1
|
Drescher F, Li Y, Villalobos-Escobedo JM, Haefner S, Huberman LB, Glass NL. Transcriptomic and genetic analysis reveals a Zn2Cys6 transcription factor specifically required for conidiation in submerged cultures of Thermothelomyces thermophilus. mBio 2025; 16:e0311124. [PMID: 39601596 PMCID: PMC11708020 DOI: 10.1128/mbio.03111-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Filamentous fungi are important producers of enzymes and secondary metabolites. The industrial thermophilic species, Thermothelomyces thermophilus, is closely related to the model fungus, Neurospora crassa. A critical aspect of the filamentous fungal life cycle is the production of asexual spores (conidia), which are regulated by various stimuli, including nutrient availability. Several species of fungi, including T. thermophilus, produce conidia under submerged fermentation conditions, which can be detrimental to product yields. In this study, transcriptional profiling of T. thermophilus was used to map changes during asexual development in submerged cultures, which revealed commonalities of regulation between T. thermophilus and N. crassa. We further identified a transcription factor, res1, whose deletion resulted in a complete loss of conidia production under fermentation conditions, but which did not affect conidiation on plates. Under fermentation conditions, the ∆res1 deletion strain showed increased biomass production relative to the wild-type strain, indicating that the manipulation of res1 in T. thermophilus has the potential to increase productivity in industrial settings. Overexpression of res1 caused a severe growth defect and early conidia production on both plates and in submerged cultures, indicating res1 overexpression can bypass regulatory aspects associated with conidiation on plates. Using chromatin-immunoprecipitation sequencing, we identified 35 target genes of Res1, including known conidiation regulators identified in N. crassa, revealing common and divergent aspects of asexual reproduction in these two species.IMPORTANCEFilamentous fungi, such as Thermothelomyces thermophilus, are important industrial species and have been harnessed in the Biotechnology industry for the production of industrially relevant chemicals and proteins. However, under fermentation conditions, some filamentous fungi will undergo a switch from mycelial growth to asexual development. In this study, we use transcriptional profiling of asexual development in T. thermophilus and identify a transcription factor that specifically regulates the developmental switch to the production of unwanted asexual propagules under fermentation conditions, thus altering secreted protein production. Mutations in this transcription factor Res1 result in the loss of asexual development in submerged cultures but do not affect asexual sporulation when exposed to air. The identification of stage-specific developmental regulation of asexual spore production and comparative analyses of conidiation in filamentous ascomycete species have the potential to further manipulate these species for industrial advantage.
Collapse
Affiliation(s)
- Florian Drescher
- The Plant and Microbial Biology Department, The University of California, Berkeley, California, USA
| | - Yang Li
- The Plant and Microbial Biology Department, The University of California, Berkeley, California, USA
| | | | - Stefan Haefner
- Fine Chemicals and Biocatalysis Research, BASF SE, Ludwigshafen am Rhein, Germany
| | - Lori B. Huberman
- The Plant and Microbial Biology Department, The University of California, Berkeley, California, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - N. Louise Glass
- The Plant and Microbial Biology Department, The University of California, Berkeley, California, USA
| |
Collapse
|
2
|
Keeley AT, Lotthammer JM, Pelham JF. Rhythmidia: A modern tool for circadian period analysis of filamentous fungi. PLoS Comput Biol 2024; 20:e1012167. [PMID: 39102446 PMCID: PMC11326708 DOI: 10.1371/journal.pcbi.1012167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/15/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
Circadian rhythms are ubiquitous across the kingdoms of life and serve important roles in regulating physiology and behavior at many levels. These rhythms occur in ~24-hour cycles and are driven by a core molecular oscillator. Circadian timekeeping enables organisms to anticipate daily changes by timing their growth and internal processes. Neurospora crassa is a model organism with a long history in circadian biology, having conserved eukaryotic clock properties and observable circadian phenotypes. A core approach for measuring circadian function in Neurospora is to follow daily oscillations in the direction of growth and spore formation along a thin glass tube (race tube). While leveraging robust phenotypic readouts is useful, interpreting the outputs of large-scale race tube experiments by hand can be time-consuming and prone to human error. To provide the field with an efficient tool for analyzing race tubes, we present Rhythmidia, a graphical user interface (GUI) tool written in Python for calculating circadian periods and growth rates of Neurospora. Rhythmidia is open source, has been benchmarked against the current state-of-the-art, and is easily accessible on GitHub.
Collapse
Affiliation(s)
- Alex T Keeley
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeffrey M Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jacqueline F Pelham
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
3
|
Braslavsky SE. Outstanding women scientists who have broadened the knowledge on biological photoreceptors-II. Photochem Photobiol Sci 2024; 23:757-761. [PMID: 38446404 DOI: 10.1007/s43630-024-00551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
This part II is a continuation of the article published in Photochemical and Photobiological Sciences (2023) 22, 2799-2815, https://doi.org/10.1007/s43630-023-00487-1 , which should be considered a work in progress. Now, two female scientists who have worked on different aspects of chronobiology, plus a younger colleague who recently and too prematurely died, are incorporated to the list of outstanding women who have expanded the knowledge in the field of biological photoreceptors.
Collapse
Affiliation(s)
- Silvia E Braslavsky
- Max Planck Institute for Chemical Energy Conversion, 45410, Mülheim an der Ruhr, Germany.
| |
Collapse
|
4
|
Pelham JF, Mosier AE, Altshuler SC, Rhodes ML, Kirchhoff CL, Fall WB, Mann C, Baik LS, Chiu JC, Hurley JM. Conformational changes in the negative arm of the circadian clock correlate with dynamic interactomes involved in post-transcriptional regulation. Cell Rep 2023; 42:112376. [PMID: 37043358 PMCID: PMC10562519 DOI: 10.1016/j.celrep.2023.112376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 09/16/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
Biology is tuned to the Earth's diurnal cycle by the circadian clock, a transcriptional/translational negative feedback loop that regulates physiology via transcriptional activation and other post-transcriptional mechanisms. We hypothesize that circadian post-transcriptional regulation might stem from conformational shifts in the intrinsically disordered proteins that comprise the negative arm of the feedback loop to coordinate variation in negative-arm-centered macromolecular complexes. This work demonstrates temporal conformational fluidity in the negative arm that correlates with 24-h variation in physiologically diverse macromolecular complex components in eukaryotic clock proteins. Short linear motifs on the negative-arm proteins that correspond with the interactors localized to disordered regions and known temporal phosphorylation sites suggesting changes in these macromolecular complexes could be due to conformational changes imparted by the temporal phospho-state. Interactors that oscillate in the macromolecular complexes over circadian time correlate with post-transcriptionally regulated proteins, highlighting how time-of-day variation in the negative-arm protein complexes may tune cellular physiology.
Collapse
Affiliation(s)
- Jacqueline F Pelham
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Alexander E Mosier
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Samuel C Altshuler
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Morgan L Rhodes
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | - William B Fall
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Catherine Mann
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lisa S Baik
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
5
|
Wang Z, Bartholomai BM, Loros JJ, Dunlap JC. Optimized fluorescent proteins for 4-color and photoconvertible live-cell imaging in Neurospora crassa. Fungal Genet Biol 2023; 164:103763. [PMID: 36481248 PMCID: PMC10501358 DOI: 10.1016/j.fgb.2022.103763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Fungal cells are quite unique among life in their organization and structure, and yet implementation of many tools recently developed for fluorescence imaging in animal systems and yeast has been slow in filamentous fungi. Here we present analysis of properties of fluorescent proteins in Neurospora crassa as well as describing genetic tools for the expression of these proteins that may be useful beyond cell biology applications. The brightness and photostability of ten different fluorescent protein tags were compared in a well-controlled system; six different promoters are described for the assessment of the fluorescent proteins and varying levels of expression, as well as a customizable bidirectional promoter system. We present an array of fluorescent proteins suitable for use across the visible light spectrum to allow for 4-color imaging, in addition to a photoconvertible fluorescent protein that enables a change in the color of a small subset of proteins in the cell. These tools build on the rich history of cell biology research in filamentous fungi and provide new tools to help expand research capabilities.
