1
|
Palacios-Blanco I, Gómez L, Bort M, Mayerová N, Bágeľová Poláková S, Martín-Castellanos C. CDK phosphorylation of Sfr1 downregulates Rad51 function in late-meiotic homolog invasions. EMBO J 2024; 43:4356-4383. [PMID: 39174851 PMCID: PMC11445502 DOI: 10.1038/s44318-024-00205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
Meiosis is the developmental program that generates gametes. To produce healthy gametes, meiotic recombination creates reciprocal exchanges between each pair of homologous chromosomes that facilitate faithful chromosome segregation. Using fission yeast and biochemical, genetic, and cytological approaches, we have studied the role of CDK (cyclin-dependent kinase) in the control of Swi5-Sfr1, a Rad51-recombinase auxiliary factor involved in homolog invasion during recombination. We show that Sfr1 is a CDK target, and its phosphorylation downregulates Swi5-Sfr1 function in the meiotic prophase. Expression of a phospho-mimetic sfr1-7D mutant inhibits Rad51 binding, its robust chromosome loading, and subsequently decreases interhomolog recombination. On the other hand, the non-phosphorylatable sfr1-7A mutant alters Rad51 dynamics at late prophase, and exacerbates chromatin segregation defects and Rad51 retention observed in dbl2 deletion mutants when combined with them. We propose Sfr1 phospho-inhibition as a novel cell-cycle-dependent mechanism, which ensures timely resolution of recombination intermediates and successful chromosome distribution into the gametes. Furthermore, the N-terminal disordered part of Sfr1, an evolutionarily conserved feature, serves as a regulatory platform coordinating this phospho-regulation, protein localization and stability, with several CDK sites and regulatory sequences being conserved.
Collapse
Affiliation(s)
- Inés Palacios-Blanco
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, 37007, Spain
| | - Lucía Gómez
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, 37007, Spain
| | - María Bort
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, 37007, Spain
| | - Nina Mayerová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 841 04, Slovakia
| | - Silvia Bágeľová Poláková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 841 04, Slovakia
- Centre of Biosciences SAS, Institute of Animal Biochemistry and Genetics, Bratislava, 840 05, Slovakia
| | | |
Collapse
|
2
|
Das S, Singh A, Shah P. Evaluating single-cell variability in proteasomal decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554358. [PMID: 37662347 PMCID: PMC10473619 DOI: 10.1101/2023.08.22.554358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Gene expression is a stochastic process that leads to variability in mRNA and protein abundances even within an isogenic population of cells grown in the same environment. This variation, often called gene-expression noise, has typically been attributed to transcriptional and translational processes while ignoring the contributions of protein decay variability across cells. Here we estimate the single-cell protein decay rates of two degron GFPs in Saccharomyces cerevisiae using time-lapse microscopy. We find substantial cell-to-cell variability in the decay rates of the degron GFPs. We evaluate cellular features that explain the variability in the proteasomal decay and find that the amount of 20s catalytic beta subunit of the proteasome marginally explains the observed variability in the degron GFP half-lives. We propose alternate hypotheses that might explain the observed variability in the decay of the two degron GFPs. Overall, our study highlights the importance of studying the kinetics of the decay process at single-cell resolution and that decay rates vary at the single-cell level, and that the decay process is stochastic. A complex model of decay dynamics must be included when modeling stochastic gene expression to estimate gene expression noise.
Collapse
Affiliation(s)
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, Biomedical Engineering, University of Delaware
| | | |
Collapse
|
3
|
Heng YC, Foo JL. Development of destabilized mCherry fluorescent proteins for applications in the model yeast Saccharomyces cerevisiae. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 3:108-112. [PMID: 39416457 PMCID: PMC11446383 DOI: 10.1016/j.biotno.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 10/19/2024]
Abstract
Fluorescent proteins are widely used molecular reporters in studying gene expression and subcellular protein localization. To enable the monitoring of transient cellular events in the model yeast Saccharomyces cerevisiae, destabilized green and cyan fluorescent proteins have been constructed. However, their co-utilization is limited by an overlap in their excitation and emission spectra. Although red fluorescent protein is compatible with both green and cyan fluorescent proteins with respect to spectra resolution, a destabilized red fluorescent protein is yet to be constructed for applications in S. cerevisiae. To realize this, we adopted a degron-fusion strategy to prompt destabilization of red fluorescent protein. Specifically, we fused two degrons derived from Cln2, a G1-specific cyclin that mediates cell cycle transition, to the N- or C-terminus of mCherry to generate four destabilized fluorescent proteins that are soluble and functional in S. cerevisiae. Importantly, the four mCherry fluorescent proteins are highly differential with regards to fluorescence half-life and intensity, which provides a greater choice of tools available for the study of dynamic gene expression and transient cellular processes in the model yeast.
Collapse
Affiliation(s)
- Yu Chyuan Heng
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jee Loon Foo
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Abstract
SignificanceTo ensure their survival, cells arrest the cell division cycle when they are exposed to environmental stress. The duration of this arrest is dependent upon the time it takes a cell to adapt to a particular environment. How cells adjust the amount of time they remain arrested is not known. This study investigates the role of the phosphatase calcineurin in controlling cell cycle arrest duration in yeast. We show that calcineurin lengthens arrest by prolonging Hog1-dependent activation of the poorly characterized cyclin-dependent kinase inhibitor Cip1. Cip1 only impacts cell cycle arrest in response to stressors that robustly activate calcineurin, suggesting that Cip1 is a context-specific regulator that differentially adjusts the length of arrest depending on the particular stressor.
Collapse
|
5
|
Chou YT, Koh YC, Nagabhushanam K, Ho CT, Pan MH. A Natural Degradant of Curcumin, Feruloylacetone Inhibits Cell Proliferation via Inducing Cell Cycle Arrest and a Mitochondrial Apoptotic Pathway in HCT116 Colon Cancer Cells. Molecules 2021; 26:molecules26164884. [PMID: 34443472 PMCID: PMC8399060 DOI: 10.3390/molecules26164884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 01/17/2023] Open
Abstract
Feruloylacetone (FER) is a natural degradant of curcumin after heating, which structurally reserves some functional groups of curcumin. It is not as widely discussed as its original counterpart has been previously; and in this study, its anticancer efficacy is investigated. This study focuses on the suppressive effect of FER on colon cancer, as the efficacious effect of curcumin on this typical cancer type has been well evidenced. In addition, demethoxy-feruloylacetone (DFER) was applied to compare the effect that might be brought on by the structural differences of the methoxy group. It was revealed that both FER and DFER inhibited the proliferation of HCT116 cells, possibly via suppression of the phosphorylated mTOR/STAT3 pathway. Notably, FER could significantly repress both the STAT3 phosphorylation and protein levels. Furthermore, both samples showed capability of arresting HCT116 cells at the G2/M phase via the activation of p53/p21 and the upregulation of cyclin-B. In addition, ROS elevation and changes in mitochondrial membrane potential were revealed, as indicated by p-atm elevation. The apoptotic rate rose to 36.9 and 32.2% after being treated by FER and DFER, respectively. In summary, both compounds exhibited an anticancer effect, and FER showed a greater proapoptotic effect, possibly due to the presence of the methoxy group on the aromatic ring.
Collapse
Affiliation(s)
- Yu-Ting Chou
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Yen-Chun Koh
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung City 41354, Taiwan
- Correspondence: ; Tel.: +886-2-3366-4133; Fax: +886-2-3366-1771
| |
Collapse
|
6
|
Zhao Y, Wang D, Zhang Z, Lu Y, Yang X, Ouyang Q, Tang C, Li F. Critical slowing down and attractive manifold: A mechanism for dynamic robustness in the yeast cell-cycle process. Phys Rev E 2020; 101:042405. [PMID: 32422801 DOI: 10.1103/physreve.101.042405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 01/13/2020] [Indexed: 11/07/2022]
Abstract
Biological processes that execute complex multiple functions, such as the cell cycle, must ensure the order of sequential events and maintain dynamic robustness against various fluctuations. Here, we examine the mechanisms and fundamental structure that achieve these properties in the cell cycle of the budding yeast Saccharomyces cerevisiae. We show that this process behaves like an excitable system containing three well-decoupled saddle-node bifurcations to execute DNA replication and mitosis events. The yeast cell-cycle regulatory network can be divided into three modules-the G1/S phase, early M phase, and late M phase-wherein both positive feedback loops in each module and interactions among modules play important roles. Specifically, when the cell-cycle process operates near the critical points of the saddle-node bifurcations, a critical slowing down effect takes place. Such interregnum then allows for an attractive manifold and sufficient duration for cell-cycle events, within which to assess the completion of DNA replication and mitosis, e.g., spindle assembly. Moreover, such arrangement ensures that any fluctuation in an early module or event will not transmit to a later module or event. Thus, our results suggest a possible dynamical mechanism of the cell-cycle process to ensure event order and dynamic robustness and give insight into the evolution of eukaryotic cell-cycle processes.
