1
|
Sastre J, Pérez S, Sabater L, Rius-Pérez S. Redox signaling in the pancreas in health and disease. Physiol Rev 2025; 105:593-650. [PMID: 39324871 DOI: 10.1152/physrev.00044.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
This review addresses oxidative stress and redox signaling in the pancreas under healthy physiological conditions as well as in acute pancreatitis, chronic pancreatitis, pancreatic cancer, and diabetes. Physiological redox homeodynamics is maintained mainly by NRF2/KEAP1, NF-κB, protein tyrosine phosphatases, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), and normal autophagy. Depletion of reduced glutathione (GSH) in the pancreas is a hallmark of acute pancreatitis and is initially accompanied by disulfide stress, which is characterized by protein cysteinylation without increased glutathione oxidation. A cross talk between oxidative stress, MAPKs, and NF-κB amplifies the inflammatory cascade, with PP2A and PGC1α as key redox regulatory nodes. In acute pancreatitis, nitration of cystathionine-β synthase causes blockade of the transsulfuration pathway leading to increased homocysteine levels, whereas p53 triggers necroptosis in the pancreas through downregulation of sulfiredoxin, PGC1α, and peroxiredoxin 3. Chronic pancreatitis exhibits oxidative distress mediated by NADPH oxidase 1 and/or CYP2E1, which promotes cell death, fibrosis, and inflammation. Oxidative stress cooperates with mutant KRAS to initiate and promote pancreatic adenocarcinoma. Mutant KRAS increases mitochondrial reactive oxygen species (ROS), which trigger acinar-to-ductal metaplasia and progression to pancreatic intraepithelial neoplasia (PanIN). ROS are maintained at a sufficient level to promote cell proliferation, while avoiding cell death or senescence through formation of NADPH and GSH and activation of NRF2, HIF-1/2α, and CREB. Redox signaling also plays a fundamental role in differentiation, proliferation, and insulin secretion of β-cells. However, ROS overproduction promotes β-cell dysfunction and apoptosis in type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Luis Sabater
- Liver, Biliary and Pancreatic Unit, Hospital Clínico, Department of Surgery, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
2
|
Schiffman A, Cheng Z, Ourthiague D, Hoffmann A. Gene regulatory logic of the interferon-β enhancer contains multiple selectively deployed modes of transcription factor synergy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636520. [PMID: 39975349 PMCID: PMC11838565 DOI: 10.1101/2025.02.04.636520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Type I interferon IFNβ is a key regulator of the immune response, and its dysregulated expression causes disease. The regulation of IFNβ promoter activity has been a touchpoint of mammalian gene control research since the discovery of functional synergy between two stimulus-responsive transcription factors (TFs) nuclear factor kappa B (NFκB) and interferon regulatory factors (IRF). However, subsequent gene knockout studies revealed that this synergy is condition-dependent such that either NFκB or IRF activation can be dispensable, leaving the precise regulatory logic of IFNβ transcription an open question. Here, we developed a series of quantitative enhancer states models of IFNβ expression control and evaluated them with stimulus-response data from TF knockouts. Our analysis confirmed that TF synergy is a hallmark of the regulatory logic but that it need not involve NFκB, as synergy between two adjacent IRF dimers is sufficient. We found that a sigmoidal binding curve at the distal site renders the dual IRF synergy mode ultrasensitive, allowing it only in conditions of high IRF activity upon viral infection. In contrast, the proximal site has high affinity and enables expression in response to bacterial exposure through synergy with NFκB. However, its accessibility is controlled by the competitive repressor p50:p50, which prevents basal IRF levels from synergizing with NFκB, such that NFκB-only stimuli do not activate IFNβ expression. The enhancer states model identifies multiple synergy modes that are accessed differentially in response to different immune threats, enabling a highly stimulus-specific but also versatile regulatory logic for stimulus-specific IFNβ expression.
Collapse
Affiliation(s)
- Allison Schiffman
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| | - Zhang Cheng
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| | - Diana Ourthiague
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| |
Collapse
|
3
|
Chen X, Liu S, Wang H, Liu Y, Xiao Y, Li K, Ni F, Wu W, Lin H, Qing X, Pu F, Wang B, Shao Z, Peng Y. Extracellular vesicles deliver thioredoxin to rescue stem cells from senescence and intervertebral disc degeneration via a feed-forward circuit of the NRF2/AP-1 composite pathway. Acta Pharm Sin B 2025; 15:1007-1022. [PMID: 40177564 PMCID: PMC11959923 DOI: 10.1016/j.apsb.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 04/05/2025] Open
Abstract
Intervertebral disc degeneration (IDD) is largely attributed to impaired endogenous repair. Nucleus pulposus-derived stem cells (NPSCs) senescence leads to endogenous repair failure. Small extracellular vesicles/exosomes derived from mesenchymal stem cells (mExo) have shown great therapeutic potential in IDD, while whether mExo could alleviate NPSCs senescence and its mechanisms remained unknown. We established a compression-induced NPSCs senescence model and rat IDD models to evaluate the therapeutic efficiency of mExo and investigate the mechanisms. We found that mExo significantly alleviated NPSCs senescence and promoted disc regeneration while knocking down thioredoxin (TXN) impaired the protective effects of mExo. TXN was bound to various endosomal sorting complex required for transport (ESCRT) proteins. Autocrine motility factor receptor (AMFR) mediated TXN K63 ubiquitination to promote the binding of TXN on ESCRT proteins and sorting of TXN into mExo. Knocking down exosomal TXN inhibited the transcriptional activity of nuclear factor erythroid 2-related factor 2 (NRF2) and activator protein 1 (AP-1). NRF2 and AP-1 inhibition reduced endogenous TXN production that was promoted by exosomal TXN. Inhibition of NRF2 in vivo diminished the anti-senescence and regenerative effects of mExo. Conclusively, AMFR-mediated TXN ubiquitination promoted the sorting of TXN into mExo, allowing exosomal TXN to promote endogenous TXN production in NPSCs via TXN/NRF2/AP-1 feed-forward circuit to alleviate NPSCs senescence and disc degeneration.
Collapse
Affiliation(s)
- Xuanzuo Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huiwen Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiran Liu
- The First School of Clinical Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Xiao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kanglu Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feifei Ni
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Baichuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
4
|
Gonzalez J, Stoll K, DeSmet M, Androphy EJ. A conserved cysteine in the DNA-binding domain of MmuPV1 E2 is required for replication in vivo. J Virol 2025; 99:e0142324. [PMID: 39665560 PMCID: PMC11784461 DOI: 10.1128/jvi.01423-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024] Open
Abstract
The papillomavirus (PV) E2 protein is highly conserved, consisting of an N-terminal transactivation domain linked to a C-terminal DNA binding and dimerization domain (DBD) by a flexible hinge region. The E2 DBD exhibits a helix-turn-helix structure that dimerizes into a beta barrel prior to binding DNA; the first helix, α1, is responsible for recognition of the palindromic E2 binding site. The DNA recognition helix consists of a tract of basic amino acids with a highly conserved central cysteine residue. Previous mutational analysis studies on this conserved cysteine have found that it is not required for viral replication or DNA binding. To investigate the function of this conserved cysteine in vitro and in vivo, we generated point mutations in MmuPV1 E2 at cysteine 307. We report here that this cysteine in the DNA recognition helix is required for transient viral replication and transactivation of proximal promoters, but C307 point mutants are still capable of enhancing the activation of distant upstream promoters in vitro. MmuPV1 genomes with the C307 mutation failed to produce warts when injected into mice, suggesting that the DNA recognition cysteine is required for viral replication in vivo. IMPORTANCE Papillomaviruses are the etiological agents of cancers of the oropharynx and anogenital tract. Understanding the mechanisms underlying PV pathogenesis is complicated by the strict species tropism displayed by the virus. The research presented here is significant because it links in vitro and in vivo models investigating the role of a conserved cysteine in the MmuPV1 E2 protein. This work elucidates the molecular mechanisms that regulate PV transcription and DNA replication and how these contribute to disease progression.
Collapse
Affiliation(s)
- Jessica Gonzalez
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kennedy Stoll
- Indiana University School of Medicine, Terre Haute, Indiana, USA
| | - Marsha DeSmet
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elliot J. Androphy
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Young M, Booth DM, Smith D, Tigano M, Hajnόczky G, Joseph SK. Transcriptional regulation in the absence of inositol trisphosphate receptor calcium signaling. Front Cell Dev Biol 2024; 12:1473210. [PMID: 39712573 PMCID: PMC11659226 DOI: 10.3389/fcell.2024.1473210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
The activation of IP3 receptor (IP3R) Ca2+ channels generates agonist-mediated Ca2+ signals that are critical for the regulation of a wide range of biological processes. It is therefore surprising that CRISPR induced loss of all three IP3R isoforms (TKO) in HEK293 and HeLa cell lines yields cells that can survive, grow and divide, albeit more slowly than wild-type cells. In an effort to understand the adaptive mechanisms involved, we have examined the activity of key Ca2+ dependent transcription factors (NFAT, CREB and AP-1) and signaling pathways using luciferase-reporter assays, phosphoprotein immunoblots and whole genome transcriptomic studies. In addition, the diacylglycerol arm of the signaling pathway was investigated with protein kinase C (PKC) inhibitors and siRNA knockdown. The data showed that agonist-mediated NFAT activation was lost but CREB activation was maintained in IP3R TKO cells. Under base-line conditions transcriptome analysis indicated the differential expression of 828 and 311 genes in IP3R TKO HEK293 or HeLa cells, respectively, with only 18 genes being in common. Three main adaptations in TKO cells were identified in this study: 1) increased basal activity of NFAT, CREB and AP-1; 2) an increased reliance on Ca2+- insensitive PKC isoforms; and 3) increased production of reactive oxygen species and upregulation of antioxidant defense enzymes. We suggest that whereas wild-type cells rely on a Ca2+ and DAG signal to respond to stimuli, the TKO cells utilize the adaptations to allow key signaling pathways (e.g., PKC, Ras/MAPK, CREB) to transition to the activated state using a DAG signal alone.