Collapse
Affiliation(s)
- Ziyan Wang
- Geisel School of Medicine at Dartmouth, Department of Molecular and Systems Biology, Hanover, NH, USA
| | - Bradley M Bartholomai
- Geisel School of Medicine at Dartmouth, Department of Molecular and Systems Biology, Hanover, NH, USA
| | - Jennifer J Loros
- Geisel School of Medicine at Dartmouth, Department of Biochemistry and Cell Biology, Hanover, NH, USA
| | - Jay C Dunlap
- Geisel School of Medicine at Dartmouth, Department of Molecular and Systems Biology, Hanover, NH, USA.
| |
Collapse
|
6
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
7
|
Circadian protection against bacterial skin infection by epidermal CXCL14-mediated innate immunity. Proc Natl Acad Sci U S A 2022; 119:e2116027119. [PMID: 35704759 DOI: 10.1073/pnas.2116027119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The epidermis is the outermost layer of the skin and the body's primary barrier to external pathogens; however, the early epidermal immune response remains to be mechanistically understood. We show that the chemokine CXCL14, produced by epidermal keratinocytes, exhibits robust circadian fluctuations and initiates innate immunity. Clearance of the skin pathogen Staphylococcus aureus in nocturnal mice was associated with CXCL14 expression, which was high during subjective daytime and low at night. In contrast, in marmosets, a diurnal primate, circadian CXCL14 expression was reversed. Rhythmically expressed CXCL14 binds to S. aureus DNA and induces inflammatory cytokine production by activating Toll-like receptor (TLR)9-dependent innate pathways in dendritic cells and macrophages underneath the epidermis. CXCL14 also promoted phagocytosis by macrophages in a TLR9-independent manner. These data indicate that circadian production of the epidermal chemokine CXCL14 rhythmically suppresses skin bacterial proliferation in mammals by activating the innate immune system.
Collapse
|
8
|
Burt P, Grabe S, Madeti C, Upadhyay A, Merrow M, Roenneberg T, Herzel H, Schmal C. Principles underlying the complex dynamics of temperature entrainment by a circadian clock. iScience 2021; 24:103370. [PMID: 34816105 PMCID: PMC8593569 DOI: 10.1016/j.isci.2021.103370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 01/20/2023] Open
Abstract
Autonomously oscillating circadian clocks resonate with daily environmental (zeitgeber) rhythms to organize physiology around the solar day. Although entrainment properties and mechanisms have been studied widely and in great detail for light-dark cycles, entrainment to daily temperature rhythms remains poorly understood despite that they are potent zeitgebers. Here we investigate the entrainment of the chronobiological model organism Neurospora crassa, subject to thermocycles of different periods and fractions of warm versus cold phases, mimicking seasonal variations. Depending on the properties of these thermocycles, regularly entrained rhythms, period-doubling (frequency demultiplication) but also irregular aperiodic behavior occurs. We demonstrate that the complex nonlinear phenomena of experimentally observed entrainment dynamics can be understood by molecular mathematical modeling.
Collapse
Affiliation(s)
- Philipp Burt
- Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Saskia Grabe
- Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Cornelia Madeti
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Goethestrasse 31, 80336 Munich, Germany
| | - Abhishek Upadhyay
- Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Martha Merrow
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Goethestrasse 31, 80336 Munich, Germany
| | - Till Roenneberg
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Goethestrasse 31, 80336 Munich, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christoph Schmal
- Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
9
|
Buhr ED. Molecular circadian rhythms in mammals: From angstroms to organisms. Semin Cell Dev Biol 2021; 126:1-2. [PMID: 34607770 DOI: 10.1016/j.semcdb.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Ethan D Buhr
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington.
| |
Collapse
|
10
|
Kelliher CM, Loros JJ, Dunlap JC. Evaluating the circadian rhythm and response to glucose addition in dispersed growth cultures of Neurospora crassa. Fungal Biol 2019; 124:398-406. [PMID: 32389302 DOI: 10.1016/j.funbio.2019.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
Work on the filamentous fungus Neurospora crassa has contributed to or pioneered many aspects of research on circadian clock mechanism, a process that is functionally conserved across eukaryotes. Biochemical assays of the fungal circadian clock typically involve growth in liquid medium where Neurospora forms a spherical ball of submerged mycelium. Here, we revive a method for dispersed growth of Neurospora in batch culture using polyacrylic acid as an additive to the medium. We demonstrate that dispersed growth cultures utilize more carbon than mycelial balls, but nonetheless retain a functional circadian clock. This culturing method is suited for use in circadian experiments where uniform exposure to nutrients and/or increased biomass is required.
Collapse
Affiliation(s)
- Christina M Kelliher
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jennifer J Loros
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jay C Dunlap
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
11
|
Doktór B, Damulewicz M, Pyza E. Effects of MUL1 and PARKIN on the circadian clock, brain and behaviour in Drosophila Parkinson's disease models. BMC Neurosci 2019; 20:24. [PMID: 31138137 PMCID: PMC6540415 DOI: 10.1186/s12868-019-0506-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background Mutants which carry mutations in genes encoding mitochondrial ligases MUL1 and PARKIN are convenient Drosophila models of Parkinson’s disease (PD). In several studies it has been shown that in Parkinson’s disease sleep disturbance occurs, which may be the result of a disturbed circadian clock. Results We found that the ROS level was higher, while the anti-oxidant enzyme SOD1 level was lower in mul1A6 and park1 mutants than in the white mutant used as a control. Moreover, mutations of both ligases affected circadian rhythms and the clock. The expression of clock genes per, tim and clock and the level of PER protein were changed in the mutants. Moreover, expression of ATG5, an autophagy protein also involved in circadian rhythm regulation, was decreased in the brain and in PDF-immunoreactive large ventral lateral clock neurons. The observed changes in the molecular clock resulted in a longer period of locomotor activity rhythm, increased total activity and shorter sleep at night. Finally, the lack of both ligases led to decreased longevity and climbing ability of the flies. Conclusions All of the changes observed in the brains of these Drosophila models of PD, in which mitochondrial ligases MUL1 and PARKIN do not function, may explain the mechanisms of some neurological and behavioural symptoms of PD. Electronic supplementary material The online version of this article (10.1186/s12868-019-0506-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bartosz Doktór
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
12
|
Circadian clock regulation of the glycogen synthase ( gsn) gene by WCC is critical for rhythmic glycogen metabolism in Neurospora crassa. Proc Natl Acad Sci U S A 2019; 116:10435-10440. [PMID: 31048503 PMCID: PMC6534987 DOI: 10.1073/pnas.1815360116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Circadian rhythms enable organisms to anticipate daily environmental cycles and control the timing of numerous biological processes, including metabolism, to optimize the health and survival of organisms. Glycogen metabolism is a conserved glucose homeostatic process; however, the molecular mechanisms linking the circadian clock and glycogen metabolism remain largely unknown. In this report, we demonstrate that circadian clock-dependent transcriptional regulation of glycogen synthase, gsn, regulates circadian oscillations of GSN protein and glycogen accumulation in the model filamentous fungus, Neurospora crassa. Circadian clocks generate rhythms in cellular functions, including metabolism, to align biological processes with the 24-hour environment. Disruption of this alignment by shift work alters glucose homeostasis. Glucose homeostasis depends on signaling and allosteric control; however, the molecular mechanisms linking the clock to glucose homeostasis remain largely unknown. We investigated the molecular links between the clock and glycogen metabolism, a conserved glucose homeostatic process, in Neurospora crassa. We find that glycogen synthase (gsn) mRNA, glycogen phosphorylase (gpn) mRNA, and glycogen levels, accumulate with a daily rhythm controlled by the circadian clock. Because the synthase and phosphorylase are critical to homeostasis, their roles in generating glycogen rhythms were investigated. We demonstrate that while gsn was necessary for glycogen production, constitutive gsn expression resulted in high and arrhythmic glycogen levels, and deletion of gpn abolished gsn mRNA rhythms and rhythmic glycogen accumulation. Furthermore, we show that gsn promoter activity is rhythmic and is directly controlled by core clock component white collar complex (WCC). We also discovered that WCC-regulated transcription factors, VOS-1 and CSP-1, modulate the phase and amplitude of rhythmic gsn mRNA, and these changes are similarly reflected in glycogen oscillations. Together, these data indicate the importance of clock-regulated gsn transcription over signaling or allosteric control of glycogen rhythms, a mechanism that is potentially conserved in mammals and critical to metabolic homeostasis.
Collapse
|
13
|
Loros JJ. Principles of the animal molecular clock learned from Neurospora. Eur J Neurosci 2019; 51:19-33. [PMID: 30687965 DOI: 10.1111/ejn.14354] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/28/2022]
Abstract
Study of Neurospora, a model system evolutionarily related to animals and sharing a circadian system having nearly identical regulatory architecture to that of animals, has advanced our understanding of all circadian rhythms. Work on the molecular bases of the Oscillator began in Neurospora before any clock genes were cloned and provided the second example of a clock gene, frq, as well as the first direct experimental proof that the core of the Oscillator was built around a transcriptional translational negative feedback loop (TTFL). Proof that FRQ was a clock component provided the basis for understanding how light resets the clock, and this in turn provided the generally accepted understanding for how light resets all animal and fungal clocks. Experiments probing the mechanism of light resetting led to the first identification of a heterodimeric transcriptional activator as the positive element in a circadian feedback loop, and to the general description of the fungal/animal clock as a single step TTFL. The common means through which DNA damage impacts the Oscillator in fungi and animals was first described in Neurospora. Lastly, the systematic study of Output was pioneered in Neurospora, providing the vocabulary and conceptual framework for understanding how Output works in all cells. This model system has contributed to the current appreciation of the role of Intrinsic Disorder in clock proteins and to the documentation of the essential roles of protein post-translational modification, as distinct from turnover, in building a circadian clock.
