak
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | |
Collapse
|
12
|
Mangus DA, Jang SH, Jaehning JA. Release of the yeast mitochondrial RNA polymerase specificity factor from transcription complexes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47232-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
McKune K, Woychik NA. Halobacterial S9 operon contains two genes encoding proteins homologous to subunits shared by eukaryotic RNA polymerases I, II, and III. J Bacteriol 1994; 176:4754-6. [PMID: 8045907 PMCID: PMC196299 DOI: 10.1128/jb.176.15.4754-4756.1994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
One key component of the eukaryotic transcriptional apparatus is the multisubunit enzyme RNA polymerase II. We have discovered that two of the subunits shared by the three nuclear RNA polymerases in the yeast Saccharomyces cerevisiae, RPB6 and RPB10, have counterparts among the Archaea.
Collapse
Affiliation(s)
- K McKune
- Roche Institute of Molecular Biology, Nutley, New Jersey 07110
| | | |
Collapse
|
14
|
Maizels N, Weiner AM. Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc Natl Acad Sci U S A 1994; 91:6729-34. [PMID: 8041690 PMCID: PMC44276 DOI: 10.1073/pnas.91.15.6729] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We propose a phylogeny for the evolution of tRNA that is based on the ubiquity and conservation of tRNA-like structures in the replication of contemporary genomes. This phylogeny is unique in suggesting that the function of tRNA in replication dates back to the very beginnings of life on earth, before the advent of templated protein synthesis. The origin we propose for tRNA has distinct implications for the order in which other components of the modern translational apparatus evolved. We further suggest that the "top half" of modern tRNA-a coaxial stack of the acceptor stem on the T psi C arm--is the ancient structural and functional domain and that the "bottom half" of tRNA--a coaxial stack of the dihydrouracil arm on the anticodon arm--arose later to provide additional specificity.
Collapse
Affiliation(s)
- N Maizels
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510-8024
| | | |
Collapse
|
15
|
Abstract
The transcription of nucleus-encoded genes in eukaryotes is performed by three distinct RNA polymerases termed I, II, and III, each of which is a complex enzyme composed of more than 10 subunits. The isolation of genes encoding subunits of eukaryotic RNA polymerases from a wide spectrum of organisms has confirmed previous biochemical and immunological data indicating that all three enzymes are closely related in structures that have been conserved in evolution. Each RNA polymerase is an enzyme complex composed of two large subunits that are homologous to the two largest subunits of prokaryotic RNA polymerases and are associated with smaller polypeptides, some of which are common to two or to all three eukaryotic enzymes. This remarkable conservation of structure most probably underlies a conservation of function and emphasizes the likelihood that information gained from the study of RNA polymerases from one organism will be applicable to others. The recent isolation of many mutations affecting the structure and/or function of eukaryotic and prokaryotic RNA polymerases now makes it feasible to begin integrating genetic and biochemical information from various species in order to develop a picture of these enzymes. The picture of eukaryotic RNA polymerases depicted in this article emphasizes the role(s) of different polypeptide regions in interaction with other subunits, cofactors, substrates, inhibitors, or accessory transcription factors, as well as the requirement for these interactions in transcription initiation, elongation, pausing, termination, and/or enzyme assembly. Most mutations described here have been isolated in eukaryotic organisms that have well-developed experimental genetic systems as well as amenable biochemistry, such as Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans. When relevant, mutations affecting regions of Escherichia coli RNA polymerase that are conserved among eukaryotes and prokaryotes are also presented. In addition to providing information about the structure and function of eukaryotic RNA polymerases, the study of mutations and of the pleiotropic phenotypes they imposed has underscored the central role played by these enzymes in many fundamental processes such as development and cellular differentiation.
Collapse
Affiliation(s)
- J Archambault
- Department of Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
16
|
Abstract
The Transcription Factors Database is a specialized database focusing on transcription factors and their properties. This report describes the present status of this database and developments during the past year. Within this time, the size of this database has increased by a 2799 total records, and has become accessible through a number of new mechanisms.
Collapse
Affiliation(s)
- D Ghosh
- National Center for Biotechnology Information, NLM, NIH, Bethesda, MD 20894
| |
Collapse
|
17
|
Abstract
Despite the striking similarities of RNA polymerases and transcription signals shared by eubacteria, archaebacteria and eukaryotes, there has been little indication that transcription in mitochondria is related to any previously characterized model. Only in yeast has the subunit structure of the mitochondrial RNA polymerase been determined. The yeast enzyme is composed of a core related to polymerases from bacteriophage T7 and T3, and a promoter recognition factor similar to bacterial sigma factors. Soluble systems for studying mitochondrial transcript initiation in vitro have been described from several organisms, and used to determine consensus sequences at or near transcription start sites. Comparison of these sequences from fungi, plants, and amphibians with the T7/T3 promoter suggests some intriguing similarities. Mammalian mitochondrial promoters do not fit this pattern but instead appear to utilize upstream sites, the target of a transcriptional stimulatory factor, to position the RNA polymerase. The recent identification of a possible homologue of the mammalian upstream factor in yeast mitochondria may indicate that a pattern will eventually be revealed relating the transcriptional machineries of all eukaryotic mitochondria.
Collapse
Affiliation(s)
- J A Jaehning
- Department of Biology, Indiana University, Bloomington 47405
| |
Collapse
|
18
|
Abstract
Accurate initiation of eukaryotic mRNA synthesis takes place as a result of the interplay between general transcription factors and RNA polymerase II. Activation of transcription from the basal level involves a number of promoter-specific trans-acting factors which interact with cis elements in the promoter DNA. In this paper we have emphasized the importance of even those portions of the promoter stretch which do not have any identifiable binding sites for regulatory proteins. The length and structure of the DNA between cognate binding sites of trans-acting factors may interfere with the level of transcriptional activation. Depending upon the length of the intervening DNA we describe three cases of transcriptional activation. In addition, based on this classification we propose a new third domain, the other two being DNA binding and transcriptional activation domains, which is involved in bending the intervening DNA so that activation from a distance can take place successfully.
Collapse
Affiliation(s)
- P Bhargava
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
19
|
Lonetto M, Gribskov M, Gross CA. The sigma 70 family: sequence conservation and evolutionary relationships. J Bacteriol 1992; 174:3843-9. [PMID: 1597408 PMCID: PMC206090 DOI: 10.1128/jb.174.12.3843-3849.1992] [Citation(s) in RCA: 709] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- M Lonetto
- Department of Bacteriology, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
20
|
Pinto I, Ware DE, Hampsey M. The yeast SUA7 gene encodes a homolog of human transcription factor TFIIB and is required for normal start site selection in vivo. Cell 1992; 68:977-88. [PMID: 1547497 DOI: 10.1016/0092-8674(92)90040-j] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mutations in the Saccharomyces cerevisiae SUA7 gene were isolated as suppressors of an aberrant ATG translation initiation codon in the leader region of the cyc1 gene. Molecular and genetic analysis of the cloned SUA7 gene demonstrated that SUA7 is a single copy, essential gene encoding a basic protein (calculated Mr of 38,142) that is homologous to human transcription factor TFIIB. Analysis of cyc1 transcripts from sua7 strains revealed that suppression is a consequence of diminished transcription initiation at the normal start sites in favor of initiation at downstream sites, including a major site between the aberrant and normal ATG start codons. A similar effect was found at the ADH1 locus, establishing that this effect is not cyc1 gene-specific. Thus, SUA7 encodes a yeast TFIIB homolog and functions in transcription start site selection.
Collapse
Affiliation(s)
- I Pinto
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130
| | | | | |
Collapse
|