Collapse
Affiliation(s)
- Yao Zhao
- School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Dedi Wang
- School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Zhiwen Zhang
- School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xiaojing Yang
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Qi Ouyang
- School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Chao Tang
- School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Fangting Li
- School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Protein Phosphatases in G1 Regulation. Int J Mol Sci 2020; 21:ijms21020395. [PMID: 31936296 PMCID: PMC7013402 DOI: 10.3390/ijms21020395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 01/15/2023] Open
Abstract
Eukaryotic cells make the decision to proliferate, to differentiate or to cease dividing during G1, before passage through the restriction point or Start. Keeping cyclin-dependent kinase (CDK) activity low during this period restricts commitment to a new cell cycle and is essential to provide the adequate timeframe for the sensing of environmental signals. Here, we review the role of protein phosphatases in the modulation of CDK activity and as the counteracting force for CDK-dependent substrate phosphorylation, in budding and fission yeast. Moreover, we discuss recent findings that place protein phosphatases in the interface between nutritional signalling pathways and the cell cycle machinery.
Collapse
|
8
|
Du M, Kodner S, Bai L. Enhancement of LacI binding in vivo. Nucleic Acids Res 2019; 47:9609-9618. [PMID: 31396617 PMCID: PMC6765135 DOI: 10.1093/nar/gkz698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/11/2019] [Accepted: 07/30/2019] [Indexed: 11/30/2022] Open
Abstract
Transcription factors (TFs) bind to specific sequences in DNA to regulate transcription. Despite extensive measurements of TFs’ dissociation constant (Kd) in vitro, their apparent Kdin vivo are usually unknown. LacI, a bacterial TF, is often used to artificially recruit proteins onto eukaryotic genomes. As LacI binds tightly to its recognition site (LacO) in vitro with a Kd about 10 picomolar (pM), it is often assumed that LacI also has high affinity to LacO in vivo. In this work, we measured LacI binding in living yeast cells using a fluorescent repressor operator system and found an apparent Kd of ∼0.6 μM, four orders of magnitude higher than that in vitro. By genetically altering (i) GFP-LacI structure, (ii) GFP-LacI stability, (iii) chromosome accessibility and (iv) LacO sequence, we reduced the apparent Kd to <10 nM. It turns out that the GFP tagging location and the fusion protein stability have a large effect on LacI binding, but surprisingly, chromosome accessibility only plays a mild role. These findings contribute to our quantitative understanding of the features that affect the apparent Kd of TF in cells. They also provide guidance for future design of more specific chromosomal recruitment through high-affinity TFs.
Collapse
Affiliation(s)
- Manyu Du
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Seth Kodner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Upadhyay A. Structure of proteins: Evolution with unsolved mysteries. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:160-172. [PMID: 31014967 DOI: 10.1016/j.pbiomolbio.2019.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
Abstract
Evolution of macromolecules could be considered as a milestone in the history of life. Nucleic acids are the long stretches of nucleotides that contain all the possible codes and information of life. On the other hand, proteins are their actual translated outcomes, or reflections of modifications in their structure that have occurred at a slow, but steady rate over a very long period of evolution. Over the years of research, biophysicists, biochemists, molecular and structural biologists have unfurled several layers of the structural convolutions in these chemical molecules; however evolutionists look over their structures through a different prism, which may or may not coincide with others. There remains a need to outline several well-known, but less discussed features of protein structures, like intrinsically disordered states, degron signals and different types of ubiquitin chains providing degradation signals, which help the cellular proteolytic machinery to identify and target the proteins towards degradation pathways. There are several important factors, which are critical for folding of proteins into their native three-dimensional conformations by the cytoplasmic chaperones; but in real time how the chaperones fold the newly synthesized polypeptide sequences into a particular three-dimensional shape within a fraction of second is still a mystery for biologists as well as mathematicians. Multiple similar unsolved or unaddressed questions need to be addressed in detail so that future line of research can dig deeper into the finer details of these structures of the proteins.
Collapse
Affiliation(s)
- Arun Upadhyay
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
10
|
Quilis I, Taberner FJ, Martínez-Garay CA, Alepuz P, Igual JC. Karyopherin Msn5 is involved in a novel mechanism controlling the cellular level of cell cycle regulators Cln2 and Swi5. Cell Cycle 2019; 18:580-595. [PMID: 30739521 PMCID: PMC6464581 DOI: 10.1080/15384101.2019.1578148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The yeast β-karyopherin Msn5 controls the SBF cell-cycle transcription factor, responsible for the periodic expression of CLN2 cyclin gene at G1/S, and the nuclear export of Cln2 protein. Here we show that Msn5 regulates Cln2 by an additional mechanism. Inactivation of Msn5 causes a severe reduction in the cellular content of Cln2. This occurs by a post-transcriptional mechanism, since CLN2 mRNA level is not importantly affected in asynchronous cultures. Cln2 stability is not significantly altered in msn5 cells and inactivation of Msn5 causes a reduction in protein level even when Cln2 is stabilized. Therefore, the reduced amount of Cln2 in msn5 cells is mainly due not to a higher rate of protein degradation but to a defect in Cln2 synthesis. In fact, analysis of polysome profiles indicated that Msn5 inactivation causes a shift of CLN2 and SWI5 mRNAs from heavy-polysomal to light-polysomal and non-polysomal fractions, supporting a defect in Cln2 and Swi5 protein synthesis in the msn5 mutant. The analysis of truncated versions of Cln2 and of chimeric cyclins combining distinct domains from Cln2 and the related Cln1 cyclin identified an internal region in Cln2 from 181 to 225 residues that when fused to GFP is able to confer Msn5-dependent regulation of protein cellular content. Finally, we showed that a high level of Cln2 is toxic in the absence of Msn5. In summary, we described that Msn5 is required for the proper protein synthesis of specific proteins, introducing a new level of control of cell cycle regulators.
Collapse
Affiliation(s)
- Inma Quilis
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - Francisco J Taberner
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - Carlos A Martínez-Garay
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - Paula Alepuz
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - J Carlos Igual
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| |
Collapse
|
11
|
Abstract
All cells must accurately replicate DNA and partition it to daughter cells. The basic cell cycle machinery is highly conserved among eukaryotes. Most of the mechanisms that control the cell cycle were worked out in fungal cells, taking advantage of their powerful genetics and rapid duplication times. Here we describe the cell cycles of the unicellular budding yeast Saccharomyces cerevisiae and the multicellular filamentous fungus Aspergillus nidulans. We compare and contrast morphological landmarks of G1, S, G2, and M phases, molecular mechanisms that drive cell cycle progression, and checkpoints in these model unicellular and multicellular fungal systems.
Collapse
|
12
|
Quilis I, Igual JC. A comparative study of the degradation of yeast cyclins Cln1 and Cln2. FEBS Open Bio 2016; 7:74-87. [PMID: 28097090 PMCID: PMC5221467 DOI: 10.1002/2211-5463.12157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/06/2016] [Accepted: 11/03/2016] [Indexed: 11/09/2022] Open
Abstract
The yeast cyclins Cln1 and Cln2 are very similar in both sequence and function, but some differences in their functionality and localization have been recently described. The control of Cln1 and Cln2 cellular levels is crucial for proper cell cycle initiation. In this work, we analyzed the degradation patterns of Cln1 and Cln2 in order to further investigate the possible differences between them. Both cyclins show the same half-life but, while Cln2 degradation depends on ubiquitin ligases SCFGrr1 and SCFCdc4, Cln1 is affected only by SCFGrr1. Degradation analysis of chimeric cyclins, constructed by combining fragments from Cln1 and Cln2, identifies the N-terminal sequence of the proteins as responsible of the cyclin degradation pattern. In particular, the N-terminal region of Cln2 is required to mediate degradation by SCFCdc4. This region is involved in nuclear import of Cln1 and Cln2, which suggests that differences in degradation may be due to differences in localization. Moreover, a comparison of the cyclins that differ only in the presence of the Cln2 nuclear export signal indicates a greater instability of exported cyclins, thus reinforcing the idea that cyclin stability is influenced by their localization.
Collapse
Affiliation(s)
- Inma Quilis
- Departament de Bioquímica i Biologia Molecular and ERI BiotecMed Universitat de València Burjassot Spain
| | - J Carlos Igual
- Departament de Bioquímica i Biologia Molecular and ERI BiotecMed Universitat de València Burjassot Spain
| |
Collapse
|
13
|
Abstract
The mitotic cell cycle is driven by Cyclin-Dependent Kinases (CDK). CDK activation requires the binding of activatory subunits termed cyclins. Different waves of cyclins are expressed during the cell cycle, enabling CDKs to trigger phase specific events. For instance, S phase cyclins promote the initiation of DNA replication but not chromosome segregation. There are at least 2 explanations for how such regulation is achieved. According to one of the visions, cyclins confer intrinsic substrate specificity to the CDK catalytic subunit. Alternatively a quantitative model has been proposed, according to which ever-increasing CDK activity is required to trigger cell cycle events from G1 to M. If a quantitative control prevails, then an early cyclin should trigger later cycle events if accumulated at high enough levels at the right time and place. We show here that a G1 phase cyclin bears the potential to trigger DNA replication and promote S and G2 phase specific transcription.