Collapse
Affiliation(s)
- Jennifer J Loros
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
14
|
Circadian Proteomic Analysis Uncovers Mechanisms of Post-Transcriptional Regulation in Metabolic Pathways. Cell Syst 2018; 7:613-626.e5. [PMID: 30553726 DOI: 10.1016/j.cels.2018.10.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/12/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
Transcriptional and translational feedback loops in fungi and animals drive circadian rhythms in transcript levels that provide output from the clock, but post-transcriptional mechanisms also contribute. To determine the extent and underlying source of this regulation, we applied newly developed analytical tools to a long-duration, deeply sampled, circadian proteomics time course comprising half of the proteome. We found a quarter of expressed proteins are clock regulated, but >40% of these do not arise from clock-regulated transcripts, and our analysis predicts that these protein rhythms arise from oscillations in translational rates. Our data highlighted the impact of the clock on metabolic regulation, with central carbon metabolism reflecting both transcriptional and post-transcriptional control and opposing metabolic pathways showing peak activities at different times of day. The transcription factor CSP-1 plays a role in this metabolic regulation, contributing to the rhythmicity and phase of clock-regulated proteins.
Collapse
|
15
|
Lee SJ, Kong M, Morse D, Hijri M. Expression of putative circadian clock components in the arbuscular mycorrhizal fungus Rhizoglomus irregulare. MYCORRHIZA 2018; 28:523-534. [PMID: 29931403 DOI: 10.1007/s00572-018-0843-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligatory plant symbionts that live underground, so few studies have examined their response to light. Responses to blue light by other fungi can be mediated by White Collar-1 (WC-1) and WC-2 proteins. These wc genes, together with the frequency gene (frq), also form part of the endogenous circadian clock. The clock mechanism has never been studied in AMF, although circadian growth of their hyphae in the field has been reported. Using both genomic and transcriptomic data, we have found homologs of wc-1, wc-2, and frq and related circadian clock genes in the arbuscular mycorrhizal fungus Rhizoglomus irregulare (synonym Rhizophagus irregularis). Gene expression of wc-1, wc-2, and frq was analyzed using RT-qPCR on RNA extracted from germinating spores and from fungal material cultivated in vitro with transformed carrot roots. We found that all three core clock genes were expressed in both pre- and post-mycorrhizal stages of R. irregulare growth. Similar to the model fungus Neurospora crassa, the core circadian oscillator gene frq was induced by brief light stimulation. The presence of circadian clock and output genes in R. irregulare opens the door to the study of circadian clocks in the fungal partner of plant-AMF symbiosis. Our finding also provides new insight into the evolution of the circadian frq gene in fungi.
Collapse
Affiliation(s)
- Soon-Jae Lee
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - Mengxuan Kong
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - David Morse
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.
| |
Collapse
|
16
|
Zhou X, Wang B, Emerson JM, Ringelberg CS, Gerber SA, Loros JJ, Dunlap JC. A HAD family phosphatase CSP-6 regulates the circadian output pathway in Neurospora crassa. PLoS Genet 2018; 14:e1007192. [PMID: 29351294 PMCID: PMC5800702 DOI: 10.1371/journal.pgen.1007192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 02/06/2018] [Accepted: 01/08/2018] [Indexed: 01/24/2023] Open
Abstract
Circadian clocks are ubiquitous in eukaryotic organisms where they are used to anticipate regularly occurring diurnal and seasonal environmental changes. Nevertheless, little is known regarding pathways connecting the core clock to its output pathways. Here, we report that the HAD family phosphatase CSP-6 is required for overt circadian clock output but not for the core oscillation. The loss of function Δcsp-6 deletion mutant is overtly arrhythmic on race tubes under free running conditions; however, reporter assays confirm that the FREQUENCY-WHITE COLLAR COMPLEX core circadian oscillator is functional, indicating a discrete block between oscillator and output. CSP-6 physically interacts with WHI-2, Δwhi-2 mutant phenotypes resemble Δcsp-6, and the CSP-6/WHI-2 complex physically interacts with WC-1, all suggesting that WC-1 is a direct target for CSP-6/WHI-2-mediated dephosphorylation and consistent with observed WC-1 hyperphosphorylation in Δcsp-6. To identify the source of the block to output, known clock-controlled transcription factors were screened for rhythmicity in Δcsp-6, identifying loss of circadian control of ADV-1, a direct target of WC-1, as responsible for the loss of overt rhythmicity. The CSP-6/WHI-2 complex thus participates in the clock output pathway by regulating WC-1 phosphorylation to promote proper transcriptional/translational activation of adv-1/ADV-1; these data establish an unexpected essential role for post-translational modification parallel to circadian transcriptional regulation in the early steps of circadian output. Though molecules and components in the core circadian oscillator are well studied in Neurospora, the mechanisms through which output pathways are coupled with core components are less well understood. In this study we investigated a HAD phosphatase, CSP-6; loss-of-function Δcsp-6 strains are overtly arrhythmic but have a functional core circadian oscillation. CSP-6 in association with WHI-2 dephosphorylates the core clock component WC-1 to regulate light-responses and development. To dissect the functions of CSP-6 in core clock and output, we screened known WC-1 targets and found that loss of CSP-6 causes misregulation of transcriptional/translational activation of ADV-1, a key regulator of output. Thus, loss of CSP-6-mediated dephosphorylation of WC-1 leads to loss of ADV-1 activation and is responsible for the complete loss of overt developmental rhythmicity in Δcsp-6.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Bin Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jillian M. Emerson
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Carol S. Ringelberg
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Scott A. Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Jennifer J. Loros
- Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jay C. Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
17
|
Pelham JF, Mosier AE, Hurley JM. Characterizing Time-of-Day Conformational Changes in the Intrinsically Disordered Proteins of the Circadian Clock. Methods Enzymol 2018; 611:503-529. [DOI: 10.1016/bs.mie.2018.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Dunlap JC, Loros JJ. Making Time: Conservation of Biological Clocks from Fungi to Animals. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0039-2016. [PMID: 28527179 PMCID: PMC5446046 DOI: 10.1128/microbiolspec.funk-0039-2016] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 01/03/2023] Open
Abstract
The capacity for biological timekeeping arose at least three times through evolution, in prokaryotic cyanobacteria, in cells that evolved into higher plants, and within the group of organisms that eventually became the fungi and the animals. Neurospora is a tractable model system for understanding the molecular bases of circadian rhythms in the last of these groups, and is perhaps the most intensively studied circadian cell type. Rhythmic processes described in fungi include growth rate, stress responses, developmental capacity, and sporulation, as well as much of metabolism; fungi use clocks to anticipate daily environmental changes. A negative feedback loop comprises the core of the circadian system in fungi and animals. In Neurospora, the best studied fungal model, it is driven by two transcription factors, WC-1 and WC-2, that form the White Collar Complex (WCC). WCC elicits expression of the frq gene. FRQ complexes with other proteins, physically interacts with the WCC, and reduces its activity; the kinetics of these processes is strongly influenced by progressive phosphorylation of FRQ. When FRQ becomes sufficiently phosphorylated that it loses the ability to influence WCC activity, the circadian cycle starts again. Environmental cycles of light and temperature influence frq and FRQ expression and thereby reset the internal circadian clocks. The molecular basis of circadian output is also becoming understood. Taken together, molecular explanations are emerging for all the canonical circadian properties, providing a molecular and regulatory framework that may be extended to many members of the fungal and animal kingdoms, including humans.