Collapse
Affiliation(s)
- Michael Young
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - David M. Booth
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - David Smith
- Center for Single Cell Biology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marco Tigano
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Gyӧrgy Hajnόczky
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Suresh K. Joseph
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Seitz R, Tümen D, Kunst C, Heumann P, Schmid S, Kandulski A, Müller M, Gülow K. Exploring the Thioredoxin System as a Therapeutic Target in Cancer: Mechanisms and Implications. Antioxidants (Basel) 2024; 13:1078. [PMID: 39334737 PMCID: PMC11428833 DOI: 10.3390/antiox13091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Cells constantly face the challenge of managing oxidants. In aerobic organisms, oxygen (O2) is used for energy production, generating reactive oxygen species (ROS) as byproducts of enzymatic reactions. To protect against oxidative damage, cells possess an intricate system of redox scavengers and antioxidant enzymes, collectively forming the antioxidant defense system. This system maintains the redox equilibrium and enables the generation of localized oxidative signals that regulate essential cellular functions. One key component of this defense is the thioredoxin (Trx) system, which includes Trx, thioredoxin reductase (TrxR), and NADPH. The Trx system reverses oxidation of macromolecules and indirectly neutralizes ROS via peroxiredoxin (Prx). This dual function protects cells from damage accumulation and supports physiological cell signaling. However, the Trx system also shields tumors from oxidative damage, aiding their survival. Due to elevated ROS levels from their metabolism, tumors often rely on the Trx system. In addition, the Trx system regulates critical pathways such as proliferation and neoangiogenesis, which tumors exploit to enhance growth and optimize nutrient and oxygen supply. Consequently, the Trx system is a potential target for cancer therapy. The challenge lies in selectively targeting malignant cells without disrupting the redox equilibrium in healthy cells. The aim of this review article is threefold: first, to elucidate the function of the Trx system; second, to discuss the Trx system as a potential target for cancer therapies; and third, to present the possibilities for inhibiting key components of the Trx system, along with an overview of the latest clinical studies on these inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (R.S.); (D.T.); (C.K.); (P.H.); (S.S.); (A.K.); (M.M.)
| |
Collapse
|
7
|
Bessas NC, Christine de Souza Arantes E, Cassani NM, Aquino Ruiz UE, Santos IA, Silva Martins DO, Costa Oliveira AL, Antoniucci GA, de Oliveira AHC, DeFreitas-Silva G, Gomes Jardim AC, Galvão de Lima R. Influence of diimine bidentate ligand in the nitrosyl and nitro terpyridine ruthenium complex on the HSA/DNA interaction and antiviral activity. Nitric Oxide 2024; 147:26-41. [PMID: 38614230 DOI: 10.1016/j.niox.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/05/2023] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Nitric oxide (NO) acts in different physiological processes, such as blood pressure control, antiparasitic activities, neurotransmission, and antitumor action. Among the exogenous NO donors, ruthenium nitrosyl/nitro complexes are potential candidates for prodrugs, due to their physicochemical properties, such as thermal and physiological pH stability. In this work, we proposed the synthesis and physical characterization of the new nitro terpyridine ruthenium (II) complexes of the type [RuII(L)(NO2)(tpy)]PF6 where tpy = 2,2':6',2″-terpyridine; L = 3,4-diaminobenzoic acid (bdq) or o-phenylenediamine (bd) and evaluation of influence of diimine bidentate ligand NH.NHq-R (R = H or COOH) in the HSA/DNA interaction as well as antiviral activity. The interactions between HSA and new nitro complexes [RuII(L)(NO2)(tpy)]+ were evaluated. The Ka values for the HSA-[RuII(bdq)(NO2)(tpy)]+ is 10 times bigger than HSA-[RuII(bd)(NO2)(tpy)]+. The sites of interaction between HSA and the complexes via synchronous fluorescence suppression indicate that the [RuII(bdq)(NO2)(tpy)]+ is found close to the Trp-241 residue, while the [RuII(bd)(NO2)(tpy)]+ complex is close to Tyr residues. The interaction with fish sperm fs-DNA using direct spectrophotometric titration (Kb) and ethidium bromide replacement (KSV and Kapp) showed weak interaction in the system fs-DNA-[RuII(bdq)(NO)(tpy)]+. Furthermore, fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+ system showed higher intercalation constant. Circular dichroism spectra for fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+, suggest semi-intercalative accompanied by major groove binding interaction modes. The [RuII(bd)(NO2)(tpy)]+ and [RuII(bd)(NO)(tpy)]3+ inhibit replication of Zika and Chikungunya viruses based in the nitric oxide release under S-nitrosylation reaction with cysteine viral.
Collapse
Affiliation(s)
- Naiara Cristina Bessas
- Instituto de Química, Universidade Federal de Uberlândia, Avenida João Naves de Avila, 2121, 38400-902, Uberlândia, MG, Brazil
| | | | - Natasha Marques Cassani
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Uriel Enrique Aquino Ruiz
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Igor Andrade Santos
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Daniel Oliveira Silva Martins
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil; Instituto de Ciências Exatas e Naturais Do Pontal, ICENP, Universidade Federal de Uberlândia, Rua Vinte, 1600, 38304-402, Tupã, Ituiutaba, MG, Brazil
| | - Ana Laura Costa Oliveira
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Giovanna André Antoniucci
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Arthur Henrique Cavalcante de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Gilson DeFreitas-Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brazil
| | - Ana Carolina Gomes Jardim
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Renata Galvão de Lima
- Instituto de Química, Universidade Federal de Uberlândia, Avenida João Naves de Avila, 2121, 38400-902, Uberlândia, MG, Brazil; Instituto de Ciências Exatas e Naturais Do Pontal, ICENP, Universidade Federal de Uberlândia, Rua Vinte, 1600, 38304-402, Tupã, Ituiutaba, MG, Brazil.
| |
Collapse
|
8
|
Zefferino R, Conese M. A Vaccine against Cancer: Can There Be a Possible Strategy to Face the Challenge? Possible Targets and Paradoxical Effects. Vaccines (Basel) 2023; 11:1701. [PMID: 38006033 PMCID: PMC10674257 DOI: 10.3390/vaccines11111701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Is it possible to have an available vaccine that eradicates cancer? Starting from this question, this article tries to verify the state of the art, proposing a different approach to the issue. The variety of cancers and different and often unknown causes of cancer impede, except in some cited cases, the creation of a classical vaccine directed at the causative agent. The efforts of the scientific community are oriented toward stimulating the immune systems of patients, thereby preventing immune evasion, and heightening chemotherapeutic agents effects against cancer. However, the results are not decisive, because without any warning signs, metastasis often occurs. The purpose of this paper is to elaborate on a vaccine that must be administered to a patient in order to prevent metastasis; metastasis is an event that leads to death, and thus, preventing it could transform cancer into a chronic disease. We underline the fact that the field has not been studied in depth, and that the complexity of metastatic processes should not be underestimated. Then, with the aim of identifying the target of a cancer vaccine, we draw attention to the presence of the paradoxical actions of different mechanisms, pathways, molecules, and immune and non-immune cells characteristic of the tumor microenvironment at the primary site and pre-metastatic niche in order to exclude possible vaccine candidates that have opposite effects/behaviors; after a meticulous evaluation, we propose possible targets to develop a metastasis-targeting vaccine. We conclude that a change in the current concept of a cancer vaccine is needed, and the efforts of the scientific community should be redirected toward a metastasis-targeting vaccine, with the increasing hope of eradicating cancer.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
9
|
Duan QY, Zhu YX, Jia HR, Wang SH, Wu FG. Nanogels: Synthesis, properties, and recent biomedical applications. PROGRESS IN MATERIALS SCIENCE 2023; 139:101167. [DOI: 10.1016/j.pmatsci.2023.101167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Aramouni K, Assaf R, Shaito A, Fardoun M, Al-Asmakh M, Sahebkar A, Eid AH. Biochemical and cellular basis of oxidative stress: Implications for disease onset. J Cell Physiol 2023; 238:1951-1963. [PMID: 37436042 DOI: 10.1002/jcp.31071] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023]
Abstract
Cellular oxidation-reduction (redox) systems, which encompass pro- and antioxidant molecules, are integral components of a plethora of essential cellular processes. Any dysregulation of these systems can cause molecular imbalances between the pro- and antioxidant moieties, leading to a state of oxidative stress. Long-lasting oxidative stress can manifest clinically as a variety of chronic illnesses including cancers, neurodegenerative disorders, cardiovascular disease, and metabolic diseases like diabetes. As such, this review investigates the impact of oxidative stress on the human body with emphasis on the underlying oxidants, mechanisms, and pathways. It also discusses the available antioxidant defense mechanisms. The cellular monitoring and regulatory systems that ensure a balanced oxidative cellular environment are detailed. We critically discuss the notion of oxidants as a double-edged sword, being signaling messengers at low physiological concentrations but causative agents of oxidative stress when overproduced. In this regard, the review also presents strategies employed by oxidants including redox signaling and activation of transcriptional programs such as those mediated by the Nrf2/Keap1 and NFk signaling. Likewise, redox molecular switches of peroxiredoxin and DJ-1 and the proteins they regulate are presented. The review concludes that a thorough comprehension of cellular redox systems is essential to develop the evolving field of redox medicine.
Collapse
Affiliation(s)
- Karl Aramouni
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Roland Assaf
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Sciences, QU Health, Qatar University, Doha, Qatar
| | - Manal Fardoun
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, QU Health, Qatar University, Doha, Qatar
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Department of Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
11
|
Oberacker T, Kraft L, Schanz M, Latus J, Schricker S. The Importance of Thioredoxin-1 in Health and Disease. Antioxidants (Basel) 2023; 12:antiox12051078. [PMID: 37237944 DOI: 10.3390/antiox12051078] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Thioredoxin-1 (Trx-1) is a multifunctional protein ubiquitously found in the human body. Trx-1 plays an important role in various cellular functions such as maintenance of redox homeostasis, proliferation, and DNA synthesis, but also modulation of transcription factors and control of cell death. Thus, Trx-1 is one of the most important proteins for proper cell and organ function. Therefore, modulation of Trx gene expression or modulation of Trx activity by various mechanisms, including post-translational modifications or protein-protein interactions, could cause a transition from the physiological state of cells and organs to various pathologies such as cancer, and neurodegenerative and cardiovascular diseases. In this review, we not only discuss the current knowledge of Trx in health and disease, but also highlight its potential function as a biomarker.
Collapse
Affiliation(s)
- Tina Oberacker
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Leonie Kraft
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| | - Moritz Schanz
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| | - Jörg Latus
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| | - Severin Schricker
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| |
Collapse
|
12
|
Nocera R, Eletto D, Santoro V, Parisi V, Bellone ML, Izzo M, Tosco A, Dal Piaz F, Donadio G, De Tommasi N. Design of an Herbal Preparation Composed by a Combination of Ruscus aculeatus L. and Vitis vinifera L. Extracts, Magnolol and Diosmetin to Address Chronic Venous Diseases through an Anti-Inflammatory Effect and AP-1 Modulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1051. [PMID: 36903912 PMCID: PMC10004780 DOI: 10.3390/plants12051051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/10/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Chronic venous disease (CVD) is an often underestimated inflammatory pathological condition that can have a serious impact on quality of life. Many therapies have been proposed to deal with CVD, but unfortunately the symptoms recur with increasing frequency and intensity as soon as treatments are stopped. Previous studies have shown that the common inflammatory transcription factor AP-1 (activator protein-1) and nuclear factor kappa-activated B-cell light chain enhancer (NF-kB) play key roles in the initiation and progression of this vascular dysfunction. The aim of this research was to develop a herbal product that acts simultaneously on different aspects of CVD-related inflammation. Based on the evidence that several natural components of plant origin are used to treat venous insufficiency and that magnolol has been suggested as a putative modulator of AP-1, two herbal preparations based on Ruscus aculeatus root extracts, and Vitis vinifera seed extracts, as well as diosmetin and magnolol, were established. A preliminary MTT-based evaluation of the possible cytotoxic effects of these preparations led to the selection of one of them, named DMRV-2, for further investigation. First, the anti-inflammatory efficacy of DMRV-2 was demonstrated by monitoring its ability to reduce cytokine secretion from endothelial cells subjected to LPS-induced inflammation. Furthermore, using a real-time PCR-based protocol, the effect of DMRV-2 on AP-1 expression and activity was also evaluated; the results obtained demonstrated that the incubation of the endothelial cells with this preparation almost completely nullified the effects exerted by the treatment with LPS on AP-1. Similar results were also obtained for NF-kB, whose activation was evaluated by monitoring its distribution between the cytosol and the nucleus of endothelial cells after the different treatments.