Collapse
Affiliation(s)
- Roger Palou
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Asrar Malik
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Gloria Palou
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Fanli Zeng
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Ping Ren
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - David G Quintana
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| |
Collapse
|
14
|
Compartmentalization of a bistable switch enables memory to cross a feedback-driven transition. Cell 2015; 160:1182-95. [PMID: 25768911 DOI: 10.1016/j.cell.2015.02.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/24/2014] [Accepted: 01/17/2015] [Indexed: 01/28/2023]
Abstract
Cells make accurate decisions in the face of molecular noise and environmental fluctuations by relying not only on present pathway activity, but also on their memory of past signaling dynamics. Once a decision is made, cellular transitions are often rapid and switch-like due to positive feedback loops in the regulatory network. While positive feedback loops are good at promoting switch-like transitions, they are not expected to retain information to inform subsequent decisions. However, this expectation is based on our current understanding of network motifs that accounts for temporal, but not spatial, dynamics. Here, we show how spatial organization of the feedback-driven yeast G1/S switch enables the transmission of memory of past pheromone exposure across this transition. We expect this to be one of many examples where the exquisite spatial organization of the eukaryotic cell enables previously well-characterized network motifs to perform new and unexpected signal processing functions.
Collapse
|
15
|
Abstract
Nearly 20% of the budding yeast genome is transcribed periodically during the cell division cycle. The precise temporal execution of this large transcriptional program is controlled by a large interacting network of transcriptional regulators, kinases, and ubiquitin ligases. Historically, this network has been viewed as a collection of four coregulated gene clusters that are associated with each phase of the cell cycle. Although the broad outlines of these gene clusters were described nearly 20 years ago, new technologies have enabled major advances in our understanding of the genes comprising those clusters, their regulation, and the complex regulatory interplay between clusters. More recently, advances are being made in understanding the roles of chromatin in the control of the transcriptional program. We are also beginning to discover important regulatory interactions between the cell-cycle transcriptional program and other cell-cycle regulatory mechanisms such as checkpoints and metabolic networks. Here we review recent advances and contemporary models of the transcriptional network and consider these models in the context of eukaryotic cell-cycle controls.
Collapse
|
16
|
Pope PA, Bhaduri S, Pryciak PM. Regulation of cyclin-substrate docking by a G1 arrest signaling pathway and the Cdk inhibitor Far1. Curr Biol 2014; 24:1390-1396. [PMID: 24909323 DOI: 10.1016/j.cub.2014.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/28/2014] [Accepted: 05/02/2014] [Indexed: 11/16/2022]
Abstract
Eukaryotic cell division is often regulated by extracellular signals. In budding yeast, signaling from mating pheromones arrests the cell cycle in G1 phase. This arrest requires the protein Far1, which is thought to antagonize the G1/S transition by acting as a Cdk inhibitor (CKI), although the mechanisms remain unresolved. Recent studies found that G1/S cyclins (Cln1 and Cln2) recognize Cdk substrates via specific docking motifs, which promote substrate phosphorylation in vivo. Here, we show that these docking interactions are inhibited by pheromone signaling and that this inhibition requires Far1. Moreover, Far1 mutants that cannot inhibit docking are defective at cell-cycle arrest. Consistent with this arrest function, Far1 outcompetes substrates for association with G1/S cyclins in vivo, and it is present in large excess over G1/S cyclins during the precommitment period where pheromone can impose G1 arrest. Finally, a comparison of substrates that do and do not require docking suggests that Far1 acts as a multimode inhibitor that antagonizes both kinase activity and substrate recognition by Cln1/2-Cdk complexes. Our findings uncover a novel mechanism of Cdk regulation by external signals and shed new light on Far1 function to provide a revised view of cell-cycle arrest in this model system.
Collapse
Affiliation(s)
- Patricia A Pope
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Samyabrata Bhaduri
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Peter M Pryciak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
17
|
Landry BD, Mapa CE, Arsenault HE, Poti KE, Benanti JA. Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression. EMBO J 2014; 33:1044-60. [PMID: 24714560 DOI: 10.1002/embj.201386877] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division.
Collapse
Affiliation(s)
- Benjamin D Landry
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | |
Collapse
|
18
|
Modelling the coupling between intracellular calcium release and the cell cycle during cortical brain development. J Theor Biol 2014; 347:17-32. [DOI: 10.1016/j.jtbi.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 11/28/2013] [Accepted: 01/03/2014] [Indexed: 01/28/2023]
|
19
|
Yang X, Lau KY, Sevim V, Tang C. Design principles of the yeast G1/S switch. PLoS Biol 2013; 11:e1001673. [PMID: 24130459 PMCID: PMC3794861 DOI: 10.1371/journal.pbio.1001673] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/22/2013] [Indexed: 11/19/2022] Open
Abstract
A hallmark of the G1/S transition in budding yeast cell cycle is the proteolytic degradation of the B-type cyclin-Cdk stoichiometric inhibitor Sic1. Deleting SIC1 or altering Sic1 degradation dynamics increases genomic instability. Certain key facts about the parts of the G1/S circuitry are established: phosphorylation of Sic1 on multiple sites is necessary for its destruction, and both the upstream kinase Cln1/2-Cdk1 and the downstream kinase Clb5/6-Cdk1 can phosphorylate Sic1 in vitro with varied specificity, cooperativity, and processivity. However, how the system works as a whole is still controversial due to discrepancies between in vitro, in vivo, and theoretical studies. Here, by monitoring Sic1 destruction in real time in individual cells under various perturbations to the system, we provide a clear picture of how the circuitry functions as a switch in vivo. We show that Cln1/2-Cdk1 sets the proper timing of Sic1 destruction, but does not contribute to its destruction speed; thus, it acts only as a trigger. Sic1's inhibition target Clb5/6-Cdk1 controls the speed of Sic1 destruction through a double-negative feedback loop, ensuring a robust all-or-none transition for Clb5/6-Cdk1 activity. Furthermore, we demonstrate that the degradation of a single-phosphosite mutant of Sic1 is rapid and switch-like, just as the wild-type form. Our mathematical model confirms our understanding of the circuit and demonstrates that the substrate sharing between the two kinases is not a redundancy but a part of the design to overcome the trade-off between the timing and sharpness of Sic1 degradation. Our study provides direct mechanistic insight into the design features underlying the yeast G1/S switch.
Collapse
Affiliation(s)
- Xiaojing Yang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Department of Bioengineering and Therapeutic Sciences, and Center for Systems and Synthetic Biology, University of California, San Francisco, California, United States of America
| | - Kai-Yeung Lau
- Department of Bioengineering and Therapeutic Sciences, and Center for Systems and Synthetic Biology, University of California, San Francisco, California, United States of America
| | - Volkan Sevim
- Department of Bioengineering and Therapeutic Sciences, and Center for Systems and Synthetic Biology, University of California, San Francisco, California, United States of America
| | - Chao Tang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
20
|
Koltovaya NA. Involvement of cyclin-dependent kinase CDK1/CDC28 in regulation of cell cycle. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413050086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Noguchi E. PP2A(Cdc55/B55), a possible therapeutic target in cyclin D1-dependent cancers. Cell Cycle 2013; 12:1484. [PMID: 23652921 PMCID: PMC3680526 DOI: 10.4161/cc.24854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
22
|
McCourt P, Gallo-Ebert C, Gonghong Y, Jiang Y, Nickels JT. PP2A(Cdc55) regulates G1 cyclin stability. Cell Cycle 2013; 12:1201-10. [PMID: 23518505 PMCID: PMC3674085 DOI: 10.4161/cc.24231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Maintaining accurate progression through the cell cycle requires the proper temporal expression and regulation of cyclins. The mammalian D-type cyclins promote G1-S transition. D1 cyclin protein stability is regulated through its ubiquitylation and resulting proteolysis catalyzed by the SCF E3 ubiquitin ligase complex containing the F-box protein, Fbx4. SCF E3-ligase-dependent ubiquitylation of D1 is trigged by an increase in the phosphorylation status of the cyclin. As inhibition of ubiquitin-dependent D1 degradation is seen in many human cancers, we set out to uncover how D-type cyclin phosphorylation is regulated. Here we show that in S. cerevisiae, a heterotrimeric protein phosphatase 2A (PP2A(Cdc55)) containing the mammalian PPP2R2/PR55 B subunit ortholog Cdc55 regulates the stability of the G1 cyclin Cln2 by directly regulating its phosphorylation state. Cells lacking Cdc55 contain drastically reduced Cln2 levels caused by degradation due to cdk-dependent hyperphosphorylation, as a Cln2 mutant unable to be phosphorylated by the yeast cdk Cdc28 is highly stable in cdc55-null cells. Moreover, cdc55-null cells become inviable when the SCF(Grr1) activity known to regulate Cln2 levels is eliminated or when Cln2 is overexpressed, indicating a critical relationship between SCF and PP2A functions in regulating cell cycle progression through modulation of G1-S cyclin degradation/stability. In sum, our results indicate that PP2A is absolutely required to maintain G1-S cyclin levels through modulating their phosphorylation status, an event necessary to properly transit through the cell cycle.