Collapse
Affiliation(s)
- Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
19
|
Bartnicki-Garcia S. The evolution of fungal morphogenesis, a personal account. Mycologia 2017; 108:475-84. [DOI: 10.3852/15-272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/28/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Salomon Bartnicki-Garcia
- Departamento de Microbiología, Centro de Investigación Científica y Educación Superior de Ensenada, CICESE, Ensenada B.C. 22860 Mexico
| |
Collapse
|
20
|
Circadian clock regulation of mRNA translation through eukaryotic elongation factor eEF-2. Proc Natl Acad Sci U S A 2016; 113:9605-10. [PMID: 27506798 DOI: 10.1073/pnas.1525268113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The circadian clock has a profound effect on gene regulation, controlling rhythmic transcript accumulation for up to half of expressed genes in eukaryotes. Evidence also exists for clock control of mRNA translation, but the extent and mechanisms for this regulation are not known. In Neurospora crassa, the circadian clock generates daily rhythms in the activation of conserved mitogen-activated protein kinase (MAPK) pathways when cells are grown in constant conditions, including rhythmic activation of the well-characterized p38 osmosensing (OS) MAPK pathway. Rhythmic phosphorylation of the MAPK OS-2 (P-OS-2) leads to temporal control of downstream targets of OS-2. We show that osmotic stress in N. crassa induced the phosphorylation of a eukaryotic elongation factor-2 (eEF-2) kinase, radiation sensitivity complementing kinase-2 (RCK-2), and that RCK-2 is necessary for high-level phosphorylation of eEF-2, a key regulator of translation elongation. The levels of phosphorylated RCK-2 and phosphorylated eEF-2 cycle in abundance in wild-type cells but not in cells deleted for OS-2 or the core clock component FREQUENCY (FRQ). Translation extracts from cells grown in constant conditions show decreased translational activity in the late subjective morning, coincident with the peak in eEF-2 phosphorylation, and rhythmic translation of glutathione S-transferase (GST-3) from constitutive mRNA levels in vivo is dependent on circadian regulation of eEF-2 activity. In contrast, rhythms in phosphorylated eEF-2 levels are not necessary for rhythms in accumulation of the clock protein FRQ, indicating that clock control of eEF-2 activity promotes rhythmic translation of specific mRNAs.
Collapse
|
21
|
Abstract
Circadian rhythms in the level of intracellular Mg appear to be widely conserved phylogenetically, and have the potential to impact nearly all aspects of metabolism. Moreover, the clock regulates the ion channels that generate the rhythm, demonstrating that the whole cell operates as a circadian system.
Collapse
Affiliation(s)
- Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
22
|
de Paula RM, Lewis ZA, Greene AV, Seo KS, Morgan LW, Vitalini MW, Bennett L, Gomer RH, Bell-Pedersen D. Two Circadian Timing Circuits in Neurospora crassa Cells Share Components and Regulate Distinct Rhythmic Processes. J Biol Rhythms 2016; 21:159-68. [PMID: 16731655 DOI: 10.1177/0748730406288338] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In Neurospora crassa, FRQ, WC-1, and WC-2 proteins comprise the core circadian FRQ-based oscillator that is directly responsive to light and drives daily rhythms in spore development and gene expression. However, physiological and biochemical studies have demonstrated the existence of additional oscillators in the cell that function in the absence of FRQ (collectively termed FRQ-less oscillators [FLOs]). Whether or not these represent temperature-compensated, entrainable circadian oscillators is not known. The authors previously identified an evening-peaking gene, W06H2 (now called clock-controlled gene 16 [ ccg-16]), which is expressed with a robust daily rhythm in cells that lack FRQ protein, suggesting that ccg-16 is regulated by a FLO. In this study, the authors provide evidence that the FLO driving ccg-16 rhythmicity is a circadian oscillator. They find that ccg-16 rhythms are generated by a temperature-responsive, temperature-compensated circadian FLO that, similar to the FRQ-based oscillator, requires functional WC-1 and WC-2 proteins for activity. They also find that FRQ is not essential for rhythmic WC-1 protein levels, raising the possibility that this WCFLO is involved in the generation of WC-1 rhythms. The results are consistent with the presence of 2 circadian oscillators within Neurospora cells, which the authors speculate may interact with each other through the shared WC proteins.
Collapse
Affiliation(s)
- Renato M de Paula
- Department of Biology, Center for Research on Biological Clocks, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The eukaryotic filamentous fungus Neurospora crassa has proven to be a durable and dependable model system for the analysis of the cellular and molecular bases of circadian rhythms. Pioneering genetic analyses identified clock genes, and beginning with the cloning of frequency ( frq), work over the past 2 decades has revealed the molecular basis of a core circadian clock feedback loop that has illuminated our understanding of circadian oscillators in microbes, plants, and animals. In this transcription/translation-based feedback loop, a heterodimer of the White Collar-1 (WC-1) and WC-2 proteins acts both as the circadian photoreceptor and, in the dark, as a transcription factor that promotes the expression of the frq gene. FRQ dimerizes and feeds back to block the activity of its activators (making a negative feedback loop), as well as feeding forward to promote the synthesis of its activator, WC-1. Phosphorylation of FRQ by several kinases leads to its ubiquitination and turnover, releasing the WC-1/WC-2 dimer to reactivate frq expression and restart the circadian cycle. Light resetting of the clock can be understood through the rapid light induction of frq expression and temperature resetting through the influence of elevated temperaturesin driving higher levels of FRQ. Several FRQ- and WC-independent, noncircadian FRQ-less oscillators (FLOs) have been described, each of which appears to regulate aspects of Neurospora growth or development. Overall, the FRQ/white collar complex feedback loop appears to coordinate the circadian system through its activity to regulate downstream-target clock-controlled genes, either directly or via regulation of driven FLOs.
Collapse
Affiliation(s)
- Jay C Dunlap
- Department of Genetics, Dartmouth Medical School, Hannover, NH 03755-3844, USA.
| | | |
Collapse
|
24
|
Conrad KS, Hurley JM, Widom J, Ringelberg CS, Loros JJ, Dunlap JC, Crane BR. Structure of the frequency-interacting RNA helicase: a protein interaction hub for the circadian clock. EMBO J 2016; 35:1707-19. [PMID: 27340124 PMCID: PMC4969578 DOI: 10.15252/embj.201694327] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/23/2016] [Indexed: 11/09/2022] Open
Abstract
In the Neurospora crassa circadian clock, a protein complex of frequency (FRQ), casein kinase 1a (CK1a), and the FRQ-interacting RNA Helicase (FRH) rhythmically represses gene expression by the white-collar complex (WCC). FRH crystal structures in several conformations and bound to ADP/RNA reveal differences between FRH and the yeast homolog Mtr4 that clarify the distinct role of FRH in the clock. The FRQ-interacting region at the FRH N-terminus has variable structure in the absence of FRQ A known mutation that disrupts circadian rhythms (R806H) resides in a positively charged surface of the KOW domain, far removed from the helicase core. We show that changes to other similarly located residues modulate interactions with the WCC and FRQ A V142G substitution near the N-terminus also alters FRQ and WCC binding to FRH, but produces an unusual short clock period. These data support the assertion that FRH helicase activity does not play an essential role in the clock, but rather FRH acts to mediate contacts among FRQ, CK1a and the WCC through interactions involving its N-terminus and KOW module.
Collapse
Affiliation(s)
- Karen S Conrad
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Joanne Widom
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Jennifer J Loros
- Department of Biochemistry, Geisel School of Medicine, Hanover, NH, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine, Hanover, NH, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
25
|
Su X, Schmitz G, Zhang M, Mackie RI, Cann IKO. Heterologous gene expression in filamentous fungi. ADVANCES IN APPLIED MICROBIOLOGY 2016; 81:1-61. [PMID: 22958526 DOI: 10.1016/b978-0-12-394382-8.00001-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi.
Collapse
Affiliation(s)
- Xiaoyun Su
- Energy Biosciences Institute, University of Illinois, Urbana, IL, USA; Institute for Genomic Biology, University of Illinois, Urbana, IL, USA; Equal contribution
| | | | | | | | | |
Collapse
|
26
|
Hurley JM, Loros JJ, Dunlap JC. The circadian system as an organizer of metabolism. Fungal Genet Biol 2015; 90:39-43. [PMID: 26498192 DOI: 10.1016/j.fgb.2015.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/06/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
The regulation of metabolism by circadian systems is believed to be a key reason for the extensive representation of circadian rhythms within the tree of life. Despite this, surprisingly little work has focused on the link between metabolism and the clock in Neurospora, a key model system in circadian research. The analysis that has been performed has focused on the unidirectional control from the clock to metabolism and largely ignored the feedback from metabolism on the clock. Recent efforts to understand these links have broken new ground, revealing bidirectional control from the clock to metabolism and vise-versa, showing just how strongly interconnected these two cellular systems can be in fungi. This review describes both well understood and emerging links between the clock and metabolic output of fungi as well as the role that metabolism plays in influencing the rhythm set by the clock.