Collapse
Affiliation(s)
- Raffaella Nocera
- Ph.D. Program in Drug Discovery & Development, Università degli Studi di Salerno, 84084 Fisciano, Italy
| | - Daniela Eletto
- Department of Pharmacy, Università degli Studi di Salerno, 84084 Fisciano, Italy
| | - Valentina Santoro
- Department of Pharmacy, Università degli Studi di Salerno, 84084 Fisciano, Italy
| | - Valentina Parisi
- Ph.D. Program in Drug Discovery & Development, Università degli Studi di Salerno, 84084 Fisciano, Italy
| | - Maria Laura Bellone
- Ph.D. Program in Drug Discovery & Development, Università degli Studi di Salerno, 84084 Fisciano, Italy
| | - Marcello Izzo
- Department of Medicine and Surgery, Univesità degli Studi di Ferrara, 44121 Ferrara, Italy
| | - Alessandra Tosco
- Department of Pharmacy, Università degli Studi di Salerno, 84084 Fisciano, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry, Università degli Studi di Salerno, 84081 Baronissi, Italy
| | - Giuliana Donadio
- Department of Pharmacy, Università degli Studi di Salerno, 84084 Fisciano, Italy
| | | |
Collapse
|
13
|
Kumar A, Aglyamova G, Yim Y, Bailey AO, Lynch H, Powell R, Nguyen N, Rosenthal Z, Zhao WN, Li Y, Chen J, Fan S, Lee H, Russell W, Stephan C, Robison A, Haggarty S, Nestler E, Zhou J, Machius M, Rudenko G. Chemically targeting the redox switch in AP1 transcription factor ΔFOSB. Nucleic Acids Res 2022; 50:9548-9567. [PMID: 36039764 PMCID: PMC9458432 DOI: 10.1093/nar/gkac710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
The AP1 transcription factor ΔFOSB, a splice variant of FOSB, accumulates in the brain in response to chronic insults such as exposure to drugs of abuse, depression, Alzheimer's disease and tardive dyskinesias, and mediates subsequent long-term neuroadaptations. ΔFOSB forms heterodimers with other AP1 transcription factors, e.g. JUND, that bind DNA under control of a putative cysteine-based redox switch. Here, we reveal the structural basis of the redox switch by determining a key missing crystal structure in a trio, the ΔFOSB/JUND bZIP domains in the reduced, DNA-free form. Screening a cysteine-focused library containing 3200 thiol-reactive compounds, we identify specific compounds that target the redox switch, validate their activity biochemically and in cell-based assays, and show that they are well tolerated in different cell lines despite their general potential to bind to cysteines covalently. A crystal structure of the ΔFOSB/JUND bZIP domains in complex with a redox-switch-targeting compound reveals a deep compound-binding pocket near the DNA-binding site. We demonstrate that ΔFOSB, and potentially other, related AP1 transcription factors, can be targeted specifically and discriminately by exploiting unique structural features such as the redox switch and the binding partner to modulate biological function despite these proteins previously being thought to be undruggable.
Collapse
Affiliation(s)
| | | | - Yun Young Yim
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Haley M Lynch
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Reid T Powell
- HTS Screening Core, Texas A&M University School of Medicine, Institute of Biosciences and Technology, Center for Translational Cancer Research, Houston, TX 77030, USA
| | - Nghi D Nguyen
- HTS Screening Core, Texas A&M University School of Medicine, Institute of Biosciences and Technology, Center for Translational Cancer Research, Houston, TX 77030, USA
| | - Zachary Rosenthal
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Departments of Psychiatry & Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Wen-Ning Zhao
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Departments of Psychiatry & Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Yi Li
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jianping Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shanghua Fan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hubert Lee
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Clifford Stephan
- HTS Screening Core, Texas A&M University School of Medicine, Institute of Biosciences and Technology, Center for Translational Cancer Research, Houston, TX 77030, USA
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Departments of Psychiatry & Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mischa Machius
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gabby Rudenko
- To whom correspondence should be addressed. Tel: +1 409 772 6292; Fax: +1 409 772 9642;
| |
Collapse
|
14
|
Suzen S, Tucci P, Profumo E, Buttari B, Saso L. A Pivotal Role of Nrf2 in Neurodegenerative Disorders: A New Way for Therapeutic Strategies. Pharmaceuticals (Basel) 2022; 15:ph15060692. [PMID: 35745610 PMCID: PMC9227112 DOI: 10.3390/ph15060692] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Clinical and preclinical research indicates that neurodegenerative diseases are characterized by excess levels of oxidative stress (OS) biomarkers and by lower levels of antioxidant protection in the brain and peripheral tissues. Dysregulations in the oxidant/antioxidant balance are known to be a major factor in the pathogenesis of neurodegenerative diseases and involve mitochondrial dysfunction, protein misfolding, and neuroinflammation, all events that lead to the proteostatic collapse of neuronal cells and their loss. Nuclear factor-E2-related factor 2 (Nrf2) is a short-lived protein that works as a transcription factor and is related to the expression of many cytoprotective genes involved in xenobiotic metabolism and antioxidant responses. A major emerging function of Nrf2 from studies over the past decade is its role in resistance to OS. Nrf2 is a key regulator of OS defense and research supports a protective and defending role of Nrf2 against neurodegenerative conditions. This review describes the influence of Nrf2 on OS and in what way Nrf2 regulates antioxidant defense for neurodegenerative conditions. Furthermore, we evaluate recent research and evidence for a beneficial and potential role of specific Nrf2 activator compounds as therapeutic agents.
Collapse
Affiliation(s)
- Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, 06100 Ankara, Turkey
- Correspondence: ; Tel.: +90-533-391-5844
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy;
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (E.P.); (B.B.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (E.P.); (B.B.)
| | - Luciano Saso
- Department of Physiology and Pharmacology ‘‘Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
15
|
Huang Z, Zhang Z, Zhou C, Liu L, Huang C. Epithelial–mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm (Beijing) 2022; 3:e144. [PMID: 35601657 PMCID: PMC9115588 DOI: 10.1002/mco2.144] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a program wherein epithelial cells lose their junctions and polarity while acquiring mesenchymal properties and invasive ability. Originally defined as an embryogenesis event, EMT has been recognized as a crucial process in tumor progression. During EMT, cell–cell junctions and cell–matrix attachments are disrupted, and the cytoskeleton is remodeled to enhance mobility of cells. This transition of phenotype is largely driven by a group of key transcription factors, typically Snail, Twist, and ZEB, through epigenetic repression of epithelial markers, transcriptional activation of matrix metalloproteinases, and reorganization of cytoskeleton. Mechanistically, EMT is orchestrated by multiple pathways, especially those involved in embryogenesis such as TGFβ, Wnt, Hedgehog, and Hippo, suggesting EMT as an intrinsic link between embryonic development and cancer progression. In addition, redox signaling has also emerged as critical EMT modulator. EMT confers cancer cells with increased metastatic potential and drug resistant capacity, which accounts for tumor recurrence in most clinic cases. Thus, targeting EMT can be a therapeutic option providing a chance of cure for cancer patients. Here, we introduce a brief history of EMT and summarize recent advances in understanding EMT mechanisms, as well as highlighting the therapeutic opportunities by targeting EMT in cancer treatment.
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Chengwei Zhou
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Lin Liu
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| |
Collapse
|
16
|
Abstract
Significance: Epigenetic dysregulation plays an important role in the pathogenesis and development of autoimmune diseases. Oxidative stress is associated with autoimmunity and is also known to alter epigenetic mechanisms. Understanding the interplay between oxidative stress and epigenetics will provide insights into the role of environmental triggers in the development of autoimmunity in genetically susceptible individuals. Recent Advances: Abnormal DNA and histone methylation patterns in genes and pathways involved in interferon and tumor necrosis factor signaling, cellular survival, proliferation, metabolism, organ development, and autoantibody production have been described in autoimmunity. Inhibitors of DNA and histone methyltransferases showed potential therapeutic effects in animal models of autoimmune diseases. Oxidative stress can regulate epigenetic mechanisms via effects on DNA damage repair mechanisms, cellular metabolism and the local redox environment, and redox-sensitive transcription factors and pathways. Critical Issues: Studies looking into oxidative stress and epigenetics in autoimmunity are relatively limited. The number of available longitudinal studies to explore the role of DNA methylation in the development of autoimmune diseases is small. Future Directions: Exploring the relationship between oxidative stress and epigenetics in autoimmunity will provide clues for potential preventative measures and treatment strategies. Inception cohorts with longitudinal follow-up would help to evaluate epigenetic marks as potential biomarkers for disease development, progression, and treatment response in autoimmunity. Antioxid. Redox Signal. 36, 423-440.
Collapse
Affiliation(s)
- Xiaoqing Zheng
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Widespread occurrence of covalent lysine–cysteine redox switches in proteins. Nat Chem Biol 2022; 18:368-375. [PMID: 35165445 PMCID: PMC8964421 DOI: 10.1038/s41589-021-00966-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
We recently reported the discovery of a lysine–cysteine redox switch in proteins with a covalent nitrogen–oxygen–sulfur (NOS) bridge. Here, a systematic survey of the whole protein structure database discloses that NOS bridges are ubiquitous redox switches in proteins of all domains of life and are found in diverse structural motifs and chemical variants. In several instances, lysines are observed in simultaneous linkage with two cysteines, forming a sulfur–oxygen–nitrogen–oxygen–sulfur (SONOS) bridge with a trivalent nitrogen, which constitutes an unusual native branching cross-link. In many proteins, the NOS switch contains a functionally essential lysine with direct roles in enzyme catalysis or binding of substrates, DNA or effectors, linking lysine chemistry and redox biology as a regulatory principle. NOS/SONOS switches are frequently found in proteins from human and plant pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and also in many human proteins with established roles in gene expression, redox signaling and homeostasis in physiological and pathophysiological conditions. ![]()
A survey of protein structures identifies widespread lysine–cysteine cross-links in functionally diverse proteins across all domains of life and in various structural motifs, where these redox switches control enzyme catalysis and/or ligand binding.
Collapse
|
18
|
Robison AJ, Nestler EJ. ΔFOSB: A Potentially Druggable Master Orchestrator of Activity-Dependent Gene Expression. ACS Chem Neurosci 2022; 13:296-307. [PMID: 35020364 PMCID: PMC8879420 DOI: 10.1021/acschemneuro.1c00723] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ΔFOSB is a uniquely stable member of the FOS family of immediate early gene AP1 transcription factors. Its accumulation in specific cell types and tissues in response to a range of chronic stimuli is associated with biological phenomena as diverse as memory formation, drug addiction, stress resilience, and immune cell activity. Causal connections between ΔFOSB expression and the physiological and behavioral sequelae of chronic stimuli have been established in rodent and, in some cases, primate models for numerous healthy and pathological states with such preclinical observations often supported by human data demonstrating tissue-specific ΔFOSB expression associated with several specific syndromes. However, the viability of ΔFOSB as a target for therapeutic intervention might be questioned over presumptive concerns of side effects given its expression in such a wide range of cell types and circumstances. Here, we summarize numerous insights from the past three decades of research into ΔFOSB structure, function, mechanisms of induction, and regulation of target genes that support its potential as a druggable target. We pay particular attention to the potential for targeting distinct ΔFOSB isoforms or distinct ΔFOSB-containing multiprotein complexes to achieve cell type or tissue specificity to overcome off-target concerns. We also cover critical gaps in knowledge that currently limit the exploitation of ΔFOSB's therapeutic possibilities and how they may be addressed. Finally, we summarize both current and potential future strategies for generating small molecules or genetic tools for the manipulation of ΔFOSB in the clinic.