Collapse
Affiliation(s)
- Paula McCourt
- Venenum Biodesign, Genesis Biotechnology Group, Hamilton, NJ, USA
| | | | | | | | | |
Collapse
|
23
|
Hernández-Ortega S, Bru S, Ricco N, Ramírez S, Casals N, Jiménez J, Isasa M, Crosas B, Clotet J. Defective in mitotic arrest 1 (Dma1) ubiquitin ligase controls G1 cyclin degradation. J Biol Chem 2012; 288:4704-14. [PMID: 23264631 DOI: 10.1074/jbc.m112.426593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Progression through the G(1) phase of the cell cycle is controlled by diverse cyclin-dependent kinases (CDKs) that might be associated to numerous cyclin isoforms. Given such complexity, regulation of cyclin degradation should be crucial for coordinating progression through the cell cycle. In Saccharomyces cerevisiae, SCF is the only E3 ligase known to date to be involved in G(1) cyclin degradation. Here, we report the design of a genetic screening that uncovered Dma1 as another E3 ligase that targets G(1) cyclins in yeast. We show that the cyclin Pcl1 is ubiquitinated in vitro and in vivo by Dma1, and accordingly, is stabilized in dma1 mutants. We demonstrate that Pcl1 must be phosphorylated by its own CDK to efficiently interact with Dma1 and undergo degradation. A nonphosphorylatable version of Pcl1 accumulates throughout the cell cycle, demonstrating the physiological relevance of the proposed mechanism. Finally, we present evidence that the levels of Pcl1 and Cln2 are independently controlled in response to nutrient availability. This new previously unknown mechanism for G(1) cyclin degradation that we report here could help elucidate the specific roles of the redundant CDK-cyclin complexes in G(1).
Collapse
Affiliation(s)
- Sara Hernández-Ortega
- Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang R, Solomon MJ. Identification of She3 as an SCF(Grr1) substrate in budding yeast. PLoS One 2012; 7:e48020. [PMID: 23144720 PMCID: PMC3483296 DOI: 10.1371/journal.pone.0048020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 09/21/2012] [Indexed: 11/18/2022] Open
Abstract
The highly orchestrated progression of the cell cycle depends on the degradation of many regulatory proteins at different cell cycle stages. One of the key cell cycle ubiquitin ligases is the Skp1-cullin-F-box (SCF) complex. Acting in concert with the substrate-binding F-box protein Grr1, SCFGrr1 promotes the degradation of cell cycle regulators as well as various metabolic enzymes. Using a yeast two-hybrid assay with a Grr1 derivative as the bait, we identified She3, which is an adaptor protein in the asymmetric mRNA transport system, as a novel Grr1 substrate. We generated stabilized She3 mutants, which no longer bound to Grr1, and found that the degradation of She3 is not required for regulating asymmetric mRNA transport. However, She3 stabilization leads to slower growth compared to wild-type cells in a co-culture assay, demonstrating that the degradation of She3 by Grr1 is required for optimal cell growth.
Collapse
Affiliation(s)
| | - Mark J. Solomon
- Yale University, Department of Molecular Biophysics and Biochemistry, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
25
|
Abstract
In eukaryotes, cell division is controlled by cyclin-dependent kinases (CDKs). Here we summarize a few new developments on the regulation of the cell cycle by CDK-cyclin complexes. We have focused on three aspects in which there has been recent progress: the structural analysis of these complexes, the phenotypes of mice carrying knockouts of CDK inhibitors and the role of proteolysis in the regulation of the cell cycle.
Collapse
Affiliation(s)
- C Martin-Castellanos
- Instituto de Microbiología Bioquímica, Departamento de Microbiología y Genética, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
26
|
Landry BD, Doyle JP, Toczyski DP, Benanti JA. F-box protein specificity for g1 cyclins is dictated by subcellular localization. PLoS Genet 2012; 8:e1002851. [PMID: 22844257 PMCID: PMC3405998 DOI: 10.1371/journal.pgen.1002851] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/06/2012] [Indexed: 01/16/2023] Open
Abstract
Levels of G1 cyclins fluctuate in response to environmental cues and couple mitotic signaling to cell cycle entry. The G1 cyclin Cln3 is a key regulator of cell size and cell cycle entry in budding yeast. Cln3 degradation is essential for proper cell cycle control; however, the mechanisms that control Cln3 degradation are largely unknown. Here we show that two SCF ubiquitin ligases, SCF(Cdc4) and SCF(Grr1), redundantly target Cln3 for degradation. While the F-box proteins (FBPs) Cdc4 and Grr1 were previously thought to target non-overlapping sets of substrates, we find that Cdc4 and Grr1 each bind to all 3 G1 cyclins in cell extracts, yet only Cln3 is redundantly targeted in vivo, due in part to its nuclear localization. The related cyclin Cln2 is cytoplasmic and exclusively targeted by Grr1. However, Cdc4 can interact with Cdk-phosphorylated Cln2 and target it for degradation when cytoplasmic Cdc4 localization is forced in vivo. These findings suggest that Cdc4 and Grr1 may share additional redundant targets and, consistent with this possibility, grr1Δ cdc4-1 cells demonstrate a CLN3-independent synergistic growth defect. Our findings demonstrate that structurally distinct FBPs are capable of interacting with some of the same substrates; however, in vivo specificity is achieved in part by subcellular localization. Additionally, the FBPs Cdc4 and Grr1 are partially redundant for proliferation and viability, likely sharing additional redundant substrates whose degradation is important for cell cycle progression.
Collapse
Affiliation(s)
- Benjamin D. Landry
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - John P. Doyle
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - David P. Toczyski
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Jennifer A. Benanti
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Simmons Kovacs LA, Mayhew MB, Orlando DA, Jin Y, Li Q, Huang C, Reed SI, Mukherjee S, Haase SB. Cyclin-dependent kinases are regulators and effectors of oscillations driven by a transcription factor network. Mol Cell 2012; 45:669-79. [PMID: 22306294 DOI: 10.1016/j.molcel.2011.12.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 10/12/2011] [Accepted: 12/31/2011] [Indexed: 01/11/2023]
Abstract
During embryonic cell cycles, B-cyclin-CDKs function as the core component of an autonomous oscillator. Current models for the cell-cycle oscillator in nonembryonic cells are slightly more complex, incorporating multiple G1, S phase, and mitotic cyclin-CDK complexes. However, periodic events persist in yeast cells lacking all S phase and mitotic B-cyclin genes, challenging the assertion that cyclin-CDK complexes are essential for oscillations. These and other results led to the proposal that a network of sequentially activated transcription factors functions as an underlying cell-cycle oscillator. Here we examine the individual contributions of a transcription factor network and cyclin-CDKs to the maintenance of cell-cycle oscillations. Our findings suggest that while cyclin-CDKs are not required for oscillations, they do contribute to oscillation robustness. A model emerges in which cyclin expression (thereby, CDK activity) is entrained to an autonomous transcriptional oscillator. CDKs then modulate oscillator function and serve as effectors of the oscillator.
Collapse
|
28
|
Lai ACW, Nguyen Ba AN, Moses AM. Predicting kinase substrates using conservation of local motif density. ACTA ACUST UNITED AC 2012; 28:962-9. [PMID: 22302575 DOI: 10.1093/bioinformatics/bts060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
MOTIVATION Protein kinases represent critical links in cell signaling. A central problem in computational biology is to systematically identify their substrates. RESULTS This study introduces a new method to predict kinase substrates by extracting evolutionary information from multiple sequence alignments in a manner that is tolerant to degenerate motif positioning. Given a known consensus, the new method (ConDens) compares the observed density of matches to a null model of evolution and does not require labeled training data. We confirmed that ConDens has improved performance compared with several existing methods in the field. Further, we show that it is generalizable and can predict interesting substrates for several important eukaryotic kinases where training data is not available. AVAILABILITY AND IMPLEMENTATION ConDens can be found at http://www.moseslab.csb.utoronto.ca/andyl/. CONTACT alan.moses@utoronto.ca SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andy C W Lai
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada M5S 3G5
| | | | | |
Collapse
|
29
|
Cross FR, Buchler NE, Skotheim JM. Evolution of networks and sequences in eukaryotic cell cycle control. Philos Trans R Soc Lond B Biol Sci 2011; 366:3532-44. [PMID: 22084380 PMCID: PMC3203458 DOI: 10.1098/rstb.2011.0078] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The molecular networks regulating the G1-S transition in budding yeast and mammals are strikingly similar in network structure. However, many of the individual proteins performing similar network roles appear to have unrelated amino acid sequences, suggesting either extremely rapid sequence evolution, or true polyphyly of proteins carrying out identical network roles. A yeast/mammal comparison suggests that network topology, and its associated dynamic properties, rather than regulatory proteins themselves may be the most important elements conserved through evolution. However, recent deep phylogenetic studies show that fungal and animal lineages are relatively closely related in the opisthokont branch of eukaryotes. The presence in plants of cell cycle regulators such as Rb, E2F and cyclins A and D, that appear lost in yeast, suggests cell cycle control in the last common ancestor of the eukaryotes was implemented with this set of regulatory proteins. Forward genetics in non-opisthokonts, such as plants or their green algal relatives, will provide direct information on cell cycle control in these organisms, and may elucidate the potentially more complex cell cycle control network of the last common eukaryotic ancestor.