Collapse
Affiliation(s)
- Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Jennifer J Loros
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
27
|
|
28
|
Analysis of Circadian Rhythms in the Basal Filamentous Ascomycete Pyronema confluens. G3-GENES GENOMES GENETICS 2015; 5:2061-71. [PMID: 26254031 PMCID: PMC4592989 DOI: 10.1534/g3.115.020461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Many organisms use circadian clocks to adapt to daily changes in the environment. Major insights into the molecular mechanisms of circadian oscillators have been gained through studies of the model organism Neurospora crassa; however, little is known about molecular components of circadian clocks in other fungi. An important part of the N. crassa circadian clock is the frequency (frq) gene, homologs of which can be found in Sordariomycetes, Dothideomycetes, and Leotiomycetes, but not Eurotiomycetes. Recently, we identified a frq homolog in Pyronema confluens, a member of the early-diverging Pezizomycete lineage of filamentous ascomycetes. The P. confluens FRQ shares many conserved domains with the N. crassa FRQ. However, there is no known morphological phenotype showing overt circadian rhythmicity in P. confluens. To investigate whether a molecular clock is present, we analyzed frq transcription in constant darkness, and found circadian oscillation of frq with a peak in the subjective morning. This rhythm was temperature compensated. To identify additional clock-controlled genes, we performed RNA sequencing of two time points (subjective morning and evening). Circadian expression of two morning-specific genes was verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR) over a full time course, whereas expression of two putative morning-specific and five putative evening-specific genes could not be verified as circadian. frq expression was synchronized, but not entrained by light. In summary, we have found evidence for two of the three main properties of circadian rhythms (free-running rhythm, temperature compensation) in P. confluens, suggesting that a circadian clock with rhythmically expressed frq is present in this basal filamentous ascomycete.
Collapse
|
29
|
Metabolic Impacts of Using Nitrogen and Copper-Regulated Promoters to Regulate Gene Expression in Neurospora crassa. G3-GENES GENOMES GENETICS 2015; 5:1899-908. [PMID: 26194204 PMCID: PMC4555226 DOI: 10.1534/g3.115.020073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The filamentous fungus Neurospora crassa is a long-studied eukaryotic microbial system amenable to heterologous expression of native and foreign proteins. However, relatively few highly tunable promoters have been developed for this species. In this study, we compare the tcu-1 and nit-6 promoters for controlled expression of a GFP reporter gene in N. crassa. Although the copper-regulated tcu-1 has been previously characterized, this is the first investigation exploring nitrogen-controlled nit-6 for expression of heterologous genes in N. crassa. We determined that fragments corresponding to 1.5-kb fragments upstream of the tcu-1 and nit-6 open reading frames are needed for optimal repression and expression of GFP mRNA and protein. nit-6 was repressed using concentrations of glutamine from 2 to 20 mM and induced in medium containing 0.5–20 mM nitrate as the nitrogen source. Highest levels of expression were achieved within 3 hr of induction for each promoter and GFP mRNA could not be detected within 1 hr after transfer to repressing conditions using the nit-6 promoter. We also performed metabolic profiling experiments using proton NMR to identify changes in metabolite levels under inducing and repressing conditions for each promoter. The results demonstrate that conditions used to regulate tcu-1 do not significantly change the primary metabolome and that the differences between inducing and repressing conditions for nit-6 can be accounted for by growth under nitrate or glutamine as a nitrogen source. Our findings demonstrate that nit-6 is a tunable promoter that joins tcu-1 as a choice for regulation of gene expression in N. crassa.
Collapse
|
30
|
Hedtke M, Rauscher S, Röhrig J, Rodríguez-Romero J, Yu Z, Fischer R. Light-dependent gene activation inAspergillus nidulansis strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation. Mol Microbiol 2015; 97:733-45. [DOI: 10.1111/mmi.13062] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Maren Hedtke
- Department of Microbiology; Karlsruhe Institute of Technology; Institute for Applied Biosciences; Hertzstrasse 16 D-76187 Karlsruhe Germany
| | - Stefan Rauscher
- Department of Microbiology; Karlsruhe Institute of Technology; Institute for Applied Biosciences; Hertzstrasse 16 D-76187 Karlsruhe Germany
| | - Julian Röhrig
- Department of Microbiology; Karlsruhe Institute of Technology; Institute for Applied Biosciences; Hertzstrasse 16 D-76187 Karlsruhe Germany
| | - Julio Rodríguez-Romero
- Centre for Plant Biotechnology and Genomics (CBGP) U.P.M. - I.N.I.A.; Campus de Montegancedo; Autopista M-40 (Km 38) 28223 Pozuelo de Alarcón, Madrid Spain
| | - Zhenzhong Yu
- Department of Microbiology; Karlsruhe Institute of Technology; Institute for Applied Biosciences; Hertzstrasse 16 D-76187 Karlsruhe Germany
| | - Reinhard Fischer
- Department of Microbiology; Karlsruhe Institute of Technology; Institute for Applied Biosciences; Hertzstrasse 16 D-76187 Karlsruhe Germany
| |
Collapse
|
31
|
Cockrell AL, Pirlo RK, Babson DM, Cusick KD, Soto CM, Petersen ER, Davis MJ, Hong CI, Lee K, Fitzgerald LA, Biffinger JC. Suppressing the Neurospora crassa circadian clock while maintaining light responsiveness in continuous stirred tank reactors. Sci Rep 2015; 5:10691. [PMID: 26031221 PMCID: PMC4451529 DOI: 10.1038/srep10691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/28/2015] [Indexed: 11/09/2022] Open
Abstract
Neurospora crassa has been utilized as a model organism for studying biological, regulatory, and circadian rhythms for over 50 years. These circadian cycles are driven at the molecular level by gene transcription events to prepare for environmental changes. N. crassa is typically found on woody biomass and is commonly studied on agar-containing medium which mimics its natural environment. We report a novel method for disrupting circadian gene transcription while maintaining light responsiveness in N. crassa when held in a steady metabolic state using bioreactors. The arrhythmic transcription of core circadian genes and downstream clock-controlled genes was observed in constant darkness (DD) as determined by reverse transcription-quantitative PCR (RT-qPCR). Nearly all core circadian clock genes were up-regulated upon exposure to light during 11hr light/dark cycle experiments under identical conditions. Our results demonstrate that the natural timing of the robust circadian clock in N. crassa can be disrupted in the dark when maintained in a consistent metabolic state. Thus, these data lead to a path for the production of industrial scale enzymes in the model system, N. crassa, by removing the endogenous negative feedback regulation by the circadian oscillator.
Collapse
Affiliation(s)
- Allison L Cockrell
- Chemistry Division, US Naval Research Laboratory, 4555 Overlook Ave., SW., Washington, DC, 20375, USA
| | - Russell K Pirlo
- Chemistry Division, US Naval Research Laboratory, 4555 Overlook Ave., SW., Washington, DC, 20375, USA
| | - David M Babson
- Nova Research Inc., 1900 Elkin St., Suite 230, Alexandria, VA, 22308, USA
| | - Kathleen D Cusick
- Chemistry Division, US Naval Research Laboratory, 4555 Overlook Ave., SW., Washington, DC, 20375, USA
| | - Carissa M Soto
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave., SW., Washington, DC, 20375, USA
| | - Emily R Petersen
- Nova Research Inc., 1900 Elkin St., Suite 230, Alexandria, VA, 22308, USA
| | | | - Christian I Hong
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Kwangwon Lee
- Department of Biology, Rutgers University, Camden, NJ, 08102, USA
| | - Lisa A Fitzgerald
- Chemistry Division, US Naval Research Laboratory, 4555 Overlook Ave., SW., Washington, DC, 20375, USA
| | - Justin C Biffinger
- Chemistry Division, US Naval Research Laboratory, 4555 Overlook Ave., SW., Washington, DC, 20375, USA
| |
Collapse
|
32
|
Montenegro-Montero A, Canessa P, Larrondo LF. Around the Fungal Clock. ADVANCES IN GENETICS 2015; 92:107-84. [DOI: 10.1016/bs.adgen.2015.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Abstract
The circadian clock exists to synchronize inner physiology with the external world, allowing life to anticipate and adapt to the continual changes that occur in an organism's environment. The clock architecture is highly conserved, present in almost all major branches of life. Within eukaryotes, the filamentous fungus Neurospora crassa has consistently been used as an excellent model organism to uncover the basic circadian physiology and molecular biology. The Neurospora model has elucidated our fundamental understanding of the clock as nested positive and negative feedback loop, regulated by transcriptional and posttranscriptional processes. This review will examine the basics of circadian rhythms in the model filamentous fungus N. crassa as well as highlight the output of the clock in Neurospora and the reasons that N. crassa has continued to be a strong model for the study of circadian rhythms. It will also synopsize classical and emerging methods in the study of the circadian clock.