Collapse
Affiliation(s)
- Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
19
|
Pillars and Gaps of S-Nitrosylation-Dependent Epigenetic Regulation in Physiology and Cancer. Life (Basel) 2021; 11:life11121424. [PMID: 34947954 PMCID: PMC8704633 DOI: 10.3390/life11121424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Nitric oxide (NO) is a diffusible signaling molecule produced by three isoforms of nitric oxide synthase, which release NO during the metabolism of the amino acid arginine. NO participates in pathophysiological responses of many different tissues, inducing concentration-dependent effect. Indeed, while low NO levels generally have protective effects, higher NO concentrations induce cytotoxic/cytostatic actions. In recent years, evidences have been accumulated unveiling S-nitrosylation as a major NO-dependent post-translational mechanism ruling gene expression. S-nitrosylation is a reversible, highly regulated phenomenon in which NO reacts with one or few specific cysteine residues of target proteins generating S-nitrosothiols. By inducing this chemical modification, NO might exert epigenetic regulation through direct effects on both DNA and histones as well as through indirect actions affecting the functions of transcription factors and transcriptional co-regulators. In this light, S-nitrosylation may also impact on cancer cell gene expression programs. Indeed, it affects different cell pathways and functions ranging from the impairment of DNA damage repair to the modulation of the activity of signal transduction molecules, oncogenes, tumor suppressors, and chromatin remodelers. Nitrosylation is therefore a versatile tool by which NO might control gene expression programs in health and disease.
Collapse
|
20
|
Reis J, Ramos A. In Sickness and in Health: The Oxygen Reactive Species and the Bone. Front Bioeng Biotechnol 2021; 9:745911. [PMID: 34888300 PMCID: PMC8650620 DOI: 10.3389/fbioe.2021.745911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress plays a central role in physiological and pathological bone conditions. Its role in signalment and control of bone cell population differentiation, activity, and fate is increasingly recognized. The possibilities of its use and manipulation with therapeutic goals are virtually unending. However, how redox balance interplays with the response to mechanical stimuli is yet to be fully understood. The present work summarizes current knowledge on these aspects, in an integrative and broad introductory perspective.
Collapse
Affiliation(s)
- Joana Reis
- Agronomic and Veterinary Sciences, School of Agriculture, Polytechnic Institute of Viana Do Castelo, Ponte de Lima, Portugal
| | - António Ramos
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
21
|
Levings DC, Lacher SE, Palacios-Moreno J, Slattery M. Transcriptional reprogramming by oxidative stress occurs within a predefined chromatin accessibility landscape. Free Radic Biol Med 2021; 171:319-331. [PMID: 33992677 PMCID: PMC8608001 DOI: 10.1016/j.freeradbiomed.2021.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/16/2023]
Abstract
Reactive oxygen species (ROS) are important signaling molecules in many physiological processes, yet excess ROS leads to cell damage and can lead to pathology. Accordingly, cells need to maintain tight regulation of ROS levels, and ROS-responsive transcriptional reprogramming is central to this process. Although it has long been recognized that oxidative stress leads to rapid, significant changes in gene expression, the impact of oxidative stress on the underlying chromatin accessibility landscape remained unclear. Here, we asked whether ROS-responsive transcriptional reprogramming is accompanied by reprogramming of the chromatin environment in MCF7 human breast cancer cells. Using a time-course exposure to multiple inducers of oxidative stress, we determined that the widespread ROS-responsive changes in gene expression induced by ROS occur with minimal changes to the chromatin environment. While we did observe changes in chromatin accessibility, these changes were: (1) far less numerous than gene expression changes after oxidative stress, and (2) occur within pre-existing regions of accessible chromatin. Transcription factor (TF) footprinting analysis of our ATAC-seq experiments identified 5 TFs or TF families with evidence for ROS-responsive changes in DNA binding: NRF2, AP-1, p53, NFY, and SP/KLF. Importantly, several of these (AP-1, NF-Y, and SP/KLF factors) have not been previously implicated as widespread regulators in the response to ROS. In summary, we have characterized genome-wide changes in gene expression and chromatin accessibility in response to ROS treatment of MCF7 cells, and we have found that regulation of the large-scale transcriptional response to excess ROS is primarily constrained by the cell's pre-existing chromatin landscape.
Collapse
Affiliation(s)
- Daniel C Levings
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Sarah E Lacher
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Juan Palacios-Moreno
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
| |
Collapse
|
22
|
Lee CC, Chen WT, Chen SY, Lee TM. Dapagliflozin attenuates arrhythmic vulnerabilities by regulating connexin43 expression via the AMPK pathway in post-infarcted rat hearts. Biochem Pharmacol 2021; 192:114674. [PMID: 34252408 DOI: 10.1016/j.bcp.2021.114674] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
We have demonstrated that dapagliflozin, a sodium-glucose cotransporter (SGLT) 2 inhibitor, attenuates reactive oxygen species (ROS) production. Connexin43 playing a role in ventricular arrhythmia is sensitive to redox status. No data are available on the effects of dapagliflozin on arrhythmogenesis. This study was to determine whether dapagliflozin attenuated arrhythmias through modulating AMP-activated protein kinase (AMPK)/free radicals-induced connexin43 after myocardial infarction. After coronary ligation, normoglycemic male Wistar rats were randomized to either vehicle or dapagliflozin (0.1 mg/kg per day) for 4 weeks. Myocardial ROS levels were significantly increased (p < 0.05) and connexin43 levels were substantially decreased after myocardial infarction (p < 0.05). Dapagliflozin administration was associated with increased SGLT1, attenuated ROS and increased connexin43 levels in myocardium (all p < 0.05). During programmed electrical stimulation, arrhythmic severity was significantly improved in the dapagliflozin-treated infarcted rats than those in the vehicle-treated infarcted rats (p < 0.05). Dapagliflozin significantly increased AMPK phosphorylation compared to vehicle after infarction (p < 0.05). Inhibition of AMPK signaling by SBI-0206965 prevented increased SGLT1 and blocked the effects of dapagliflozin on attenuated ROS levels and increased connexin43 phosphorylation (all p < 0.05). SGLT1 inhibited by KGA-2727 showed attenuated ROS levels and increased connexin43 phosphorylation (both p < 0.05) although AMPK phosphorylation was not changed, implying SGLT1 activation was mediated by AMPK in dapagliflozin-treated hearts. Dapagliflozin-treated hearts had significantly increased connexin43 phosphorylation (p < 0.05), which was significantly decreased after adding 3-morpholinosydnonimine (p < 0.05). These data indicate that clinically-relevant dapagliflozin concentrations decreased free radicals content and increased connexin43 levels through AMPK-dependent and SGLT1-independent mechanisms, which attenuated ventricular arrhythmias in the normoglycemic infarcted rats.
Collapse
Affiliation(s)
| | - Wei-Ting Chen
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Syue-Yi Chen
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Tsung-Ming Lee
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan; Department of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
23
|
Sheikholeslami S, Khodaverdian S, Dorri-Giv M, Mohammad Hosseini S, Souri S, Abedi-Firouzjah R, Zamani H, Dastranj L, Farhood B. The radioprotective effects of alpha-lipoic acid on radiotherapy-induced toxicities: A systematic review. Int Immunopharmacol 2021; 96:107741. [PMID: 33989970 DOI: 10.1016/j.intimp.2021.107741] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Radiation therapy is one of the main cancer treatment modalities applied in 50-70% of cancer patients. Despite the many advantages of this treatment, such as non-invasiveness, organ-preservation, and spatiotemporal flexibility in tumor targeting, it can lead to complications in irradiated healthy cells/tissues. In this regard, the use of radio-protective agents can alleviate radiation-induced complications. This study aimed to review the potential role of alpha-lipoic acid in the prevention/reduction of radiation-induced toxicities on healthy cells/tissues. METHODS A systematic search was performed following PRISMA guidelines to identify relevant literature on the "role of alpha-lipoic acid in the treatment of radiotherapy-induced toxicity" in the electronic databases of Web of Science, Embase, PubMed, and Scopus up to January 2021. Based on the inclusion and exclusion criteria of the present study, 278 articles were screened. Finally, 29 articles were included in this systematic review. RESULTS The obtained results showed that in experimental in vivo models, the radiation-treated groups had decreased survival rate and body weight compared to the control groups. It was also found that radiation can induce mild to severe toxicities on gastrointestinal, circulatory, reproductive, central nervous, respiratory, endocrine, exocrine systems, etc. However, the use of alpha-lipoic acid could alleviate the radiation-induced toxicities in most cases. This radio-protective agent exerts its effects through mechanisms of anti-oxidant, anti-apoptosis, anti-inflammatory, and so on. CONCLUSION According to the obtained results, it can be mentioned that co-treatment of alpha-lipoic acid with radiotherapy ameliorates the radiation-induced toxicities in healthy cells/tissues.
Collapse
Affiliation(s)
- Sahar Sheikholeslami
- Department of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Khodaverdian
- Department of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoumeh Dorri-Giv
- Nuclear Medicine Research Center, Department of Nuclear Medicine, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Mohammad Hosseini
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokoufeh Souri
- Department of Medical Physics, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Hamed Zamani
- Department of Medical Physics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Leila Dastranj
- Department of Physics, Hakim Sabzevari Universuty, Sabzevar, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan. Iran.
| |
Collapse
|
24
|
Chatterjee S, Balram A, Li W. Convergence: Lactosylceramide-Centric Signaling Pathways Induce Inflammation, Oxidative Stress, and Other Phenotypic Outcomes. Int J Mol Sci 2021; 22:ijms22041816. [PMID: 33673027 PMCID: PMC7917694 DOI: 10.3390/ijms22041816] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 12/19/2022] Open
Abstract
Lactosylceramide (LacCer), also known as CD17/CDw17, is a member of a large family of small molecular weight compounds known as glycosphingolipids. It plays a pivotal role in the biosynthesis of glycosphingolipids, primarily by way of serving as a precursor to the majority of its higher homolog sub-families such as gangliosides, sulfatides, fucosylated-glycosphingolipids and complex neutral glycosphingolipids—some of which confer “second-messenger” and receptor functions. LacCer is an integral component of the “lipid rafts,” serving as a conduit to transduce external stimuli into multiple phenotypes, which may contribute to mortality and morbidity in man and in mouse models of human disease. LacCer is synthesized by the action of LacCer synthase (β-1,4 galactosyltransferase), which transfers galactose from uridine diphosphate galactose (UDP-galactose) to glucosylceramide (GlcCer). The convergence of multiple physiologically relevant external stimuli/agonists—platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), stress, cigarette smoke/nicotine, tumor necrosis factor-α (TNF-α), and in particular, oxidized low-density lipoprotein (ox-LDL)—on β-1,4 galactosyltransferase results in its phosphorylation or activation, via a “turn-key” reaction, generating LacCer. This newly synthesized LacCer activates NADPH (nicotinamide adenine dihydrogen phosphate) oxidase to generate reactive oxygen species (ROS) and a highly “oxidative stress” environment, which trigger a cascade of signaling molecules and pathways and initiate diverse phenotypes like inflammation and atherosclerosis. For instance, LacCer activates an enzyme, cytosolic phospholipase A2 (cPLA2), which cleaves arachidonic acid from phosphatidylcholine. In turn, arachidonic acid serves as a precursor to eicosanoids and prostaglandin, which transduce a cascade of reactions leading to inflammation—a major phenotype underscoring the initiation and progression of several debilitating diseases such as atherosclerosis and cancer. Our aim here is to present an updated account of studies made in the field of LacCer metabolism and signaling using multiple animal models of human disease, human tissue, and cell-based studies. These advancements have led us to propose that previously unrelated phenotypes converge in a LacCer-centric manner. This LacCer synthase/LacCer-induced “oxidative stress” environment contributes to inflammation, atherosclerosis, skin conditions, hair greying, cardiovascular disease, and diabetes due to mitochondrial dysfunction. Thus, targeting LacCer synthase may well be the answer to remedy these pathologies.