Collapse
Affiliation(s)
| | - Nicolas E. Buchler
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Physics, Duke University, Durham, NC 27708, USA
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710, USA
| | - Jan M. Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
30
|
Abstract
Major progress has been made in unravelling of regulatory mechanisms in eukaryotic cells. Modification of target protein properties by reversible phosphorylation events has been found to be one of the most prominent cellular control processes in all organisms. The phospho-status of a protein is dynamically controlled by protein kinases and counteracting phosphatases. Therefore, monitoring of kinase and phosphatase activities, identification of specific phosphorylation sites, and assessment of their functional significance are of crucial importance to understand development and homeostasis. Recent advances in the area of molecular biology and biochemistry, for instance, mass spectrometry-based phosphoproteomics or fluorescence spectroscopical methods, open new possibilities to reach an unprecidented depth and a proteome-wide understanding of phosphorylation processes in plants and other species. In addition, the growing number of model species allows now deepening evolutionary insights into signal transduction cascades and the use of kinase/phosphatase systems. Thus, this is the age where we move from an understanding of the structure and function of individual protein modules to insights how these proteins are organized into pathways and networks. In this introductory chapter, we briefly review general definitions, methodology, and current concepts of the molecular mechanisms of protein kinase function as a foundation for this methods book. We briefly review biochemistry and structural biology of kinases and provide selected examples for the role of kinases in biological systems.
Collapse
|
31
|
Varedi K. SM, Ventura AC, Merajver SD, Lin XN. Multisite phosphorylation provides an effective and flexible mechanism for switch-like protein degradation. PLoS One 2010; 5:e14029. [PMID: 21179196 PMCID: PMC3001445 DOI: 10.1371/journal.pone.0014029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/20/2010] [Indexed: 12/12/2022] Open
Abstract
Phosphorylation-triggered degradation is a common strategy for elimination of regulatory proteins in many important cell signaling processes. Interesting examples include cyclin-dependent kinase inhibitors such as p27 in human and Sic1 in yeast, which play crucial roles during the G1/S transition in the cell cycle. In this work, we have modeled and analyzed the dynamics of multisite-phosphorylation-triggered protein degradation systematically. Inspired by experimental observations on the Sic1 protein and a previous intriguing theoretical conjecture, we develop a model to examine in detail the degradation dynamics of a protein featuring multiple phosphorylation sites and a threshold site number for elimination in response to a kinase signal. Our model explains the role of multiple phosphorylation sites, compared to a single site, in the regulation of protein degradation. A single-site protein cannot convert a graded input of kinase increase to much sharper output, whereas multisite phosphorylation is capable of generating a highly switch-like temporal profile of the substrate protein with two characteristics: a temporal threshold and rapid decrease beyond the threshold. We introduce a measure termed temporal response coefficient to quantify the extent to which a response in the time domain is switch-like and further investigate how this property is determined by various factors including the kinase input, the total number of sites, the threshold site number for elimination, the order of phosphorylation, the kinetic parameters, and site preference. Some interesting and experimentally verifiable predictions include that the non-degradable fraction of the substrate protein exhibits a more switch-like temporal profile; a sequential system is more switch-like, while a random system has the advantage of increased robustness; all the parameters, including the total number of sites, the threshold site number for elimination and the kinetic parameters synergistically determine the exact extent to which the degradation profile is switch-like. Our results suggest design principles for protein degradation switches which might be a widespread mechanism for precise regulation of cellular processes such as cell cycle progression.
Collapse
Affiliation(s)
- S. Marjan Varedi K.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alejandra C. Ventura
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sofia D. Merajver
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xiaoxia Nina Lin
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
32
|
Sahin F, Sladek TL. E2F-1 has dual roles depending on the cell cycle. Int J Biol Sci 2010; 6:116-28. [PMID: 20224733 PMCID: PMC2836542 DOI: 10.7150/ijbs.6.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 02/28/2010] [Indexed: 02/03/2023] Open
Abstract
The E2F family of transcription factors play a critical role in the control of cell proliferation. E2F-1 is the major cellular target of pRB and is regulated by pRB during cell proliferation. E2F-1-mediated activation and repression of target genes occurs in different settings. The role of E2F-1 and E2F-1/pRB complexes in regulation of different target genes, and in cycling versus quiescent cells, is unclear. In this study, effects of free E2F-1 (doesn't complex with pRb) and E2F-1/pRb complex, on E2F-1 target gene expression were compared in different cell growth conditions. Findings suggest that E2F-1 acts in different ways, not only depending on the target gene but also depending on different stages of the cell cycle. For example, E2F-1 acts as part of the repression complex with pRB in the expression of DHFR, b-myb, TK and cdc2 in asynchronously growing cells; on the other hand, E2F-1 acts as an activator in the expression of the same genes in cells that are re-entering the cycle.
Collapse
Affiliation(s)
- Fikret Sahin
- Department of Microbiology and Immunology, Finch University of Health Sciences/Chicago Medical School (now Rosalind Franklin University), 3333 Green Bay Road, North Chicago, Illinois 60064-3095, USA.
| | | |
Collapse
|
33
|
Charvin G, Oikonomou C, Siggia ED, Cross FR. Origin of irreversibility of cell cycle start in budding yeast. PLoS Biol 2010; 8:e1000284. [PMID: 20087409 PMCID: PMC2797597 DOI: 10.1371/journal.pbio.1000284] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 12/10/2009] [Indexed: 12/19/2022] Open
Abstract
Budding yeast cells irreversibly commit to a new division cycle at a regulatory transition called Start. This essential decision-making step involves the activation of the SBF/MBF transcription factors. SBF/MBF promote expression of the G1 cyclins encoded by CLN1 and CLN2. Cln1,2 can activate their own expression by inactivating the Whi5 repressor of SBF/MBF. The resulting transcriptional positive feedback provides an appealing, but as yet unproven, candidate for generating irreversibility of Start. Here, we investigate the logic of the Start regulatory module by quantitative single-cell time-lapse microscopy, using strains in which expression of key regulators is efficiently controlled by changes of inducers in a microfluidic chamber. We show that Start activation is ultrasensitive to G1 cyclin. In the absence of CLN1,2-dependent positive feedback, we observe that Start transit is reversible, due to reactivation of the Whi5 transcriptional repressor. Introduction of the positive feedback loop makes Whi5 inactivation and Start activation irreversible, which therefore guarantees unidirectional entry into S phase. A simple mathematical model to describe G1 cyclin turn on at Start, entirely constrained by empirically measured parameters, shows that the experimentally measured ultrasensitivity and transcriptional positive feedback are necessary and sufficient dynamical characteristics to make the Start transition a bistable and irreversible switch. Our study thus demonstrates that Start irreversibility is a property that arises from the architecture of the system (Whi5/SBF/Cln2 loop), rather than the consequence of the regulation of a single component (e.g., irreversible protein degradation).