Collapse
Affiliation(s)
- Jennifer Hurley
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jennifer J Loros
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.
| |
Collapse
|
34
|
Abstract
The filamentous fungus Neurospora crassa responds to light in complex ways. To thoroughly study the transcriptional response of this organism to light, RNA-seq was used to analyze capped and polyadenylated mRNA prepared from mycelium grown for 24 hr in the dark and then exposed to light for 0 (control) 15, 60, 120, and 240 min. More than three-quarters of all defined protein coding genes (79%) were expressed in these cells. The increased sensitivity of RNA-seq compared with previous microarray studies revealed that the RNA levels for 31% of expressed genes were affected two-fold or more by exposure to light. Additionally, a large class of mRNAs, enriched for transcripts specifying products involved in rRNA metabolism, showed decreased expression in response to light, indicating a heretofore undocumented effect of light on this pathway. Based on measured changes in mRNA levels, light generally increases cellular metabolism and at the same time causes significant oxidative stress to the organism. To deal with this stress, protective photopigments are made, antioxidants are produced, and genes involved in ribosome biogenesis are transiently repressed.
Collapse
|
35
|
The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea. PLoS Genet 2014; 10:e1004040. [PMID: 24415947 PMCID: PMC3886904 DOI: 10.1371/journal.pgen.1004040] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/01/2013] [Indexed: 01/16/2023] Open
Abstract
Botrytis cinerea is the causal agent of gray mold diseases in a range of dicotyledonous plant species. The fungus can reproduce asexually by forming macroconidia for dispersal and sclerotia for survival; the latter also participate in sexual reproduction by bearing the apothecia after fertilization by microconidia. Light induces the differentiation of conidia and apothecia, while sclerotia are exclusively formed in the absence of light. The relevance of light for virulence of the fungus is not obvious, but infections are observed under natural illumination as well as in constant darkness. By a random mutagenesis approach, we identified a novel virulence-related gene encoding a GATA transcription factor (BcLTF1 for light-responsive TF1) with characterized homologues in Aspergillus nidulans (NsdD) and Neurospora crassa (SUB-1). By deletion and over-expression of bcltf1, we confirmed the predicted role of the transcription factor in virulence, and discovered furthermore its functions in regulation of light-dependent differentiation, the equilibrium between production and scavenging of reactive oxygen species (ROS), and secondary metabolism. Microarray analyses revealed 293 light-responsive genes, and that the expression levels of the majority of these genes (66%) are modulated by BcLTF1. In addition, the deletion of bcltf1 affects the expression of 1,539 genes irrespective of the light conditions, including the overexpression of known and so far uncharacterized secondary metabolism-related genes. Increased expression of genes encoding alternative respiration enzymes, such as the alternative oxidase (AOX), suggest a mitochondrial dysfunction in the absence of bcltf1. The hypersensitivity of Δbctlf1 mutants to exogenously applied oxidative stress - even in the absence of light - and the restoration of virulence and growth rates in continuous light by antioxidants, indicate that BcLTF1 is required to cope with oxidative stress that is caused either by exposure to light or arising during host infection. Both fungal pathogens and their host plants respond to light, which represents an important environmental cue. Unlike plants using light for energy generation, filamentous fungi use light, or its absence, as a general signal for orientation (night/day, underground/on the surface). Therefore, dependent on the ecological niche of the fungus, light may control the development of reproductive structures (photomorphogenesis), the dispersal of propagules (phototropism of reproductive structures) and the circadian rhythm. As in other organisms, fungi have to protect themselves against the detrimental effects of light, i.e. the damage to macromolecules by emerging singlet oxygen. Adaptive responses are the accumulation of pigments, especially in the reproductive and survival structures such as spores, sclerotia and fruiting bodies. Light is sensed by fungal photoreceptors leading to quick responses on the transcriptional level, and is furthermore considered to result in the accumulation of reactive oxygen species (ROS). In this study, we provide evidence that an unbalanced ROS homoeostasis (generation outweighs detoxification) caused by the deletion of the light-responsive transcription factor BcLTF1 impairs the ability of the necrotrophic pathogen Botrytis cinerea to grow in the presence of additional oxidative stress arising during illumination or during infection of the host.
Collapse
|
36
|
Hurley JM, Larrondo LF, Loros JJ, Dunlap JC. Conserved RNA helicase FRH acts nonenzymatically to support the intrinsically disordered neurospora clock protein FRQ. Mol Cell 2013; 52:832-43. [PMID: 24316221 DOI: 10.1016/j.molcel.2013.11.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/08/2013] [Accepted: 10/31/2013] [Indexed: 11/24/2022]
Abstract
Protein conformation dictates a great deal of protein function. A class of naturally unstructured proteins, termed intrinsically disordered proteins (IDPs), demonstrates that flexibility in structure can be as important mechanistically as rigid structure. At the core of the circadian transcription/translation feedback loop in Neurospora crassa is the protein FREQUENCY (FRQ), shown here shown to share many characteristics of IDPs. FRQ in turn binds to FREQUENCY-Interacting RNA Helicase (FRH), whose clock function has been assumed to relate to its predicted helicase function. However, mutational analyses reveal that the helicase function of FRH is not essential for the clock, and a region of FRH distinct from the helicase region is essential for stabilizing FRQ against rapid degradation via a pathway distinct from its typical ubiquitin-mediated turnover. These data lead to the hypothesis that FRQ is an IDP and that FRH acts nonenzymatically, stabilizing FRQ to enable proper clock circuitry/function.
Collapse
Affiliation(s)
- Jennifer M Hurley
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Luis F Larrondo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Jennifer J Loros
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
37
|
Light-inducible system for tunable protein expression in Neurospora crassa. G3-GENES GENOMES GENETICS 2012; 2:1207-12. [PMID: 23050231 PMCID: PMC3464113 DOI: 10.1534/g3.112.003939] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/06/2012] [Indexed: 12/29/2022]
Abstract
Filamentous fungi are important model systems for understanding eukaryotic cellular processes, including the study of protein expression. A salient feature of fungi is the ability of the protein-processing machinery to perform all of the extensive posttranslational modifications needed in the complex world of eukaryotic organisms, making them great hosts for production of eukaryotic proteins. In the model organism Neurospora crassa, several regulatable promoters have been used for heterologous gene expression but all suffer from leaky expression absent stimuli or an inability to induce protein expression at levels greater than those seen in vivo. To increase and better control in vivo protein expression in Neurospora, we have harnessed the light-induced vvd promoter. vvd promoter-driven mRNA expression is dependent upon light, shows a graded response, and is rapidly shut off when returned to the dark. The vvd promoter is a highly tunable and regulatable system, which could be a useful instrument for those interested in efficient and controllable gene expression.
Collapse
|
38
|
Ohm RA, Aerts D, Wösten HAB, Lugones LG. The blue light receptor complex WC-1/2 of Schizophyllum commune is involved in mushroom formation and protection against phototoxicity. Environ Microbiol 2012; 15:943-55. [PMID: 22998561 DOI: 10.1111/j.1462-2920.2012.02878.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/31/2012] [Accepted: 08/23/2012] [Indexed: 12/30/2022]
Abstract
Blue light is necessary for initiation of mushroom formation in Schizophyllum commune. The genome of this basidiomycete contains homologues of the blue light receptor genes wc-1 and wc-2 of Neurospora crassa. Here, it is shown that inactivation of either or both of these genes in S. commune results in a blind phenotype. Mushroom formation was abolished in dikaryons and they formed symmetrical instead of asymmetrical colonies. Development was restored in a temperature dependent way in a Δwc-2Δwc-2 strain by introducing a construct encompassing the wc-2 gene under control of the promoter of the heat shock gene hsp3. A genome-wide expression analysis showed that the transcription factor genes c2h2 and hom1 as well as many hydrophobin genes are downregulated in light-grown colonies of the Δwc-2Δwc-2 mutant when compared with the wild-type dikaryon. Inactivation of wc-1 and/or wc-2 also resulted in sensitivity of the mycelium to intense light. Monokaryotic mutant strains only survived exposure to 6500 lux of light by growing into the agar. Expression analysis indicates that the photosensitivity of the Δwc-1 and Δwc-2 strains is due to lower levels of photolyase and ferrochelatase.