Collapse
|
25
|
Abstract
Thirty-five years ago, Sies and colleagues insightfully described the universal phenomenon that the generation of reactive oxygen species could modify macromolecules in living organisms, resulting in a wide range of measurable damage. They used the term "oxidative stress" to define the loss of the balance between oxidants and antioxidants in favor of the former. After decades of research, it became increasingly clear that cells are not simply passive receivers of oxidative modification but can act dynamically to resist and adapt to oxidants. Furthermore, many redox-sensitive pathways have been identified wherein certain oxidants (mainly hydrogen peroxide and nitric oxide) are used as messenger molecules to transduce the signals required for these adaptations. Since the turn of the century, redox signaling has developed into a vibrant multidisciplinary field of biology. To reflect the evolution of the study in this field, the definition of oxidative stress is postulated to define a state in which the pro-oxidative processes overwhelm cellular antioxidant defense due to the disruption of redox signaling and adaptation.
Collapse
Affiliation(s)
- Li Li Ji
- The Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Dongwook Yeo
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
26
|
Del Grosso E, Ponzo I, Ragazzon G, Prins LJ, Ricci F. Disulfide‐Linked Allosteric Modulators for Multi‐cycle Kinetic Control of DNA‐Based Nanodevices. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Erica Del Grosso
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Irene Ponzo
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Giulio Ragazzon
- Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padua Italy
| | - Francesco Ricci
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 1 00133 Rome Italy
| |
Collapse
|
27
|
Del Grosso E, Ponzo I, Ragazzon G, Prins LJ, Ricci F. Disulfide‐Linked Allosteric Modulators for Multi‐cycle Kinetic Control of DNA‐Based Nanodevices. Angew Chem Int Ed Engl 2020; 59:21058-21063. [DOI: 10.1002/anie.202008007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/02/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Erica Del Grosso
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Irene Ponzo
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Giulio Ragazzon
- Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padua Italy
| | - Francesco Ricci
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 1 00133 Rome Italy
| |
Collapse
|
28
|
Finelli MJ. Redox Post-translational Modifications of Protein Thiols in Brain Aging and Neurodegenerative Conditions-Focus on S-Nitrosation. Front Aging Neurosci 2020; 12:254. [PMID: 33088270 PMCID: PMC7497228 DOI: 10.3389/fnagi.2020.00254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species and reactive nitrogen species (RONS) are by-products of aerobic metabolism. RONS trigger a signaling cascade that can be transduced through oxidation-reduction (redox)-based post-translational modifications (redox PTMs) of protein thiols. This redox signaling is essential for normal cellular physiology and coordinately regulates the function of redox-sensitive proteins. It plays a particularly important role in the brain, which is a major producer of RONS. Aberrant redox PTMs of protein thiols can impair protein function and are associated with several diseases. This mini review article aims to evaluate the role of redox PTMs of protein thiols, in particular S-nitrosation, in brain aging, and in neurodegenerative diseases. It also discusses the potential of using redox-based therapeutic approaches for neurodegenerative conditions.
Collapse
Affiliation(s)
- Mattéa J Finelli
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
29
|
Yu SH, Lee CM, Ha SH, Lee J, Jang KY, Park SH. Induction of cell cycle arrest and apoptosis by tomentosin in hepatocellular carcinoma HepG2 and Huh7 cells. Hum Exp Toxicol 2020; 40:231-244. [PMID: 32787465 DOI: 10.1177/0960327120943935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tomentosin, a sesquiterpene lactone, is known to possess various biological activities. However, its anticarcinogenic activity against human hepatocellular carcinoma (HCC) cells has not been investigated in detail. Thus, this study aimed to elucidate the cytotoxic mechanism of tomentosin in human HCC cell lines HepG2 and Huh7. WST-1, cell counting, and colony formation assay results showed that treatment with tomentosin decreased the viability and suppressed the proliferation rate of HepG2 and Huh7 cells in a dose- and time-dependent manner. Cell cycle analysis revealed increased population of cells at the SubG1 and G2/M stage, and decreased population of cells at the G0/1 stage in HepG2 and Huh7 cells treated with tomentosin. Annexin V/propidium iodide double staining and TUNEL assay results showed increased apoptotic cell population and DNA fragmentation in HepG2 and Huh7 cells treated with tomentosin. Western blotting analysis results showed that tomentosin treatment significantly increased the expression level of Bax, Bim (short form), cleaved PARP1, FOXO3, p53, pSer15p53, pSer20p53, pSer46p53, p21, and p27, but decreased the expression of Bcl2, caspase3, caspase7, caspase9, cyclin-dependent kinase 2 (CDK2), CDK4, CDK6, cyclinB1, cyclinD1, cyclinD2, cyclinD3, and cyclinE in a dose-dependent manner. Taken together, this study revealed that tomentosin, which acted through cell cycle arrest and apoptosis, may be a useful therapeutic option against HCC.
Collapse
Affiliation(s)
- S H Yu
- Department of Bio and Chemical Engineering, 65686Hongik University, Sejong, Republic of Korea
| | - C M Lee
- Department of Bio and Chemical Engineering, 65686Hongik University, Sejong, Republic of Korea
| | - S H Ha
- Division of Biotechnology, 26714Jeonbuk National University, Iksan, Republic of Korea
| | - J Lee
- Department of Integrative Biotechnology, 65666Sungkyunkwan University, Suwon, Republic of Korea
| | - K Y Jang
- Department of Pathology, 26714Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, Republic of Korea.,Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - S H Park
- Department of Bio and Chemical Engineering, 65686Hongik University, Sejong, Republic of Korea
| |
Collapse
|
30
|
Sindhu S, Akhter N, Wilson A, Thomas R, Arefanian H, Al Madhoun A, Al-Mulla F, Ahmad R. MIP-1α Expression Induced by Co-Stimulation of Human Monocytic Cells with Palmitate and TNF-α Involves the TLR4-IRF3 Pathway and Is Amplified by Oxidative Stress. Cells 2020; 9:1799. [PMID: 32751118 PMCID: PMC7465096 DOI: 10.3390/cells9081799] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Metabolic inflammation is associated with increased expression of saturated free fatty acids, proinflammatory cytokines, chemokines, and adipose oxidative stress. Macrophage inflammatory protein (MIP)-1α recruits the inflammatory cells such as monocytes, macrophages, and neutrophils in the adipose tissue; however, the mechanisms promoting the MIP-1α expression remain unclear. We hypothesized that MIP-1α co-induced by palmitate and tumor necrosis factor (TNF)-α in monocytic cells/macrophages could be further enhanced in the presence of reactive oxygen species (ROS)-mediated oxidative stress. To investigate this, THP-1 monocytic cells and primary human macrophages were co-stimulated with palmitate and TNF-α and mRNA and protein levels of MIP-1α were measured by using quantitative reverse transcription, polymerase chain reaction (qRT-PCR) and commercial enzyme-linked immunosorbent assays (ELISA), respectively. The cognate receptor of palmitate, toll-like receptor (TLR)-4, was blunted by genetic ablation, neutralization, and chemical inhibition. The involvement of TLR4-downstream pathways, interferon regulatory factor (IRF)-3 or myeloid differentiation (MyD)-88 factor, was determined using IRF3-siRNA or MyD88-deficient cells. Oxidative stress was induced in cells by hydrogen peroxide (H2O2) treatment and ROS induction was measured by dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. The data show that MIP-1α gene/protein expression was upregulated in cells co-stimulated with palmitate/TNF-α compared to those stimulated with either palmitate or TNF-α (P < 0.05). Further, TLR4-IRF3 pathway was implicated in the cooperative induction of MIP-1α in THP-1 cells, and this cooperativity between palmitate and TNF-α was clathrin-dependent and also required signaling through c-Jun and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Notably, ROS itself induced MIP-1α and could further promote MIP-1α secretion together with palmitate and TNF-α. In conclusion, palmitate and TNF-α co-induce MIP-1α in human monocytic cells via the TLR4-IRF3 pathway and signaling involving c-Jun/NF-κB. Importantly, oxidative stress leads to ROS-driven MIP-1α amplification, which may have significance for metabolic inflammation.
Collapse
Affiliation(s)
- Sardar Sindhu
- Animal & Imaging Core Facility, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait;
| | - Nadeem Akhter
- Immunology & Microbiology, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (H.A.)
| | - Ajit Wilson
- Immunology & Microbiology, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (H.A.)
| | - Reeby Thomas
- Immunology & Microbiology, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (H.A.)
| | - Hossein Arefanian
- Immunology & Microbiology, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (H.A.)
| | - Ashraf Al Madhoun
- Animal & Imaging Core Facility, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait;
- Genetics & Bioinformatics, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait;
| | - Fahd Al-Mulla
- Genetics & Bioinformatics, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait;
| | - Rasheed Ahmad
- Immunology & Microbiology, Dasman Diabetes Institute (DDI), Al-Soor Street, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (H.A.)
| |
Collapse
|
31
|
Hanschmann EM, Petry SF, Eitner S, Maresch CC, Lingwal N, Lillig CH, Linn T. Paracrine regulation and improvement of β-cell function by thioredoxin. Redox Biol 2020; 34:101570. [PMID: 32473461 PMCID: PMC7260591 DOI: 10.1016/j.redox.2020.101570] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
The failure of insulin-producing β-cells is the underlying cause of hyperglycemia in diabetes mellitus. β-cell decay has been linked to hypoxia, chronic inflammation, and oxidative stress. Thioredoxin (Trx) proteins are major actors in redox signaling and essential for signal transduction and the cellular stress response. We have analyzed the cytosolic, mitochondrial, and extracellular Trx system proteins in hypoxic and cytokine-induced stress using β-cell culture, isolated pancreatic islets, and pancreatic islet transplantation modelling low oxygen supply. Protein levels of cytosolic Trx1 and Trx reductase (TrxR) 1 significantly decreased, while mitochondrial Trx2 and TrxR2 increased upon hypoxia and reoxygenation. Interestingly, Trx1 was secreted by β-cells during hypoxia. Moreover, murine and human pancreatic islet grafts released Trx1 upon glucose stimulation. Survival of transplanted islets was substantially impaired by the TrxR inhibitor auranofin. Since a release was prominent upon hypoxia, putative paracrine effects of Trx1 on β-cells were examined. In fact, exogenously added recombinant hTrx1 mitigated apoptosis and preserved glucose sensitivity in pancreatic islets subjected to hypoxia and inflammatory stimuli, dependent on its redox activity. Human subjects were studied, demonstrating a transient increase in extracellular Trx1 in serum after glucose challenge. This increase correlated with better pancreatic islet function. Moreover, hTrx1 inhibited the migration of primary murine macrophages. In conclusion, our study offers evidence for paracrine functions of extracellular Trx1 that improve the survival and function of pancreatic β-cells.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Germany; Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Susanne Eitner
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Germany
| | | | - Neelam Lingwal
- Clinical Research Unit, Center of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Germany.
| | - Thomas Linn
- Clinical Research Unit, Center of Internal Medicine, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
32
|
Di Meo S, Venditti P. Evolution of the Knowledge of Free Radicals and Other Oxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9829176. [PMID: 32411336 PMCID: PMC7201853 DOI: 10.1155/2020/9829176] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
Free radicals are chemical species (atoms, molecules, or ions) containing one or more unpaired electrons in their external orbitals and generally display a remarkable reactivity. The evidence of their existence was obtained only at the beginning of the 20th century. Chemists gradually ascertained the involvement of free radicals in organic reactions and, in the middle of the 20th century, their production in biological systems. For several decades, free radicals were thought to cause exclusively damaging effects . This idea was mainly supported by the finding that oxygen free radicals readily react with all biological macromolecules inducing their oxidative modification and loss of function. Moreover, evidence was obtained that when, in the living organism, free radicals are not neutralized by systems of biochemical defences, many pathological conditions develop. However, after some time, it became clear that the living systems not only had adapted to the coexistence with free radicals but also developed methods to turn these toxic substances to their advantage by using them in critical physiological processes. Therefore, free radicals play a dual role in living systems: they are toxic by-products of aerobic metabolism, causing oxidative damage and tissue dysfunction, and serve as molecular signals activating beneficial stress responses. This discovery also changed the way we consider antioxidants. Their use is usually regarded as helpful to counteract the damaging effects of free radicals but sometimes is harmful as it can block adaptive responses induced by low levels of radicals.