Collapse
Affiliation(s)
- Gilles Charvin
- Laboratoire Joliot-Curie, Ecole Normale Supérieure, Lyon, France.
| | | | | | | |
Collapse
|
34
|
Artiles K, Anastasia S, McCusker D, Kellogg DR. The Rts1 regulatory subunit of protein phosphatase 2A is required for control of G1 cyclin transcription and nutrient modulation of cell size. PLoS Genet 2009; 5:e1000727. [PMID: 19911052 PMCID: PMC2770260 DOI: 10.1371/journal.pgen.1000727] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 10/16/2009] [Indexed: 11/19/2022] Open
Abstract
The key molecular event that marks entry into the cell cycle is transcription of G1 cyclins, which bind and activate cyclin-dependent kinases. In yeast cells, initiation of G1 cyclin transcription is linked to achievement of a critical cell size, which contributes to cell-size homeostasis. The critical cell size is modulated by nutrients, such that cells growing in poor nutrients are smaller than cells growing in rich nutrients. Nutrient modulation of cell size does not work through known critical regulators of G1 cyclin transcription and is therefore thought to work through a distinct pathway. Here, we report that Rts1, a highly conserved regulatory subunit of protein phosphatase 2A (PP2A), is required for normal control of G1 cyclin transcription. Loss of Rts1 caused delayed initiation of bud growth and delayed and reduced accumulation of G1 cyclins. Expression of the G1 cyclin CLN2 from an inducible promoter rescued the delayed bud growth in rts1Delta cells, indicating that Rts1 acts at the level of transcription. Moreover, loss of Rts1 caused altered regulation of Swi6, a key component of the SBF transcription factor that controls G1 cyclin transcription. Epistasis analysis revealed that Rts1 does not work solely through several known critical upstream regulators of G1 cyclin transcription. Cells lacking Rts1 failed to undergo nutrient modulation of cell size. Together, these observations demonstrate that Rts1 is a key player in pathways that link nutrient availability, cell size, and G1 cyclin transcription. Since Rts1 is highly conserved, it may function in similar pathways in vertebrates.
Collapse
Affiliation(s)
- Karen Artiles
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Stephanie Anastasia
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Derek McCusker
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Douglas R. Kellogg
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
35
|
Abstract
It has been more than 30 years since the initial report of the discovery of ubiquitin as an 8.5 kDa protein of unknown function expressed universally in living cells. And still, protein modification by covalent conjugation of the ubiquitin molecule is one of the most dynamic posttranslational modifications studied in terms of biochemistry and cell physiology. Ubiquitination plays a central regulatory role in number of eukaryotic cellular processes such as receptor endocytosis, growth-factor signaling, cell-cycle control, transcription, DNA repair, gene silencing, and stress response. Ubiquitin conjugation is a three step concerted action of the E1-E2-E3 enzymes that produces a modified protein. In this review we investigate studies undertaken to identify both ubiquitin and SUMO (small ubiquitin-related modifier) substrates with the goal of understanding how lysine selectivity is achieved. The SUMOylation pathway though distinct from that of ubiquitination, draws many parallels. Based upon the recent findings, we present a model to explain how an individual ubiquitin ligase may target specific lysine residue(s) with the co-operation from a scaffold protein.
Collapse
Affiliation(s)
- Trafina Jadhav
- Program in Cellular and Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | | |
Collapse
|
36
|
Tseng SF, Shen ZJ, Tsai HJ, Lin YH, Teng SC. Rapid Cdc13 turnover and telomere length homeostasis are controlled by Cdk1-mediated phosphorylation of Cdc13. Nucleic Acids Res 2009; 37:3602-11. [PMID: 19359360 PMCID: PMC2699520 DOI: 10.1093/nar/gkp235] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Budding yeast telomerase is mainly activated by Tel1/Mec1 (yeast ATM/ATR) on Cdc13 from late S to G2 phase of the cell cycle. Here, we demonstrated that the telomerase-recruitment domain of Cdc13 is also phosphorylated by Cdk1 at the same cell cycle stage as the Tel1/Mec1-dependent regulation. Phosphor-specific gel analysis demonstrated that Cdk1 phosphorylates residues 308 and 336 of Cdc13. The residue T308 of Cdc13 is critical for efficient Mec1-mediated S306 phosphorylation in vitro. Phenotypic analysis in vivo revealed that the mutations in the Cdc13 S/TP motifs phosphorylated by Cdk1 caused cell cycle delay and telomere shortening and these phenotypes could be partially restored by the replacement with a negative charge residue. In the absence of Ku or Tel1, Cdk1-mediated phosphorylation of Cdc13 showed no effect on telomere length maintenance. Moreover, this Cdk1-mediated phosphorylation was required to promote the regular turnover of Cdc13. Together these results demonstrate that Cdk1 phosphorylates the telomerase recruitment domain of Cdc13, thereby preserves optimal function and expression level of Cdc13 for precise telomere replication and cell cycle progression.
Collapse
Affiliation(s)
- Shun-Fu Tseng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Nucleus-specific and cell cycle-regulated degradation of mitogen-activated protein kinase scaffold protein Ste5 contributes to the control of signaling competence. Mol Cell Biol 2008; 29:582-601. [PMID: 19001089 DOI: 10.1128/mcb.01019-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae cells are capable of responding to mating pheromone only prior to their exit from the G(1) phase of the cell cycle. Ste5 scaffold protein is essential for pheromone response because it couples pheromone receptor stimulation to activation of the appropriate mitogen-activated protein kinase (MAPK) cascade. In naïve cells, Ste5 resides primarily in the nucleus. Upon pheromone treatment, Ste5 is rapidly exported from the nucleus and accumulates at the tip of the mating projection via its association with multiple plasma membrane-localized molecules. We found that concomitant with its nuclear export, the rate of Ste5 turnover is markedly reduced. Preventing nuclear export destabilized Ste5, whereas preventing nuclear entry stabilized Ste5, indicating that Ste5 degradation occurs mainly in the nucleus. This degradation is dependent on ubiquitin and the proteasome. We show that Ste5 ubiquitinylation is mediated by the SCF(Cdc4) ubiquitin ligase and requires phosphorylation by the G(1) cyclin-dependent protein kinase (cdk1). The inability to efficiently degrade Ste5 resulted in pathway activation and cell cycle arrest in the absence of pheromone. These findings reveal that maintenance of this MAPK scaffold at an appropriately low level depends on its compartment-specific and cell cycle-dependent degradation. Overall, this mechanism provides a novel means for helping to prevent inadvertent stimulus-independent activation of a response and for restricting and maximizing the signaling competence of the cell to a specific cell cycle stage, which likely works hand in hand with the demonstrated role that G(1) Cdk1-dependent phosphorylation of Ste5 has in preventing its association with the plasma membrane.
Collapse
|
39
|
Autophosphorylation-induced degradation of the Pho85 cyclin Pcl5 is essential for response to amino acid limitation. Mol Cell Biol 2008; 28:6858-69. [PMID: 18794371 DOI: 10.1128/mcb.00367-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pho85 cyclins (Pcls), activators of the yeast cyclin-dependent kinase (CDK) Pho85, belong together with the p35 activator of mammalian CDK5 to a distinct structural cyclin class. Different Pcls target Pho85 to distinct substrates. Pcl5 targets Pho85 specifically to Gcn4, a yeast transcription factor involved in the response to amino acid starvation, eventually causing the degradation of Gcn4. Pcl5 is itself highly unstable, an instability that was postulated to be important for regulation of Gcn4 degradation. We used hybrids between different Pcls to circumscribe the substrate recognition function to the core cyclin box domain of Pcl5. Furthermore, the cyclin hybrids revealed that Pcl5 degradation is uniquely dependent on two distinct degradation signals: one N-terminal and one C-terminal to the cyclin box domain. Whereas the C-terminal degradation signal is independent of Pho85, the N-terminal degradation signal requires phosphorylation of a specific threonine residue by the Pho85 molecule bound to the cyclin. This latter mode of degradation depends on the SCF ubiquitin ligase. Degradation of Pcl5 after self-catalyzed phosphorylation ensures that activity of the Pho85/Pcl5 complex is self-limiting in vivo. We demonstrate the importance of this mechanism for the regulation of Gcn4 degradation and for cell growth under conditions of amino acid starvation.
Collapse
|
40
|
Skotheim JM, Di Talia S, Siggia ED, Cross FR. Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature 2008; 454:291-6. [PMID: 18633409 DOI: 10.1038/nature07118] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 05/29/2008] [Indexed: 11/09/2022]
Abstract
In budding yeast, Saccharomyces cerevisiae, the Start checkpoint integrates multiple internal and external signals into an all-or-none decision to enter the cell cycle. Here we show that Start behaves like a switch due to systems-level feedback in the regulatory network. In contrast to current models proposing a linear cascade of Start activation, transcriptional positive feedback of the G1 cyclins Cln1 and Cln2 induces the near-simultaneous expression of the approximately 200-gene G1/S regulon. Nuclear Cln2 drives coherent regulon expression, whereas cytoplasmic Cln2 drives efficient budding. Cells with the CLN1 and CLN2 genes deleted frequently arrest as unbudded cells, incurring a large fluctuation-induced fitness penalty due to both the lack of cytoplasmic Cln2 and insufficient G1/S regulon expression. Thus, positive-feedback-amplified expression of Cln1 and Cln2 simultaneously drives robust budding and rapid, coherent regulon expression. A similar G1/S regulatory network in mammalian cells, comprised of non-orthologous genes, suggests either conservation of regulatory architecture or convergent evolution.