Collapse
Affiliation(s)
- Robin A Ohm
- Department of Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
39
|
Echauri-Espinosa RO, Callejas-Negrete OA, Roberson RW, Bartnicki-García S, Mouriño-Pérez RR. Coronin is a component of the endocytic collar of hyphae of Neurospora crassa and is necessary for normal growth and morphogenesis. PLoS One 2012; 7:e38237. [PMID: 22693603 PMCID: PMC3365027 DOI: 10.1371/journal.pone.0038237] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/01/2012] [Indexed: 01/02/2023] Open
Abstract
Coronin plays a major role in the organization and dynamics of actin in yeast. To investigate the role of coronin in a filamentous fungus (Neurospora crassa), we examined its subcellular localization using fluorescent proteins and the phenotypic consequences of coronin gene (crn-1) deletion in hyphal morphogenesis, Spitzenkörper behavior and endocytosis. Coronin-GFP was localized in patches, forming a subapical collar near the hyphal apex; significantly, it was absent from the apex. The subapical patches of coronin colocalized with fimbrin, Arp2/3 complex, and actin, altogether comprising the endocytic collar. Deletion of crn-1 resulted in reduced hyphal growth rates, distorted hyphal morphology, uneven wall thickness, and delayed establishment of polarity during germination; it also affected growth directionality and increased branching. The Spitzenkörper of Δcrn-1 mutant was unstable; it appeared and disappeared intermittently giving rise to periods of hyphoid-like and isotropic growth respectively. Uptake of FM4-64 in Δcrn-1 mutant indicated a partial disruption in endocytosis. These observations underscore coronin as an important component of F-actin remodeling in N. crassa. Although coronin is not essential in this fungus, its deletion influenced negatively the operation of the actin cytoskeleton involved in the orderly deployment of the apical growth apparatus, thus preventing normal hyphal growth and morphogenesis.
Collapse
Affiliation(s)
- Ramon O. Echauri-Espinosa
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Olga A. Callejas-Negrete
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Robert W. Roberson
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Salomon Bartnicki-García
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Rosa R. Mouriño-Pérez
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
- * E-mail:
| |
Collapse
|
40
|
Suh MJ, Fedorova ND, Cagas SE, Hastings S, Fleischmann RD, Peterson SN, Perlin DS, Nierman WC, Pieper R, Momany M. Development stage-specific proteomic profiling uncovers small, lineage specific proteins most abundant in the Aspergillus Fumigatus conidial proteome. Proteome Sci 2012; 10:30. [PMID: 22545825 PMCID: PMC3424117 DOI: 10.1186/1477-5956-10-30] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/30/2012] [Indexed: 11/14/2022] Open
Abstract
Background The pathogenic mold Aspergillus fumigatus is the most frequent infectious cause of death in severely immunocompromised individuals such as leukemia and bone marrow transplant patients. Germination of inhaled conidia (asexual spores) in the host is critical for the initiation of infection, but little is known about the underlying mechanisms of this process. Results To gain insights into early germination events and facilitate the identification of potential stage-specific biomarkers and vaccine candidates, we have used quantitative shotgun proteomics to elucidate patterns of protein abundance changes during early fungal development. Four different stages were examined: dormant conidia, isotropically expanding conidia, hyphae in which germ tube emergence has just begun, and pre-septation hyphae. To enrich for glycan-linked cell wall proteins we used an alkaline cell extraction method. Shotgun proteomic resulted in the identification of 375 unique gene products with high confidence, with no evidence for enrichment of cell wall-immobilized and secreted proteins. The most interesting discovery was the identification of 52 proteins enriched in dormant conidia including 28 proteins that have never been detected in the A. fumigatus conidial proteome such as signaling protein Pil1, chaperones BipA and calnexin, and transcription factor HapB. Additionally we found many small, Aspergillus specific proteins of unknown function including 17 hypothetical proteins. Thus, the most abundant protein, Grg1 (AFUA_5G14210), was also one of the smallest proteins detected in this study (M.W. 7,367). Among previously characterized proteins were melanin pigment and pseurotin A biosynthesis enzymes, histones H3 and H4.1, and other proteins involved in conidiation and response to oxidative or hypoxic stress. In contrast, expanding conidia, hyphae with early germ tubes, and pre-septation hyphae samples were enriched for proteins responsible for housekeeping functions, particularly translation, respiratory metabolism, amino acid and carbohydrate biosynthesis, and the tricarboxylic acid cycle. Conclusions The observed temporal expression patterns suggest that the A. fumigatus conidia are dominated by small, lineage-specific proteins. Some of them may play key roles in host-pathogen interactions, signal transduction during conidial germination, or survival in hostile environments.
Collapse
Affiliation(s)
- Moo-Jin Suh
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, USA
| | - Natalie D Fedorova
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, USA
| | - Steven E Cagas
- University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Susan Hastings
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | | | - Scott N Peterson
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, USA
| | - David S Perlin
- University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - William C Nierman
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, USA
| | - Rembert Pieper
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, USA
| | - Michelle Momany
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
41
|
Roles for receptors, pheromones, G proteins, and mating type genes during sexual reproduction in Neurospora crassa. Genetics 2012; 190:1389-404. [PMID: 22298702 DOI: 10.1534/genetics.111.136358] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Here we characterize the relationship between the PRE-2 pheromone receptor and its ligand, CCG-4, and the general requirements for receptors, pheromones, G proteins, and mating type genes during fusion of opposite mating-type cells and sexual sporulation in the multicellular fungus Neurospora crassa. PRE-2 is highly expressed in mat a cells and is localized in male and female reproductive structures. Δpre-2 mat a females do not respond chemotropically to mat A males (conidia) or form mature fruiting bodies (perithecia) or meiotic progeny (ascospores). Strains with swapped identity due to heterologous expression of pre-2 or ccg-4 behave normally in crosses with opposite mating-type strains. Coexpression of pre-2 and ccg-4 in the mat A background leads to self-attraction and development of barren perithecia without ascospores. Further perithecial development is achieved by inactivation of Sad-1, a gene required for meiotic gene silencing. Findings from studies involving forced heterokaryons of opposite mating-type strains show that presence of one receptor and its compatible pheromone is necessary and sufficient for perithecial development and ascospore production. Taken together, the results demonstrate that although receptors and pheromones control sexual identity, the mating-type genes (mat A and mat a) must be in two different nuclei to allow meiosis and sexual sporulation to occur.
Collapse
|
42
|
The Neurospora crassa OS MAPK pathway-activated transcription factor ASL-1 contributes to circadian rhythms in pathway responsive clock-controlled genes. Fungal Genet Biol 2012; 49:180-8. [PMID: 22240319 DOI: 10.1016/j.fgb.2011.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 11/21/2022]
Abstract
The OS-pathway mitogen-activated protein kinase (MAPK) cascade of Neurospora crassa is responsible for adaptation to osmotic stress. Activation of the MAPK, OS-2, leads to the transcriptional induction of many genes involved in the osmotic stress response. We previously demonstrated that there is a circadian rhythm in the phosphorylation of OS-2 under constant non-stress inducing conditions. Additionally, several osmotic stress-induced genes are known to be regulated by the circadian clock. Therefore, we investigated if rhythms in activation of OS-2 lead to circadian rhythms in other known stress responsive targets. Here we identify three more osmotic stress induced genes as rhythmic: cat-1, gcy-1, and gcy-3. These genes encode a catalase and two predicted glycerol dehydrogenases thought to be involved in the production of glycerol. Rhythms in these genes depend upon the oscillator component FRQ. To investigate how the circadian signal is propagated to these stress induced genes, we examined the role of the OS-responsive transcription factor, ASL-1, in mediating circadian gene expression. We find that while the asl-1 transcript is induced by several stresses including an osmotic shock, asl-1 mRNA accumulation is not rhythmic. However, we show that ASL-1 is required for generating normal circadian rhythms of some OS-pathway responsive transcripts (bli-3, ccg-1, cat-1, gcy-1 and gcy-3) in the absence of an osmotic stress. These data are consistent with the possibility that post-transcriptional regulation of ASL-1 by the rhythmically activated OS-2 MAPK could play a role in generating rhythms in downstream targets.
Collapse
|
43
|
Genetic dissection of PARylation in the filamentous fungus Neurospora crassa. Methods Mol Biol 2011. [PMID: 21870276 DOI: 10.1007/978-1-61779-270-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
PARylation is a posttranslational protein modification carried out by PAR polymerases (PARPs). These enzymes function as ADP-ribose transferases that add polymers of ADP-ribose (PAR) to target proteins. PARP proteins have critical functions impacting the aspects of normal human health, such as aging, as well as disease development, particularly cancer. Recently, the powerful antitumor PARP inhibitor Olaparib was shown to be effective in blocking the progression of BRCA1/2-associated tumors, prompting Bruce Alberts to call for an expansion of cancer research beyond utilization of cancer cell lines to include model organisms, such as bacteria, yeast, worms, flies, and mice. Although Dr. Alberts did not specifically mention the filamentous fungus Neurospora crassa, it is now known that Neurospora is the only genetically tractable model eukaryote with completely dispensable PARylation. PARylation in Neurospora can be entirely eliminated by disruption of a single predicted ORF, encoding a nuclear localized PARP protein termed Neurospora PARP ortholog (NPO). We, thus, present this initial genetic characterization of PARylation in N. crassa as evidence of the supreme advantage of using Neurospora as a tool for the genetic dissection of PARP and PARylation and emphasize the power of this system to advance unparalleled contributions to knowledge in this field.