Collapse
Affiliation(s)
- Sergio Di Meo
- Università degli Studi di Napoli Federico II Dipartimento di Biologia, Complesso, Universitario Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| | - Paola Venditti
- Università degli Studi di Napoli Federico II Dipartimento di Biologia, Complesso, Universitario Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| |
Collapse
|
33
|
Beck MR, Gregorini P. How Dietary Diversity Enhances Hedonic and Eudaimonic Well-Being in Grazing Ruminants. Front Vet Sci 2020; 7:191. [PMID: 32373637 PMCID: PMC7179672 DOI: 10.3389/fvets.2020.00191] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ruminants evolved in diverse landscapes of which they utilized, by choice, a diverse arrangement of plants (grasses, forbs, and trees) for food. These plants provide them with both primary (carbohydrates, protein, etc.) and secondary (phenolics, terpenes, etc.) compounds (PPC and PSC, respectively). As no one plant could possibly constitute a “balanced-diet,” ruminants mix diets so that they can exploit arrangements of PPC to meet their individual requirements. Diet mixing also allows for ruminants to ingest PSC at levels, acquiring their benefits such as antioxidants and reduced gastrointestinal parasites, without overstepping thresholds of toxicity. Meeting dietary requirements is assumed to provide satisfaction through achieving positive internal status and comfort, thereby a sense of hedonic (happiness through pleasure) well-being. Furthermore, choice including dietary choice is a factor influencing well-being of ruminants in a manner akin to that in humans. Choice may facilitate eudaimonic (happiness through pursuit of purpose) well-being in livestock. Nutritional status plays an integral role in oxidative stress, which is linked with illness. Several diseases in livestock have been directly linked to oxidative stress. Mastitis, metritis, hypocalcaemia, and retained placenta occur in animals transitioning from dry to lactating and have been linked to oxidative stress and such a stress has likewise been linked to diseases that occur in growing livestock as well, such as bovine respiratory disease. The link between physiological stress and oxidative stress is not well-defined in livestock but is evident in humans. As dietary diversity allows animals to select more adequately balanced diets (improved nutrition), take advantage of PSC (natural antioxidants), and allows for choice (improved animal well-being) there is a strong possibility for ruminants to improve their oxidative status and thus health, well-being, and therefor production. The purposes of this review are to first, provide an introduction to oxidative and physiological stress, and nutritional status as effected by dietary diversity, with special attention to providing support and on answering the “how.” Second, to provide evidence of how these stresses are connected and influence each other, and finally discuss how dietary diversity provides a beneficial link to all three and enhances both eudaimonic and hedonic well-being.
Collapse
Affiliation(s)
- Matthew R Beck
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Pablo Gregorini
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
34
|
Roman MG, Flores LC, Cunningham GM, Cheng C, Dube S, Allen C, Remmen HV, Bai Y, Hubbard GB, Saunders TL, Ikeno Y. Thioredoxin overexpression in mitochondria showed minimum effects on aging and age-related diseases in male C57BL/6 mice. ACTA ACUST UNITED AC 2020; 2:20-31. [PMID: 35356005 PMCID: PMC8963792 DOI: 10.31491/apt.2020.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Objective: In this study, the effects of overexpression of thioredoxin 2 (Trx2) on aging and age-related diseases were examined using Trx2 transgenic mice [Tg(TXN2]+/0]. Because our previous studies demonstrated that thioredoxin (Trx) overexpression in the cytosol (Trx1) did not extend maximum lifespan, this study was conducted to test if increased Trx2 expression in mitochondria shows beneficial effects on aging and age-related pathology. Methods: Trx2 transgenic mice were generated using a fragment of the human genome containing the TXN2 gene. Effects of Trx2 overexpression on survival, age-related pathology, oxidative stress, and redox-sensitive signaling pathways were examined in male Tg(TXN2)+/0 mice. Results: Trx2 levels were significantly higher (approximately 1.6- to 5-fold) in all of the tissues we examined in Tg(TXN2)+/0 mice compared to wild-type (WT) littermates, and the expression levels were maintained during aging (up to 22-24 months old). Trx2 overexpression did not alter the levels of Trx1, glutaredoxin, glutathione, or other major antioxidant enzymes. Overexpression of Trx2 was associated with reduced reactive oxygen species (ROS) production from mitochondria and lower isoprostane levels compared to WT mice. When we conducted the survival study, male Tg(TXN2)+/0 mice showed a slight extension (approximately 8-9%] of mean, median, and 10th percentile lifespans; however, the survival curve was not significantly different from WT mice. Cross-sectional pathological analysis (22-24 months old) showed that Tg(TXN2)+/0 mice had a slightly higher severity of lymphoma; however, tumor burden, disease burden, and severity of glomerulonephritis and inflammation were similar to WT mice. Trx2 overexpression was also associated with higher c-Jun and c-Fos levels; however, mTOR activity and levels of NFκB p65 and p50 were similar to WT littermates. Conclusions: Our findings suggest that the increased levels of Trx2 in mitochondria over the lifespan in Tg(TXN2)+/0 mice showed a slight life-extending effect, reduced ROS production from mitochondria and oxidative damage to lipids, but showed no significant effects on aging and age-related diseases.
Collapse
|
35
|
Vitamin A supplement after neonatal Streptococcus pneumoniae pneumonia inhibits the progression of experimental asthma by altering CD4 +T cell subsets. Sci Rep 2020; 10:4214. [PMID: 32144294 PMCID: PMC7060180 DOI: 10.1038/s41598-020-60665-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/13/2020] [Indexed: 11/08/2022] Open
Abstract
Studies demonstrated that pneumonia can decrease vitamin A productions and vitamin A reduction/deficiency may promote asthma development. Our previous study showed that neonatal Streptococcus pneumoniae (S. pneumoniae) infection promoted asthma development. Whether neonatal S. pneumoniae pneumonia induced asthma was associated with vitamin A levels remains unclear. The aim of this study was to investigate the effects of neonatal S. pneumoniae pneumonia on vitamin A expressions, to explore the effects of vitamin A supplement after neonatal S. pneumoniae pneumonia on adulthood asthma development. Non-lethal S. pneumoniae pneumonia was established by intranasal inoculation of neonatal (1-week-old) female BALB/c mice with D39. S. pneumoniae pneumonia mice were supplemented with or without all-trans retinoic acid 24 hours after infection. Vitamin A concentrations in lung, serum and liver were measured post pneumonia until early adulthood. Four weeks after pneumonia, mice were sensitized and challenged with OVA to induce allergic airway disease (AAD). Twenty-four hours after the final challenge, the lungs and bronchoalveolar lavage fluid (BALF) were collected to assess AAD. We stated that serum vitamin A levels in neonatal S. pneumoniae pneumonia mice were lower than 0.7µmol/L from day 2-7 post infection, while pulmonary vitamin A productions were significantly lower than those in the control mice from day 7-28 post infection. Vitamin A supplement after neonatal S. pneumoniae pneumonia significantly promoted Foxp3+Treg and Th1 productions, decreased Th2 and Th17 cells expressions, alleviated airway hyperresponsiveness (AHR) and inflammatory cells infiltration during AAD. Our data suggest that neonatal S. pneumoniae pneumonia induce serum vitamin A deficiency and long-time lung vitamin A reduction, vitamin A supplement after neonatal S. pneumoniae pneumonia inhibit the progression of asthma by altering CD4+T cell subsets.
Collapse
|
36
|
Reading Targeted DNA Damage in the Active Demethylation Pathway: Role of Accessory Domains of Eukaryotic AP Endonucleases and Thymine-DNA Glycosylases. J Mol Biol 2020:S0022-2836(19)30720-X. [DOI: 10.1016/j.jmb.2019.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/24/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023]
|
37
|
Zhang X, Shi Y, Wang L, Li X, Zhang S, Wang X, Jin M, Hsiao CD, Lin H, Han L, Liu K. Metabolomics for Biomarker Discovery in Fermented Black Garlic and Potential Bioprotective Responses against Cardiovascular Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12191-12198. [PMID: 31588747 DOI: 10.1021/acs.jafc.9b04073] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fermented black garlic has multiple beneficial biological activities, including cardiovascular protection, anticancer, hepatoprotective, and antibacterial properties. In this study, metabolic differences in the properties of black and fresh garlic were investigated via liquid chromatography quadrupole/time-of-flight-based metabolomics, leading to the identification of characteristic components. Fermented black garlic samples and their Amadori products (AC) promoted angiogenesis, prevented thrombus formation by rescuing chemical-induced vascular lesions in zebrafish, and inhibited H2O2-induced injury of endothelial cells, thus reducing the risk of cardiovascular disease. AC suppressed activation of the mitogen-activated protein kinase pathway through inhibition of p38 and ERK1/2 phosphorylation, in turn, increasing the availability of c-Fos/c-Jun or c-Jun/c-Jun complexes for apoptotic resistance. Clarification of the associated signaling pathways should therefore provide a solid foundation for optimization of black garlic-based therapies.