Collapse
Affiliation(s)
- Jan M Skotheim
- Center for Studies in Physics and Biology, The Rockefeller University, New York 10065, USA.
| | | | | | | |
Collapse
|
41
|
Rho5p is involved in mediating the osmotic stress response in Saccharomyces cerevisiae, and its activity is regulated via Msi1p and Npr1p by phosphorylation and ubiquitination. EUKARYOTIC CELL 2008; 7:1441-9. [PMID: 18621925 DOI: 10.1128/ec.00120-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Small GTPases of the Rho family act as molecular switches, and modulation of the GTP-bound state of Rho proteins is a well-characterized means of regulating their signaling activity in vivo. In contrast, the regulation of Rho-type GTPases by posttranslational modifications is poorly understood. Here, we present evidence of the control of the Saccharomyces cerevisiae Rho-type GTPase Rho5p by phosphorylation and ubiquitination. Rho5p binds to Ste50p, and the expression of the activated RHO5(Q91H) allele in an Deltaste50 strain is lethal under conditions of osmotic stress. An overexpression screen identified RGD2 and MSI1 as being high-copy suppressors of the osmotic sensitivity of this lethality. Rgd2p had been identified as being a possible Rho5p GTPase-activating protein based on an in vitro assay; this result supports its function as a regulator of Rho5p activity in vivo. MSI1 was previously identified as being a suppressor of hyperactive Ras/cyclic AMP signaling, where it antagonizes Npr1p kinase activity and promotes ubiquitination. Here, we show that Msi1p also acts via Npr1p to suppress activated Rho5p signaling. Rho5p is ubiquitinated, and its expression is lethal in a strain that is compromised for proteasome activity. These data identify Rho5p as being a target of Msi1p/Npr1p regulation and describe a regulatory circuit involving phosphorylation and ubiquitination.
Collapse
|
42
|
Simmons Kovacs LA, Nelson CL, Haase SB. Intrinsic and cyclin-dependent kinase-dependent control of spindle pole body duplication in budding yeast. Mol Biol Cell 2008; 19:3243-53. [PMID: 18480404 DOI: 10.1091/mbc.e08-02-0148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Centrosome duplication must be tightly controlled so that duplication occurs only once each cell cycle. Accumulation of multiple centrosomes can result in the assembly of a multipolar spindle and lead to chromosome mis-segregation and genomic instability. In metazoans, a centrosome-intrinsic mechanism prevents reduplication until centriole disengagement. Mitotic cyclin/cyclin-dependent kinases (CDKs) prevent reduplication of the budding yeast centrosome, called a spindle pole body (SPB), in late S-phase and G2/M, but the mechanism remains unclear. How SPB reduplication is prevented early in the cell cycle is also not understood. Here we show that, similar to metazoans, an SPB-intrinsic mechanism prevents reduplication early in the cell cycle. We also show that mitotic cyclins can inhibit SPB duplication when expressed before satellite assembly in early G1, but not later in G1, after the satellite had assembled. Moreover, electron microscopy revealed that SPBs do not assemble a satellite in cells expressing Clb2 in early G1. Finally, we demonstrate that Clb2 must localize to the cytoplasm in order to inhibit SPB duplication, suggesting the possibility for direct CDK inhibition of satellite components. These two mechanisms, intrinsic and extrinsic control by CDK, evoke two-step system that prevents SPB reduplication throughout the cell cycle.
Collapse
|
43
|
Charvin G, Cross FR, Siggia ED. A microfluidic device for temporally controlled gene expression and long-term fluorescent imaging in unperturbed dividing yeast cells. PLoS One 2008; 3:e1468. [PMID: 18213377 PMCID: PMC2194624 DOI: 10.1371/journal.pone.0001468] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 12/18/2007] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Imaging single cells with fluorescent markers over multiple cell cycles is a powerful tool for unraveling the mechanism and dynamics of the cell cycle. Over the past ten years, microfluidic techniques in cell biology have emerged that allow for good control of growth environment. Yet the control and quantification of transient gene expression in unperturbed dividing cells has received less attention. METHODOLOGY/PRINCIPAL FINDINGS Here, we describe a microfluidic flow cell to grow Saccharomyces Cerevisiae for more than 8 generations (approximately 12 hrs) starting with single cells, with controlled flow of the growth medium. This setup provides two important features: first, cells are tightly confined and grow in a remarkably planar array. The pedigree can thus be determined and single-cell fluorescence measured with 3 minutes resolution for all cells, as a founder cell grows to a micro-colony of more than 200 cells. Second, we can trigger and calibrate rapid and transient gene expression using reversible administration of inducers that control the GAL1 or MET3 promoters. We then show that periodic 10-20 minutes gene induction pulses can drive many cell division cycles with complete coherence across the cell cluster, with either a G1/S trigger (cln1 cln2 cln3 MET3-CLN2) or a mitotic trigger (cdc20 GALL-CDC20). CONCLUSIONS/SIGNIFICANCE In addition to evident cell cycle applications, this device can be used to directly measure the amount and duration of any fluorescently scorable signal-transduction or gene-induction response over a long time period. The system allows direct correlation of cell history (e.g., hysteresis or epigenetics) or cell cycle position with the measured response.
Collapse
Affiliation(s)
- Gilles Charvin
- Center For Studies in Physics and Biology, The Rockefeller University, New York, New York, USA.
| | | | | |
Collapse
|
44
|
Fey JP, Lanker S. Delayed accumulation of the yeast G1 cyclins Cln1 and Cln2 and the F-box protein Grr1 in response to glucose. Yeast 2007; 24:419-29. [PMID: 17366522 DOI: 10.1002/yea.1472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The ability to integrate nutrient availability into cell cycle regulation is critical for the viability of organisms. The Saccharomyces cerevisiae ubiquitin ligase SCF(Grr1) regulates the stability of several proteins that participate in cell division or nutrient sensing. Two of its targets, the cyclins Cln1 and Cln2, accumulate in the presence of glucose. When glucose is added to cells growing asynchronously, we show that the accumulation of the cyclins is a very slow response. We report that the F-box protein Grr1 also accumulates at higher levels in the presence of glucose, and that the response to glucose follows a delayed pattern strikingly similar to that described for Cln1 and Cln2. A model for the regulation of F-box proteins predicts that substrate accumulation could stabilize Grr1. While we found that Grr1 is more stable in cells growing with glucose, we show that the delayed responses to glucose occur independently: Grr1 accumulates in the absence of the cyclins, and vice versa. Thus, our results indicate that this model might not apply to the cyclins and Grr1. Glucose is known to strengthen the interaction of Grr1 with Skp1 in the SCF complex. We hypothesize that glucose could promote the accumulation of Grr1 and its assembly into a SCF complex as a feedback regulation that helps compensate for higher cyclins levels.
Collapse
Affiliation(s)
- Julien P Fey
- School of Medicine, Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
45
|
Kim CS. Bayesian Orthogonal Least Squares (BOLS) algorithm for reverse engineering of gene regulatory networks. BMC Bioinformatics 2007; 8:251. [PMID: 17626641 PMCID: PMC1959566 DOI: 10.1186/1471-2105-8-251] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Accepted: 07/13/2007] [Indexed: 11/10/2022] Open
Abstract
Background A reverse engineering of gene regulatory network with large number of genes and limited number of experimental data points is a computationally challenging task. In particular, reverse engineering using linear systems is an underdetermined and ill conditioned problem, i.e. the amount of microarray data is limited and the solution is very sensitive to noise in the data. Therefore, the reverse engineering of gene regulatory networks with large number of genes and limited number of data points requires rigorous optimization algorithm. Results This study presents a novel algorithm for reverse engineering with linear systems. The proposed algorithm is a combination of the orthogonal least squares, second order derivative for network pruning, and Bayesian model comparison. In this study, the entire network is decomposed into a set of small networks that are defined as unit networks. The algorithm provides each unit network with P(D|Hi), which is used as confidence level. The unit network with higher P(D|Hi) has a higher confidence such that the unit network is correctly elucidated. Thus, the proposed algorithm is able to locate true positive interactions using P(D|Hi), which is a unique property of the proposed algorithm. The algorithm is evaluated with synthetic and Saccharomyces cerevisiae expression data using the dynamic Bayesian network. With synthetic data, it is shown that the performance of the algorithm depends on the number of genes, noise level, and the number of data points. With Yeast expression data, it is shown that there is remarkable number of known physical or genetic events among all interactions elucidated by the proposed algorithm. The performance of the algorithm is compared with Sparse Bayesian Learning algorithm using both synthetic and Saccharomyces cerevisiae expression data sets. The comparison experiments show that the algorithm produces sparser solutions with less false positives than Sparse Bayesian Learning algorithm. Conclusion From our evaluation experiments, we draw the conclusion as follows: 1) Simulation results show that the algorithm can be used to elucidate gene regulatory networks using limited number of experimental data points. 2) Simulation results also show that the algorithm is able to handle the problem with noisy data. 3) The experiment with Yeast expression data shows that the proposed algorithm reliably elucidates known physical or genetic events. 4) The comparison experiments show that the algorithm more efficiently performs than Sparse Bayesian Learning algorithm with noisy and limited number of data.