Collapse
|
44
|
Abstract
Circadian clocks organize our inner physiology with respect to the external world, providing life with the ability to anticipate and thereby better prepare for major fluctuations in its environment. Circadian systems are widely represented in nearly all major branches of life, except archaebacteria, and within the eukaryotes, the filamentous fungus Neurospora crassa has served for nearly half a century as a durable model organism for uncovering the basic circadian physiology and molecular biology. Studies using Neurospora have clarified our fundamental understanding of the clock as nested positive and negative feedback loops regulated through transcriptional and post-transcriptional processes. These feedback loops are centered on a limited number of proteins that form molecular complexes, and their regulation provides a physical explanation for nearly all clock properties. This review will introduce the basics of circadian rhythms, the model filamentous fungus N. crassa, and provide an overview of the molecular components and regulation of the circadian clock.
Collapse
|
45
|
Hammond TM, Xiao H, Rehard DG, Boone EC, Perdue TD, Pukkila PJ, Shiu PKT. Fluorescent and bimolecular-fluorescent protein tagging of genes at their native loci in Neurospora crassa using specialized double-joint PCR plasmids. Fungal Genet Biol 2011; 48:866-73. [PMID: 21664475 DOI: 10.1016/j.fgb.2011.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 04/22/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
The double-joint polymerase chain reaction (DJ-PCR) is a technique that can be used to construct vectors for targeted genome integration without laborious subcloning steps. Here we report the availability of plasmids that facilitate DJ-PCR-based construction of Neurospora crassa tagging vectors. These plasmids allow the creation of green or red fluorescent protein (GFP or RFP) tagging vectors for protein localization studies, as well as split-yellow fluorescent protein (YFP) tagging vectors for bimolecular fluorescence complementation (BiFC) analyses. We have demonstrated the utility of each plasmid with the tagging of known meiotic silencing proteins. Microscopic analysis of the tagged strains indicates that SMS-2 and QIP form macromolecular complexes in the perinuclear region during meiosis.
Collapse
Affiliation(s)
- Thomas M Hammond
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | | | | | | | | | | | | |
Collapse
|
46
|
Bellet MM, Sassone-Corsi P. Mammalian circadian clock and metabolism - the epigenetic link. J Cell Sci 2011; 123:3837-48. [PMID: 21048160 DOI: 10.1242/jcs.051649] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Circadian rhythms regulate a wide variety of physiological and metabolic processes. The clock machinery comprises complex transcriptional-translational feedback loops that, through the action of specific transcription factors, modulate the expression of as many as 10% of cellular transcripts. This marked change in gene expression necessarily implicates a global regulation of chromatin remodeling. Indeed, various descriptive studies have indicated that histone modifications occur at promoters of clock-controlled genes (CCGs) in a circadian manner. The finding that CLOCK, a transcription factor crucial for circadian function, has intrinsic histone acetyl transferase (HAT) activity has paved the way to unraveling the molecular mechanisms that govern circadian chromatin remodeling. A search for the histone deacetylase (HDAC) that counterbalances CLOCK activity revealed that SIRT1, a nicotinamide adenin dinucleotide (NAD(+))-dependent HDAC, functions in a circadian manner. Importantly, SIRT1 is a regulator of aging, inflammation and metabolism. As many transcripts that oscillate in mammalian peripheral tissues encode proteins that have central roles in metabolic processes, these findings establish a functional and molecular link between energy balance, chromatin remodeling and circadian physiology. Here we review recent studies that support the existence of this link and discuss their implications for understanding mammalian physiology and pathology.
Collapse
Affiliation(s)
- Marina Maria Bellet
- Department of Pharmacology, Unite 904 Inserm Epigenetics and Neuronal Plasticity, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
47
|
Khatun R, Lakin-Thomas P. Activation and localization of protein kinase C in Neurospora crassa. Fungal Genet Biol 2011; 48:465-73. [DOI: 10.1016/j.fgb.2010.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 11/28/2022]
|
48
|
Rémi J, Merrow M, Roenneberg T. A circadian surface of entrainment: varying T, τ, and photoperiod in Neurospora crassa. J Biol Rhythms 2011; 25:318-28. [PMID: 20876812 DOI: 10.1177/0748730410379081] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The two major prerequisites for a functional circadian system are the generation of an internal day (circadian cycle) and adjusting its length-and phase-to that of the external day (zeitgeber cycle). The generation of circadian cycles can be observed in constant conditions where organisms show a self-sustained, free-running rhythm. Their expression depends on the nature of the constant conditions (e.g., constant darkness, DD, or constant light, LL). The mechanism that synchronizes the circadian cycle length (τ) to that of the zeitgeber (T) can be explored by many experimental procedures (e.g., single light pulses), but it can only be fully understood under entertainment proper. When a clock is stably entrained, τ(LD) is, on average, equal to T, but the phase relationship between the clock (φ) and the zeitgeber (Φ) (phase of entrainment, ψ = Φ-φ) depends on the relationship between τ in constant conditions (τ(DD) or τ( LL)) and T. Phase of entrainment has traditionally been predicted by the clock's phase response curve (PRC) for a given zeitgeber stimulus and τ(DD). But there is an additional quality of the natural environment-namely, photoperiod-which is not easily incorporated into this entrainment paradigm. The authors therefore investigated phase of entrainment for 162 combinations of T, τ, and photoperiod in Neurospora crassa, which lends itself to a high-throughput approach. They entrained different strains (with long, short, and wild-type free-running periods) to different cycle lengths of the zeitgeber (16-26 h) and photoperiods (16%-84% of each cycle). These combinations produce a circadian surface with highly systematic phases of entrainment. The results suggest that the traditional entrainment paradigms using the PRC and τ(DD) have to be reevaluated.
Collapse
Affiliation(s)
- Jan Rémi
- Institute for Medical Psychology, University of Munich, Munich, Germany
| | | | | |
Collapse
|
49
|
Lakin-Thomas PL, Bell-Pedersen D, Brody S. The genetics of circadian rhythms in Neurospora. ADVANCES IN GENETICS 2011; 74:55-103. [PMID: 21924975 DOI: 10.1016/b978-0-12-387690-4.00003-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This chapter describes our current understanding of the genetics of the Neurospora clock and summarizes the important findings in this area in the past decade. Neurospora is the most intensively studied clock system, and the reasons for this are listed. A discussion of the genetic interactions between clock mutants is included, highlighting the utility of dissecting complex mechanisms by genetic means. The molecular details of the Neurospora circadian clock mechanism are described, as well as the mutations that affect the key clock proteins, FRQ, WC-1, and WC-2, with an emphasis on the roles of protein phosphorylation. Studies on additional genes affecting clock properties are described and place these genes into two categories: those that affect the FRQ/WCC oscillator and those that do not. A discussion of temperature compensation and the mutants affecting this property is included. A section is devoted to the observations pertinent to the existence of other oscillators in this organism with respect to their properties, their effects, and their preliminary characterization. The output of the clock and the control of clock-controlled genes are discussed, emphasizing the phasing of these genes and the layers of control. In conclusion, the authors provide an outlook summarizing their suggestions for areas that would be fruitful for further exploration.
Collapse
|
50
|
PARP is involved in replicative aging in Neurospora crassa. Fungal Genet Biol 2010; 47:297-309. [PMID: 20045739 DOI: 10.1016/j.fgb.2009.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 12/10/2009] [Accepted: 12/29/2009] [Indexed: 11/22/2022]
Abstract
Modification of proteins by the addition of poly(ADP-ribose) is carried out by poly(ADP-ribose) polymerases (PARPs). PARPs have been implicated in a wide range of biological processes in eukaryotes, but no universal function has been established. A study of the Aspergillus nidulans PARP ortholog (PrpA) revealed that the protein is essential and involved in DNA repair, reminiscent of findings using mammalian systems. We found that a Neurospora PARP orthologue (NPO) is dispensable for cell survival, DNA repair and epigenetic silencing but that replicative aging of mycelia is accelerated in an npo mutant strain. We propose that PARPs may control aging as proposed for Sirtuins, which also consume NAD+ and function either as mono(ADP-ribose) transferases or protein deacetylases. PARPs may regulate aging by impacting NAD+/NAM availability, thereby influencing Sirtuin activity, or they may function in alternative NAD+-dependent or NAD+-independent aging pathways.
Collapse
|