Collapse
Affiliation(s)
- Xuanming Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250103 , China
| | - Yongping Shi
- College of Pharmaceutical Sciences , Shanxi Medical University , Taiyuan , Shanxi 030001 , China
| | - Lizhen Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250103 , China
| | - Xiaobin Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250103 , China
| | - Shanshan Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250103 , China
| | - Ximin Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250103 , China
| | - Meng Jin
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250103 , China
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Center for Nanotechnology , Chung Yuan Christian University , Chung-Li , Taiwan 32023 , China
| | - Houwen Lin
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250103 , China
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Liwen Han
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250103 , China
| | - Kechun Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250103 , China
| |
Collapse
|
38
|
Yang L, Zeng C, Zhang Y, Wang F, Takamiya M, Strähle U. Functions of thioredoxin1 in brain development and in response to environmental chemicals in zebrafish embryos. Toxicol Lett 2019; 314:43-52. [DOI: 10.1016/j.toxlet.2019.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/24/2019] [Accepted: 07/04/2019] [Indexed: 12/22/2022]
|
39
|
|
40
|
Bazlekowa-Karaban M, Prorok P, Baconnais S, Taipakova S, Akishev Z, Zembrzuska D, Popov AV, Endutkin AV, Groisman R, Ishchenko AA, Matkarimov BT, Bissenbaev A, Le Cam E, Zharkov DO, Tudek B, Saparbaev M. Mechanism of stimulation of DNA binding of the transcription factors by human apurinic/apyrimidinic endonuclease 1, APE1. DNA Repair (Amst) 2019; 82:102698. [PMID: 31518879 DOI: 10.1016/j.dnarep.2019.102698] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/11/2019] [Accepted: 08/31/2019] [Indexed: 12/22/2022]
Abstract
Aerobic respiration generates reactive oxygen species (ROS), which can damage nucleic acids, proteins and lipids. A number of transcription factors (TFs) contain redox-sensitive cysteine residues at their DNA-binding sites, hence ROS-induced thiol oxidation strongly inhibits their recognition of the cognate DNA sequences. Major human apurinic/apyrimidinic (AP) endonuclease 1 (APE1/APEX1/HAP-1), referred also as a redox factor 1 (Ref-1), stimulates the DNA binding activities of the oxidized TFs such as AP-1 and NF-κB. Also, APE1 participates in the base excision repair (BER) and nucleotide incision repair (NIR) pathways to remove oxidative DNA base damage. At present, the molecular mechanism underlying the TF-stimulating/redox function of APE1 and its biological role remains disputed. Here, we provide evidence that, instead of direct cysteine reduction in TFs by APE1, APE1-catalyzed NIR and TF-stimulating activities may be based on transient cooperative binding of APE1 to DNA and induction of conformational changes in the helix. The structure of DNA duplex strongly influences NIR and TF-stimulating activities. Homologous plant AP endonucleases lacking conserved cysteine residues stimulate DNA binding of the p50 subunit of NF-κB. APE1 acts synergistically with low-molecular-weight reducing agents on TFs. Finally, APE1 stimulates DNA binding of the redox-insensitive p50-C62S mutant protein. Electron microscopy imaging of APE1 complexes with DNA revealed preferential polymerization of APE1 on the gapped and intrinsically curved DNA duplexes. Molecular modeling offers a structural explanation how full-length APE1 can oligomerize on DNA. In conclusion, we propose that DNA-directed APE1 oligomerization can be regarded as a substitute for diffusion of APE1 along the DNA contour to probe for anisotropic flexibility. APE1 oligomers exacerbate pre-existing distortions in DNA and enable both NIR activity and DNA binding by TFs regardless of their oxidation state.
Collapse
Affiliation(s)
- Milena Bazlekowa-Karaban
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Paulina Prorok
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Institute of Human Genetics, UMR 9002, CNRS - University of Montpellier, Replication and Genome Dynamics, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Sonia Baconnais
- CNRS UMR8126, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Sabira Taipakova
- Department of Molecular Biology and Genetics, Faculty of Biology, al-Farabi Kazakh National University, 0530040, Almaty, Kazakhstan
| | - Zhiger Akishev
- Department of Molecular Biology and Genetics, Faculty of Biology, al-Farabi Kazakh National University, 0530040, Almaty, Kazakhstan
| | - Dominika Zembrzuska
- Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Alexander V Popov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anton V Endutkin
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Regina Groisman
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Alexander A Ishchenko
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Bakhyt T Matkarimov
- National laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Amangeldy Bissenbaev
- Department of Molecular Biology and Genetics, Faculty of Biology, al-Farabi Kazakh National University, 0530040, Almaty, Kazakhstan
| | - Eric Le Cam
- CNRS UMR8126, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Murat Saparbaev
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France.
| |
Collapse
|
41
|
Bejjani F, Evanno E, Zibara K, Piechaczyk M, Jariel-Encontre I. The AP-1 transcriptional complex: Local switch or remote command? Biochim Biophys Acta Rev Cancer 2019; 1872:11-23. [PMID: 31034924 DOI: 10.1016/j.bbcan.2019.04.003] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
Abstract
The ubiquitous family of AP-1 dimeric transcription complexes is involved in virtually all cellular and physiological functions. It is paramount for cells to reprogram gene expression in response to cues of many sorts and is involved in many tumorigenic processes. How AP-1 controls gene transcription has largely remained elusive till recently. The advent of the "omics" technologies permitting genome-wide studies of transcription factors has however changed and improved our view of AP-1 mechanistical actions. If these studies confirm that AP-1 can sometimes act as a local transcriptional switch operating in the vicinity of transcription start sites (TSS), they strikingly indicate that AP-1 principally operates as a remote command binding to distal enhancers, placing chromatin architecture dynamics at the heart of its transcriptional actions. They also unveil novel constraints operating on AP-1, as well as novel mechanisms used to regulate gene expression via transcription-pioneering-, chromatin-remodeling- and chromatin accessibility maintenance effects.
Collapse
Affiliation(s)
- Fabienne Bejjani
- Equipe Labellisée Ligue Nationale contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France; PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Emilie Evanno
- Equipe Labellisée Ligue Nationale contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Marc Piechaczyk
- Equipe Labellisée Ligue Nationale contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| | - Isabelle Jariel-Encontre
- Equipe Labellisée Ligue Nationale contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
42
|
Protective Effect of Ginsenoside Rg1 on Oxidative Damage Induced by Hydrogen Peroxide in Chicken Splenic Lymphocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8465030. [PMID: 31178974 PMCID: PMC6501224 DOI: 10.1155/2019/8465030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/04/2019] [Indexed: 12/28/2022]
Abstract
Previous investigation showed that ginsenoside Rg1 (Rg1) extracted from Panax ginseng C.A. Mey has antioxidative effect on oxidative stress in chickens. The present study was designed to investigate the protective effects of Rg1 on chicken lymphocytes against hydrogen peroxide-induced oxidative stress and the potential mechanisms. Cell viability, apoptotic cells, malondialdehyde, activity of superoxide dismutase, mitochondrial membrane potential, and [Ca2+]i concentration were measured, and transcriptome analysis and quantitative real-time polymerase chain reaction were used to investigate the effect of Rg1 on gene expression of the cells. The results showed that treatment of lymphocytes with H2O2 induced oxidative stress and apoptosis. However, pretreatment of the cells with Rg1 dramatically enhanced cell viability, reduced apoptotic cells, and decreased oxidative stress induced by H2O2. In addition, Rg1 reduced these H2O2-dependent decreases in mitochondrial membrane potential and reversed [Ca2+]i overload. Transcriptome analysis showed that 323 genes were downregulated and 105 genes were upregulated in Rg1-treated cells. The differentially expressed genes were involved in Toll-like receptors, peroxisome proliferator-activated receptor signaling pathway, and cytokine-cytokine receptor interaction. The present study indicated that Rg1 may act as an antioxidative agent to protect cell damage caused by oxidative stress via regulating expression of genes such as RELT, EDA2R, and TLR4.
Collapse
|
43
|
Andjelković A, Mordas A, Bruinsma L, Ketola A, Cannino G, Giordano L, Dhandapani PK, Szibor M, Dufour E, Jacobs HT. Expression of the Alternative Oxidase Influences Jun N-Terminal Kinase Signaling and Cell Migration. Mol Cell Biol 2018; 38:e00110-18. [PMID: 30224521 PMCID: PMC6275184 DOI: 10.1128/mcb.00110-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/11/2018] [Accepted: 09/11/2018] [Indexed: 12/25/2022] Open
Abstract
Downregulation of Jun N-terminal kinase (JNK) signaling inhibits cell migration in diverse model systems. In Drosophila pupal development, attenuated JNK signaling in the thoracic dorsal epithelium leads to defective midline closure, resulting in cleft thorax. Here we report that concomitant expression of the Ciona intestinalis alternative oxidase (AOX) was able to compensate for JNK pathway downregulation, substantially correcting the cleft thorax phenotype. AOX expression also promoted wound-healing behavior and single-cell migration in immortalized mouse embryonic fibroblasts (iMEFs), counteracting the effect of JNK pathway inhibition. However, AOX was not able to rescue developmental phenotypes resulting from knockdown of the AP-1 transcription factor, the canonical target of JNK, nor its targets and had no effect on AP-1-dependent transcription. The migration of AOX-expressing iMEFs in the wound-healing assay was differentially stimulated by antimycin A, which redirects respiratory electron flow through AOX, altering the balance between mitochondrial ATP and heat production. Since other treatments affecting mitochondrial ATP did not stimulate wound healing, we propose increased mitochondrial heat production as the most likely primary mechanism of action of AOX in promoting cell migration in these various contexts.
Collapse
Affiliation(s)
- Ana Andjelković
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Amelia Mordas
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Lyon Bruinsma
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Annika Ketola
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Giuseppe Cannino
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Luca Giordano
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Praveen K Dhandapani
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marten Szibor
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eric Dufour
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
González R, Molina-Ruiz FJ, Bárcena JA, Padilla CA, Muntané J. Regulation of Cell Survival, Apoptosis, and Epithelial-to-Mesenchymal Transition by Nitric Oxide-Dependent Post-Translational Modifications. Antioxid Redox Signal 2018; 29:1312-1332. [PMID: 28795583 DOI: 10.1089/ars.2017.7072] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO) is a physiopathological messenger generating different reactive nitrogen species (RNS) according to hypoxic, acidic and redox conditions. Recent Advances: RNS and reactive oxygen species (ROS) promote relevant post-translational modifications, such as nitrosation, nitration, and oxidation, in critical components of cell proliferation and death, epithelial-to-mesenchymal transition, and metastasis. CRITICAL ISSUES The pro- or antitumoral properties of NO are dependent on local concentration, redox state, cellular status, duration of exposure, and compartmentalization of NO generation. The increased expression of NO synthase has been associated with cancer progression. However, the experimental strategies leading to high intratumoral NO generation have been shown to exert antitumoral properties. The effect of NO and ROS on cell signaling is critically altered by factors modulating tumor progression such as oxygen content, metabolism, and inflammatory response. The review describes the alteration of key components involved in cell survival and death, metabolism, and metastasis induced by RNS- and ROS-related post-translational modifications. FUTURE DIRECTIONS The identification of the molecular targets affected by nitrosation, nitration, and oxidation, as well as their interactions with other post-translational modifications, will improve the understanding on the complex signaling and cell fate decision in cancer. The therapeutic NO-based strategies have to address the complex crosstalk among NO and ROS with regard to critical components affecting tumor cell survival, metabolism, and metastasis in the progression of cancer, as well as close interaction with ionizing radiation and chemotherapy.