Collapse
Affiliation(s)
- Chang Sik Kim
- Bioinformatics Group, Turku Centre for Computer Science, Turku, Finland.
| |
Collapse
|
46
|
Borg M, Mittag T, Pawson T, Tyers M, Forman-Kay JD, Chan HS. Polyelectrostatic interactions of disordered ligands suggest a physical basis for ultrasensitivity. Proc Natl Acad Sci U S A 2007; 104:9650-5. [PMID: 17522259 PMCID: PMC1887549 DOI: 10.1073/pnas.0702580104] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of biological processes often involves phosphorylation of intrinsically disordered protein regions, thereby modulating protein interactions. Initiation of DNA replication in yeast requires elimination of the cyclin-dependent kinase inhibitor Sic1 via the SCF(Cdc4) ubiquitin ligase. Intriguingly, the substrate adapter subunit Cdc4 binds to Sic1 only after phosphorylation of a minimum of any six of the nine cyclin-dependent kinase sites on Sic1. To investigate the physical basis of this ultrasensitive interaction, we consider a mean-field statistical mechanical model for the electrostatic interactions between a single receptor site and a conformationally disordered polyvalent ligand. The formulation treats phosphorylation sites as negative contributions to the total charge of the ligand and addresses its interplay with the strength of the favorable ligand-receptor contact. Our model predicts a threshold number of phosphorylation sites for receptor-ligand binding, suggesting that ultrasensitivity in the Sic1-Cdc4 system may be driven at least in part by cumulative electrostatic interactions. This hypothesis is supported by experimental affinities of Cdc4 for Sic1 fragments with different total charges. Thus, polyelectrostatic interactions may provide a simple yet powerful framework for understanding the modulation of protein interactions by multiple phosphorylation sites in disordered protein regions.
Collapse
Affiliation(s)
- Mikael Borg
- Departments of *Biochemistry and
- Medical Genetics and Microbiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
- Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8; and
| | - Tanja Mittag
- Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8; and
| | - Tony Pawson
- Medical Genetics and Microbiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5
- To whom correspondence may be addressed. E-mail: or
| | - Mike Tyers
- Medical Genetics and Microbiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5
| | - Julie D. Forman-Kay
- Departments of *Biochemistry and
- Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8; and
| | - Hue Sun Chan
- Departments of *Biochemistry and
- Medical Genetics and Microbiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
47
|
McCusker D, Denison C, Anderson S, Egelhofer TA, Yates JR, Gygi SP, Kellogg DR. Cdk1 coordinates cell-surface growth with the cell cycle. Nat Cell Biol 2007; 9:506-15. [PMID: 17417630 DOI: 10.1038/ncb1568] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 03/26/2007] [Indexed: 01/09/2023]
Abstract
The mechanisms that control cell growth during the cell cycle are poorly understood. In budding yeast, cyclin dependent kinase 1 (Cdk1) triggers polarization of the actin cytoskeleton and bud emergence in late G1 through activation of the Cdc42 GTPase. However, Cdk1 is not thought to be required for subsequent growth of the bud. Here, we show that Cdk1 has an unexpected role in controlling bud growth after bud emergence. Moreover, we show that G1 cyclin-Cdk1 complexes specifically phosphorylate multiple proteins associated with Cdc24, the guanine nucleotide-exchange factor (GEF) that activates the Cdc42 GTPase. A mutant form of a Cdc24-associated protein that fails to undergo Cdk1-dependent phosphorylation causes defects in bud growth. These results provide a direct link between Cdk1 activity and the control of polarized cell growth.
Collapse
Affiliation(s)
- Derek McCusker
- Department of Molecular, Cell and Developmental Biology, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Jackson LP, Reed SI, Haase SB. Distinct mechanisms control the stability of the related S-phase cyclins Clb5 and Clb6. Mol Cell Biol 2006; 26:2456-66. [PMID: 16508019 PMCID: PMC1430301 DOI: 10.1128/mcb.26.6.2456-2466.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 12/13/2004] [Accepted: 12/23/2005] [Indexed: 01/29/2023] Open
Abstract
The yeast S-phase cyclins Clb5 and Clb6 are closely related proteins that are synthesized late in G1. Although often grouped together with respect to function, Clb5 and Clb6 exhibit differences in their ability to promote S-phase progression. DNA replication is significantly slowed in clb5Delta mutants but not in clb6Delta mutants. We have examined the basis for the differential functions of Clb5 and Clb6 and determined that unlike Clb5, which is stable until mitosis, Clb6 is degraded rapidly at the G1/S border. N-terminal deletions of CLB6 were hyperstabilized, suggesting that the sequences responsible for directing the destruction of Clb6 reside in the N terminus. Clb6 lacks the destruction box motif responsible for the anaphase promoting complex-mediated destruction of Clb5 but contains putative Cdc4 degron motifs in the N terminus. Clb6 was hyperstabilized in cdc34-3 and cdc4-3 mutants at restrictive temperatures and when S/T-P phosphorylation sites in the N terminus were mutated to nonphosphorylatable residues. Efficient degradation of Clb6 requires the activities of both Cdc28 and Pho85. Finally, hyperstabilized Clb6 expressed from the CLB6 promoter rescued the slow S-phase defect exhibited by clb5Delta cells. Taken together, these findings suggest that the SCF(Cdc4) ubiquitin ligase complex regulates Clb6 turnover and that the functional differences exhibited by Clb5 and Clb6 arise from the distinct mechanisms controlling their stability.
Collapse
Affiliation(s)
- Leisa P Jackson
- DCMB Group, Department of Biology, Box 91000, LSRC Bldg., Research Dr., Durham, NC 27708, USA
| | | | | |
Collapse
|
49
|
Krasley E, Cooper KF, Mallory MJ, Dunbrack R, Strich R. Regulation of the oxidative stress response through Slt2p-dependent destruction of cyclin C in Saccharomyces cerevisiae. Genetics 2005; 172:1477-86. [PMID: 16387872 PMCID: PMC1456298 DOI: 10.1534/genetics.105.052266] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae C-type cyclin and its cyclin-dependent kinase (Cdk8p) repress the transcription of several stress response genes. To relieve this repression, cyclin C is destroyed in cells exposed to reactive oxygen species (ROS). This report describes the requirement of cyclin C destruction for the cellular response to ROS. Compared to wild type, deleting cyclin C makes cells more resistant to ROS while its stabilization reduces viability. The Slt2p MAP kinase cascade mediates cyclin C destruction in response to ROS treatment but not heat shock. This destruction pathway is important as deleting cyclin C suppresses the hypersensitivity of slt2 mutants to oxidative damage. The ROS hypersensitivity of an slt2 mutant correlates with elevated programmed cell death as determined by TUNEL assays. Consistent with the viability studies, the elevated TUNEL signal is reversed in cyclin C mutants. Finally, two results suggest that cyclin C regulates programmed cell death independently of its function as a transcriptional repressor. First, deleting its corepressor CDK8 does not suppress the slt2 hypersensitivity phenotype. Second, the human cyclin C, which does not repress transcription in yeast, does regulate ROS sensitivity. These findings demonstrate a new role for the Slt2p MAP kinase cascade in protecting the cell from programmed cell death through cyclin C destruction.
Collapse
Affiliation(s)
- Elizabeth Krasley
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | |
Collapse
|
50
|
Mizunuma M, Hirata D, Miyakawa T. Implication of Pkc1p protein kinase C in sustaining Cln2p level and polarized bud growth in response to calcium signaling in Saccharomyces cerevisiae. J Cell Sci 2005; 118:4219-29. [PMID: 16141237 DOI: 10.1242/jcs.02535] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein kinase C, a highly conserved signaling molecule among eukaryotes, has been implicated in the regulation of cellular processes such as cell proliferation and polarized growth. In Saccharomyces cerevisiae, the unique protein kinase C Pkc1p is thought to have multiple functions, including the activation of the Mpk1p (Slt2p) MAP kinase pathway, which is essential for cell wall construction and bud emergence. However, little is known about the other functions of Pkc1p. In the course of screening for the mutants that suppress the Ca2+-sensitivity phenotype of the Ca2+-sensitive strain zdsDelta, we isolated a novel mutant allele (scz6/pkc1-834) of PKC1. Unlike the previously characterized PKC1 allele stt1-1, heat-shock-induced Mpk1p activation and cell-wall integrity were not impaired in the pkc1-834 mutant. By contrast, the mutant was defective in the maintenance of Ca2+-induced F-actin polarization in a manner independent of Mpk1p activation. This phenotype was caused by a decreased expression level of the G1 cyclin Cln2p. The Rho1 small G protein molecular switch was suggested to be involved in the novel Pkc1p function. The Pkc1p novel function was required for posttranscriptional upregulation of Cln2p and appeared to be important for the coordinated regulation of polar bud growth and the cell cycle.
Collapse
Affiliation(s)
- Masaki Mizunuma
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | | | | |
Collapse
|