Collapse
Affiliation(s)
- Raúl González
- 1 Institute of Biomedicine of Seville (IBiS), IBiS/"Virgen del Rocío" University Hospital/CSIC/University of Seville , Seville, Spain
| | - Francisco J Molina-Ruiz
- 1 Institute of Biomedicine of Seville (IBiS), IBiS/"Virgen del Rocío" University Hospital/CSIC/University of Seville , Seville, Spain
| | - J Antonio Bárcena
- 2 Department of Biochemistry and Molecular Biology, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba , Córdoba, Spain
| | - C Alicia Padilla
- 2 Department of Biochemistry and Molecular Biology, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba , Córdoba, Spain
| | - Jordi Muntané
- 3 Department of General Surgery, "Virgen del Rocío" University Hospital/IBiS/CSIC/University of Seville , Seville, Spain .,4 Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| |
Collapse
|
45
|
Flores LC, Roman MG, Cunningham GM, Cheng C, Dube S, Allen C, Van Remmen H, Hubbard GB, Saunders TL, Ikeno Y. Continuous overexpression of thioredoxin 1 enhances cancer development and does not extend maximum lifespan in male C57BL/6 mice. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2018; 8:1533754. [PMID: 30370017 PMCID: PMC6201794 DOI: 10.1080/20010001.2018.1533754] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/14/2018] [Accepted: 09/20/2018] [Indexed: 11/23/2022]
Abstract
We examined the effects of continuous overexpression of thioredoxin (Trx) 1 on aging in Trx1 transgenic mice [Tg(TXN)+/0]. This study was conducted to test whether increased thioredoxin expression over the lifespan in mice would alter aging and age-related pathology because our previous study demonstrated that Tg(act-TXN)+/0 mice had no significant maximum life extension, possibly due to the use of actin as a promoter, which may have resulted in loss of Trx1 overexpression during aging. To test this hypothesis, we generated new Trx1 transgenic mice using a fragment of the human genome containing the TXN gene with an endogenous promoter to ensure continuous overexpression of Trx1 throughout the lifespan. Universal overexpression of Trx1 was observed, and Trx1 overexpression was maintained during aging (up to 22–24 months old) in the Tg(TXN)+/0 mice. The levels of Trx1 are significantly higher (approximately 4 to 31 fold) in all of the tissues examined in the Tg(TXN)+/0 mice compared to the wild-type (WT) littermates. The overexpression of Trx1 did not cause any changes in the levels of Trx2, glutaredoxin, glutathione, or other major antioxidant enzymes. The survival study demonstrated that male Tg(TXN)+/0 mice slightly extended the earlier part of the lifespan compared to WT littermates, but no significant life extension was observed over the lifespan. The cross-sectional pathological analysis (22–25 months old) showed that Tg(TXN)+/0 mice had a significantly higher severity of lymphoma and more tumor burden than WT mice, which was associated with the suppression of the apoptosis signal-regulating kinase 1 (ASK1) pathway. Our findings suggest that the increased levels of Trx1 over the lifespan in Tg(TXN)+/0 mice showed some beneficial effects (slight extension of lifespan) in the earlier part of life but had no significant effects on median or maximum lifespans, and increased Trx1 levels enhanced tumor development in old mice.
Collapse
Affiliation(s)
- Lisa C Flores
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Madeline G Roman
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Geneva M Cunningham
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Christie Cheng
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sara Dube
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Colton Allen
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Gene B Hubbard
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI, USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Geriatric Research Education and Clinical Center (GRECC), Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
46
|
Lee TM, Chang NC, Lin SZ. Effect of proton pump inhibitors on sympathetic hyperinnervation in infarcted rats: Role of magnesium. PLoS One 2018; 13:e0202979. [PMID: 30153299 PMCID: PMC6112652 DOI: 10.1371/journal.pone.0202979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/13/2018] [Indexed: 11/30/2022] Open
Abstract
The long-term use of proton pump inhibitors (PPIs) has been shown to increase the risk of cardiovascular mortality, however the molecular mechanisms are unknown. Superoxide has been implicated in the regulation of nerve growth factor (NGF), a mediator of sympathetic innervation. The purpose of this study was to determine whether PPIs increase ventricular arrhythmias through magnesium-mediated superoxide production in infarcted rats. Male Wistar rats were randomly assigned to receive vehicle, omeprazole, omeprazole + magnesium sulfate, or famotidine treatment for 4 weeks starting 24 hours after the induction of myocardial infarction by ligating the coronary artery. Increased myocardial superoxide and nitrotyrosine levels were noted post-infarction, in addition to a significant upregulation of NGF expression on mRNA and protein levels. Sympathetic hyperinnervation after infarction was confirmed by measuring myocardial norepinephrine and immunofluorescent analysis. Compared with the vehicle, omeprazole-treated infarcted rats had significantly reduced myocardial magnesium content, increased oxidant production, and increased sympathetic innervation, which in turn increased ventricular arrhythmias. These effects were prevented by the coadministration of magnesium sulfate. In an in vivo study, an omeprazole-induced increase in NGF was associated with a superoxide pathway, which was further confirmed by an ex vivo study showing the attenuation of NGF levels after coadministration of the superoxide scavenger Tiron. Magnesium sulfate did not further attenuate NGF levels compared with omeprazole + Tiron. Our results indicate that the long-term administration of PPIs was associated with reduced tissue magnesium content and increased myocardial superoxide production, which exacerbated ventricular arrhythmias after infarction. Magnesium may be a potential target for PPI-related arrhythmias after infarction.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan
- Department of Medicine, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nen-Chung Chang
- Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Buddhist Tzu Chi General hospital, Tzu Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
47
|
Galiè M, Costanzo M, Nodari A, Boschi F, Calderan L, Mannucci S, Covi V, Tabaracci G, Malatesta M. Mild ozonisation activates antioxidant cell response by the Keap1/Nrf2 dependent pathway. Free Radic Biol Med 2018; 124:114-121. [PMID: 29864481 DOI: 10.1016/j.freeradbiomed.2018.05.093] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022]
Abstract
Treatment with low-dose ozone is successfully exploited as an adjuvant therapy in the treatment of several disorders. Although the list of medical applications of ozone therapy is increasing, molecular mechanisms underlying its beneficial effects are still partially known. Clinical and experimental evidence suggests that the therapeutic effects of ozone treatment may rely on its capability to mount a beneficial antioxidant response through activation of the nuclear factor erythroid-derived-like 2 (Nrf2) pathway. However, a conclusive mechanistic demonstration is still lacking. Here, we bridge this gap of knowledge by providing evidence that treatment with a low concentration of ozone in cultured cells promotes nuclear translocation of Nrf2 at the chromatin sites of active transcription and increases the expression of antioxidant response element (ARE)-driven genes. Importantly, we show that ozone-induced ARE activation can be reverted by the ectopic expression of the Nrf2 specific inhibitor Kelch-like ECH associated protein (Keap1), thus proving the role of the Nrf2 pathway in the antioxidant response induced by mild ozonisation.
Collapse
Affiliation(s)
- Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Manuela Costanzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Alice Nodari
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| | - Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Silvia Mannucci
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Viviana Covi
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, 25018 Montichiari, BS, Italy
| | - Gabriele Tabaracci
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, 25018 Montichiari, BS, Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
48
|
Thioredoxin overexpression in both the cytosol and mitochondria accelerates age-related disease and shortens lifespan in male C57BL/6 mice. GeroScience 2018; 40:453-468. [PMID: 30121784 DOI: 10.1007/s11357-018-0039-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022] Open
Abstract
To investigate the role of increased levels of thioredoxin (Trx) in both the cytosol (Trx1) and mitochondria (Trx2) on aging, we have conducted a study to examine survival and age-related diseases using male mice overexpressing Trx1 and Trx2 (TXNTg × TXN2Tg). Our study demonstrated that the upregulation of Trx in both the cytosol and mitochondria in male TXNTg × TXN2Tg C57BL/6 mice resulted in a significantly shorter lifespan compared to wild-type (WT) mice. Cross-sectional pathology data showed a slightly higher incidence of neoplastic diseases in TXNTg × TXN2Tg mice than WT mice. The incidence of lymphoma, a major neoplastic disease in C57BL/6 mice, was slightly higher in TXNTg × TXN2Tg mice than in WT mice, and more importantly, the severity of lymphoma was significantly higher in TXNTg × TXN2Tg mice compared to WT mice. Furthermore, the total number of histopathological changes in the whole body (disease burden) was significantly higher in TXNTg × TXN2Tg mice compared to WT mice. Therefore, our study suggests that overexpression of Trx in both the cytosol and mitochondria resulted in deleterious effects on aging and accelerated the development of age-related diseases, especially cancer, in male C57BL/6 mice.
Collapse
|
49
|
Anderson RG, Ghiraldeli LP, Pardee TS. Mitochondria in cancer metabolism, an organelle whose time has come? Biochim Biophys Acta Rev Cancer 2018; 1870:96-102. [PMID: 29807044 PMCID: PMC6420819 DOI: 10.1016/j.bbcan.2018.05.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022]
Abstract
Mitochondria have long been controversial organelles in cancer. Early discoveries in cancer metabolism placed much emphasis on cytosolic contributions. Initial debate focused on if mitochondria had a role in cancer formation and progression at all. More recently the contributions of mitochondria to cancer development and progression have become firmly established. This has led to the identification of novel targets and inhibitors being studied as new therapeutic approaches. This review will summarize the role of mitochondria in cancer and highlight several agents under development.
Collapse
Affiliation(s)
- Rebecca G Anderson
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest University, United States
| | - Lais P Ghiraldeli
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest University, United States
| | - Timothy S Pardee
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest University, United States; Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest University, United States; Rafael Pharmaceuticals, Newark, NJ, United States.
| |
Collapse
|
50
|
Ramesh A, Varghese S, Jayakumar ND, Malaiappan S. Comparative estimation of sulfiredoxin levels between chronic periodontitis and healthy patients - A case-control study. J Periodontol 2018; 89:1241-1248. [PMID: 30044495 DOI: 10.1002/jper.17-0445] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 02/07/2018] [Accepted: 02/17/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Growing evidence suggests that oxidative stress forms a key component in the etiopathogenesis of periodontitis. Studies have shown potential antioxidants responsible for combating the pro-oxidants which stress the periodontium. But, peroxiredoxin-sulfiredoxin system is the least explored in periodontal disease. METHODS A case-control study was conducted on 30 participants who fulfilled the inclusion criteria from the Department of Periodontics, Saveetha Dental College and Hospital, Chennai, India. The patients were divided into two groups: 1) Group A- healthy controls (n = 18), 2) Group B- patients with generalized chronic periodontitis (n = 17). Following clinical examination, gingival tissue samples were procured from both the groups and subjected to protein quantification by Lowry method. The samples with adequate protein concentration (n = 30) from the two groups were further analyzed by enzyme-linked immunosorbent assay for estimation of sulfiredoxin levels. RESULTS Sulfiredoxin levels were significantly higher in the gingival tissues of chronic periodontitis patients (171.20 ± 16.97 ng/mL) than in healthy controls (131.20 ± 22.87) with P < 0.001. Also, the levels of sulfiredoxin in gingival tissue of periodontitis patients positively correlated with site-specific probing depth (r = 0.67; P = 0.007) and clinical attachment level (r = 0.55; P = 0.035). CONCLUSIONS The present study was a novel attempt to estimate the levels of sulfiredoxin which was significantly elevated in the diseased sites of patients with chronic periodontitis. Future studies are required to probe the role of sulfiredoxin in the etiopathogenesis of periodontal disease.
Collapse
Affiliation(s)
- Asha Ramesh
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha University, No 162, Poonamallee High Road, Vellappanchavadi, Chennai, 600077
| | - Sheeja Varghese
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha University, No 162, Poonamallee High Road, Vellappanchavadi, Chennai, 600077
| | - Nadathur D Jayakumar
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha University, No 162, Poonamallee High Road, Vellappanchavadi, Chennai, 600077
| | - Sankari Malaiappan
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha University, No 162, Poonamallee High Road, Vellappanchavadi, Chennai, 600077
| |
Collapse
|